WO2016088421A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2016088421A1
WO2016088421A1 PCT/JP2015/075518 JP2015075518W WO2016088421A1 WO 2016088421 A1 WO2016088421 A1 WO 2016088421A1 JP 2015075518 W JP2015075518 W JP 2015075518W WO 2016088421 A1 WO2016088421 A1 WO 2016088421A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
signal
endoscope
imaging signal
frequency component
Prior art date
Application number
PCT/JP2015/075518
Other languages
English (en)
French (fr)
Inventor
文行 大河
秀範 橋本
泰憲 松井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016506918A priority Critical patent/JP6013647B1/ja
Priority to EP15865593.6A priority patent/EP3138467A4/en
Priority to CN201580032301.5A priority patent/CN106572789B/zh
Publication of WO2016088421A1 publication Critical patent/WO2016088421A1/ja
Priority to US15/371,676 priority patent/US9876974B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/268Signal distribution or switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to an endoscope equipped with an image sensor that outputs a digital signal as an image signal.
  • endoscopes equipped with an image sensor have been widely used in the medical field and the industrial field.
  • endoscopes that employ a CCD image sensor as an image sensor tend to increase the number of pixels of the CCD image sensor.
  • an increase in the number of pixels necessitates faster processing than in the past.
  • the cable connecting the image pickup device disposed at the distal end and the processor extends over a relatively long distance, and the endoscope insertion portion is reduced in diameter. For this reason, there is a restriction on the cable diameter, and it is more difficult to accurately transmit the signal output from the CCD image sensor disposed at the distal end of the endoscope insertion portion.
  • the image signal of the CCD image sensor is subjected to CDS processing (correlated double sampling) to reduce the frequency band of the signal and then via a cable.
  • CDS processing correlated double sampling
  • a system is also disclosed in which the image signal is transmitted and the frequency degradation of the cable is corrected by a predetermined analog circuit (enhancement circuit or the like) disposed in the receiving processor or the like (Japanese special feature). (See JP 2012-115531 A).
  • This type of CMOS image sensor includes an A / D conversion unit in addition to an imaging unit in the sensor chip.
  • the output signal as a sensor is a digital signal.
  • CMOS image sensor outputs a sensor output signal as a digital signal, so a CCD image that outputs the sensor output signal as an analog signal even when transmitting signals over a relatively long cable.
  • the influence of signal deterioration on image quality is reduced.
  • CMOS-compatible processor CMOS-compatible processor
  • a conventional CCD image sensor is employed.
  • the endoscope is connected to a processor corresponding to an endoscope that performs CDS processing at the distal end portion (hereinafter referred to as a distal-end CDS-compatible processor) as described above, there is a risk of causing the following disadvantages. is there.
  • the above-mentioned advanced CDS-compatible processor outputs a video signal via an enhancement circuit that compensates for the deteriorated component in order to cope with the deterioration of the frequency characteristic (mainly attenuation of the high frequency component) in the analog signal transmission line. is doing.
  • the present invention has been made in view of the above-described points. Even when connected to a processor including a circuit that emphasizes and corrects a high frequency component, an imaging signal that can perform appropriate image signal processing in the processor.
  • An object of the present invention is to provide an endoscope equipped with an imaging device that outputs a digital signal.
  • An endoscope is an endoscope that can be connected to a first processor provided with a high-frequency component enhancement circuit for enhancing and correcting a high-frequency component of an imaging signal in which the high-frequency component is attenuated.
  • An insertion section to be inserted into the subject, an imaging section that is provided at the distal end of the insertion section and that captures an optical image of the subject to generate an analog imaging signal, and the analog imaging signal is converted into a digital imaging signal.
  • An image sensor comprising an A / D converter for converting and outputting, a cable connected to the image sensor at one end and transmitting the digital image signal to the other end, and provided at the other end of the cable And an inverse characteristic filter having a frequency characteristic for equalizing the frequency characteristic related to the high frequency component emphasizing circuit.
  • FIG. 1 is a diagram showing a configuration of an endoscope according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of an AFE circuit in the CMOS in the endoscope according to the first embodiment.
  • FIG. 3 is a diagram illustrating a connection relationship between the endoscope according to the first embodiment, the conventional endoscope, and the tip CDS compatible processor.
  • FIG. 4 is a diagram illustrating a connection relationship between the endoscope, the tip CDS compatible processor, and the CMOS compatible processor according to the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration when the endoscope according to the first embodiment is connected to a front-end CDS-compatible processor.
  • FIG. 1 is a diagram showing a configuration of an endoscope according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of an AFE circuit in the CMOS in the endoscope according to the first embodiment.
  • FIG. 3 is a diagram
  • FIG. 6 is a diagram illustrating a configuration when the endoscope according to the first embodiment is connected to a CMOS-compatible processor.
  • FIG. 7 is a flowchart illustrating an operation of digital filter processing in the endoscope according to the first embodiment.
  • FIG. 8 is a diagram showing an example of a state when a conventional endoscope is connected to a processor.
  • FIG. 9 is a diagram showing an example of transmission signal characteristics in a conventional endoscope.
  • FIG. 10 is a diagram illustrating an example of signal characteristics of an enhancement circuit for a front end CDS in a front end CDS compatible processor to which a conventional endoscope is connected.
  • FIG. 11 is a diagram showing a configuration when an endoscope according to a second embodiment of the present invention is connected to a tip CDS compatible processor.
  • FIG. 12 is a diagram illustrating a configuration when the endoscope according to the second embodiment is connected to a CMOS-compatible processor.
  • FIG. 13 is a flowchart illustrating an
  • an endoscope 1 As shown in FIG. 1, an endoscope 1 according to a first embodiment of the present invention is provided at the distal end of an insertion portion to be inserted into a subject, captures an optical image of the subject, and obtains a predetermined digital imaging signal. Is connected to a CMOS image sensor 11 that outputs a signal, a cable 40 that is connected to the CMOS image sensor 11 and transmits the digital imaging signal, and a processor (details will be described later) as a signal processing device that performs predetermined signal processing. And a connector unit 20.
  • the CMOS image sensor 11 is a clock adapted to the operation specifications of the CMOS image sensor 11 based on a predetermined clock signal and the synchronization signals HD and VD transmitted from the clock synchronization signal generation circuit 31 (see FIG. 5) of the processor 3.
  • Signal, horizontal synchronization signal HD, vertical synchronization signal VD, and timing generator (TG) 15 that generates pulses for various signal processing, and the clock signal, horizontal synchronization signal HD, and vertical synchronization signal generated by the timing generator 15
  • An image pickup unit 12 (PD12) that picks up an optical image of a subject by VD and generates a predetermined analog image pickup signal, and performs predetermined signal processing on the image pickup unit 12 and converts it into a digital image pickup signal and outputs it.
  • AFE circuit 13 including an A / D conversion unit, and the AFE circuit The digital image pickup signal from 3 to parallel / serial conversion and P / S circuit 14 to be output to the subsequent stage, and a.
  • the cable 40 transmits the predetermined clock signal and the synchronization signals HD and VD transmitted from the processor 3 to the CMOS image sensor 11 and also the digital imaging signal of the serial signal converted in parallel / serial by the P / S circuit 14. Is transmitted to the S / P conversion circuit 23 provided in the connector 20.
  • a circuit for performing predetermined signal processing on the digital imaging signal is configured in the connector unit 20 by an FPGA (hereinafter referred to as FPGA 21).
  • the FPGA 21 receives the clock signal and the synchronization signals HD and VD generated by the processor 3 and outputs them to the CMOS image sensor 11.
  • the FPGA 21 is a timing generator (TG) 22 that generates pulses for various signal processing based on the clock signal generated in the processor 3, and digital imaging of the serial signal output from the CMOS image sensor 11.
  • TG timing generator
  • An S / P conversion circuit 23 for serial / parallel conversion of a signal, a digital filter 24 for a leading CDS processor connected to the S / P conversion circuit 23 (hereinafter referred to as a CDS digital filter 24), and an S / P A CMOS-compatible processor digital filter 25 (hereinafter referred to as a CMOS-compatible digital filter 25) connected to the conversion circuit 23 is provided.
  • the CDS digital filter 24 is configured as an inverse characteristic filter having a characteristic for equalizing a frequency characteristic related to the enhancement circuit 33 for advanced CDS in the processor 3 (details will be described later). And when the endoscope 1 which mounts the said CMOS image sensor 11 is connected to the processor 3 which has the said enhancement circuit 33, it works effectively.
  • the CMOS-compatible digital filter 25 is configured as a filter having different characteristics from the CDS-compatible digital filter 24.
  • the endoscope 1 having the CMOS image sensor 11 mounted thereon is connected to the processor 3A that does not include the enhancement circuit 33 and performs processing corresponding to the CMOS image sensor 11, it works effectively. Yes.
  • the FPGA 21 further parallelizes the signal path switching unit 26 that switches the output signal path between the CDS-compatible digital filter 24 and the CMOS-compatible digital filter 25, and the output signal from the signal path switching unit 26.
  • a P / S circuit 27 that performs serial conversion and outputs the signal to the processor 3, a processor detection circuit 28 that switches the signal path in the signal path switching unit 26 according to the type of the processor that is connected to the endoscope 1; .
  • the AFE circuit 13 includes a CDS circuit 16 that performs a predetermined correlated double sampling process on the analog image signal from the imaging unit 12, and an analog that has been subjected to the correlated double sampling process. And an A / D conversion circuit 17 for A / D converting and outputting the imaging signal.
  • FIG. 3 is a diagram showing a connection relationship between the endoscope of the present embodiment, a conventional endoscope, and a tip CDS compatible processor (processor 3).
  • the processor 3 is a conventional CDS-compatible processor that can be connected to an endoscope 101 having a circuit that performs a CDS process together with a CCD image sensor at the distal end of the endoscope.
  • the processor 3 is an endoscope that employs a CMOS image sensor, if the endoscope 1 is configured as in the above-described embodiment, an appropriate image signal can be obtained in the processor when connected. Processing can be performed.
  • the front-end CDS-compatible processor 3 includes a clock synchronization signal generation circuit 31 that generates a predetermined clock signal and synchronization signals HD and VD, and a digital digital signal of a serial signal output from a connected endoscope.
  • An S / P conversion circuit 32 for serial / parallel conversion of an image pickup signal, an advanced CDS enhancement circuit 33 connected to the S / P conversion circuit 32, and a CPU 34 for controlling various circuits in the processor 3 are provided.
  • the enhancement circuit 33 for the front end CDS plays a role of enhancing a high-frequency component with respect to the imaging signal from the endoscope 101 serial / parallel converted by the S / P conversion circuit 32. It will be described later.
  • the CPU 34 in the processor 3 transmits ID information unique to the processor 3 (particularly, information that the processor 3 is a leading-end CDS compatible processor) stored in a memory (not shown) to the connected endoscope 1. To play a role.
  • the processor detection circuit 28 in the endoscope 1 of the present embodiment determines whether or not the connected processor is a tip CDS compatible processor based on information from the CPU 34 in the connected processor 3. It is like that.
  • the processor 3 described above is assumed to have a function of sending ID information unique to the processor 3 (information indicating that the processor is compatible with a leading-edge CDS) to the endoscope 1, and the processor detection circuit 28.
  • ID information is obtained to determine the type of the connected processor, but the method for determining the processor is not limited to this.
  • the type of the processor 3 may be determined by not receiving predetermined ID information from the connected processor.
  • CMOS compatible processor always sends its own unique ID information, that is, information indicating that it is a CMOS compatible processor. If the specification is such that no ID information for processor identification is transmitted from the processor, it can be determined that the processor 3 is a leading-end CDS compatible processor by not receiving the ID information.
  • an endoscope in which an imaging signal from an imaging device is subjected to CDS processing (correlated double sampling processing) at the distal end portion of an endoscope, and the imaging signal is transmitted after the transmission band is reduced.
  • CDS processing correlated double sampling processing
  • the conventional endoscope 101 captures an optical image of a subject at a distal end portion 111 of an insertion portion to be inserted into the subject and performs predetermined processing based on a timing generator 113. And a CDS circuit 114 that performs correlated double sampling processing on the analog imaging signal.
  • the analog imaging signal subjected to the correlated double sampling processing is A / D converted and then parallel / serial converted by the connector unit 120 via the cable 140 having a relatively long distance, and is directed to the processor 3. Is output.
  • the processor 3 sends the clock and the synchronization signals HD and VD to the endoscope 101 and is serial / parallel converted by the S / P conversion circuit 32.
  • An enhancement circuit 33 for a front end CDS that enhances a high-frequency component for an imaging signal from the endoscope 101 is provided.
  • the cable 140 that connects the image pickup device (CCD image sensor 112) disposed at the distal end portion 111 and the processor 3 has a relatively long distance. It will reach.
  • the signal output from the CCD image sensor 112 is affected by the physical characteristics of the cable 140. The high frequency components of the signal are likely to deteriorate (see FIG. 9).
  • the advanced CDS enhancement circuit 33 corrects and outputs a high frequency component deteriorated in the cable 140 due to the above-described factors (see FIG. 10).
  • the endoscope 1 of the present embodiment can be connected to the processor 3A in addition to the processor 3 provided with the conventional enhancement circuit 33 for the tip CDS.
  • FIG. 4 is a diagram showing a connection relationship between the endoscope, the front-end CDS compatible processor, and the CMOS compatible processor of the present embodiment.
  • the processor 3A includes a signal processing circuit that is assumed to be connected to the endoscope 1 on which the CMOS image sensor 11 is mounted.
  • the endoscope 1 has a signal deterioration that gives an image quality as compared with the endoscope 101 that employs a CCD image sensor that outputs a sensor output signal as an analog signal, even if the signal is transmitted through a relatively long cable. (In particular, the influence of deterioration of high frequency components) is reduced.
  • the processor 3A includes a signal processing circuit on the premise that an imaging signal that is less affected by the deterioration of the high frequency component by the cable 40 is input.
  • the processor 3A does not include an enhancement circuit corresponding to the enhancement circuit 33 for the leading edge CDS.
  • FIG. 5 is a diagram showing a configuration when the endoscope according to the present embodiment is connected to the front-end CDS compatible processor
  • FIG. 6 is a diagram when the endoscope according to the present embodiment is connected to the CMOS compatible processor. It is a figure which shows a structure.
  • FIG. 7 is a flowchart showing a digital filter selection process in the endoscope of the present embodiment.
  • step S1 when it is detected that the processor detection circuit 28 in the endoscope 1 is connected to a predetermined processor, the processor detection circuit 28 is predetermined from the CPU 34 (see FIGS. 5 and 6) of the connected processor. ID information is obtained (step S1).
  • the processor detection circuit 28 determines whether the processor to which the endoscope 1 is connected is the advanced CDS compatible processor 3 or the CMOS compatible processor based on the ID information obtained in step S1. It is determined whether it is the processor 3A (step S2).
  • the processor detection circuit 28 may determine whether or not the processor 3 is a processor compatible with the advanced CDS by not receiving the ID information.
  • the processor detection circuit 28 performs the process of step S3. I do.
  • step S3 the processor detection circuit 28 controls the signal path switching unit 26 to switch the signal path so that the imaging signal output from the P / S circuit 27 passes through the CDS digital filter 24. (See FIG. 5).
  • the digital image pickup signal is output from the CMOS image sensor 11
  • the high frequency component of the video based on the image pickup signal hardly deteriorates in the process of transmission by the cable 40. Therefore, if it is input to the processor 3 as described above as it is, the high frequency components of the video will be emphasized more than necessary.
  • the CDS compatible digital filter 24 is configured as an inverse characteristic filter having a characteristic for equalizing the frequency characteristic related to the enhancement circuit 33 for the advanced CDS.
  • the high frequency component of the imaging signal output from the endoscope 1 is once reduced, and in the processor 3 to which this imaging signal is input, coupled with the high frequency emphasizing action by the enhancement circuit 33 for the tip CDS.
  • an appropriate frequency characteristic can be obtained.
  • the processor detection circuit 28 performs the process of step S4.
  • step S4 the processor detection circuit 28 controls the signal path switching unit 26 to switch the signal path so that the imaging signal output from the P / S circuit 27 passes through the CMOS-compatible digital filter 25. (See FIG. 6).
  • the characteristics of the CMOS-compatible digital filter 25 exhibit a substantially flat frequency characteristic in consideration of the fact that the high-frequency component of the video based on the digital imaging signal output from the CMOS image sensor 11 in the cable 40 is hardly deteriorated. It may be a circuit configuration.
  • the FPGA 21 is disposed in the connector unit 20.
  • the present invention is not limited to this, and the FPGA 21 may be disposed in an operation unit or the like in the endoscope 1.
  • CMOS image sensor is assumed as the imaging element of the endoscope 1.
  • the present invention is not limited to the CMOS image sensor, and the present invention generates a digital imaging signal at the distal end portion of the insertion portion, as described above.
  • the present invention can be applied to an endoscope equipped with an image pickup device that can send out the digital image pickup signal toward the rear circuit portion via the cable 40.
  • FIG. 11 is a diagram illustrating a configuration when the endoscope according to the second embodiment of the present invention is connected to the front-end CDS-compatible processor
  • FIG. 12 is a diagram illustrating the CMOS according to the second embodiment of the endoscope. It is a figure which shows the structure at the time of connecting to a processor.
  • FIG. 13 is a flowchart showing the operation of the digital filter process in the endoscope of the second embodiment.
  • the basic configuration of the endoscope system of the second embodiment is the same as that of the first embodiment, and only a part of the configuration in the FPGA 21 in the connector unit 20 is different. Accordingly, only the differences from the first embodiment will be described here, and descriptions of common parts will be omitted.
  • the FPGA 21 includes the processor detection circuit 28 that switches the signal path in the signal path switching unit 26 according to the type of the processor connected to the endoscope 1 (see FIG. 1).
  • a switching instruction unit 28a for sending a switching instruction signal for switching the signal path in the signal path switching unit 26 is provided instead of the processor detection circuit 28. It is characterized by that.
  • the switching instruction unit 28a sends the switching instruction signal to the signal path switching unit 26 by an operation (not shown) or the like (for example, setting by a user).
  • the switching instruction signal includes a first signal path through which the digital imaging signal passes through the front-end CDS processor digital filter 24 (inverse characteristic filter) and a second signal through the CMOS processor digital filter 25. This is an instruction signal for switching a path (that is, a signal path through which the digital imaging signal does not pass through the inverse characteristic filter).
  • the signal path switching unit 26 switches the first signal path to the second signal path in response to a switching instruction signal from the switching instruction unit 28a. .
  • the type of the processor connected to the endoscope 1 is selected from the endoscope 1.
  • the above-described signal path switching can be performed without detection.
  • step S11 when the switching instruction signal is sent from the switching instruction unit 28a in the endoscope 1 (step S11), whether the switching instruction in the switching instruction unit 28a is the processor 3B corresponding to the leading edge CDS, Alternatively, based on whether the processor is a CMOS compatible processor 3C (step S12), the signal path switching unit 26 switches between the first signal path and the second signal path.
  • the switching instruction signal indicates the front-end CDS-compatible processor 3B (that is, when the front-end CDS enhancement circuit 33 operates on the imaging signal)
  • the front-end CDS-compatible processor digital filter 24 (reverse) A first signal path passing through the characteristic filter is selected (step S13).
  • the switching instruction signal indicates the CMOS compatible processor 3C
  • the second signal path passing through the CMOS compatible processor digital filter 25 is selected (step S14).
  • the characteristics of the digital filter 25 for the CMOS-compatible processor are such that the high frequency component of the video based on the digital image pickup signal output from the CMOS image sensor 11 in the cable 40 is hardly deteriorated.
  • a circuit configuration showing a substantially flat frequency characteristic may be used.
  • CMOS image sensor that can perform appropriate image signal processing in the processor can be provided.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various aspects of the invention can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 高域成分が減衰した撮像信号の高域成分を強調補正する高域成分強調回路(33)を設けたプロセッサ(3)に接続可能な内視鏡であって、被検体の光学像を撮像してアナログ撮像信号を生成する撮像部と、当該アナログ撮像信号をデジタル撮像信号に変換して出力するA/D変換部とを備えるCMOSイメージセンサ(11)と、前記デジタル撮像信号を伝送するためのケーブル(40)と、前記高域成分強調回路に係る周波数特性をイコライズする周波数特性を有するフィルタ(24)とを具備する。

Description

内視鏡
 本発明は、撮像信号としてデジタル信号を出力する撮像素子を搭載する内視鏡に関する。
 従来、医療用分野及び工業用分野において撮像素子を備えた内視鏡が広く用いられている。また、内視鏡に着脱自在に接続され、内視鏡に係る各種信号処理をプロセッサと称する信号処理装置により担い、内視鏡システムを構成する技術も知られるところにある。
 また、近年、撮像素子としてCCDイメージセンサを採用する内視鏡においてはCCDイメージセンサの画素数が増える傾向にある。この種の内視鏡においては、画素数が増えることにより従来に増して高速な処理が必要となる。
 そして、この種の内視鏡においては、先端部に配設された撮像素子と前記プロセッサとを接続するケーブルが比較的長距離に及ぶこと、および内視鏡挿入部の細径化を実現するためにケーブル径に制約があること等から、内視鏡挿入部の先端に配設されるCCDイメージセンサからの信号出力を的確に伝送することがより困難となっている。
 係る事情に鑑み近年では、内視鏡の先端部において、CCDイメージセンサの撮像信号に対してCDS処理(correlated double sampling:相関2重サンプリング)を施し、信号の周波数帯域を落としてからケーブルを介して当該撮像信号を伝送する一方で、当該ケーブルにおける周波数劣化分を、受けた側のプロセッサ等に配設した所定のアナログ回路(エンハンス回路等)で補正するシステムも開示されている(日本国特開2012-115531号公報参照)。
 なお、日本国特開2012-115531号公報において開示された技術は周波数成分を補正するものであるが、デジタル的に周波数劣化成分を補正する技術も知られるところにある。
 一方、近年、撮像素子としてCMOSイメージセンサを採用する内視鏡も提案されている。
 この種のCMOSイメージセンサは、そのセンサチップ内に撮像部と共にA/D変換部を備える。そして、センサとしての出力信号はデジタル信号となっている。
 ここで、周波数特性の観点から言えば、デジタル信号の伝送はアナログ信号の伝送に比べてケーブル自体の物理的特性の影響を受けづらい。したがって、この種のCMOSイメージセンサを採用する内視鏡はセンサ出力信号をデジタル信号として出力するため、比較的長いケーブルでの信号伝送であっても、センサ出力信号をアナログ信号として出力するCCDイメージセンサを採用する内視鏡に比して、画質に与える信号劣化の影響は小さくなる。
 しかしながら、上述したCMOSイメージセンサを採用する内視鏡を、CMOSイメージセンサに対応するプロセッサ(以下、CMOS対応プロセッサと称する)に接続する場合は特に問題は生じないが、従来のCCDイメージセンサを採用する内視鏡であって、上述した如く、先端部においてCDS処理を施す内視鏡に対応したプロセッサ(以下、先端CDS対応プロセッサと称す)に接続する場合は、以下に示す不都合を生じる虞がある。
 すなわち、上述した先端CDS対応プロセッサは、アナログ信号伝送路における周波数特性の劣化(主として高域周波数成分の減衰)に対応するため、劣化した成分を補うようなエンハンス回路を経由して映像信号を出力している。
 このような出力信号の特性を有する従来の先端CDS対応プロセッサに、周波数特性が比較的フラットなCMOSイメージセンサを採用する内視鏡からの信号を入力すると、必要以上に映像信号の高域周波数成分が強調され過ぎてしまうという不都合を生じる虞がある。
 本発明は上述した点に鑑みてなされたもので、高域周波数成分を強調補正する回路を備えるプロセッサに接続された場合であっても、当該プロセッサにおいて適正な画像信号処理を行い得る、撮像信号としてデジタル信号を出力する撮像素子を搭載する内視鏡を提供することを目的とする。
 本発明の一態様の内視鏡は、高域成分が減衰した撮像信号の高域成分を強調補正するための高域成分強調回路を設けた第1のプロセッサに接続可能な内視鏡であって、被検体に挿入される挿入部と、前記挿入部の先端に設けられ、前記被検体の光学像を撮像してアナログ撮像信号を生成する撮像部と、当該アナログ撮像信号をデジタル撮像信号に変換して出力するA/D変換部とを備える撮像素子と、一端が前記撮像素子に接続され、前記デジタル撮像信号を他端側に伝送するためのケーブルと、前記ケーブルの他端に設けられ、前記高域成分強調回路に係る周波数特性をイコライズする周波数特性を有する逆特性フィルタと、を具備する。
図1は、本発明の第1の実施形態の内視鏡の構成を示す図。 図2は、第1の実施形態の内視鏡におけるCMOS内のAFE回路の構成を示した図。 図3は、第1の実施形態の内視鏡、従来の内視鏡および先端CDS対応プロセッサの接続関係を示した図。 図4は、第1の実施形態の内視鏡、先端CDS対応プロセッサおよびCMOS対応プロセッサとの接続関係を示した図。 図5は、第1の実施形態の内視鏡が先端CDS対応プロセッサに接続された際の構成を示す図。 図6は、第1の実施形態の内視鏡がCMOS対応プロセッサに接続された際の構成を示す図。 図7は、第1の実施形態の内視鏡におけるデジタルフィルタ処理の作用を示したフローチャート。 図8は、従来の内視鏡がプロセッサに接続された際の一状態例を示した図である。 図9は、従来の内視鏡における伝送信号特性の一例を示した図である。 図10は、従来の内視鏡が接続される先端CDS対応プロセッサおける先端CDS向けエンハンス回路の信号特性の一例を示した図である。 図11は、本発明の第2の実施形態の内視鏡が先端CDS対応プロセッサに接続された際の構成を示す図。 図12は、第2の実施形態の内視鏡がCMOS対応プロセッサに接続された際の構成を示す図。 図13は、第2の実施形態の内視鏡におけるデジタルフィルタ処理の作用を示したフローチャート。
 以下、図面を参照して本発明の実施形態を説明する。
 図1に示すように本発明の第1の実施形態である内視鏡1は、被検体に挿入される挿入部の先端に設けられ、被検体の光学像を撮像して所定のデジタル撮像信号を出力するCMOSイメージセンサ11と、前記CMOSイメージセンサ11に接続され前記デジタル撮像信号を伝送するケーブル40と、所定の信号処理を行う信号処理装置としてのプロセッサ(詳しくは後述する)に接続されるコネクタ部20と、を備える。
 前記CMOSイメージセンサ11は、プロセッサ3のクロック同期信号生成回路31(図5参照)から送信される所定のクロック信号および同期信号HD,VDに基づいて当該CMOSイメージセンサ11の動作仕様に合わせたクロック信号、水平同期信号HDおよび垂直同期信号VD並びに各種信号処理のためのパルスを生成するタイミングジェネレータ(TG)15と、当該タイミングジェネレータ15において生成された前記クロック信号、水平同期信号HDおよび垂直同期信号VDにより、被検体の光学像を撮像して所定のアナログ撮像信号を生成する撮像部12(PD12)と、当該撮像部12に対して所定の信号処理を施すと共にデジタル撮像信号に変換して出力するA/D変換部を備えるAFE回路13と、当該AFE回路13からのデジタル撮像信号をパラレル/シリアル変換して後段に出力するP/S回路14と、を有して構成される。
 前記ケーブル40は、プロセッサ3から送信される所定のクロック信号および同期信号HD,VDをCMOSイメージセンサ11に伝送すると共に、P/S回路14においてパラレル/シリアル変換されたシリアル信号の前記デジタル撮像信号をコネクタ20の内部に設けられたS/P変換回路23に伝送する。
 本実施形態においては、前記コネクタ部20の内部に、前記デジタル撮像信号に対して所定の信号処理を施すための回路をFPGA(以下、FPGA21)にて構成する。
 前記FPGA21は、プロセッサ3において生成された前記クロック信号および同期信号HD,VDを受けてCMOSイメージセンサ11に向けて出力する。
 一方、前記FPGA21は、プロセッサ3において生成された前記クロック信号に基づいて各種信号処理のためのパルスを生成するタイミングジェネレータ(TG)22と、CMOSイメージセンサ11から出力された前記シリアル信号のデジタル撮像信号をシリアル/パラレル変換するS/P変換回路23と、S/P変換回路23に接続された先端CDS対応プロセッサ用デジタルフィルタ24(以下、CDS対応デジタルフィルタ24と称す)と、同じくS/P変換回路23に接続されたCMOS対応プロセッサ用デジタルフィルタ25(以下、CMOS対応デジタルフィルタ25と称す)、を具備する。
 ここで、前記CDS対応デジタルフィルタ24は、プロセッサ3における先端CDS向けエンハンス回路33(詳しくは後述する)に係る周波数特性をイコライズする特性を有する逆特性フィルタとして構成される。そして、前記エンハンス回路33を有するプロセッサ3に当該CMOSイメージセンサ11を搭載する内視鏡1が接続された際に有効に働くようになっている。
 一方、前記CMOS対応デジタルフィルタ25は、前記CDS対応デジタルフィルタ24とは異なる特性を有するフィルタとして構成される。そして、前記エンハンス回路33を備えず、かつ、CMOSイメージセンサ11に対応した処理を行うプロセッサ3Aに当該CMOSイメージセンサ11を搭載する内視鏡1が接続された際に有効に働くようになっている。
 図1に戻って、さらに前記FPGA21は、前記CDS対応デジタルフィルタ24と、CMOS対応デジタルフィルタ25との出力信号経路を切り替える信号経路切替部26と、当該信号経路切替部26からの出力信号をパラレル/シリアル変換してプロセッサ3に向けて出力するP/S回路27と、当該内視鏡1に接続さえたプロセッサの種別に応じて前記信号経路切替部26における信号経路を切り替えるプロセッサ検知回路28と、を備える。
 なお、図2に示すように、AFE回路13は、撮像部12からのアナログ撮像信号に対して所定の相関2重サンプリング処理を施すCDS回路16と、この相関2重サンプリング処理が施されたアナログ撮像信号をA/D変換して出力するA/D変換回路17とを備えて構成される。
 次に、内視鏡1が接続され得る前記プロセッサ3およびプロセッサ3Aについて詳しく説明する。
 図3は本実施形態の内視鏡、従来の内視鏡および先端CDS対応プロセッサ(プロセッサ3)との接続関係を示した図である。
 図3に示すように、プロセッサ3は、従来の、内視鏡先端部においてCCDイメージセンサと共にCDS処理を施す回路を備えた内視鏡101に対して接続可能な先端CDS対応プロセッサである。一方でプロセッサ3は、CMOSイメージセンサを採用した内視鏡であっても、上述した本実施形態の如き構成をなす内視鏡1であれば、接続された際に当該プロセッサにおいて適正な画像信号処理を行い得る。
 図5に示すように当該先端CDS対応プロセッサ3は、所定のクロック信号および同期信号HD,VDを生成する前記クロック同期信号生成回路31と、接続された内視鏡から出力されるシリアル信号のデジタル撮像信号をシリアル/パラレル変換するS/P変換回路32と、S/P変換回路32に接続された先端CDS向けエンハンス回路33と、プロセッサ3内の各種回路を制御するCPU34と、を備える。
 ここで、前記先端CDS向けエンハンス回路33は、S/P変換回路32によりシリアル/パラレル変換された当該内視鏡101からの撮像信号に対して高域成分を強調する役目を果たすが、詳細は後述する。
 また、当該プロセッサ3におけるCPU34は、図示しないメモリに格納された当該プロセッサ3固有のID情報(特に、当該プロセッサ3が先端CDS対応プロセッサであるとの情報)を接続された内視鏡1に伝送する役目を果たす。
 一方、本実施形態の内視鏡1における前記プロセッサ検知回路28は、接続されたプロセッサ3における前記CPU34からの情報に基づいて当該接続されたプロセッサが先端CDS対応プロセッサであるか否かを判別するようになっている。
 なお、上述したプロセッサ3としては、当該プロセッサ3固有のID情報(先端CDS対応プロセッサであるとの情報)を内視鏡1に対して送出する機能を有するものを想定し、前記プロセッサ検知回路28は当該ID情報を入手して接続されたプロセッサの種別を判別するものとしたが、プロセッサの判別方法はこれに限られない。
 たとえば、接続されたプロセッサから所定のID情報を受信しないことをもって当該プロセッサ3の種別を判別するようにしてもよい。
 より具体的には、後述するように「CMOS対応プロセッサ」からは自身の固有のID情報、すなわちCMOS対応プロセッサであるとの情報を必ず送出することを前提とし、当該プロセッサ3の如き先端CDS対応プロセッサからはプロセッサ判別用のID情報を何ら送出しない仕様にすれば、ID情報を受信しないことをもって当該プロセッサ3が先端CDS対応プロセッサであるとの判断をすることができる。
 ここで、このCDS処理回路を有する内視鏡101がプロセッサ3に接続された際の一状態例について図8を参照して説明する。
 上述したように、従来、撮像素子からの撮像信号に対して、内視鏡の先端部においてCDS処理(相関2重サンプリング処理)を施し、伝送帯域を落としてから当該撮像信号を伝送する内視鏡が知られている。
 具体的には図8に示すように、当該従来の内視鏡101は、被検体に挿入される挿入部の先端部111に、被検体の光学像を撮像してタイミングジェネレータ113に基づいて所定のアナログ撮像信号を出力するCCDイメージセンサ112を備えると共に、当該アナログ撮像信号に対して相関2重サンプリング処理を施すCDS回路114を備える。
 そして、この相関2重サンプリング処理が施されたアナログ撮像信号は、比較的長距離のケーブル140を経由してコネクタ部120において、A/D変換された後パラレル/シリアル変換されプロセッサ3に向けて出力される。
 一方、このケーブル140における周波数劣化分を補うべく前記プロセッサ3は、クロックおよび同期信号HD,VDを内視鏡101に対して送出すると共に、S/P変換回路32によりシリアル/パラレル変換された当該内視鏡101からの撮像信号に対して高域成分を強調する先端CDS向けエンハンス回路33を備える。
 ここで、この種の内視鏡101においては、上述したように、先端部111に配設された撮像素子(CCDイメージセンサ112)と前記プロセッサ3とを接続するケーブル140は比較的長距離に及ぶこととなる。加えて内視鏡挿入部の細径化を実現するために当該ケーブル140はその径に制約があることから、CCDイメージセンサ112からの信号出力はケーブル140の物理的特性の影響を受けて、信号の高域周波数成分が劣化しやすくなっている(図9参照)。
 係る状況に鑑みて前記先端CDS向けエンハンス回路33は、上述した要因によりケーブル140において劣化した高域周波数成分を強調するよう補正して出力するようになっている(図10参照)。
 一方、本実施形態の内視鏡1は、従来の先端CDS向けエンハンス回路33を備えるプロセッサ3の他に、前記プロセッサ3Aに接続可能である。
 図4は本実施形態の内視鏡、先端CDS対応プロセッサおよびCMOS対応プロセッサとの接続関係を示した図である。
 プロセッサ3Aは、CMOSイメージセンサ11を搭載する内視鏡1が接続されることを想定した信号処理回路を備える。
 ここで、上述したように、周波数特性の観点から言えば、デジタル信号の伝送はアナログ信号の伝送に比べてケーブル自体の物理的特性の影響を受けづらいことから、センサ出力信号をデジタル信号として出力する当該内視鏡1は、比較的長いケーブルでの信号伝送であっても、センサ出力信号をアナログ信号として出力するCCDイメージセンサを採用する内視鏡101に比して、画質に与える信号劣化の影響(特に高域周波数成分の劣化の影響)は小さくなる。
 すなわちプロセッサ3Aは、ケーブル40による高域周波数成分の劣化の影響が小さい撮像信号を入力することを前提とした信号処理回路を備える。
 換言すればプロセッサ3Aは、前記先端CDS向けエンハンス回路33に相当するエンハンス回路を備えない。
 次に、本実施形態の内視鏡1が先端CDS対応のプロセッサ3またはCMOS対応のプロセッサ3Aに接続された際の作用についてそれぞれ説明する。
 図5は、本実施形態の内視鏡が先端CDS対応プロセッサに接続された際の構成を示す図であり、図6は、本実施形態の内視鏡がCMOS対応プロセッサに接続せれた際の構成を示す図である。さらに、図7は、本実施形態の内視鏡におけるデジタルフィルタの選択処理を示したフローチャートである。
 図7示すように、まず内視鏡1におけるプロセッサ検知回路28が所定のプロセッサに接続されたことを検知すると、プロセッサ検知回路28は接続されたプロセッサのCPU34(図5,図6参照)から所定のID情報を入手する(ステップS1)。
 この後、プロセッサ検知回路28は、接続されたプロセッサが、ステップS1で入手したID情報に基づいて、当該内視鏡1が接続されたプロセッサが先端CDS対応のプロセッサ3であるか、またはCMOS対応のプロセッサ3Aであるかを判定する(ステップS2)。
 なお、上述したようにプロセッサ検知回路28は、ID情報を受信しないことをもって当該プロセッサ3が先端CDS対応のプロセッサであるか否かの判別をしてもよい。
 そして、接続されたプロセッサが先端CDS対応のプロセッサ3である場合(すなわち、撮像信号に対して前記先端CDS向けエンハンス回路33が働くプロセッサである場合)は、プロセッサ検知回路28は、ステップS3の処理を行う。
 すなわち、ステップS3においてプロセッサ検知回路28は、前記信号経路切替部26を制御して前記P/S回路27から出力される撮像信号が、前記CDS対応デジタルフィルタ24を経由するように信号経路を切り替える(図5参照)。
 ここで、上述したように、CMOSイメージセンサ11からはデジタル撮像信号が出力されるため、ケーブル40による伝送の過程ではほとんど当該撮像信号に基づく映像の高域周波数成分は劣化しない。したがって、そのままの状態で上述のごときプロセッサ3に入力されると必要以上に映像の高域周波数成分を強調してしまうことになる。
 しかしながら本実施形態では、前記CDS対応デジタルフィルタ24は、前記先端CDS向けエンハンス回路33に係る周波数特性をイコライズする特性を有する逆特性フィルタとして構成される。
 すなわち内視鏡1からの出力される撮像信号の高域周波数成分は一旦減じられており、この撮像信号を入力したプロセッサ3内においては、前記先端CDS向けエンハンス回路33による高域強調作用と相まって結果として適正な周波数特性を得ることができる。
 一方、接続されたプロセッサがCMOS対応のプロセッサ3Aである場合は、プロセッサ検知回路28は、ステップS4の処理を行う。
 すなわち、ステップS4においてプロセッサ検知回路28は、前記信号経路切替部26を制御して前記P/S回路27から出力される撮像信号が、前記CMOS対応デジタルフィルタ25を経由するように信号経路を切り替える(図6参照)。
 なお、前記CMOS対応デジタルフィルタ25の特性は、ケーブル40においてCMOSイメージセンサ11から出力されるデジタル撮像信号に基づく映像の高域周波数成分がほとんど劣化しないことを考慮すると、ほぼフラットな周波数特性を示す回路構成であってもよい。
 以上説明したように本実施形態によると、上述のごとく撮像信号に対して高域周波数成分を強調する信号処理回路を備えるプロセッサに接続された場合であっても、当該プロセッサにおいて適正な画像信号処理を行い得る、CMOSイメージセンサを搭載する内視鏡を提供することができる。
 なお、本実施形態においては、前記FPGA21はコネクタ部20に配設するものとしたが、これに限らず、内視鏡1における操作部等に配設されてもよい。
 また、本実施形態においては、内視鏡1の撮像素子としてCMOSイメージセンサを想定したが、CMOSイメージセンサに限らず、本願発明は、挿入部先端部においてデジタルの撮像信号を生成し上述のごときケーブル40を介して後方回路部に向けて当該デジタル撮像信号を送出することができる撮像素子を搭載した内視鏡に適用することができる。
 次に本発明の第2の実施形態について説明する。
 図11は、本発明の第2の実施形態の内視鏡が先端CDS対応プロセッサに接続された際の構成を示す図であり、図12は、第2の実施形態の内視鏡がCMOS対応プロセッサに接続された際の構成を示す図である。また、図13は、第2の実施形態の内視鏡におけるデジタルフィルタ処理の作用を示したフローチャートである。
 本第2の実施形態の内視鏡システムは、その基本的な構成は第1の実施形態と同様であり、前記コネクタ部20におけるFPGA21内の一部の構成のみを異にするものである。したがって、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。
 上述した第1の実施形態においては、前記FPGA21は、内視鏡1に接続されたプロセッサの種別に応じて信号経路切替部26における信号経路を切り替えるプロセッサ検知回路28を備えるが(図1参照)、第2の実施形態においては、図11、図12に示すように、当該プロセッサ検知回路28に代えて、信号経路切替部26における信号経路を切り替える切替指示信号を送出する切替指示部28aを備えることを特徴とする。
 この切替指示部28aは、図示しない操作等(例えば、ユーザーによる設定)により前記切替指示信号を信号経路切替部26に送出する。この切替指示信号は、前記デジタル撮像信号が前記先端CDS対応プロセッサ用デジタルフィルタ24(逆特性フィルタ)を通過する第1の信号経路と、前記CMOS対応プロセッサ用デジタルフィルタ25を通過する第2の信号経路(すなわち、前記デジタル撮像信号が前記逆特性フィルタを通過しない信号経路)とを切り替えるための指示信号である。
 また、本第2の実施形態において信号経路切替部26は、切替指示部28aからの切替指示信号に応じて、前記第1の信号経路を前記第2の信号経路とを切り替えるようになっている。
 このように本第2の実施形態においては、内視鏡1に接続されるプロセッサの種別(先端CDS対応プロセッサ3B(図11参照)またはCMOS対応プロセッサ3C(図12参照))を内視鏡1においては検知することなく、上述した信号経路の切替を行うことができる。
 次に、本実施形態の内視鏡1が先端CDS対応プロセッサまたはCMOS対応プロセッサに接続された際の作用についてそれぞれ説明する。
 図13に示すように、内視鏡1における切替指示部28aから前記切替指示信号が送出されると(ステップS11)、当該切替指示部28aにおける切替指示が先端CDS対応のプロセッサ3Bであるか、またはCMOS対応のプロセッサ3Cであるかに基づいて(ステップS12)、信号経路切替部26は前記第1の信号経路と前記第2の信号経路とを切り替える。
 すなわち、前記切替指示信号が先端CDS対応プロセッサ3Bを示す場合(すなわち、撮像信号に対して前記先端CDS向けエンハンス回路33が働くプロセッサを示す場合)は、前記先端CDS対応プロセッサ用デジタルフィルタ24(逆特性フィルタ)を通過する第1の信号経路を選択する(ステップS13)。
 一方、前記切替指示信号がCMOS対応のプロセッサ3Cを示す場合は、CMOS対応プロセッサ用デジタルフィルタ25を通過する第2の信号経路を選択する(ステップS14)。
 なお、第1の実施形態と同様に、前記CMOS対応プロセッサ用デジタルフィルタ25の特性は、ケーブル40においてCMOSイメージセンサ11から出力されるデジタル撮像信号に基づく映像の高域周波数成分がほとんど劣化しないことを考慮すると、ほぼフラットな周波数特性を示す回路構成であってもよい。
 以上説明したように本実施形態によると、接続されるプロセッサの種別検知をすることなく、撮像信号に対して高域周波数成分を強調する信号処理回路を備えるプロセッサに接続された場合であっても、当該プロセッサにおいて適正な画像信号処理を行い得る、CMOSイメージセンサを搭載する内視鏡を提供することができる。
 なお、本発明は、上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明の態様を形成することができる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに異なる実施形態にわたる構成要素を適宜組み合わせても良い。
 このように、発明の趣旨を逸脱しない範囲内において種々の変更または応用が可能であることは勿論である。
 本出願は、2014年12月4日に日本国に出願された特願2014-246136号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (4)

  1.  高域成分が減衰した撮像信号の高域成分を強調補正するための高域成分強調回路を設けた第1のプロセッサに接続可能な内視鏡であって、
     被検体に挿入される挿入部と、
     前記挿入部の先端に設けられ、前記被検体の光学像を撮像してアナログ撮像信号を生成する撮像部と、当該アナログ撮像信号をデジタル撮像信号に変換して出力するA/D変換部とを備える撮像素子と、
     一端が前記撮像素子に接続され、前記デジタル撮像信号を他端側に伝送するためのケーブルと、
     前記ケーブルの他端に設けられ、前記高域成分強調回路に係る周波数特性を平準化するための周波数特性を有する逆特性フィルタと、
     を具備することを特徴とする内視鏡。
  2.  さらに、前記高域成分強調回路が設けられていない、前記第1のプロセッサとは異なる第2のプロセッサに接続可能であって、
     前記内視鏡が、前記第1のプロセッサに接続されているか、または、前記第2のプロセッサに接続されているかを識別可能な識別部と、
     前記識別部の識別結果に応じて、前記デジタル撮像信号が前記逆特性フィルタを通過する信号経路と、前記デジタル撮像信号が前記逆特性フィルタを通過しない信号経路とを切り替える信号経路切替部と、
     を具備することを特徴とする請求項1に記載の内視鏡。
  3.  前記信号経路切替部は、前記識別部の識別結果により前記内視鏡が前記第1のプロセッサに接続されている場合には、前記デジタル撮像信号が前記逆特性フィルタを通過するように前記信号経路を切り替え、一方、前記内視鏡が前記第2のプロセッサに接続されている場合には、前記デジタル撮像信号が前記逆特性フィルタを通過しないように前記信号経路を切り替える
     ことを特徴とする請求項2に記載の内視鏡。
  4.  さらに、前記高域成分強調回路が設けられていない、前記第1のプロセッサとは異なる第2のプロセッサに接続可能であって、
     前記デジタル撮像信号が前記逆特性フィルタを通過する第1の信号経路と、前記デジタル撮像信号が前記逆特性フィルタを通過しない第2の信号経路とを切り替えるための切替指示信号を出力する切替指示部と、
     前記切替指示部からの前記切替指示信号に応じて、前記第1の信号経路と前記第2の信号経路とを切り替える信号経路切替部と、
     を具備することを特徴とする請求項1に記載の内視鏡。
PCT/JP2015/075518 2014-12-04 2015-09-08 内視鏡 WO2016088421A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016506918A JP6013647B1 (ja) 2014-12-04 2015-09-08 内視鏡
EP15865593.6A EP3138467A4 (en) 2014-12-04 2015-09-08 Endoscope
CN201580032301.5A CN106572789B (zh) 2014-12-04 2015-09-08 内窥镜
US15/371,676 US9876974B2 (en) 2014-12-04 2016-12-07 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246136 2014-12-04
JP2014246136 2014-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/371,676 Continuation US9876974B2 (en) 2014-12-04 2016-12-07 Endoscope

Publications (1)

Publication Number Publication Date
WO2016088421A1 true WO2016088421A1 (ja) 2016-06-09

Family

ID=56091379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075518 WO2016088421A1 (ja) 2014-12-04 2015-09-08 内視鏡

Country Status (5)

Country Link
US (1) US9876974B2 (ja)
EP (1) EP3138467A4 (ja)
JP (1) JP6013647B1 (ja)
CN (1) CN106572789B (ja)
WO (1) WO2016088421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12036062B2 (en) 2021-04-08 2024-07-16 Canon Medical Systems Corporation Near field communication system, X-ray CT apparatus, and near field communication controlling method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246655B2 (ja) * 2014-05-08 2017-12-13 株式会社フジクラ 撮像システム
WO2017122511A1 (ja) * 2016-01-12 2017-07-20 オリンパス株式会社 内視鏡装置および内視鏡システム
JP7536472B2 (ja) * 2020-03-03 2024-08-20 Hoya株式会社 内視鏡システム
CN114305289A (zh) * 2020-09-28 2022-04-12 微创优通医疗科技(嘉兴)有限公司 内窥镜手柄、内窥镜和内窥镜系统
CN114305295A (zh) * 2020-09-28 2022-04-12 微创优通医疗科技(嘉兴)有限公司 内窥镜及内窥镜系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028709A (ja) * 1999-07-12 2001-01-30 Fuji Photo Optical Co Ltd 電子内視鏡装置
WO2012017735A1 (ja) * 2010-08-02 2012-02-09 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP2013094269A (ja) * 2011-10-28 2013-05-20 Fujifilm Corp 内視鏡装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788981A (en) * 1986-10-16 1988-12-06 Olympus Optical Co., Ltd. Pulse compression apparatus for ultrasonic image processing
JP2000005127A (ja) * 1998-01-23 2000-01-11 Olympus Optical Co Ltd 内視鏡システム
US6383183B1 (en) * 1998-04-09 2002-05-07 Olympus Optical Co., Ltd. High frequency treatment apparatus
JP3791777B2 (ja) * 2001-12-28 2006-06-28 オリンパス株式会社 電子内視鏡
US6929643B2 (en) * 2002-04-15 2005-08-16 Olympus Corporation Resectoscope apparatus and electric operation apparatus
KR100871097B1 (ko) * 2007-01-08 2008-11-28 김태근 결맞음 주파수영역 반사파 계측법에 기초한 광영상 시스템
CN103124515B (zh) * 2010-09-30 2015-11-25 奥林巴斯株式会社 摄像装置
JP2012115531A (ja) 2010-12-02 2012-06-21 Hoya Corp 電子内視鏡及び電子内視鏡システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028709A (ja) * 1999-07-12 2001-01-30 Fuji Photo Optical Co Ltd 電子内視鏡装置
WO2012017735A1 (ja) * 2010-08-02 2012-02-09 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP2013094269A (ja) * 2011-10-28 2013-05-20 Fujifilm Corp 内視鏡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3138467A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12036062B2 (en) 2021-04-08 2024-07-16 Canon Medical Systems Corporation Near field communication system, X-ray CT apparatus, and near field communication controlling method

Also Published As

Publication number Publication date
US9876974B2 (en) 2018-01-23
CN106572789A (zh) 2017-04-19
JP6013647B1 (ja) 2016-10-25
EP3138467A4 (en) 2018-09-05
CN106572789B (zh) 2018-05-18
JPWO2016088421A1 (ja) 2017-04-27
EP3138467A1 (en) 2017-03-08
US20170085825A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6013647B1 (ja) 内視鏡
US8982202B2 (en) Image pickup system
US10523911B2 (en) Image pickup system
US20090216080A1 (en) Electronic communication system and endoscope system
JP5458223B1 (ja) 撮像装置
US10716459B2 (en) Endoscope system and endoscope
JP2011206335A (ja) 内視鏡装置におけるcmos撮像素子のリセット方法
US20160309983A1 (en) Endoscope system
JP6087037B1 (ja) 画像データ伝送システム
JP2008183119A (ja) ヘッド分離型カメラおよびカメラヘッド
US8040374B2 (en) Head separated camera apparatus
JP5356630B1 (ja) 撮像システム
US9247863B2 (en) Endoscope apparatus which controls clamping of optical black included in an image pickup signal
JP2011206337A (ja) 内視鏡システム及びその制御方法
JP6602713B2 (ja) 内視鏡装置
JP2011235021A (ja) 電子内視鏡システム
JP5791952B2 (ja) 電子内視鏡装置
JP4676027B2 (ja) ヘッド分離型カメラ装置及びデジタルビデオ信号送信方法
WO2016103878A1 (ja) 内視鏡
JP5927371B1 (ja) 内視鏡
WO2016088422A1 (ja) 内視鏡
JP5992195B2 (ja) 内視鏡装置
JP2009279213A (ja) プロセッサおよび内視鏡システム
WO2013008666A1 (ja) 撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016506918

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865593

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015865593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015865593

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE