WO2016084492A1 - 13族元素窒化物結晶の製造方法および装置 - Google Patents
13族元素窒化物結晶の製造方法および装置 Download PDFInfo
- Publication number
- WO2016084492A1 WO2016084492A1 PCT/JP2015/078526 JP2015078526W WO2016084492A1 WO 2016084492 A1 WO2016084492 A1 WO 2016084492A1 JP 2015078526 W JP2015078526 W JP 2015078526W WO 2016084492 A1 WO2016084492 A1 WO 2016084492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- growth
- central
- vessel
- heating
- crystal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/06—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/10—Metal solvents
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/12—Salt solvents, e.g. flux growth
Definitions
- the present invention relates to a method and an apparatus for producing a group 13 element nitride crystal.
- the flux method is one of the liquid phase methods.
- gallium nitride by using metallic sodium as a flux, the temperature required for crystal growth of gallium nitride can be relaxed to about 800 ° C. and the pressure can be reduced to several MPa.
- nitrogen gas is dissolved in a mixed melt of metallic sodium and metallic gallium, and gallium nitride becomes supersaturated and grows as crystals.
- dislocations are less likely to occur than in a gas phase method, so that high-quality gallium nitride having a low dislocation density can be obtained (Patent Document 1 (Japanese Patent Laid-Open No. 2009-012986)).
- Patent Document 2 Patent No. 56075478 a crystal growth apparatus suitable for mass production of group 13 element nitrides by the flux method.
- a nitrogen gas pipe was connected to the pressure vessel, a heating space was provided inside the pressure vessel, a turntable was placed in the heating space, and a reaction vessel was placed on the turntable.
- the nitrogen gas introduction part which is not connected with the nitrogen gas piping provided in the pressure vessel was provided in the reaction vessel, and the crystal quality was improved by rotating the reaction vessel during crystal growth.
- Patent Document 2 The inventor carried out the invention described in Patent Document 2 and further studied, and found the following problems. That is, it was found that when a growth vessel was placed in a reaction vessel and crystal growth was performed, the growth rate of crystals grown on the outer peripheral side of the growth vessel was relatively high, and inclusions were generated in the crystal. Inclusion is a heterogeneous phase that occurs in the crystal due to the melt component.
- the quality of crystals grown on the center side of the growth vessel deteriorated and dislocations increased. Moreover, many miscellaneous crystals may adhere to the crystal grown on the center side of the growth vessel.
- An object of the present invention is to house a growth container in an inner container, supply a nitrogen-containing gas while generating a melt in the growth container, and grow a group 13 element nitride while rotating the inner container. It is to be able to suppress the difference in crystal quality between the central part and the outer peripheral part of the growth container.
- the present invention provides a pressure vessel, A plurality of supports provided inside the pressure vessel, An inner container placed on each of the support bases, Growth containers accommodated in the respective inner containers, A crystal growth apparatus comprising a heating means for heating the growth vessel, and a central rotation shaft connected to the plurality of support bases, wherein the central rotation shaft and each central axis of each reaction vessel are separated from each other There, A seed crystal, a group 13 element material and a flux are accommodated in the growth vessel, and a nitrogen-containing gas is supplied to the melt while heating the growth vessel to generate a melt, thereby growing a group 13 element nitride crystal.
- the said center rotating shaft is rotated, It is characterized by the above-mentioned.
- Patent Document 2 The present inventor studied Patent Document 2 and obtained the following knowledge. That is, in this apparatus, the growing container is accommodated in the inner container, and the crystal is grown while rotating the inner container. However, in this apparatus, the center axis and the rotation axis of the inner container and the growth container therein are approximately coincident. For this reason, among the melts in the growth container, the peripheral speed is faster toward the outer peripheral side and the flow of flux is faster, so that the growth rate of crystals located on the outer peripheral side of the growth container is higher and inclusion is likely to occur. On the other hand, since the stagnation of the flow occurs in the vicinity of the rotation center in the melt in the growth vessel, the quality of the crystals located near the rotation center is deteriorated.
- the present inventor supports the inner container that accommodates the growth container by the support base, and rotates the common central rotation shaft to revolve the plurality of support bases and the inner container thereon.
- the idea was to stir the melt in the growth vessel. As a result, the flow of the melt in the growth vessel is made uniform, the crystal growth rate is made uniform between the outer peripheral side and the center of the growth vessel, and the melt flow is less likely to stagnate.
- FIG. 1 is a schematic diagram of a crystal growth apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating a growth container, an inner container, a support base, and a rotation mechanism.
- FIG. 3 is a schematic diagram showing a positional relationship among a pressure vessel, a heating vessel, an inner vessel, a central rotation axis, and a rotation axis when two inner vessels are provided.
- FIG. 4 is a schematic diagram showing a positional relationship among a pressure vessel, a heating vessel, an inner vessel, a central rotation shaft, and a rotation shaft when three inner vessels are provided.
- the heating vessel 7 is accommodated in the internal space G of the pressure vessel 9 as shown in FIG.
- the pressure vessel 9 is formed in a cylindrical shape whose upper and lower surfaces are discs, for example.
- the heating container 7 includes a heat insulating material 7b, a cover 7c that covers the outer surface of the heat insulating material, and a cover 7a that covers the inner side of the heat insulating material.
- heaters 24 are arranged in a plurality of stages, for example, three stages, so that the temperature distribution in the internal space F of the heating container 7 can be controlled.
- the pressure vessel 9 is connected to a nitrogen gas pipe 20 of a nitrogen gas cylinder 21 and to a vacuum drawing pipe 11 of a vacuum pump 12.
- the nitrogen gas pipe 20 passes through the pressure vessel 9 and the heating vessel 7 and opens into the internal space F of the heating vessel.
- the nitrogen gas pipe 20 is branched in the middle and is also opened in a space G between the pressure vessel 9 and the heating vessel.
- nitrogen gas is supplied to both the outer space and the inner space of the heating container in order to prevent a large pressure difference between the inside and the outside of the heating container.
- a mass flow controller 19 capable of adjusting the flow rate is attached to a branch pipe communicating with the internal space F of the heating container 9 in the nitrogen gas pipe 20.
- the evacuation pipe 11 passes through the pressure vessel 9 and opens in a gap between the pressure vessel 9 and the heating vessel 7.
- the growth containers 2 are accommodated in the two inner containers 1A and 1B, respectively.
- Each growth container 2 includes a main body 2b and a lid 2a. At the time of crystal growth, a melt 3 is generated in the growth vessel 2, and a seed crystal 4 is immersed therein.
- the inner containers 1A and 1B are provided with a nitrogen-containing gas introduction part 5. Further, a cradle 10 is provided under the inner container, and the cradle 10 is supported by the support portion 13 and the rotation shaft 14, respectively.
- the rotation shaft 14 is rotatably attached as indicated by arrows A and B by a support structure 15. Further, as shown in FIG. 1, each rotation shaft 14 penetrates the heating container 7, and the support structure 15 is provided between the heating container and the pressure-resistant container 9.
- each support stand 13 can be driven like the arrow D.
- the material of the melt 3 includes a group 13 element raw material, a flux, and additives and trace substances as necessary.
- the group 13 element is a group 13 element according to the periodic table established by IUPAC.
- the group 13 element is specifically gallium, aluminum, indium, thallium, or the like.
- This group 13 element nitride is particularly preferably gallium nitride, aluminum nitride, or gallium aluminum nitride.
- the additive include carbon, low melting point metals (tin, bismuth, silver, gold) and high melting point metals (transition metals such as iron, manganese, titanium, and chromium).
- the seed crystal may be a free-standing substrate made of a seed crystal, or may be a seed crystal film provided on a support substrate.
- the material of the single crystal constituting the support substrate is not limited, but sapphire, AlN template, GaN template, GaN free-standing substrate, silicon single crystal, SiC single crystal, MgO single Examples thereof include crystals, spinel (MgAl 2 O 4 ), LiAlO 2 , LiGaO 2 , LaAlO 3 , LaGaO 3 , NdGaO 3 and other perovskite complex oxides, SCAM (ScAlMgO 4 ).
- cubic perovskite structure composite oxides (1) and (2) can be used.
- the seed crystal production method is not particularly limited, but metal organic chemical vapor deposition (MOCVD) method, metal vapor, chemical vapor deposition (HVPE) method, pulsed deposition (PXD) method, MBE method, sublimation method, etc.
- MOCVD metal organic chemical vapor deposition
- HVPE metal vapor
- PVPE chemical vapor deposition
- PXD pulsed deposition
- MBE sublimation method
- sublimation method etc.
- liquid phase method such as the gas phase method and the flux method.
- the group 13 element nitride can be grown by a flux method.
- the type of the flux is not particularly limited as long as the group 13 element nitride can be generated.
- a flux containing at least one of an alkali metal and an alkaline earth metal is used, and a flux containing sodium metal is particularly preferred.
- group 13 element raw material single metals, alloys, and compounds can be applied, but single metals of group 13 elements are also preferable in terms of handling.
- the ratio (mol ratio) of the group 13 element / flux (for example, sodium) in the melt is preferably increased, preferably 13 mol% or more, and more preferably 18 mol% or more.
- this ratio becomes too large, the crystal quality tends to deteriorate, so 40 mol% or less is preferable.
- each growth container is stored in the inner container, and each inner container is placed on each support base 13. Then, after the vacuum pump 12 is driven and the inside of the pressure vessel 9 is evacuated, a nitrogen-containing gas is supplied from the nitrogen-containing gas cylinder 21 into the pressure vessel 9 and the heating vessel 7 through the pipe 20, and is pressurized. And Then, the heating space F is heated to a predetermined temperature under a pressurized atmosphere, and a melt is generated.
- the nitrogen-containing gas is discharged from the discharge port 22 of the pipe 20 into the internal space of the heating container, and then is taken into the inner container from the introduction unit 5 attached to the inner container, and is supplied into each growth container.
- the central rotating shaft 16 is rotated as indicated by an arrow D as shown in FIGS.
- the support structure 15 rotates in accordance with the rotation of the central rotation shaft 16, and each support base 1 ⁇ / b> A, 1 ⁇ / b> B rotates around the central rotation shaft 16 as indicated by an arrow D.
- the inner containers revolve around the central rotating shaft. As a result, the flow of the melt is made uniform in the growth container in each inner container.
- each rotation shaft 14 is rotated as indicated by arrows A and B.
- each support base 13 and the inner containers 1A and 1B thereon also rotate as indicated by arrows A and B, respectively.
- stirring of the melt in each growth container is further promoted, and growth of nitride crystals is promoted.
- each inner container 1A, 1B, and 1C are installed on the support base 14.
- the central rotating shaft 16 is rotated as indicated by an arrow D.
- the support structure 15 rotates in accordance with the rotation of the central rotation shaft 16, and the support bases 1 ⁇ / b> A, 1 ⁇ / b> B, 1 ⁇ / b> C revolve around the central rotation shaft 16 as indicated by an arrow D.
- shaft of each inner side container 1A, 1B, 1C and the center rotating shaft 16 are separated, each inner container revolves around the center rotating axis. As a result, the flow of the melt is made uniform in the growth container in each inner container.
- each rotation shaft 14 is rotated as indicated by arrows A, B, and C.
- each support base 13 and the inner containers 1A, 1B, and 1C thereon also rotate as indicated by arrows A, B, and C, respectively.
- stirring of the melt in each growth container is further promoted, and growth of nitride crystals is promoted.
- the central rotation shaft and the respective rotation shafts can be independently and separately controlled. Further, the central rotation shaft and each rotation shaft can be rotated as follows. (1) Rotate at a constant speed. (2) Change the rotation speed. (3) Reverse the direction of rotation. (4) Restart after stopping rotation. Intermittently rotates. (5) Combine (1) to (4) above.
- the number of support bases provided inside the pressure vessel is not limited, but is preferably 2 or more.
- the upper limit of the number of support tables is not particularly limited, but is preferably 8 or less.
- a central rotating shaft 16 connected to a plurality of support bases is provided, and the central rotating shaft 16 and each central axis CA, CB, CC of each reaction vessel are separated.
- the distance between the central rotation axis and each central axis of each reaction vessel is preferably 30 mm or more.
- the intervals between the central rotation axis and the central axes of the reaction vessels are close to each other from the viewpoint of uniform crystal growth in each melt. From this viewpoint, it is preferable that the difference between the maximum value and the minimum value of each interval between the central rotation axis and each central axis of each reaction vessel is 20 mm or less. Particularly preferably, the intervals between the central rotation axis and the central axes of the reaction vessels are equal to each other.
- the central axis of the plurality of reaction vessels is provided at a point-symmetrical position when viewed from the central rotation axis.
- a heating container 7 to which a heating means 24 is attached is provided.
- the heating vessel 7 is provided inside the pressure vessel 9 and accommodates a plurality of reaction vessels.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
結晶育成装置は、耐圧容器、耐圧容器の内側に設けられた複数の支持台、各支持台上にそれぞれ載置されている内側容器、各内側容器中にそれぞれ収容された育成容器、育成容器を加熱する加熱手段、および複数の支持台に連結されている中央回転軸を備えている。中央回転軸と各反応容器の各中心軸とが離れている。育成容器中に種結晶、13族元素原料およびフラックスを収容し、育成容器を加熱して融液を生成させつつ窒素含有ガスを融液に供給して13族元素窒化物結晶を成長させる際に、中央回転軸を回転させる。
Description
本発明は、13族元素窒化物結晶の製造方法および装置に関するものである。
フラックス法は、液相法の一つである。窒化ガリウムの場合、フラックスとして金属ナトリウムを用いることで、窒化ガリウムの結晶成長に必要な温度を800℃程度、圧力を数MPaに緩和することができる。具体的には、金属ナトリウムと金属ガリウムとの混合融液中に窒素ガスが溶解し、窒化ガリウムが過飽和状態になって結晶として成長する。こうした液相法では、気相法に比べて転位が発生しにくいため、転位密度の低い高品質な窒化ガリウムを得ることができる(特許文献1(特開2009-012986))。
本出願人は、特許文献2(特許第5607548号)において、フラックス法による13族元素窒化物の量産に適した結晶育成装置を開示した。本装置においては、耐圧容器に窒素ガス配管を接続し、耐圧容器の内部に加熱空間を設け、その加熱空間内に回転台を配置し、回転台上に反応容器を設置した。そして、耐圧容器に設けた窒素ガス配管と連結されていない窒素ガス導入部を反応容器に設け、結晶成長時に反応容器を回転させることで、結晶品質の改善を実現した。
本発明者は、特許文献2記載の発明を実施し、更に検討したところ、以下の問題点を見いだした。すなわち、反応容器内に育成容器を入れて結晶育成を行うと、育成容器のうち外周側に成長した結晶の成長速度が相対的に速く、結晶中にインクルージョンが発生することがわかった。インクルージョンとは、融液成分に由来して結晶中に生ずる異相である。
一方、育成容器のうち中央部側に成長した結晶の品質が低下し、転位が多くなることがあった。また、育成容器のうち中央部側に成長した結晶に対して雑結晶が多く付着することがあった。
本発明の課題は、内側容器内に育成容器を収容し、育成容器中に融液を生成させながら窒素含有ガスを供給し、内側容器を回転させながら13族元素窒化物を成長させるのに際して、育成容器の中央部と外周部とにおける結晶品質の相違を抑制できるようにすることである。
本発明は、耐圧容器、
この耐圧容器の内側に設けられた複数の支持台、
前記各支持台上にそれぞれ載置されている内側容器、
前記各内側容器中にそれぞれ収容された育成容器、
前記育成容器を加熱する加熱手段、および
複数の前記支持台に連結されている中央回転軸を備えており、前記中央回転軸と前記各反応容器の各中心軸とが離れている結晶育成装置であって、
前記育成容器中に種結晶、13族元素原料およびフラックスを収容し、前記育成容器を加熱して融液を生成させつつ窒素含有ガスを前記融液に供給して13族元素窒化物結晶を成長させる際に、前記中央回転軸を回転させることを特徴とする。
この耐圧容器の内側に設けられた複数の支持台、
前記各支持台上にそれぞれ載置されている内側容器、
前記各内側容器中にそれぞれ収容された育成容器、
前記育成容器を加熱する加熱手段、および
複数の前記支持台に連結されている中央回転軸を備えており、前記中央回転軸と前記各反応容器の各中心軸とが離れている結晶育成装置であって、
前記育成容器中に種結晶、13族元素原料およびフラックスを収容し、前記育成容器を加熱して融液を生成させつつ窒素含有ガスを前記融液に供給して13族元素窒化物結晶を成長させる際に、前記中央回転軸を回転させることを特徴とする。
本発明者は、特許文献2を検討し、以下の知見をえた。すなわち、この装置では、内側容器中に育成容器を収容し、内側容器を回転させながら結晶を育成する。しかし、この装置では、内側容器およびその中の育成容器の中心軸と回転軸が凡そ一致している。このため、育成容器中の融液のうち、外周側ほど周速が速く、フラックスの流れが速いため、育成容器の外周側に位置する結晶の成長速度が速く、インクルージョンが発生し易い。一方、育成容器中の融液のうち回転中心付近に流れの淀みが発生してしまうため、回転中心付近に位置する結晶の品質が低下してしまう。更に、回転中心付近において融液の流れの淀みが発生してしまうため、回転中心付近に自発核生成による雑結晶が発生し易い。更に、ドーパントなどの添加物を添加した場合、遠心力の影響で、フラックスより比重が重いものは反応容器の外側に移動し、フラックスより比重が軽いものは反応容器の中心付近に移動してしまう。
ここで、本発明者は、育成容器を収容する内側容器をそれぞれ支持台によって支持し、共通の中央回転軸を回転させることで、複数の支持台とその上の内側容器を公転させることによって、育成容器中の融液を攪拌することを想到した。この結果、育成容器中の融液の流れが均一化され、育成容器の外周側と中央部とで結晶の成長速度が均一化され、融液の流れの淀みが発生しにくい。
本発明の実施形態に係る結晶育成装置においては、図1に示すように、耐圧容器9の内部空間Gに加熱容器7を収容している。耐圧容器9は、例えば上下面が円板である円筒形状に形成されている。加熱容器7は、断熱材7bと、断熱材の外側面を被覆するカバー7cと、断熱材の内側を被覆するカバー7aとを備えている。加熱容器7の側壁には、ヒータ24が複数段、例えば三段配列されており、加熱容器7の内部空間Fの温度分布を制御可能となっている。
また、耐圧容器9には、窒素ガスボンベ21の窒素ガス配管20が接続されると共に、真空ポンプ12の真空引き配管11が接続されている。窒素ガス配管20は、耐圧容器9および加熱容器7を貫通し、加熱容器の内部空間Fに開口している。この窒素ガス配管20は、途中で分岐して耐圧容器9と加熱容器との間の空間Gにも開口している。加熱容器7は、完全に密閉されているわけではないが、加熱容器の内外で大きな圧力差が生じないようにするために、窒素ガスを加熱容器の外側空間と内側空間との両方に供給する。窒素ガス配管20のうち、加熱容器9の内部空間Fに通じている分岐管には、流量を調節可能なマスフローコントローラ19が取り付けられている。
真空引き配管11は、耐圧容器9を貫通し、耐圧容器9と加熱容器7との隙間に開口している。
図2に主として示すように、例えば二つの内側容器1A、1B内に、それぞれ、育成容器2が収容されている。各内側容器内に収容された育成容器の個数には限定はないが、複数個の育成容器を収容することが生産性の点から好ましい。各育成容器2は、本体2bと蓋2aとからなる。結晶育成時には育成容器2内に融液3が生成し、その中に種結晶4が浸漬されている。
内側容器1A、1Bには、窒素含有ガスの導入部5が設けられている。また、内側容器の下に受け台10を設け、受け台10をそれぞれ支持部13、自転軸14によって支持する。自転軸14は、支持構造15によって矢印A、Bのように回転可能に取り付けられている。また、各自転軸14は、図1に示すように、加熱容器7を貫通しており、支持構造15は加熱容器と耐圧容器9との間に設けられている。
また、支持構造15の全体が中央回転軸16に取り付けられている。中央回転軸には、内部磁石17が取り付けられている。そして、内部磁石17の外側に駆動磁石18が取り付けられており、各支持台13を矢印Dのように駆動可能となっている。
結晶育成時には、各育成容器内に、種結晶4と融液3の材料とを収容する。融液3の材料は、13族元素原料、フラックスおよび必要に応じて添加物や微量物質を含む。
13族元素とは、IUPACが策定した周期律表による第13族元素のことである。13族元素は、具体的にはガリウム、アルミニウム、インジウム、タリウム等である。この13族元素窒化物は、特に好ましくは、窒化ガリウム、窒化アルミニウム、窒化ガリウムアルミニウムである。また、添加剤としては、炭素や、低融点金属(錫、ビスマス、銀、金)、高融点金属(鉄、マンガン、チタン、クロムなどの遷移金属)が挙げられる。
種結晶は、種結晶からなる自立基板であってよく、また支持基板上に設けられた種結晶膜であってよい。
支持基板上に種結晶膜を形成する場合には、支持基板を構成する単結晶の材質は限定されないが、サファイア、AlNテンプレート、GaNテンプレート、GaN自立基板、シリコン単結晶、SiC単結晶、MgO単結晶、スピネル(MgAl2O4)、LiAlO2、LiGaO2、LaAlO3,LaGaO3,NdGaO3等のペロブスカイト型複合酸化物、SCAM(ScAlMgO4)を例示できる。また組成式〔A1-y(Sr1-xBax)y〕〔(Al1-zGaz)1-u・Du〕O3(Aは、希土類元素である;Dは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である;y=0.3~0.98;x=0~1;z=0~1;u=0.15~0.49;x+z=0.1~2)の立方晶系のペロブスカイト構造複合酸化物も使用できる。
種結晶の製法は特に限定されないが、有機金属化学気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、MBE法、昇華法などの気相法、フラックス法などの液相法を例示できる。
好適な実施形態においては、13族元素窒化物をフラックス法によって育成できる。この際、フラックスの種類は、13族元素窒化物を生成可能である限り、特に限定されない。好適な実施形態においては、アルカリ金属とアルカリ土類金属の少なくとも一方を含むフラックスを使用し、ナトリウム金属を含むフラックスが特に好ましい。
13族元素の原料物質としては、単体金属、合金、化合物を適用できるが、13族元素の単体金属が取扱いの上からも好適である。
融液における13族元素/フラックス(例えばナトリウム)の比率(mol比率)は、本発明の観点からは、高くすることが好ましく、13mol%以上が好ましく、18mol%以上が更に好ましい。ただし、この割合が大きくなり過ぎると結晶品質が落ちる傾向があるので、40mol%以下が好ましい。
育成容器中に融液原料を収容した後、各育成容器を内側容器に収容し、各内側容器を各支持台13上に載置する。そして、真空ポンプ12を駆動して耐圧容器9内を真空状態にしたあと、窒素含有ガスボンベ21から配管20を介して耐圧容器9内および加熱容器7内に窒素含有ガスを供給し、加圧状態とする。そして、加圧雰囲気下、加熱空間Fを所定温度に加熱した状態とし、融液を生成させる。窒素含有ガスは、配管20の排出口22から加熱容器の内部空間に放出された後、内側容器に取り付けられた導入部5から内側容器中にとりこまれ、各育成容器内に供給される。
本例では、少なくとも結晶育成時において、図1、図3に示すように、中央回転軸16を矢印Dのように回転させる。この結果、支持構造15が中央回転軸16の回転に従って回転し、各支持台1A、1Bが矢印Dのように中央回転軸16の周りを回転する。ここで、各内側容器1A、1Bの中心軸CA、CBと中央回転軸16とは離れているので、各内側容器は中央回転軸の周りを公転することになる。この結果、各内側容器内の育成容器中で融液の流れが均一化される。
また、本実施形態では、各自転軸14を矢印A、Bのように回転させる。この結果、各支持台13およびその上の内側容器1A、1Bもそれぞれ矢印A、Bのように回転する。こうした各内側容器の自転を更に加えることによって、各育成容器中の融液の攪拌が一層促進され、窒化物結晶の育成が促進される。
また、図4の例では、支持台14を三つ設け、支持台14上に各内側容器1A、1B、1Cを設置する。そして、少なくとも結晶育成時において、中央回転軸16を矢印Dのように回転させる。この結果、支持構造15が中央回転軸16の回転に従って回転し、各支持台1A、1B、1Cが矢印Dのように中央回転軸16の周りを公転する。ここで、各内側容器1A、1B、1Cの中心軸と中央回転軸16とは離れているので、各内側容器は中央回転軸の周りを公転することになる。この結果、各内側容器内の育成容器中で融液の流れが均一化される。
また、本実施形態では、各自転軸14を矢印A、B、Cのように回転させる。この結果、各支持台13およびその上の内側容器1A、1B、1Cもそれぞれ矢印A、B、Cのように自転する。こうした各内側容器の自転を更に加えることによって、各育成容器中の融液の攪拌が一層促進され、窒化物結晶の育成が促進される。
本発明では、中央回転軸と各自転軸とは、それぞれ独立して別個に制御することができる。また、中央回転軸および各自転軸は、それぞれ、次のように回転させることが可能である。
(1) 一定速度で回転させる。
(2) 回転速度を変化させる。
(3) 回転方向を逆転させる。
(4) 回転を停止した後、再開する。間欠的に回転動作を行う。
(5) 上の(1)~(4)を組み合わせる。
(1) 一定速度で回転させる。
(2) 回転速度を変化させる。
(3) 回転方向を逆転させる。
(4) 回転を停止した後、再開する。間欠的に回転動作を行う。
(5) 上の(1)~(4)を組み合わせる。
耐圧容器の内側に設けられた支持台の個数は限定されないが、2個以上が好ましい。また支持台の個数の上限は特にないが、8個以下が好ましい。
本発明では、複数の支持台に連結されている中央回転軸16を備えており、中央回転軸16と各反応容器の各中心軸CA、CB、CCとが離れている。融液における流れを均一化するという観点からは、中央回転軸と各反応容器の各中心軸との間隔は、30mm以上が好ましい。また、中央回転軸と各反応容器の各中心軸との間隔の上限は特になく、装置規模によって変わる。
また、中央回転軸と各反応容器の各中心軸との各間隔は、各融液中での結晶育成を均一化するという観点からは、互いに近いことが好ましい。この観点からは、中央回転軸と各反応容器の各中心軸との各間隔の最大値と最小値との差異は、20mm以下であることが好ましい。特に好ましくは、中央回転軸と各反応容器の各中心軸との各間隔が互いに等しい。
好適な実施形態においては、複数の反応容器の中心軸が中央回転軸から見て点対称の位置に設けられている。
また、好適な実施形態においては、例えば図1に示すように、加熱手段24が取り付けられている加熱容器7を設ける。この加熱容器7は、耐圧容器9の内側に設けられており、複数の反応容器を収容する。
Claims (12)
- 耐圧容器、
この耐圧容器の内側に設けられた複数の支持台、
前記各支持台上にそれぞれ載置されている内側容器、
前記各内側容器中にそれぞれ収容された育成容器、
前記育成容器を加熱する加熱手段、および
複数の前記支持台に連結されている中央回転軸を備えており、前記中央回転軸と前記各反応容器の各中心軸とが離れている結晶育成装置であって、
前記育成容器中に種結晶、13族元素原料およびフラックスを収容し、前記育成容器を加熱して融液を生成させつつ窒素含有ガスを前記融液に供給して13族元素窒化物結晶を成長させる際に、前記中央回転軸を回転させることを特徴とする、結晶育成装置。 - 前記各支持台にそれぞれ自転軸が取り付けられており、前記13族元素窒化物結晶を成長させる際に前記各自転軸を自転させることを特徴とする、請求項1記載の装置。
- 前記各自転軸と前記中央回転軸との間隔が互いに等しいことを特徴とする、請求項1または2記載の装置。
- 複数の前記反応容器の前記中心軸が前記中央回転軸から見て点対称の位置に設けられていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の装置。
- 前記反応容器の個数が2個以上であることを特徴とする、請求項1~4のいずれか一つの請求項に記載の装置。
- 前記加熱手段が取り付けられている加熱容器であって、前記耐圧容器の内側に設けられており、複数の前記反応容器を収容する加熱容器を備えていることを特徴とする、請求項1~5のいずれか一つの請求項に記載の装置。
- 耐圧容器、
この耐圧容器の内側に設けられた複数の支持台、
前記各支持台上にそれぞれ載置されている内側容器、
前記各内側容器中にそれぞれ収容された育成容器、
前記育成容器を加熱する加熱手段、および
複数の前記支持台に連結されている中央回転軸を備えており、前記中央回転軸と前記各反応容器の各中心軸とが離れている結晶育成装置を使用し、
前記育成容器中に種結晶、13族元素原料およびフラックスを収容し、前記育成容器を加熱して融液を生成させつつ窒素含有ガスを前記融液に供給して13族元素窒化物結晶を成長させる際に、前記中央回転軸を回転させることを特徴とする、結晶育成方法。 - 前記各支持台にそれぞれ自転軸が取り付けられており、前記窒化物結晶を成長させる際に前記各自転軸を自転させることを特徴とする、請求項7記載の方法。
- 前記各自転軸と前記中央回転軸との間隔が互いに等しいことを特徴とする、請求項7または8記載の方法。
- 複数の前記反応容器の前記中心軸が前記中央回転軸から見て点対称の位置に設けられていることを特徴とする、請求項7~9のいずれか一つの請求項に記載の方法。
- 前記反応容器の個数が2個以上であることを特徴とする、請求項7~10のいずれか一つの請求項に記載の方法。
- 前記加熱手段が取り付けられている加熱容器であって、前記耐圧容器の内側に設けられており、複数の前記反応容器を収容する加熱容器を用いることを特徴とする、請求項7~11のいずれか一つの請求項に記載の方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580065216.9A CN107002285A (zh) | 2014-11-26 | 2015-10-07 | 13族元素氮化物结晶的制造方法及装置 |
JP2016561446A JP6621421B2 (ja) | 2014-11-26 | 2015-10-07 | 13族元素窒化物結晶の製造方法および装置 |
US15/604,819 US10138570B2 (en) | 2014-11-26 | 2017-05-25 | System and method for producing group 13 nitride crystals comprised of growth vessels stacked within inner vessels placed over support tables with a central rotating shaft and revolving shafts attached to the support tables |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462084728P | 2014-11-26 | 2014-11-26 | |
US62/084728 | 2014-11-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/604,819 Continuation US10138570B2 (en) | 2014-11-26 | 2017-05-25 | System and method for producing group 13 nitride crystals comprised of growth vessels stacked within inner vessels placed over support tables with a central rotating shaft and revolving shafts attached to the support tables |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084492A1 true WO2016084492A1 (ja) | 2016-06-02 |
Family
ID=56074070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078526 WO2016084492A1 (ja) | 2014-11-26 | 2015-10-07 | 13族元素窒化物結晶の製造方法および装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10138570B2 (ja) |
JP (1) | JP6621421B2 (ja) |
CN (1) | CN107002285A (ja) |
WO (1) | WO2016084492A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018070393A (ja) * | 2016-10-26 | 2018-05-10 | 昭和電工株式会社 | 単結晶成長装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007122867A1 (ja) * | 2006-03-24 | 2007-11-01 | Ngk Insulators, Ltd. | 窒化物単結晶の製造方法および装置 |
WO2009072254A1 (ja) * | 2007-12-05 | 2009-06-11 | Panasonic Corporation | Iii族窒化物結晶、その結晶成長方法および結晶成長装置 |
JP2010042976A (ja) * | 2008-07-16 | 2010-02-25 | Sumitomo Electric Ind Ltd | GaN結晶の成長方法 |
JP2011178626A (ja) * | 2010-03-02 | 2011-09-15 | Panasonic Corp | 窒化物結晶製造方法および窒化物結晶製造装置 |
WO2013022122A1 (ja) * | 2011-08-10 | 2013-02-14 | 日本碍子株式会社 | 13族元素窒化物膜およびその積層体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203799A (ja) * | 2000-12-28 | 2002-07-19 | Canon Inc | 液相成長方法および液相成長装置 |
JP4914299B2 (ja) | 2007-06-29 | 2012-04-11 | 住友電気工業株式会社 | Iii族窒化物結晶の製造方法 |
JP5453768B2 (ja) * | 2008-11-05 | 2014-03-26 | 豊田合成株式会社 | 化合物半導体製造装置、化合物半導体の製造方法、および化合物半導体製造用治具 |
JP5688294B2 (ja) | 2009-01-21 | 2015-03-25 | 日本碍子株式会社 | 3b族窒化物結晶板 |
-
2015
- 2015-10-07 WO PCT/JP2015/078526 patent/WO2016084492A1/ja active Application Filing
- 2015-10-07 JP JP2016561446A patent/JP6621421B2/ja active Active
- 2015-10-07 CN CN201580065216.9A patent/CN107002285A/zh active Pending
-
2017
- 2017-05-25 US US15/604,819 patent/US10138570B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007122867A1 (ja) * | 2006-03-24 | 2007-11-01 | Ngk Insulators, Ltd. | 窒化物単結晶の製造方法および装置 |
WO2009072254A1 (ja) * | 2007-12-05 | 2009-06-11 | Panasonic Corporation | Iii族窒化物結晶、その結晶成長方法および結晶成長装置 |
JP2010042976A (ja) * | 2008-07-16 | 2010-02-25 | Sumitomo Electric Ind Ltd | GaN結晶の成長方法 |
JP2011178626A (ja) * | 2010-03-02 | 2011-09-15 | Panasonic Corp | 窒化物結晶製造方法および窒化物結晶製造装置 |
WO2013022122A1 (ja) * | 2011-08-10 | 2013-02-14 | 日本碍子株式会社 | 13族元素窒化物膜およびその積層体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018070393A (ja) * | 2016-10-26 | 2018-05-10 | 昭和電工株式会社 | 単結晶成長装置 |
Also Published As
Publication number | Publication date |
---|---|
US20170260644A1 (en) | 2017-09-14 |
US10138570B2 (en) | 2018-11-27 |
CN107002285A (zh) | 2017-08-01 |
JP6621421B2 (ja) | 2019-12-18 |
JPWO2016084492A1 (ja) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4189423B2 (ja) | 化合物単結晶の製造方法、およびそれに用いる製造装置 | |
WO2005071143A1 (ja) | ガリウム含有窒化物単結晶の製造方法 | |
JP2005263622A (ja) | 化合物単結晶の製造方法、およびそれに用いる製造装置 | |
US10041186B2 (en) | Method for producing nitride crystal | |
US8343239B2 (en) | Group III nitride semiconductor manufacturing system | |
JP2010189266A (ja) | 窒化物結晶の製造方法 | |
JP6621421B2 (ja) | 13族元素窒化物結晶の製造方法および装置 | |
JP4849092B2 (ja) | Iii族窒化物半導体製造装置および種結晶ホルダ | |
JP2011230966A (ja) | 第13族金属窒化物結晶の製造方法 | |
JP6606562B2 (ja) | 窒化ガリウム単結晶の製造方法及びiii 族元素窒化物単結晶の製造装置 | |
JP5261401B2 (ja) | 窒化物単結晶の育成装置 | |
JP6211087B2 (ja) | 13族元素窒化物の製造方法および融液組成物の製造方法 | |
JP7456849B2 (ja) | 13族窒化物結晶の製造方法 | |
JP2007254201A (ja) | 単結晶の製造方法 | |
JPH11292679A (ja) | 結晶成長方法 | |
JP7063293B2 (ja) | Iii族窒化物半導体の製造方法 | |
JP6720888B2 (ja) | Iii族窒化物半導体の製造方法 | |
JP5361884B2 (ja) | 窒化物単結晶の育成方法 | |
JP4965465B2 (ja) | 窒化物単結晶の製造方法 | |
JP2015160791A (ja) | Iii族窒化物結晶の製造方法、iii族窒化物結晶、半導体装置およびiii族窒化物結晶製造装置 | |
JP6420366B2 (ja) | 13族元素窒化物結晶の育成方法および装置 | |
WO2018123153A1 (ja) | 13族元素窒化物の製造方法 | |
JP5522204B2 (ja) | Iii族窒化物半導体結晶の製造方法 | |
JP2011190126A (ja) | 窒化物結晶の製造方法および装置 | |
JP2013184875A (ja) | 周期表第13族金属窒化物結晶の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862945 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016561446 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15862945 Country of ref document: EP Kind code of ref document: A1 |