WO2016088773A1 - 非水電解液電池用電解液、及びこれを用いた非水電解液電池 - Google Patents

非水電解液電池用電解液、及びこれを用いた非水電解液電池 Download PDF

Info

Publication number
WO2016088773A1
WO2016088773A1 PCT/JP2015/083803 JP2015083803W WO2016088773A1 WO 2016088773 A1 WO2016088773 A1 WO 2016088773A1 JP 2015083803 W JP2015083803 W JP 2015083803W WO 2016088773 A1 WO2016088773 A1 WO 2016088773A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
electrolyte
aqueous electrolyte
electrolyte battery
Prior art date
Application number
PCT/JP2015/083803
Other languages
English (en)
French (fr)
Inventor
孝敬 森中
誠 久保
渉 河端
建太 山本
幹弘 高橋
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US15/529,738 priority Critical patent/US10211480B2/en
Priority to CN201580065535.XA priority patent/CN107004904B/zh
Priority to EP15864956.6A priority patent/EP3229306B1/en
Priority to KR1020177018205A priority patent/KR101878855B1/ko
Publication of WO2016088773A1 publication Critical patent/WO2016088773A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous electrolyte battery constituting a non-aqueous electrolyte secondary battery excellent in cycle characteristics and low-temperature characteristics, and a non-aqueous electrolyte battery using the same.
  • Non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, lithium ion capacitors, and sodium ion batteries have been actively developed as one candidate.
  • non-aqueous electrolyte batteries Although many of these non-aqueous electrolyte batteries have already been put into practical use, they are not satisfactory for various uses in each characteristic. Especially for in-vehicle applications such as electric vehicles, high input / output characteristics are required even in cold periods, so it is important to improve low-temperature characteristics, and even when repeatedly charged and discharged in a high-temperature environment. Is required (high increase in internal resistance).
  • Patent Document 1 proposes to improve battery characteristics by adding vinylene carbonate to an electrolytic solution.
  • the battery characteristics at high temperature are improved, the increase in internal resistance is remarkably deteriorated at low temperature.
  • Many studies have also been made on adding an imide salt to an electrolytic solution.
  • Patent Document 2 a method of suppressing deterioration of high-temperature cycle characteristics and high-temperature storage characteristics by combining a specific sulfonimide salt or phosphorylimide salt with an oxalato complex
  • Patent Document 3 a method of suppressing deterioration of cycle characteristics and output characteristics by combining a specific sulfonimide salt and a fluorophosphate
  • the low-temperature characteristics and high-temperature cycle characteristics obtained by the non-aqueous electrolyte battery using the non-aqueous electrolyte disclosed in the prior art document are not fully satisfactory and have room for improvement.
  • the present invention relates to an electrolyte for a non-aqueous electrolyte battery that can exhibit excellent low-temperature output characteristics at ⁇ 30 ° C. or lower and excellent cycle characteristics at high temperatures of 45 ° C. or higher, and non-aqueous electrolysis using the same A liquid battery is provided.
  • the present inventors have a divalent imide anion having a specific structure in a nonaqueous electrolyte solution for a nonaqueous electrolyte battery containing a nonaqueous solvent and a solute.
  • a salt in the electrolytic solution, when the electrolytic solution is used in a non-aqueous electrolytic battery, it was found that the non-aqueous electrolytic battery can exhibit excellent low-temperature output characteristics and high-temperature cycle characteristics, leading to the present invention. It was.
  • the present invention relates to a salt having a nonaqueous solvent, a solute, and at least one divalent imide anion represented by the following general formulas (1) to (4) (hereinafter simply referred to as “salt having an imide anion”). And a non-aqueous electrolyte battery electrolyte (hereinafter, sometimes simply referred to as “non-aqueous electrolyte” or “electrolyte”). It is.
  • R 1 to R 3 are each independently a fluorine atom, a linear or branched alkoxy group having 1 to 10 carbon atoms, or an alkenyl having 2 to 10 carbon atoms.
  • the organic group is selected, and a fluorine atom, an oxygen atom, or an unsaturated bond may be present in the organic group.
  • X represents a fluorine atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms.
  • M 1 and M 2 are each independently a proton, a metal cation or an onium cation. ]
  • the salt having an imide anion of the present invention is partially decomposed at the interface between the positive electrode and the electrolytic solution and the interface between the negative electrode and the electrolytic solution to form a film. It is thought to form. This film suppresses direct contact between the non-aqueous solvent or solute and the active material, prevents decomposition of the non-aqueous solvent or solute, and suppresses deterioration of battery performance.
  • the imide anion has a phosphate ion site (—P ( ⁇ O) R 3 O ⁇ ) or a sulfonate ion site (—SO 3 ⁇ ).
  • the charge of the formed film is biased, and the film has a high lithium conductivity, that is, a film with low resistance (a film with good output characteristics). Conceivable. Furthermore, the above effect is because the imide anion contains a highly electron-withdrawing site (for example, a fluorine atom or a fluorine-containing alkoxy group), and the bias of charge becomes larger, and the film with lower resistance (better output characteristics) Is considered to be formed. For the above reasons, it is presumed that the non-aqueous electrolyte containing a salt having an imide anion of the present invention exhibits an effect of improving high-temperature cycle characteristics and low-temperature output characteristics.
  • a highly electron-withdrawing site for example, a fluorine atom or a fluorine-containing alkoxy group
  • the salt having an imide anion has at least one PF bond or SF bond, since more excellent low temperature characteristics can be obtained.
  • the number of PF bonds and SF bonds in the salt having an imide anion is more preferable because the low temperature characteristics can be further improved.
  • R 1 to R 3 are an organic group selected from the group consisting of a fluorine atom, an alkenyloxy group having 2 to 10 carbon atoms, and an alkynyloxy group having 2 to 10 carbon atoms, a more excellent high temperature cycle It is preferable because characteristics are obtained. Moreover, it is preferable that carbon number of the said alkenyloxy group is 6 or less. When the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode. It is preferable that the number of carbon atoms is 6 or less because the above-mentioned internal resistance tends to be smaller.
  • the alkynyloxy group preferably has 6 or less carbon atoms. When the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode.
  • the number of carbon atoms is 6 or less because the above-mentioned internal resistance tends to be smaller, and in particular, a group selected from the group consisting of 2-propynyloxy group and 1,1-dimethyl-2-propynyloxy group. It is preferable because a nonaqueous electrolyte battery excellent in high temperature cycle characteristics and low temperature output characteristics can be obtained.
  • X is an organic group selected from the group consisting of a fluorine atom, an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, and an alkynyloxy group having 2 to 10 carbon atoms. It is preferable because more excellent high-temperature cycle characteristics can be obtained. Moreover, it is preferable that carbon number of the said alkoxy group is 6 or less. When the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode. When the number of carbon atoms is 6 or less, the above-described internal resistance tends to be smaller, which is preferable.
  • the group is selected from the group consisting of a methoxy group, an ethoxy group, and a propoxy group
  • high-temperature cycle characteristics and low-temperature output are preferable. This is preferable because a non-aqueous electrolyte battery having better characteristics can be obtained.
  • carbon number of the said alkenyloxy group is 6 or less. When the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode. It is preferable that the number of carbon atoms is 6 or less because the above-mentioned internal resistance tends to be smaller.
  • the alkynyloxy group preferably has 6 or less carbon atoms. When the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode.
  • the number of carbon atoms is 6 or less because the above-mentioned internal resistance tends to be smaller, and in particular, a group selected from the group consisting of 2-propynyloxy group and 1,1-dimethyl-2-propynyloxy group. It is preferable because a nonaqueous electrolyte battery excellent in high temperature cycle characteristics and low temperature output characteristics can be obtained.
  • the counter cation M 1 and M 2 of the imide anion in the salt having the imide anion is preferably a proton, an alkali metal cation, or an onium cation.
  • it is at least one cation selected from the group consisting of protons, lithium ions, sodium ions, potassium ions, tetraalkylammonium ions, and tetraalkylphosphonium ions. It is more preferable.
  • the lower limit of the concentration of the salt having an imide anion is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and more preferably 0.1% by mass or more with respect to the total amount of the electrolyte solution for a non-aqueous electrolyte battery. Is more preferable.
  • the upper limit of the concentration is preferably 5.0% by mass or less, more preferably 4.0% by mass or less, and further preferably 3.0% by mass or less. If the concentration is less than 0.01% by mass, it is not preferable because the effect of improving battery characteristics is hardly obtained.
  • the solute is LiPF 6 , LiPF 2 (C 2 O 4 ) 2 , LiPF 4 (C 2 O 4 ), LiP (C 2 O 4 ) 3 , LiBF 2 (C 2 O 4 ), LiB (C 2 O 4 ) 2 , LiPO 2 F 2 , LiN (F 2 PO) 2 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , NaPF 6 , NaPF 2 (C 2 O 4 ) 2 , NaPF 4 (C 2 O 4 ), NaP (C 2 O 4 ) 3 , NaBF 2 (C 2 O 4 ), NaB (C 2 O 4 ) 2 , NaPO 2 F 2 , NaN (F 2 PO) 2 , NaN It is preferably at least one solute selected from the group consisting of (FSO 2 ) 2 , NaN (CF 3 SO 2 ) 2 , and NaBF 4 .
  • the non-aqueous solvent is preferably at least one selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, sulfone compounds, sulfoxide compounds, and ionic liquids. .
  • the present invention also provides a non-aqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and the electrolyte for a non-aqueous electrolyte battery described above.
  • non-aqueous electrolyte battery electrolyte of the present invention When used in a non-aqueous electrolyte battery, it exhibits excellent low-temperature output characteristics at -30 ° C or lower and excellent cycle characteristics at high temperatures of 45 ° C or higher. Can do.
  • the electrolyte for a non-aqueous electrolyte battery of the present invention contains a non-aqueous solvent, a solute, and at least one salt having a divalent imide anion represented by the following general formulas (1) to (4). It is electrolyte solution for non-aqueous electrolyte batteries characterized by these.
  • R 1 to R 3 are each independently a fluorine atom, a linear or branched alkoxy group having 1 to 10 carbon atoms, or an alkenyl having 2 to 10 carbon atoms.
  • the organic group is selected, and a fluorine atom, an oxygen atom, or an unsaturated bond may be present in the organic group.
  • X represents a fluorine atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms.
  • M 1 and M 2 are each independently a proton, a metal cation or an onium cation. ]
  • Examples of the counter cation of the imide anion in the salt having the imide anion include protons, alkali metal cations such as lithium ion, sodium ion and potassium ion, alkaline earth metal cations such as magnesium ion and calcium ion, tetramethylammonium, Onium cations such as tetraethylammonium and tetrabutylphosphonium (in the case where the counter cation is a monovalent cation, two kinds of cations may be mixed. For example, if M 1 is a divalent cation, M 2 Does not exist).
  • examples of the alkoxy group represented by R 1 to R 3 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a second butoxy group, Tertiary butoxy group, pentyloxy group, trifluoromethoxy group, 2,2-difluoroethoxy group, 2,2,2-trifluoroethoxy group, 2,2,3,3-tetrafluoropropoxy group, and 1,1 , 1,3,3,3-hexafluoroisopropoxy group and the like, and an alkoxy group having 1 to 10 carbon atoms and a fluorine-containing alkoxy group.
  • alkenyloxy group examples include a vinyloxy group and a 1-propenyloxy group.
  • an alkynyloxy group includes, for example, an ethynyloxy group, a 2-propynyloxy group, and a 1,1-dimethyl-2-propynyloxy group.
  • alkynyloxy groups having 2 to 10 carbon atoms such as groups and fluorine-containing alkynyloxy groups.
  • cycloalkoxy groups include cycloalkoxy groups having 3 to 10 carbon atoms such as cyclopentyloxy groups and cyclohexyloxy groups.
  • cycloalkenyloxy groups include, for example, cycloalkenyloxy groups having 3 to 10 carbon atoms such as cyclopentenyloxy groups and cyclohexenyloxy groups, and fluorine-containing cycloalkenyloxy groups.
  • aryloxy group examples thereof include aryloxy groups having 6 to 10 carbon atoms and fluorine-containing aryloxy groups such as an phenyloxy group, a tolyloxy group, and a xylyloxy group.
  • examples of the alkyl group represented by X include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a secondary butyl group, a tertiary butyl group, Pentyl group, trifluoromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, and 1,1,1,3,3 And alkyl groups having 1 to 10 carbon atoms such as 1,3-hexafluoroisopropyl group and fluorine-containing alkyl groups.
  • alkenyl group examples include a vinyl group, a 1-propenyl group, a 2-propenyl group, and an isopropenyl group.
  • Alkenyl groups having 2 to 10 carbon atoms such as 2-butenyl group, 3-butenyl group, and 1,3-butadienyl group and fluorine-containing alkenyl groups.
  • alkynyl groups having 2 to 10 carbon atoms such as ethynyl group, 2-propynyl group, and 1,1-dimethyl-2-propynyl group, and fluorinated alkynyl groups.
  • cycloalkyl groups include Examples thereof include a cycloalkyl group having 3 to 10 carbon atoms such as a cyclopentyl group and a cyclohexyl group, and a fluorine-containing cycloalkyl group.
  • examples of the cycloalkenyl group include 3 carbon atoms such as a cyclopentenyl group and a cyclohexenyl group.
  • an aryl group include, for example, an aryl group having 6 to 10 carbon atoms such as a phenyl group, a tolyl group, and a xylyl group, and a fluorine-containing aryl group. It is done.
  • divalent imide anion described in the general formulas (1) to (4) include, for example, the following compound Nos. 1-No. 18 etc. are mentioned.
  • imide anion used in the present invention is not limited by the following examples.
  • Salts having an imide anion represented by the general formulas (1) to (4) can be produced by various methods.
  • the type of the non-aqueous solvent used in the non-aqueous electrolyte battery electrolyte of the present invention is not particularly limited, and any non-aqueous solvent can be used.
  • Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, and propion.
  • Examples include chain esters such as methyl acid, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane, chain ethers such as dimethoxyethane and diethyl ether, sulfone compounds such as dimethyl sulfoxide and sulfolane, and sulfoxide compounds.
  • chain esters such as methyl acid
  • cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane
  • chain ethers such as dimethoxyethane and diethyl ether
  • sulfone compounds such as dimethyl sulfoxide and sulfolane
  • sulfoxide compounds e.g., butanethoxyethane and diethyl ether
  • sulfone compounds such as dimethyl sulfoxide and sulfolane
  • sulfoxide compounds e.g.,
  • propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate are particularly preferred from the viewpoint of electrochemical stability against redox and chemical stability related to the reaction with heat and the above solute.
  • the kind of the said solute used for the electrolyte solution for nonaqueous electrolyte batteries of this invention is not specifically limited, Arbitrary electrolyte salts can be used.
  • Arbitrary electrolyte salts can be used.
  • LiPF 6 LiPF 2 (C 2 O 4 ) 2 , LiPF 4 (C 2 O 4 ), LiP (C 2 O 4 ) 3 , LiBF 2 ( C 2 O 4), LiB ( C 2 O 4) 2, LiPO 2 F 2, LiN (F 2 PO) 2, LiN (FSO 2) 2, LiN (CF 3 SO 2) 2, LiBF 4, LiClO 4, LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 3 ( Examples of the electrolyte salt include C 3 F 7 ) 3 , LiB (CF 3 CF 3
  • NaPF 6 NaPF 2 (C 2 O 4) 2, NaPF 4 (C 2 O 4), NaP (C 2 O 4) 3, aBF 2 (C 2 O 4) , NaB (C 2 O 4) 2, NaPO 2 F 2, NaN (F 2 PO) 2, NaN (FSO 2) 2, NaN (CF 3 SO 2) 2, NaBF 4, NaClO 4 , NaAsF 6 , NaSbF 6 , NaCF 3 SO 3 , NaN (C 2 F 5 SO 2 ) 2 , NaN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), NaC (CF 3 SO 2 ) 3
  • the electrolyte salt include NaPF 3 (C 3 F 7 ) 3 , NaB (CF 3 ) 4 , and NaBF 3 (C 2 F 5 ).
  • LiPF 6 LiPF 2 (C 2 O 4 ) 2 , LiPF 4 (C 2 O 4 ), LiP (C 2 O 4 ) 3 , LiBF 2 (C 2 O 4 ), LiB (C 2 O 4 ) 2 , LiPO 2 F 2 , LiN (F 2 PO) 2 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , NaPF 6 NaPF 2 (C 2 O 4 ) 2 , NaPF 4 (C 2 O 4 ), NaP (C 2 O 4 ) 3 , NaBF 2 (C 2 O 4 ), NaB (C 2 O 4 ) 2 , NaPO 2 F 2 , NaN (F 2 PO) 2 , NaN (FSO 2 ) 2 , NaN (
  • Suitable combinations of the above solutes include, for example, LiPF 2 (C 2 O 4 ) 2 , LiPF 4 (C 2 O 4 ), LiP (C 2 O 4 ) 3 , LiBF 2 (C 2 O 4 ), LiB ( At least one selected from the group consisting of C 2 O 4 ) 2 , LiPO 2 F 2 , LiN (F 2 PO) 2 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , and LiPF 6. A combination of these is preferred.
  • LiPF 2 (C 2 O 4 ) 2 As solutes, LiPF 2 (C 2 O 4 ) 2 , LiPF 4 (C 2 O 4 ), LiP (C 2 O 4 ) 3 , LiBF 2 (C 2 O 4 ), LiB (C 2 O 4 ) 2 , LiPO
  • the ratio (molar ratio with 1 mol of LiPF 6 ) is usually in the range of 1: 0.001 to 1: 0.5, preferably 1: 0.01 to 1: 0.2.
  • the solutes are used in combination at the above ratio, various battery characteristics are further improved.
  • the ratio of LiPF 6 is lower than 1: 0.5, the ionic conductivity of the electrolytic solution tends to decrease and the resistance tends to increase.
  • the concentration of these solutes is not particularly limited, but the lower limit is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and even more preferably 0.9 mol / L or more. Further, the upper limit is preferably 2.5 mol / L or less, more preferably 2.0 mol / L or less, and further preferably 1.5 mol / L or less. In addition, also when using multiple types of solute, it is preferable that the density
  • the nonaqueous electrolyte battery is used.
  • the viscosity of the electrolytic solution increases, the ionic conductivity also tends to be lowered, and the cycle characteristics and output characteristics of the nonaqueous electrolytic battery may be lowered.
  • the liquid temperature when dissolving the solute in the non-aqueous solvent is not particularly limited, but is preferably ⁇ 20 to 80 ° C., more preferably 0 to 60 ° C.
  • the electrolyte solution for a non-aqueous electrolyte battery of the present invention is generally used as long as the gist of the present invention is not impaired. You may add the additive used in arbitrary ratios.
  • non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer as used in a non-aqueous electrolyte battery called a lithium polymer battery.
  • the non-aqueous electrolyte battery according to the present invention is characterized by using the above-described electrolyte for a non-aqueous electrolyte battery according to the present invention, and the other components are those used in general non-aqueous electrolyte batteries. Is used. That is, it comprises a positive electrode and a negative electrode capable of occluding and releasing cations, a current collector, a separator, a container, and the like.
  • the negative electrode material is not particularly limited, but in the case of lithium batteries and lithium ion batteries, lithium metal, alloys of lithium metal and other metals, or intermetallic compounds and various carbon materials (artificial graphite, natural graphite, etc.), Metal oxides, metal nitrides, tin (simple substance), tin compounds, silicon (simple substance), silicon compounds, activated carbon, conductive polymers, and the like are used.
  • the carbon material include graphitizable carbon, non-graphitizable carbon (hard carbon) having a (002) plane spacing of 0.37 nm or more, and graphite having a (002) plane spacing of 0.34 nm or less. Etc.
  • thermally decomposable carbon there are thermally decomposable carbon, cokes, glassy carbon fiber, organic polymer compound fired body, activated carbon or carbon black.
  • coke includes pitch coke, needle coke, petroleum coke, and the like.
  • the organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
  • a carbon material is preferable because a change in crystal structure associated with insertion and extraction of lithium is very small, so that a high energy density and excellent cycle characteristics can be obtained.
  • the shape of the carbon material may be any of fibrous, spherical, granular or scale-like.
  • amorphous carbon or a graphite material coated with amorphous carbon on the surface is more preferable because the reactivity between the material surface and the electrolytic solution becomes low.
  • the positive electrode material is not particularly limited.
  • lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and lithium-containing transition metals A composite oxide in which a plurality of transition metals such as Co, Mn, Ni, etc.
  • transition metal in the lithium-containing transition metal composite oxide is replaced with a metal other than the transition metal, olivine and LiFePO 4, LiCoPO 4, phosphoric acid compound of a transition metal such as LiMnPO 4 called, oxides such as TiO 2, V 2 O 5, MoO 3, TiS 2, sulfides such as FeS, or polyacetylene, polyparaphenylene, polyaniline , And conductive polymers such as polypyrrole, activated carbon, polymers that generate radicals, carbon materials, etc. It is use.
  • acetylene black, ketjen black, carbon fiber, graphite as a conductive material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, etc. as a binder to the positive electrode or negative electrode material, and forming into a sheet shape It can be an electrode sheet.
  • a separator for preventing contact between the positive electrode and the negative electrode a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber, or the like is used.
  • a non-aqueous electrolyte battery having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape or the like is assembled from the above elements.
  • Example 1-1 As a non-aqueous solvent, a mixed solvent of ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate in a volume ratio of 2: 1: 3: 4 is used, and LiPF 6 has a concentration of 1.0 mol / L as a solute in the solvent.
  • a salt having a divalent imide anion the above compound No. 1 was dissolved to a concentration of 1.0% by mass, and an electrolyte for a non-aqueous electrolyte battery was prepared as shown in Table 1. In addition, said preparation was performed maintaining a liquid temperature at 25 degreeC.
  • a cell was prepared using LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode material and graphite as a negative electrode material, and the cycle characteristics and low-temperature output characteristics of the battery were actually evaluated.
  • the test cell was produced as follows.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder is mixed with 5% by mass of 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material, and further N-methylpyrrolidone is added. Added to paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Further, 90% by mass of graphite powder was mixed with 10% by mass of PVDF as a binder, and N-methylpyrrolidone was further added to form a slurry. This slurry was applied on a copper foil and dried at 150 ° C. for 12 hours to obtain a test negative electrode body.
  • PVDF polyvinylidene fluoride
  • Examples 1-2 to 1-155, Comparative Examples 1-1 to 1-17 As shown in Tables 1 to 3, non-aqueous electrolysis was performed in the same manner as in Example 1-1, except that the kind and concentration (mol / L) of the solute and the kind and concentration (mass%) of the salt having an imide anion were changed. A battery electrolyte was prepared and a cell was prepared, and the battery was evaluated. The evaluation results are shown in Tables 4-6. The evaluation results of Examples 1-1 to 1-155 and Comparative Examples 1-1 to 1-17 are relative values when the value of Comparative Example 1-1 is set to 100.
  • Examples 1-1 to 1-24 to which a salt having a divalent imide anion was added were compared with Comparative Example 1-1 to which the salt was not added, in terms of high-temperature cycle characteristics and low-temperature output. It was confirmed that both characteristics were improved.
  • the same concentration (1.0% by mass) of the salt having a divalent imide anion of the present invention was contained in Comparative Examples 1-2 to 1-7 using a salt having a monovalent imide anion.
  • Examples 1-1 and 1-8 to 1-24 it was confirmed that the high temperature cycle characteristics and the low temperature output characteristics were improved.
  • Examples using a salt having an imide anion having a PF bond or an SF bond are examples using a salt having an imide anion having no PF bond and SF bond (Examples).
  • Examples 1-18 to 1-20 it was confirmed that the low-temperature output characteristics were more excellent.
  • the low-temperature characteristics are further improved.
  • R 1 to R 3 are fluorine atoms, alkenyloxy groups
  • Examples 1-12 to 1-16 using a salt having a divalent imide anion represented by the general formula (2) X represents a fluorine atom, an alkoxy group, an alkenyloxy group, and an alkynyloxy group.
  • Examples 1-12 and 1-14 to 1-16, which are organic groups selected from the group consisting of, show better high-temperature cycle characteristics than Example 1-13, where X is an organic group not corresponding to the above. Was confirmed.
  • R 1 and R 2 are a group consisting of a fluorine atom and an alkynyloxy group.
  • Examples 1-21 and 22 which are organic groups selected from R 1 and R 2 are confirmed to exhibit better high-temperature cycle characteristics than Examples 1-23 and 24 having organic groups not corresponding to the above among R 1 and R 2. It was done.
  • Examples 1-17 to 1-20 using a salt having a divalent imide anion represented by the general formula (4) X is selected from the group consisting of a fluorine atom, an alkoxy group, and an alkynyloxy group. It was confirmed that Examples 1-17, 1-19, and 1-20, which are selected organic groups, exhibit superior high-temperature cycle characteristics than Example 1-18 where X is an organic group not corresponding to the above. .
  • Examples 2-1 to 2-21, Comparative Examples 2-1 to 2-12 As shown in Table 7, a non-aqueous electrolyte battery electrolyte was prepared, a cell was prepared, and the battery was evaluated in the same manner as Example 1-1 except that the negative electrode body and the electrolyte were changed.
  • the negative electrode body in which the negative electrode active material is Li 4 Ti 5 O 12 is a mixture of 90% by mass of Li 4 Ti 5 O 12 powder, 5% by mass of PVDF as a binder, and 5% by mass of acetylene black as a conductive agent, Further, N-methylpyrrolidone was added, and the obtained paste was coated on a copper foil and dried to produce a charge end voltage of 2.8 V and a discharge end voltage of 1.5 V at the time of battery evaluation. did.
  • the negative electrode body in which the negative electrode active material is graphite (silicon-containing) is obtained by mixing 81% by mass of graphite powder and 9% by mass of silicon powder with 5% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material. N-methylpyrrolidone was added, and the resulting paste was coated on a copper foil and dried to produce a charge end voltage and a discharge end voltage in the same manner as in Example 1-1. .
  • the negative electrode body in which the negative electrode active material is hard carbon 90% by mass of hard carbon powder is mixed with 5% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive agent, and N-methylpyrrolidone is added.
  • the obtained paste was applied on a copper foil and dried to prepare a charge end voltage of 4.2 V and a discharge end voltage of 2.2 V in battery evaluation.
  • Table 7 shows the evaluation results.
  • the evaluation results of Examples 2-1 to 2-7 and Comparative Examples 2-1 to 2-4 are relative values when the value of Comparative Example 2-1 is 100.
  • the evaluation results of Examples 2-8 to 2-14 and Comparative Examples 2-5 to 2-8 are relative values when the value of Comparative Example 2-5 is set to 100.
  • the evaluation results of Examples 2-15 to 2-21 and Comparative Examples 2-9 to 2-12 are relative values when the value of Comparative Example 2-9 is set to 100.
  • Examples 3-1 to 3-28, Comparative examples 3-1 to 3-16 As shown in Table 8, a non-aqueous electrolyte battery electrolyte was prepared in the same manner as in Example 1-1 except that the positive electrode body, the negative electrode body, and the electrolyte solution were changed, a cell was prepared, and the battery was evaluated. Carried out.
  • the positive electrode body in which the positive electrode active material is LiCoO 2 is obtained by mixing 90% by mass of LiCoO 2 powder with 5% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material, and further adding N-methylpyrrolidone, The obtained paste was applied on an aluminum foil and dried.
  • Example 1-1 in Examples 3-1 to 3-7 and Comparative Examples 3-1 to 3-4 in which the negative electrode active material is graphite, the end-of-charge voltage during battery evaluation was 4.2 V, and the discharge The final voltage was 3.0V.
  • Examples 3-8 to 3-14 and Comparative Examples 3-5 to 3-8 in which the negative electrode active material is Li 4 Ti 5 O 12 as in Example 2-1 the end-of-charge voltage at the time of battery evaluation is The discharge end voltage was set to 2.7 V and 1.5 V.
  • Example 2-8 in Examples 3-15 to 3-21 and Comparative Examples 3-9 to 3-12 in which the negative electrode active material is graphite (silicon-containing), the end-of-charge voltage during battery evaluation was 4 .2V, discharge end voltage was set to 3.0V.
  • Example 2-15 in Examples 3-22 to 3-28 and Comparative Examples 3-13 to 3-16 in which the negative electrode active material is hard carbon, the end-of-charge voltage during battery evaluation was 4.1 V, The final discharge voltage was 2.2V.
  • the evaluation results are shown in Table 8.
  • the evaluation results of Examples 3-1 to 3-7 and Comparative Examples 3-1 to 3-4 are relative values when the value of Comparative Example 3-1 is set to 100.
  • the evaluation results of Examples 3-8 to 3-14 and Comparative Examples 3-5 to 3-8 are relative values when the value of Comparative Example 3-5 is set to 100.
  • the evaluation results of Examples 3-15 to 3-21 and Comparative Examples 3-9 to 3-12 are relative values when the value of Comparative Example 3-9 is set to 100.
  • the evaluation results of Examples 3-22 to 3-28 and Comparative Examples 3-13 to 3-16 are relative values when the value of Comparative Example 3-13 is set to 100.
  • Examples 4-1 to 4-21, Comparative examples 4-1 to 4-12 As shown in Table 9, a non-aqueous electrolyte battery electrolyte was prepared, a cell was prepared, and the battery was evaluated in the same manner as in Example 1-1 except that the positive electrode body and the electrolyte were changed.
  • the positive electrode body in which the positive electrode active material is LiNi 0.8 Co 0.15 Al 0.05 O 2 is 5% by mass of 90% by mass of LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, 5% by mass of PVDF as a binder, and 5% by mass of acetylene black as a conductive material.
  • a positive electrode body in which the positive electrode active material is LiMn 2 O 4 is a mixture of 90% by mass of LiMn 2 O 4 powder and 5% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material, and further N-methylpyrrolidone.
  • the paste obtained was applied on an aluminum foil and dried, and the charge end voltage during battery evaluation was 4.2 V and the discharge end voltage was 3.0 V.
  • a positive electrode body in which the positive electrode active material is LiFePO 4 is obtained by mixing 90% by mass of LiFePO 4 powder coated with amorphous carbon with 5% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material, N-methylpyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried to produce a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V during battery evaluation. .
  • Table 9 shows the evaluation results.
  • the evaluation results of Examples 4-1 to 4-7 and Comparative Examples 4-1 to 4-4 are relative values when the value of Comparative Example 4-1 is 100.
  • the evaluation results of Examples 4-8 to 4-14 and Comparative Examples 4-5 to 4-8 are relative values when the value of Comparative Example 4-5 is set to 100.
  • the evaluation results of Examples 4-15 to 4-21 and Comparative Examples 4-9 to 4-12 are relative values when the value of Comparative Example 4-9 is set to 100.
  • Example 5-1 As a non-aqueous solvent, a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 is used, and in the solvent, NaPF 6 as a solute has a concentration of 1.0 mol / L as a salt having an imide anion.
  • Compound No. 1 disodium salt was dissolved to a concentration of 0.1% by mass, and an electrolyte solution for a non-aqueous electrolyte battery was prepared as shown in Table 10. In addition, said preparation was performed maintaining a liquid temperature at 25 degreeC.
  • a cell was prepared in the same manner as in Example 1-1 except that NaFe 0.5 Co 0.5 O 2 was used as the positive electrode material and hard carbon was used as the negative electrode material, and the battery was evaluated in the same manner as in Example 1-1. Carried out.
  • a positive electrode body in which the positive electrode active material is NaFe 0.5 Co 0.5 O 2 is a mixture of 90% by mass of NaFe 0.5 Co 0.5 O 2 powder with 5% by mass of PVDF as a binder and 5% by mass of acetylene black as a conductive material, N-methylpyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried to produce a charge end voltage of 3.8 V and a discharge end voltage of 1.5 V during battery evaluation.
  • the evaluation results are shown in Table 11.
  • Examples 5-2 to 5-14, Comparative Examples 5-1 to 5-5 As shown in Table 10, a non-aqueous electrolyte battery electrolyte was prepared in the same manner as in Example 5-1, except that the type and concentration of the solute and the type and concentration of the salt having an imide anion were changed. The battery was fabricated and evaluated. The evaluation results are shown in Table 11. The evaluation results of Examples 5-1 to 5-14 and Comparative Examples 5-1 to 5-5 are relative values when the value of Comparative Example 5-1 is 100.
  • Examples 5-1 to 5-7 in which the salt having the divalent imide anion was added to the electrolytic solution were Comparative Examples 5-1 in which the salt was not added. On the other hand, it was confirmed that both the high-temperature cycle characteristics and the low-temperature output characteristics were improved. Similarly, in Comparative Examples 5-2 to 5-4 using a salt having a monovalent imide anion, the salt having a divalent imide anion of the present invention was contained in the same concentration (0.1% by mass). In Examples 5-1 to 5-7, it was confirmed that the high temperature cycle characteristics and the low temperature output characteristics were improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 -30℃以下での優れた低温出力特性や45℃以上の高温での優れたサイクル特性を発揮することができる非水電解液電池用電解液を提供する。例えば、下記のような2価のイミドアニオンを有する塩を含有する。式中、R~R は、例えば、フッ素原子、アルコキシ基など、M、Mは、例えば、プロトン、金属カチオンである。

Description

非水電解液電池用電解液、及びこれを用いた非水電解液電池
 本発明は、サイクル特性及び低温特性に優れた非水電解液二次電池を構成する非水電解液電池用電解液及びそれを用いた非水電解液電池に関するものである。
 近年、情報関連機器、または通信機器、即ちパソコン、ビデオカメラ、デジタルスチールカメラ、携帯電話等の小型機器で、かつ高エネルギー密度を必要とする用途向けの蓄電システムや電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システムが注目を集めている。その一つの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ、ナトリウムイオン電池等の非水電解液電池が盛んに開発されている。
 これらの非水電解液電池は既に実用化されているものも多いが、各特性に於いて種々の用途で満足できるものではない。特に、電気自動車等の車載用途等の場合、寒冷時期においても高い入出力特性が要求されるため、低温特性の向上が重要であり、さらに高温環境下で繰り返し充放電させた場合においてもその特性を維持する(内部抵抗の増加が少ない)といった高温サイクル特性が要求される。
 これまで非水電解液電池の高温特性及び充放電を繰り返した場合の電池特性(サイクル特性)を改善する手段として、正極や負極の活物質をはじめとする様々な電池構成要素の最適化が検討されてきた。非水電解液関連技術もその例外ではなく、活性な正極や負極の表面で電解液が分解することによる劣化を種々の添加剤で抑制することが提案されている。例えば、特許文献1には、電解液にビニレンカーボネートを添加することにより、電池特性を向上させることが提案されている。しかしながら、高温での電池特性は向上するものの内部抵抗の上昇が著しく低温特性が低下してしまうことが課題となっている。また、電解液にイミド塩を添加する検討も数多く行われおり、例えば、特定のスルホンイミド塩やホスホリルイミド塩とオキサラト錯体とを組み合わせることで高温サイクル特性や高温貯蔵特性の劣化を抑制する方法(特許文献2)、特定のスルホンイミド塩とフルオロリン酸塩とを組み合わせることでサイクル特性や出力特性の劣化を抑制する方法(特許文献3)等が提案されている。
特開2000-123867号公報 特開2013-051122号公報 特開2013-030465号公報
 先行技術文献に開示されている非水電解液を用いた非水電解液電池により得られる低温特性、及び高温サイクル特性は、十分に満足のいくものではなく改善の余地があった。本発明は、-30℃以下での優れた低温出力特性や45℃以上の高温での優れたサイクル特性を発揮することができる非水電解液電池用電解液、及びこれを用いた非水電解液電池を提供するものである。
 本発明者らは、かかる問題を解決するために鋭意した検討の結果、非水溶媒と溶質とを含む非水電解液電池用非水電解液において、特定の構造の2価のイミドアニオンを有する塩を電解液に含有させることにより、該電解液を非水電解液電池に用いた場合に、該非水電解液電池が優れた低温出力特性及び高温サイクル特性を発揮できることを見出し、本発明に至った。
 すなわち、本発明は、非水溶媒、溶質、及び、少なくとも1種の下記一般式(1)~(4)で示される2価のイミドアニオンを有する塩(以降、単に「イミドアニオンを有する塩」と記載する場合がある)を含有することを特徴とする、非水電解液電池用電解液(以降、単に「非水電解液」または「電解液」と記載する場合がある)を提供するものである。

Figure JPOXMLDOC01-appb-I000002

[式(1)~(3)中、R1~R3 はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
 式(2)及び(4)中、Xは、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルキル基、炭素数が2~10のアルケニル基、炭素数が2~10のアルキニル基、炭素数が3~10のシクロアルキル基、炭素数が3~10のシクロアルケニル基、炭素数が6~10のアリール基、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
 M1、M2はそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
 本発明による電池特性向上の作用機構については、明確ではないが、本発明のイミドアニオンを有する塩は、正極と電解液との界面、及び負極と電解液との界面において一部分解し、皮膜を形成すると考えられる。この皮膜は、非水溶媒や溶質と活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。また、メカニズムは定かではないが、イミドアニオンにリン酸イオン部位(-P(=O)R3-)または、スルホン酸イオン部位(-SO3 -)を有することが重要で、上記皮膜にリン酸イオン部位またはスルホン酸イオン部位が取り込まれることで、形成した皮膜の電荷に偏りが生じ、リチウム導電性の高い、すなわち、抵抗の小さい皮膜(出力特性が良好な皮膜)となっていると考えられる。さらに、上記の効果は、イミドアニオンに電子吸引性の高い部位(例えばフッ素原子や含フッ素アルコキシ基)が含まれることで電荷の偏りがより大きくなり、より抵抗の小さい皮膜(出力特性がより良好な皮膜)が形成されると考えられる。以上の理由から、本発明のイミドアニオンを有する塩を含有する非水電解液により、高温サイクル特性と低温出力特性の向上効果が発現すると推測される。
 上記イミドアニオンを有する塩が、少なくとも一つのP-F結合またはS-F結合を有すると、より優れた低温特性が得られるため好ましい。上記イミドアニオンを有する塩中のP-F結合やS-F結合の数が多いほど低温特性をさらに向上することが出きるため、さらに好ましい。
 上記R1~R3が、フッ素原子、炭素数が2~10のアルケニルオキシ基、及び炭素数が2~10のアルキニルオキシ基からなる群から選ばれる有機基であると、より優れた高温サイクル特性が得られるため好ましい。
 また、上記アルケニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、1-プロペニルオキシ基、2-プロペニルオキシ基、3-ブテニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
 また、上記アルキニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、2-プロピニルオキシ基、1,1-ジメチル-2-プロピニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
 上記Xが、フッ素原子、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、及び炭素数が2~10のアルキニルオキシ基からなる群から選ばれる有機基であると、より優れた高温サイクル特性が得られるため好ましい。
 また、上記アルコキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、メトキシ基、エトキシ基、プロポキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
 また、上記アルケニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、1-プロペニルオキシ基、2-プロペニルオキシ基、3-ブテニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
 また、上記アルキニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、2-プロピニルオキシ基、1,1-ジメチル-2-プロピニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
 上記イミドアニオンを有する塩中のイミドアニオンの対カチオンM1及びM2が、プロトン、アルカリ金属カチオン、またはオニウムカチオンであることが好ましい。その中でも、非水電解液における溶解度やイオン電導度を考慮すると、プロトン、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、及びテトラアルキルホスホニウムイオンからなる群から選ばれる少なくとも一つのカチオンであることがより好ましい。
 上記イミドアニオンを有する塩の濃度の下限は、非水電解液電池用電解液の総量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。また、該濃度の上限は5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.0質量%以下がさらに好ましい。上記濃度が0.01質量%を下回ると、電池特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が5.0質量%を超えると、それ以上の効果は得られずに無駄であるだけでなく、電解液の粘度が上昇しイオン伝導度が低下する傾向があり、抵抗が増加し電池性能の劣化を引き起こし易いため好ましくない。これらのイミドアニオンを有する塩は、5.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
 また、上記溶質が、LiPF6、LiPF2(C242、LiPF4(C24)、LiP(C243、LiBF2(C24)、LiB(C242、LiPO22、LiN(F2PO)2、LiN(FSO22、LiN(CF3SO22、LiBF4、NaPF6、NaPF2(C242、NaPF4(C24)、NaP(C243、NaBF2(C24)、NaB(C242、NaPO22、NaN(F2PO)2、NaN(FSO22、NaN(CF3SO22、及びNaBF4からなる群から選ばれる少なくとも一つの溶質であることが好ましい。
 上記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つであることが好ましい。
 また、本発明は、少なくとも、正極と、負極と、上記の非水電解液電池用電解液とを備えることを特徴とする、非水電解液電池を提供するものである。
 本発明の非水電解液電池用電解液を非水電解液電池に用いた場合に、-30℃以下での優れた低温出力特性や45℃以上の高温での優れたサイクル特性を発揮することができる。
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
 本発明の非水電解液電池用電解液は、非水溶媒、溶質、及び、少なくとも1種の下記一般式(1)~(4)で示される2価のイミドアニオンを有する塩を含有することを特徴とする、非水電解液電池用電解液である。

Figure JPOXMLDOC01-appb-I000003

[式(1)~(3)中、R1~R3 はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
 式(2)及び(4)中、Xは、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルキル基、炭素数が2~10のアルケニル基、炭素数が2~10のアルキニル基、炭素数が3~10のシクロアルキル基、炭素数が3~10のシクロアルケニル基、炭素数が6~10のアリール基、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10の、シクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。M1、M2はそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
 上記イミドアニオンを有する塩中のイミドアニオンの対カチオンとしては、プロトンや、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオン、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルホスホニウム等のオニウムカチオン(対カチオンが1価のカチオンである場合は、2種類のカチオンを混合してもよい。また、例えば、M1が2価のカチオンであればM2は存在しない)が挙げられる。
 上記一般式(1)~(3)において、R1~R3で表される、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基、ペンチルオキシ基、トリフルオロメトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基等の炭素原子数1~10のアルコキシ基や含フッ素アルコキシ基が挙げられ、アルケニルオキシ基としては、例えば、ビニルオキシ基、1-プロペニルオキシ基、2-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、及び1,3-ブダジエニルオキシ基等の炭素原子数2~10のアルケニルオキシ基や含フッ素アルケニルオキシ基が挙げられ、アルキニルオキシ基としては、例えば、エチニルオキシ基、2-プロピニルオキシ基、及び1,1-ジメチル-2-プロピニルオキシ基等の炭素原子数2~10のアルキニルオキシ基や含フッ素アルキニルオキシ基が挙げられ、シクロアルコキシ基としては、例えば、シクロペンチルオキシ基、及びシクロヘキシルオキシ基等の炭素数が3~10のシクロアルコキシ基や含フッ素シクロアルコキシ基が挙げられ、シクロアルケニルオキシ基としては、例えば、シクロペンテニルオキシ基、及びシクロヘキセニルオキシ基等の炭素数が3~10のシクロアルケニルオキシ基や含フッ素シクロアルケニルオキシ基が挙げられ、アリールオキシ基としては、フェニルオキシ基、トリルオキシ基、及びキシリルオキシ基等の炭素原子数6~10のアリールオキシ基や含フッ素アリールオキシ基が挙げられる。
 上記一般式(2)及び(4)において、Xで表される、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、ペンチル基、トリフルオロメチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、及び1,1,1,3,3,3-ヘキサフルオロイソプロピル基等の炭素原子数1~10のアルキル基や含フッ素アルキル基が挙げられ、アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基、及び1,3-ブダジエニル基等の炭素原子数2~10のアルケニル基や含フッ素アルケニル基が挙げられ、アルキニル基としては、例えば、エチニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等の炭素原子数2~10のアルキニル基や含フッ素アルキニル基が挙げられ、シクロアルキル基としては、例えば、シクロペンチル基、及びシクロヘキシル基等の炭素数が3~10のシクロアルキル基や含フッ素シクロアルキル基が挙げられ、シクロアルケニル基としては、例えば、シクロペンテニル基、及びシクロヘキセニル基等の炭素数が3~10のシクロアルケニル基や含フッ素シクロアルケニル基が挙げられ、アリール基としては、例えば、フェニル基、トリル基、及びキシリル基等の炭素原子数6~10のアリール基や含フッ素アリール基が挙げられる。
 上記一般式(1)~(4)中で記載された2価のイミドアニオンとしては、より具体的には、例えば以下の化合物No.1~No.18等が挙げられる。但し、本発明で用いられるイミドアニオンは、以下の例示により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007
 上記一般式(1)~(4)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するリン酸アミド(H2NP(=O)R3-)やスルファミン酸(H2NSO3 -)と、対応するホスホニルクロリド(P(=O)R12Cl)やスルホニルクロリド(XSO2Cl)を有機塩基または無機塩基の存在下で反応させることで得ることができる。
 本発明の非水電解液電池用電解液に用いる非水溶媒の種類は、特に限定されず、任意の非水溶媒を用いることができる。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ―ブチロラクトン、γ―バレロラクトン等の環状エステル、酢酸メチル、プロピオン酸メチル等の鎖状エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン等の環状エーテル、ジメトキシエタン、ジエチルエーテル等の鎖状エーテル、ジメチルスルホキシド、スルホラン等のスルホン化合物やスルホキシド化合物等が挙げられる。また、非水溶媒とはカテゴリーが異なるがイオン液体等も挙げることができる。また、本発明に用いる非水溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。これらの中ではその酸化還元に対する電気化学的な安定性と熱や上記溶質との反応に関わる化学的安定性の観点から、特にプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが好ましい。
 本発明の非水電解液電池用電解液に用いる上記溶質の種類は、特に限定されず、任意の電解質塩を用いることができる。具体例としては、リチウム電池及びリチウムイオン電池の場合には、LiPF6、LiPF2(C242、LiPF4(C24)、LiP(C243、LiBF2(C24)、LiB(C242、LiPO22、LiN(F2PO)2、LiN(FSO22、LiN(CF3SO22、LiBF4、LiClO4、LiAsF6、LiSbF6、LiCF3SO3、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiPF3(C373、LiB(CF34、LiBF3(C25)などに代表される電解質塩が挙げられ、ナトリウムイオン電池の場合には、NaPF6、NaPF2(C242、NaPF4(C24)、NaP(C243、NaBF2(C24)、NaB(C242、NaPO22、NaN(F2PO)2、NaN(FSO22、NaN(CF3SO22、NaBF4、NaClO4、NaAsF6、NaSbF6、NaCF3SO3、NaN(C25SO22、NaN(CF3SO2)(C49SO2)、NaC(CF3SO23、NaPF3(C373、NaB(CF34、NaBF3(C25)などに代表される電解質塩が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、LiPF6、LiPF2(C242、LiPF4(C24)、LiP(C243、LiBF2(C24)、LiB(C242、LiPO22、LiN(F2PO)2、LiN(FSO22、LiN(CF3SO22、LiBF4、NaPF6、NaPF2(C242、NaPF4(C24)、NaP(C243、NaBF2(C24)、NaB(C242、NaPO22、NaN(F2PO)2、NaN(FSO22、NaN(CF3SO22、及びNaBF4が好ましい。
 上記溶質の好適な組合せとしては、例えば、LiPF2(C242、LiPF4(C24)、LiP(C243、LiBF2(C24)、LiB(C242、LiPO22、LiN(F2PO)2、LiN(FSO22、LiN(CF3SO22、LiBF4からなる群から選ばれる少なくとも1つと、LiPF6とを組み合わせたもの等が好ましい。
 溶質として、LiPF2(C242、LiPF4(C24)、LiP(C243、LiBF2(C24)、LiB(C242、LiPO22、LiN(F2PO)2、LiN(FSO22、LiN(CF3SO22、LiBF4からなる群から選ばれる少なくとも1つと、LiPF6とを組み合わせて使用した場合の比率(LiPF6を1モルとしたときのモル比)は、通常、1:0.001~1:0.5、好ましくは1:0.01~1:0.2の範囲である。上記のような比率で溶質を組み合わせて用いると種々の電池特性をさらに向上させる効果がある。一方、1:0.5よりもLiPF6の割合が低いと電解液のイオン伝導度が低下し、抵抗が上昇してしまう傾向がある。
 これら溶質の濃度については、特に制限はないが、下限は0.5mol/L以上が好ましく、0.7mol/L以上がより好ましく、0.9mol/L以上がさらに好ましい。また、上限は2.5mol/L以下が好ましく、2.0mol/L以下がより好ましく、1.5mol/L以下がさらに好ましい。なお、複数種類の溶質を用いる場合も溶質の総量の濃度が上記の範囲であることが好ましい。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下する傾向があり、一方、2.5mol/Lを超えると非水電解液電池用電解液の粘度が上昇することにより、やはりイオン伝導度を低下させる傾向があり、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。
 一度に多量の該溶質を非水溶媒に溶解すると、溶質の溶解熱のため液温が上昇することがある。該液温が著しく上昇すると、フッ素を含有した電解質塩の分解が促進されてフッ化水素が生成する恐れがある。フッ化水素は電池性能の劣化の原因となるため好ましくない。このため、該溶質を非水溶媒に溶解する際の液温は特に限定されないが、-20~80℃が好ましく、0~60℃がより好ましい。
 以上が本発明の非水電解液電池用電解液の基本的な構成についての説明であるが、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般的に用いられる添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、ビニレンカーボネート、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、プロパンサルトン、スクシノニトリル、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果、正極保護効果を有する化合物が挙げられる。また、リチウムポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
 次に本発明の非水電解液電池の構成について説明する。本発明の非水電解液電池は、上記の本発明の非水電解液電池用電解液を用いることが特徴であり、その他の構成部材には一般の非水電解液電池に使用されているものが用いられる。即ち、カチオンの吸蔵及び放出が可能な正極及び負極、集電体、セパレータ、容器等から成る。
 負極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、リチウム金属、リチウム金属と他の金属との合金、または金属間化合物や種々の炭素材料(人造黒鉛、天然黒鉛など)、金属酸化物、金属窒化物、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、活性炭、導電性ポリマー等が用いられる。
 炭素材料とは、例えば、易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素(ハードカーボン)や、(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解性炭素、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭あるいはカーボンブラック類などがある。このうち、コークス類にはピッチコークス、ニードルコークスあるいは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものをいう。炭素材料は、リチウムの吸蔵及び放出に伴う結晶構造の変化が非常に少ないため、高いエネルギー密度が得られると共に優れたサイクル特性が得られるので好ましい。なお、炭素材料の形状は、繊維状、球状、粒状あるいは鱗片状のいずれでもよい。また、非晶質炭素や非晶質炭素を表面に被覆した黒鉛材料は、材料表面と電解液との反応性が低くなるため、より好ましい。
 正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2、LiNiO2、LiMnO2、LiMn24等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO4、LiCoPO4、LiMnPO4等の遷移金属のリン酸化合物、TiO2、V25、MoO3等の酸化物、TiS2、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、黒鉛、結着材としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が加えられ、シート状に成型されることにより電極シートにすることができる。
 正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、及びガラス繊維等で作られた不織布や多孔質シートが使用される。
 以上の各要素からコイン形、円筒形、角形、アルミラミネートシート型等の形状の非水電解液電池が組み立てられる。
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
[実施例1-1]
 非水溶媒としてエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比2:1:3:4の混合溶媒を用い、該溶媒中に溶質としてLiPF6を1.0mol/Lの濃度となるように、2価のイミドアニオンを有する塩として上記化合物No.1のジリチウム塩を1.0質量%の濃度となるように溶解し、表1に示すように非水電解液電池用電解液を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。
 この電解液を用いてLiNi1/3Mn1/3Co1/32を正極材料、黒鉛を負極材料としてセルを作製し、実際に電池のサイクル特性、及び低温出力特性を評価した。試験用セルは以下のように作製した。
 LiNi1/3Mn1/3Co1/32粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにN-メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてアルミラミネート外装の50mAhセルを組み立てた。
 以上のような方法で作製したセルを用いて充放電試験を実施し、高温サイクル特性、低温出力特性を評価した。評価結果を表4に示す。
 [高温サイクル特性試験]
 45℃の環境温度での充放電試験を実施し、サイクル特性を評価した。充電は、4.3V、放電は3.0Vまで行い、電流密度5.7mA/cm2で充放電サイクルを繰り返した。そして、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(サイクル特性評価)。放電容量維持率は下記式で求めた。
<200サイクル後の放電容量維持率>
 放電容量維持率(%)=(200サイクル後の放電容量/初放電容量)×100
 [低温出力特性試験]
 25℃の環境温度下、充電上限電圧4.3Vまで定電流定電圧法で、電流密度0.38mA/cm2で充放電を行った。このときの放電容量を放電容量Aとする。この後、-30℃の環境温度下、充電上限電圧4.3Vまで定電流定電圧法で、電流密度0.38mA/cm2で充電した後、放電終止電圧3.0Vまで電流密度9.5mA/cm2の定電流で放電した。このときの放電容量を放電容量Bとし、「(放電容量B/放電容量A)×100」から求めた値を高出力容量維持率(%)とし、セルの低温出力特性を評価した。
 [実施例1-2~1-155、比較例1-1~1-17]
 表1~3に示すように、溶質の種類と濃度(mol/L)およびイミドアニオンを有する塩の種類と濃度(質量%)を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液の調製、及びセルの作製を行い、電池の評価を実施した。評価結果を表4~6に示す。なお、実施例1-1~1-155、比較例1-1~1-17の評価結果は、比較例1-1の値を100とした場合の相対値である。
 なお、比較例1-2~1-7においてイミドアニオンを有する塩として以下の化合物No.19~24を用いた。
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 以上の結果を比較すると、2価のイミドアニオンを有する塩を添加した実施例1-1~1-24は、該塩を添加していない比較例1-1に対し、高温サイクル特性及び低温出力特性が共に向上していることが確認できた。また同様に、1価のイミドアニオンを有する塩を用いる比較例1-2~1-7に対し、本発明の2価のイミドアニオンを有する塩を同濃度(1.0質量%)含有させた実施例1-1、1-8~1-24では、高温サイクル特性及び低温出力特性が向上していることが確認できた。
 また、例えば、電解液の組成比が同じである、実施例1-1、1-8~1-24において、P-F結合やS-F結合を持つイミドアニオンを有する塩を用いた実施例(実施例1-1、1-8~1-17、1-21~1-24)は、P-F結合及びS-F結合を持たないイミドアニオンを有する塩を用いた実施例(実施例1-18~1-20)に比べて、より優れた低温出力特性を示すことが確認された。さらに、上記イミドアニオンを有する塩中のP-F結合やS-F結合の数が多いほど、低温特性がさらに向上されるが確認された。
 また、例えば、一般式(1)で示される2価のイミドアニオンを有する塩を用いた実施例1-1、1-8~1-11において、R1~R3がフッ素原子、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1-1、1-8~1-10は、R1~R3のうち上記に該当しない有機基を持つ実施例1-11よりも優れた高温サイクル特性を示すことが確認された。
 また、例えば、一般式(2)で示される2価のイミドアニオンを有する塩を用いた実施例1-12~1-16において、Xがフッ素原子、アルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1-12、1-14~1-16は、Xが上記に該当しない有機基である実施例1-13よりも優れた高温サイクル特性を示すことが確認された。
 また、例えば、一般式(3)で示される2価のイミドアニオンを有する塩を用いた実施例1-21~1-24において、R1及びR2がフッ素原子、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1-21、22は、R1及びR2のうち上記に該当しない有機基を持つ実施例1-23、24よりも優れた高温サイクル特性を示すことが確認された。
 また、例えば、一般式(4)で示される2価のイミドアニオンを有する塩を用いた実施例1-17~1-20において、Xがフッ素原子、アルコキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1-17、1-19、1-20は、Xが上記に該当しない有機基である実施例1-18よりも優れた高温サイクル特性を示すことが確認された。
 実施例1-25~1-80において、すなわち2価のイミドアニオンの対カチオンを種々変更した系においても同様の効果が得られることが確認された。
 さらに、溶質がLiPF6と別の溶質が混合された場合においても、2価のイミドアニオンを有する塩を添加した実施例1-81~1-155では、2価のイミドアニオンを有する塩を添加していない比較例1-8~1-17に対し、高温サイクル特性及び低温出力特性が向上しており、同様の効果が得られることが確認された。
[実施例2-1~2-21、比較例2-1~2-12]
 表7に示すように、負極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。
 なお、負極活物質がLi4Ti512である負極体は、Li4Ti512粉末90質量%に、バインダーとして5質量%のPVDF、導電剤としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.5Vとした。
 また、負極活物質が黒鉛(ケイ素含有)である負極体は、黒鉛粉末81質量%、ケイ素粉末9質量%に、バインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合しさらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧と放電終止電圧は実施例1-1と同様とした。
 また、負極活物質がハードカーボンである負極体は、ハードカーボン粉末90質量%に、バインダーとして5質量%のPVDF、導電剤としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.2Vとした。
 評価結果を表7に示す。なお、実施例2-1~2-7及び比較例2-1~2-4の評価結果は、比較例2-1の値を100とした場合の相対値である。また、実施例2-8~2-14及び比較例2-5~2-8の評価結果は、比較例2-5の値を100とした場合の相対値である。また、実施例2-15~2-21及び比較例2-9~2-12の評価結果は、比較例2-9の値を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000015
[実施例3-1~3-28、比較例3-1~3-16]
 表8に示すように、正極体、負極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。
 なお、正極活物質がLiCoO2である正極体は、LiCoO2粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。
 実施例1-1と同様に負極活物質が黒鉛である実施例3-1~3-7及び比較例3-1~3-4において、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。
 実施例2-1と同様に負極活物質がLi4Ti512である実施例3-8~3-14及び比較例3-5~3-8において、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。
 実施例2-8と同様に負極活物質が黒鉛(ケイ素含有)である実施例3-15~3-21及び比較例3-9~3-12において、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。
 実施例2-15と同様に負極活物質がハードカーボンである実施例3-22~3-28及び比較例3-13~3-16において、電池評価の際の充電終止電圧を4.1V、放電終止電圧を2.2Vとした。
 評価結果を表8に示す。なお、実施例3-1~3-7及び比較例3-1~3-4の評価結果は、比較例3-1の値を100とした場合の相対値である。また、実施例3-8~3-14及び比較例3-5~3-8の評価結果は、比較例3-5の値を100とした場合の相対値である。また、実施例3-15~3-21及び比較例3-9~3-12の評価結果は、比較例3-9の値を100とした場合の相対値である。また、実施例3-22~3-28及び比較例3-13~3-16の評価結果は、比較例3-13の値を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000016
[実施例4-1~4-21、比較例4-1~4-12]
 表9に示すように、正極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。なお、正極活物質がLiNi0.8Co0.15Al0.052である正極体は、LiNi0.8Co0.15Al0.052粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。
 また、正極活物質がLiMn24である正極体は、LiMn24粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。
 また、正極活物質がLiFePO4である正極体は、非晶質炭素で被覆されたLiFePO4粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.5Vとした。
 評価結果を表9に示す。なお、実施例4-1~4-7及び比較例4-1~4-4の評価結果は、比較例4-1の値を100とした場合の相対値である。また、実施例4-8~4-14及び比較例4-5~4-8の評価結果は、比較例4-5の値を100とした場合の相対値である。また、実施例4-15~4-21及び比較例4-9~4-12の評価結果は、比較例4-9の値を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000017
 表7~9の結果から、負極活物質や正極活物質の種類によらず、電解液中に上記2価のイミドアニオンを有する塩を添加すると、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び低温出力特性を発揮し、上述と同様の効果が得られることが確認された。
[実施例5-1]
 非水溶媒としてエチレンカーボネートとジエチルカーボネートの体積比1:1の混合溶媒を用い、該溶媒中に、溶質としてNaPF6を1.0mol/Lの濃度となるように、イミドアニオンを有する塩として上記化合物No.1のジナトリウム塩を0.1質量%の濃度となるように溶解し、表10に示すように非水電解液電池用電解液を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。
 この電解液を用いてNaFe0.5Co0.52を正極材料、ハードカーボンを負極材料とした以外は実施例1-1と同様にセルの作製を行い、実施例1-1と同様に電池の評価を実施した。なお、正極活物質がNaFe0.5Co0.52である正極体は、NaFe0.5Co0.52粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し電池評価の際の充電終止電圧を3.8V、放電終止電圧を1.5Vとした。評価結果を表11に示す。
[実施例5-2~5-14、比較例5-1~5-5]
 表10に示すように、溶質の種類と濃度及びイミドアニオンを有する塩の種類と濃度を変えたこと以外は実施例5-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。評価結果を表11に示す。なお、実施例5-1~5-14、比較例5-1~5-5の評価結果は、比較例5-1の値を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表11の結果から、ナトリウムイオン電池においても、電解液に上記2価のイミドアニオンを有する塩を添加した実施例5-1~5-7は、該塩を添加していない比較例5-1に対し、高温サイクル特性及び低温出力特性が共に向上していることが確認できた。
 また同様に、1価のイミドアニオンを有する塩を用いる比較例5-2~5-4に対し、本発明の2価のイミドアニオンを有する塩を同濃度(0.1質量%)含有させた実施例5-1~5-7では、高温サイクル特性及び低温出力特性が向上していることが確認できた。
 また、ナトリウムイオン電池においても、P-F結合やS-F結合を持つイミドアニオンを有する塩を用いると、より優れた低温出力特性を示すことが確認された。さらに、上記イミドアニオンを有する塩中のP-F結合やS-F結合の数が多いほど、低温特性がさらに向上されるが確認された。
 また、一般式(1)や(3)のR1~R3がフッ素原子、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である2価のイミドアニオンを有する塩を用いると、より優れた高温サイクル特性を示すことが確認された。
 また、一般式(2)や(4)のXがフッ素原子、アルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である2価のイミドアニオンを有する塩を用いると、より優れた高温サイクル特性を示すことが確認された。
 また、溶質がNaPF6と別の溶質が混合された場合においても、2価のイミドアニオンを有する塩を添加した実施例5-8~5-14では、2価のイミドアニオンを有する塩を添加していない比較例5-5に対し、高温サイクル特性及び低温出力特性が向上しており、同様の効果が得られることが確認された。

Claims (11)

  1.  非水溶媒、溶質、及び、少なくとも1種の下記一般式(1)~(4)で示される2価のイミドアニオンを有する塩を含有することを特徴とする、非水電解液電池用電解液。

    Figure JPOXMLDOC01-appb-I000001

    [式(1)~(3)中、R1~R3 はそれぞれ互いに独立して、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
     式(2)及び(4)中、Xは、フッ素原子、炭素数が1~10の直鎖あるいは分岐状のアルキル基、炭素数が2~10のアルケニル基、炭素数が2~10のアルキニル基、炭素数が3~10のシクロアルキル基、炭素数が3~10のシクロアルケニル基、炭素数が6~10のアリール基、炭素数が1~10の直鎖あるいは分岐状のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、及び、炭素数が6~10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
     M1、M2はそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
  2.  前記イミドアニオンを有する塩が、少なくとも一つのP-F結合またはS-F結合を有することを特徴とする、請求項1に記載の非水電解液電池用電解液。
  3.  前記R1~R3が、フッ素原子、炭素数が2~10のアルケニルオキシ基、及び炭素数が2~10のアルキニルオキシ基からなる群から選ばれる有機基であることを特徴とする、請求項1に記載の非水電解液電池用電解液。
  4.  前記アルケニルオキシ基が、1-プロペニルオキシ基、2-プロペニルオキシ基、3-ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2-プロピニルオキシ基、1,1-ジメチル-2-プロピニルオキシ基からなる群から選択されることを特徴とする、請求項3に記載の非水電解液電池用電解液。
  5.  前記Xが、フッ素原子、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、及び炭素数が2~10のアルキニルオキシ基からなる群から選ばれる有機基であることを特徴とする、請求項1に記載の非水電解液電池用電解液。
  6.  前記アルコキシ基が、メトキシ基、エトキシ基、プロポキシ基からなる群から選択され、前記アルケニルオキシ基が、1-プロペニルオキシ基、2-プロペニルオキシ基、3-ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2-プロピニルオキシ基、1,1-ジメチル-2-プロピニルオキシ基からなる群から選択されることを特徴とする、請求項5に記載の非水電解液電池用電解液。
  7.  前記イミドアニオンを有する塩中のイミドアニオンの対カチオンM1及びM2が、プロトン、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、及びテトラアルキルホスホニウムイオンからなる群から選ばれる少なくとも一つのカチオンであることを特徴とする、請求項1~6のいずれかに記載の非水電解液電池用電解液。
  8.  前記イミドアニオンを有する塩の濃度が、非水電解液電池用電解液の総量に対して0.01~5.0質量%の範囲であることを特徴とする、請求項1~7のいずれかに記載の非水電解液電池用電解液。
  9.  前記溶質が、LiPF6、LiPF2(C242、LiPF4(C24)、LiP(C243、LiBF2(C24)、LiB(C242、LiPO22、LiN(F2PO)2、LiN(FSO22、LiN(CF3SO22、LiBF4、NaPF6、NaPF2(C242、NaPF4(C24)、NaP(C243、NaBF2(C24)、NaB(C242、NaPO22、NaN(F2PO)2、NaN(FSO22、NaN(CF3SO22、及びNaBF4からなる群から選ばれる少なくとも一つの溶質であることを特徴とする、請求項1~8のいずれかに記載の非水電解液電池用電解液。
  10.  前記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つの非水溶媒であることを特徴とする、請求項1~9のいずれかに記載の非水電解液電池用電解液。
  11.  少なくとも、正極と、負極と、請求項1~10のいずれかに記載の非水電解液電池用電解液とを備えることを特徴とする、非水電解液電池。
PCT/JP2015/083803 2014-12-01 2015-12-01 非水電解液電池用電解液、及びこれを用いた非水電解液電池 WO2016088773A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/529,738 US10211480B2 (en) 2014-12-01 2015-12-01 Electrolytic solution for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CN201580065535.XA CN107004904B (zh) 2014-12-01 2015-12-01 非水电解液电池用电解液和使用其的非水电解液电池
EP15864956.6A EP3229306B1 (en) 2014-12-01 2015-12-01 Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
KR1020177018205A KR101878855B1 (ko) 2014-12-01 2015-12-01 비수전해액 전지용 전해액, 및 이것을 이용한 비수전해액 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-243288 2014-12-01
JP2014243288A JP6361486B2 (ja) 2014-12-01 2014-12-01 非水電解液電池用電解液、及びこれを用いた非水電解液電池

Publications (1)

Publication Number Publication Date
WO2016088773A1 true WO2016088773A1 (ja) 2016-06-09

Family

ID=56091714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083803 WO2016088773A1 (ja) 2014-12-01 2015-12-01 非水電解液電池用電解液、及びこれを用いた非水電解液電池

Country Status (7)

Country Link
US (1) US10211480B2 (ja)
EP (1) EP3229306B1 (ja)
JP (1) JP6361486B2 (ja)
KR (1) KR101878855B1 (ja)
CN (1) CN107004904B (ja)
TW (1) TWI597287B (ja)
WO (1) WO2016088773A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062719A1 (ko) * 2016-09-30 2018-04-05 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US10985404B2 (en) 2016-09-30 2021-04-20 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery comprising electrolyte
EP3678249A4 (en) * 2017-09-12 2021-06-09 Central Glass Co., Ltd. ADDITIVE FOR WATER-FREE ELECTROLYTE, ELECTROLYTE FOR WATER-FREE ELECTROLYTE CELL AND ANIMAL ELECTROLYTE CELL
US11038204B2 (en) 2016-09-30 2021-06-15 Samsung Sdi Co., Ltd. Lithium secondary battery
US11038203B2 (en) 2016-09-30 2021-06-15 Samsung Sdi Co., Ltd. Lithium secondary battery
US11056719B2 (en) 2016-09-30 2021-07-06 Samsung Sdi Co., Ltd. Lithium secondary battery comprising electrolyte
US11056720B2 (en) 2016-09-30 2021-07-06 Samsung Sdi Co., Ltd. Lithium secondary battery comprising electrolyte
US11367900B2 (en) 2016-09-30 2022-06-21 Samsung Sdi Co., Ltd. Lithium secondary battery comprising electrolyte
US11424453B2 (en) 2019-09-18 2022-08-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11784347B2 (en) 2018-04-03 2023-10-10 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123495B1 (ko) 2015-12-22 2020-06-16 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액, 및 이를 이용한 비수전해액 전지
CN109417199B (zh) 2016-07-01 2022-02-11 中央硝子株式会社 非水系电解液、及非水系电解液二次电池
JP6860783B2 (ja) 2016-07-01 2021-04-21 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
WO2018030280A1 (ja) * 2016-08-08 2018-02-15 旭化成株式会社 非水系アルカリ金属イオンキャパシタ
KR102500815B1 (ko) * 2019-01-25 2023-02-17 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN110299562B (zh) * 2019-07-17 2021-10-08 珠海市赛纬电子材料股份有限公司 一种锂盐添加剂及其锂离子电池非水电解液
US20220359904A1 (en) * 2019-08-30 2022-11-10 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN111710910B (zh) * 2020-07-01 2021-06-29 香河昆仑化学制品有限公司 一种含有双四氟磷酰亚胺盐的电解液及锂离子电池
CN112186252B (zh) * 2020-09-30 2022-11-22 香河昆仑新能源材料股份有限公司 一种含双氟代丙二酸磷酰亚胺锂的电解液、使用该电解液的锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168308A (ja) * 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010122867A1 (ja) * 2009-04-22 2010-10-28 セントラル硝子株式会社 電気化学ディバイス用電解質、これを用いる電解液および非水電解液電池
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
JP2014203748A (ja) * 2013-04-08 2014-10-27 株式会社日本触媒 リチウムイオン二次電池用非水電解液およびこれを備えたリチウムイオン二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957415B2 (ja) 1998-10-20 2007-08-15 日立マクセル株式会社 非水二次電池
WO2006008921A1 (ja) * 2004-07-16 2006-01-26 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
JP2006286532A (ja) * 2005-04-04 2006-10-19 Sony Corp 電池
JP4665894B2 (ja) * 2006-12-05 2011-04-06 トヨタ自動車株式会社 リチウム塩およびその製造方法
JP2010009917A (ja) * 2008-06-26 2010-01-14 Fujifilm Corp 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法
JP5723439B2 (ja) * 2011-03-03 2015-05-27 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法
KR101233325B1 (ko) * 2011-04-11 2013-02-14 로베르트 보쉬 게엠베하 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN102816096B (zh) 2011-06-10 2014-09-24 华中科技大学 一种亚胺碱金属盐和离子液体及其作为非水电解质的应用
JP2013030465A (ja) 2011-06-24 2013-02-07 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP5796417B2 (ja) * 2011-08-31 2015-10-21 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
JP5998645B2 (ja) 2012-05-30 2016-09-28 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN104151206B (zh) 2013-05-14 2016-12-28 华中科技大学 一种(氟磺酰)(多氟烷氧基磺酰)亚胺的碱金属盐及其离子液体
WO2016002774A1 (ja) * 2014-07-02 2016-01-07 セントラル硝子株式会社 イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168308A (ja) * 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010122867A1 (ja) * 2009-04-22 2010-10-28 セントラル硝子株式会社 電気化学ディバイス用電解質、これを用いる電解液および非水電解液電池
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
JP2014203748A (ja) * 2013-04-08 2014-10-27 株式会社日本触媒 リチウムイオン二次電池用非水電解液およびこれを備えたリチウムイオン二次電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038203B2 (en) 2016-09-30 2021-06-15 Samsung Sdi Co., Ltd. Lithium secondary battery
CN109792085A (zh) * 2016-09-30 2019-05-21 三星Sdi株式会社 用于锂二次电池的电解质和包括电解质的锂二次电池
US10916806B2 (en) 2016-09-30 2021-02-09 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery comprising electrolyte
US10985404B2 (en) 2016-09-30 2021-04-20 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery comprising electrolyte
US11038204B2 (en) 2016-09-30 2021-06-15 Samsung Sdi Co., Ltd. Lithium secondary battery
WO2018062719A1 (ko) * 2016-09-30 2018-04-05 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US11056719B2 (en) 2016-09-30 2021-07-06 Samsung Sdi Co., Ltd. Lithium secondary battery comprising electrolyte
US11056720B2 (en) 2016-09-30 2021-07-06 Samsung Sdi Co., Ltd. Lithium secondary battery comprising electrolyte
US11367900B2 (en) 2016-09-30 2022-06-21 Samsung Sdi Co., Ltd. Lithium secondary battery comprising electrolyte
EP3678249A4 (en) * 2017-09-12 2021-06-09 Central Glass Co., Ltd. ADDITIVE FOR WATER-FREE ELECTROLYTE, ELECTROLYTE FOR WATER-FREE ELECTROLYTE CELL AND ANIMAL ELECTROLYTE CELL
US11545697B2 (en) 2017-09-12 2023-01-03 Central Glass Co., Ltd. Additive for non-aqueous electrolyte solution, electrolyte solution for non-aqueous electrolyte solution battery, and non-aqueous electrolyte solution battery
US11784347B2 (en) 2018-04-03 2023-10-10 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
US11424453B2 (en) 2019-09-18 2022-08-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery

Also Published As

Publication number Publication date
EP3229306A4 (en) 2018-05-23
US20170331143A1 (en) 2017-11-16
TW201629075A (zh) 2016-08-16
CN107004904B (zh) 2019-07-23
TWI597287B (zh) 2017-09-01
EP3229306B1 (en) 2019-02-20
KR20170086655A (ko) 2017-07-26
KR101878855B1 (ko) 2018-07-16
EP3229306A1 (en) 2017-10-11
US10211480B2 (en) 2019-02-19
JP6361486B2 (ja) 2018-07-25
CN107004904A (zh) 2017-08-01
JP2016105370A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6361486B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP7016019B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
US11652238B2 (en) Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
JP6784927B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6221365B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2013187379A1 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2019053984A (ja) 非水電解液用添加剤、非水電解液、及び非水電解液電池
CN110880619B (zh) 非水电解液电池用电解液和使用其的非水电解液电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529738

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015864956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177018205

Country of ref document: KR

Kind code of ref document: A