WO2016084117A1 - 撮像レンズおよび撮像装置 - Google Patents

撮像レンズおよび撮像装置 Download PDF

Info

Publication number
WO2016084117A1
WO2016084117A1 PCT/JP2014/005968 JP2014005968W WO2016084117A1 WO 2016084117 A1 WO2016084117 A1 WO 2016084117A1 JP 2014005968 W JP2014005968 W JP 2014005968W WO 2016084117 A1 WO2016084117 A1 WO 2016084117A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
conditional expression
refractive power
negative
Prior art date
Application number
PCT/JP2014/005968
Other languages
English (en)
French (fr)
Inventor
関根 淳
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2016561100A priority Critical patent/JP6455522B2/ja
Priority to PCT/JP2014/005968 priority patent/WO2016084117A1/ja
Publication of WO2016084117A1 publication Critical patent/WO2016084117A1/ja
Priority to US15/605,670 priority patent/US20170261726A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to a photographing lens suitable for an imaging device mounted on a portable terminal or the like.
  • An imaging lens (see, for example, Patent Document 1) used in a small imaging device mounted on a portable terminal or the like has a high resolving power of about 1 to 2 ⁇ m on the image plane as the pixels of the imaging device become finer. Is required. In addition, such an imaging lens is also required to shorten the entire length of the imaging lens as the mobile terminal or the like becomes thinner.
  • a method of making the lens surface an aspherical surface can be considered.
  • most lens surfaces are aspherical surfaces.
  • a method of increasing the number of lenses can be considered. However, when the number of lenses is increased, a space for inserting the lenses is required, and the entire length of the imaging lens is increased.
  • the present invention has been made in view of such problems, and an object thereof is to provide an imaging lens having a short overall length and good imaging performance, and an imaging apparatus using the imaging lens.
  • the imaging lens according to the first invention is an imaging lens whose image surface is curved so that the concave surface faces the object side, and includes five lenses including both a positive lens and a negative lens. And at least one of the negative lenses included in the five lenses is arranged side by side on the image side of the positive lens, and the side by side arranged on the image side of the positive lens and the positive lens.
  • the positive lens group and the negative lens group having the maximum combined refractive power have the following conditional expressions.
  • fc the combined focal length of the positive lens and the negative lens, where the combined refractive power is the maximum positive refractive power
  • f Focal length of the imaging lens.
  • An imaging lens is an imaging lens having a curved image surface so that the concave surface faces the object side, and the lens surfaces on both sides are arranged side by side along the optical axis from the object side.
  • a first lens curved so as to face the convex surface, a second lens having positive refractive power, a third lens having negative refractive power, a fourth lens having positive refractive power or negative refractive power, and positive refractive power Or it consists of the 5th lens which has negative refracting power, and the following conditional expressions are satisfied.
  • f23 a combined focal length of the second lens and the third lens
  • f Focal length of the imaging lens
  • An imaging apparatus includes an imaging lens that forms an image of an object on an imaging surface, and an imaging element that images the image of the object formed on the imaging surface.
  • the positive lens and the negative lens, and at least one of the negative lenses included in the five lenses is arranged side by side on the image side of the positive lens, and the positive lens Among the sets of negative lenses arranged side by side on the image side of the positive lens, the combination of the positive lens and the negative lens having the maximum positive refractive power in the combined refractive power satisfies the following conditional expression: ing.
  • fc the combined focal length of the positive lens and the negative lens, where the combined refractive power is the maximum positive refractive power
  • f Focal length of the imaging lens.
  • good imaging performance can be obtained by shortening the overall length of the imaging lens.
  • FIG. 6 is a diagram illustrating all aberrations of the imaging lens according to the first example. It is a lens block diagram of the imaging lens which concerns on 2nd Example. It is an aberration diagram of the imaging lens according to the second example. It is a lens block diagram of the imaging lens which concerns on 3rd Example.
  • FIG. 10 is a diagram illustrating all aberrations of the imaging lens according to the third example. It is sectional drawing of an imaging device.
  • FIG. 7 is a cross-sectional view of the imaging device CMR mounted on a portable terminal or the like.
  • the imaging device CMR includes a lens barrel portion BR provided in a device body BD such as a portable terminal, a photographing lens PL accommodated and held in the lens barrel portion BR, an imaging element SR accommodated on the lens barrel portion BR side, It is mainly composed of a control unit PU housed on the apparatus main body BD side.
  • the photographing lens PL forms an image of a subject (object) on the imaging surface of the imaging element SR.
  • the imaging element SR is configured by using an image sensor such as a CCD or a CMOS, for example, and is arranged according to the image plane I of the photographing lens PL.
  • An imaging surface in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed on the surface of the imaging element SR.
  • the imaging surface of the imaging element SR is curved so that the concave surface is directed toward the object side, and the image plane I of the imaging lens PL is curved along the imaging surface of the imaging element SR.
  • the imaging surface of the imaging element SR is a spherical concave surface or an aspherical concave surface.
  • the imaging element SR photoelectrically converts light from the subject imaged on the imaging surface by the photographing lens PL, and outputs the subject image data to the control unit PU and the like.
  • the control unit PU is electrically connected to an imaging element SR, an input / output unit DS provided outside the device main body BD such as a portable terminal, and a storage unit MR housed in the device main body BD.
  • the input / output unit DS includes a touch panel, a liquid crystal panel, and the like.
  • the input / output unit DS performs processing according to a user operation (imaging operation or the like) and displays an image of a subject imaged by the imaging element SR.
  • the storage unit MR stores data necessary for operation of the image sensor SR and the like, and image data of the subject imaged and acquired by the image sensor SR.
  • the control unit PU controls the image sensor SR, the input / output unit DS, the storage unit MR, and the like. Further, the control unit PU can perform various image processes on the image data of the subject imaged and acquired by the imaging element SR.
  • the photographic lens PL of the first embodiment includes five lenses L1 to L5 including both a positive lens and a negative lens, and the image surface I is curved so that the concave surface faces the object side. is doing. That is, the image plane I of the photographic lens PL is greatly curved toward the object side from the optical axis Ax toward the periphery. At least one of the negative lenses included in the five lenses L1 to L5 is arranged side by side on the image side of the positive lens, and the negative lens arranged side by side on the image side of the positive lens and the positive lens.
  • the condition expressed by the formula (1) is satisfied.
  • fc combined focal length of a positive lens and a negative lens having a maximum combined refractive power and a positive refractive power
  • f Focal length of the imaging lens PL.
  • conditional expression (1) defines an appropriate range for the relationship between the combined focal length fc of the positive lens and the negative lens having the maximum positive refractive power and the focal length f of the entire imaging lens PL system. Conditional expression. If the condition is less than the lower limit value of conditional expression (1), the combined focal length fc becomes too short, which makes it difficult to correct curvature of field, which is not preferable.
  • the overall length of the photographing lens becomes long and the back focus becomes insufficient.
  • the condition exceeds the upper limit value of the conditional expression (1), the combined focal length fc becomes too long, which is not preferable because the total length of the photographing lens becomes long.
  • condition expressed by the following conditional expression (2) is satisfied.
  • SAG Amount of curvature in the optical axis direction of the image plane I at the maximum image height.
  • Conditional expression (2) is appropriate for the relationship between the amount of curvature SAG in the optical axis direction of the image plane I at the maximum image height and the combined focal length fc of the positive lens and the negative lens having the maximum combined refractive power.
  • I a conditional expression for prescribing a specific range.
  • the condition is less than the lower limit value of conditional expression (2), if the combined focal length fc is too short, correction of various aberrations such as coma becomes difficult.
  • the amount of curvature SAG in the optical axis direction of the image plane I becomes too large in the negative direction, it is necessary to lengthen the back focus in order to avoid interference between the final lens and the image sensor, and as a result, the total length of the photographing lens is long.
  • conditional expression (2) In order to exhibit the effect of this embodiment satisfactorily, it is desirable to set the lower limit value of conditional expression (2) to ⁇ 0.20. On the other hand, in order to exhibit the effect of this embodiment satisfactorily, it is desirable to set the upper limit value of conditional expression (2) to ⁇ 0.12.
  • the five lenses L1 to L5 include at least one negative lens using an optical material having an Abbe number of 40 or less, and the condition represented by the following conditional expression (3) Is preferably satisfied.
  • ra radius of curvature of the lens surface on the object side in a negative lens using an optical material having an Abbe number of 40 or less
  • rb radius of curvature of the image-side lens surface of a negative lens using an optical material having an Abbe number of 40 or less.
  • Conditional expression (3) is a conditional expression for defining an appropriate range for the shape factor of a negative lens using an optical material having an Abbe number of 40 or less. When the condition exceeds the upper limit value of conditional expression (3), the radius of curvature of the image side lens surface in the negative lens using an optical material having an Abbe number of 40 or less is smaller than the radius of curvature of the object side lens surface. Become.
  • the upper side light beam of the obliquely incident light beam passes through the image side lens surface at a position farther from the optical axis Ax than the object side lens surface in the negative lens, and is largely refracted on the image side lens surface. For this reason, it is difficult to correct coma aberration, and the amount of peripheral light decreases, which is not preferable.
  • the negative lens using an optical material having an Abbe number of 40 or less is desirably a pair of negative lenses (for example, the third lens L3 having a negative refractive power) having a maximum positive refractive power. .
  • the lens surfaces on both sides of the lens closest to the object side (first lens L1) among the five lenses L1 to L5 are curved so that the convex surface faces the object side, and It is preferable that the condition represented by conditional expression (4) is satisfied.
  • Conditional expression (4) is a conditional expression for defining an appropriate range for the relationship between the focal length f of the entire imaging lens PL system and the focal length fa of the lens closest to the object side.
  • the photographic lens PL having such a configuration satisfies the condition expressed by the following conditional expression (5).
  • fp Focal length of a pair of positive lenses having a maximum combined refractive power and positive refractive power.
  • Conditional expression (5) defines an appropriate range for the relationship between the focal length fp of the pair of positive lenses having the maximum positive refractive power and the focal length f of the entire imaging lens PL system.
  • Conditional expression If the condition is lower than the lower limit value of the conditional expression (5), the focal length fp of the positive lens becomes too short, which makes it difficult to correct various aberrations such as spherical aberration and coma aberration. On the other hand, when the condition exceeds the upper limit value of the conditional expression (5), the focal length fp of the positive lens becomes too long, which is not preferable because the entire length of the imaging lens becomes long.
  • the lens surfaces on both sides of the lens closest to the object side (first lens L1) among the five lenses L1 to L5 are curved so that the convex surface faces the object side, and It is preferable that the conditions expressed by the conditional expressions (6) to (7) are satisfied.
  • Conditional expression (6) is a conditional expression for defining an appropriate range for the relationship between the maximum image height Y of the imaging lens PL, the F number Fno of the imaging lens PL, and the focal length fa of the lens closest to the object side. It is.
  • conditional expression (6) When the condition is less than the lower limit value of conditional expression (6), the negative refractive power of the lens closest to the object becomes too large, and the back focus becomes longer than necessary, which is not preferable because the entire length of the imaging lens becomes longer.
  • the condition exceeds the upper limit value of the conditional expression (6), the positive refractive power of the lens closest to the object side becomes large, and the negative refractive power of the lens on the image side relative to the aperture stop S becomes too large. Correction of aberrations becomes difficult, and the amount of peripheral light is also unfavorable.
  • Conditional expression (7) defines an appropriate range for the relationship between the focal length fa of the most object side lens and the combined focal length fc of the positive lens and the negative lens having the maximum positive refractive power. Is a conditional expression.
  • conditional expression (7) When the condition is less than the lower limit value of conditional expression (7), if the negative refractive power of the lens closest to the object side becomes too large, it is necessary to shorten the composite focal length fc, which makes it difficult to correct spherical aberration. Absent.
  • the positive refractive power of the lens closest to the object becomes too large, the incident angle of the lower light beam incident on the pair of positive lenses having the maximum positive refractive power is increased. Is not preferable.
  • the lens surfaces on both sides of the lens closest to the object side (first lens L1) among the five lenses L1 to L5 are curved so that the convex surface faces the object side.
  • a close-contact multilayer diffractive optical element is attached to at least one of a lens surface closest to the object side, a positive lens having a maximum combined refractive power, and a negative lens.
  • a DOE may be provided. According to such a configuration, axial chromatic aberration can be favorably corrected. As described above, according to the first embodiment, it is possible to shorten the overall length of the imaging lens PL and obtain good imaging performance.
  • the photographic lens PL of the second embodiment is a first lens L1 that is arranged in order from the object side along the optical axis Ax and is curved so that the lens surfaces on both sides are convex toward the object side.
  • the image lens I is curved so that the concave surface faces the object side. That is, the image plane I of the photographic lens PL is greatly curved toward the object side from the optical axis Ax toward the periphery.
  • the photographic lens PL having such a configuration satisfies the condition expressed by the following conditional expression (11).
  • f23 the combined focal length of the second lens L2 and the third lens L3
  • f Focal length of the imaging lens PL.
  • Conditional expression (11) is a conditional expression that defines an appropriate range for the relationship between the combined focal length f23 of the second lens L2 and the third lens L3 and the focal length f of the entire imaging lens PL system. If the condition is less than the lower limit value of conditional expression (11), the combined focal length f23 becomes too short, which makes it difficult to correct field curvature, which is not preferable.
  • the overall length of the photographing lens becomes long and the back focus becomes insufficient.
  • the condition exceeds the upper limit value of the conditional expression (11)
  • the combined focal length f23 becomes too long, which is not preferable because the total length of the photographing lens becomes long.
  • condition expressed by the following conditional expression (12) is satisfied.
  • SAG Amount of curvature in the optical axis direction of the image plane I at the maximum image height.
  • Conditional expression (12) defines an appropriate range for the relationship between the optical axis direction curvature amount SAG of the image plane I at the maximum image height and the combined focal length f23 of the second lens L2 and the third lens L3.
  • Conditional expression When the condition is less than the lower limit value of the conditional expression (12), if the combined focal length f23 is too short, correction of various aberrations such as coma becomes difficult. Further, if the amount of curvature SAG in the optical axis direction of the image plane I becomes too large in the negative direction, it is necessary to lengthen the back focus in order to avoid interference between the final lens and the image sensor, and as a result, the total length of the photographing lens is long. Become.
  • conditional expression (12) In order to exert the effect of this embodiment satisfactorily, it is desirable to set the lower limit value of conditional expression (12) to ⁇ 0.20. On the other hand, in order to exhibit the effect of this embodiment satisfactorily, it is desirable to set the upper limit value of conditional expression (12) to ⁇ 0.12.
  • the photographic lens PL having such a configuration satisfies the condition expressed by the following conditional expression (13).
  • Conditional expression (13) is a conditional expression for defining an appropriate range for the shape factor of the third lens L3 having negative refractive power. When the condition exceeds the upper limit value of conditional expression (13), the radius of curvature of the image-side lens surface of the third lens L3 is smaller than the radius of curvature of the object-side lens surface.
  • the upper side light beam of the obliquely incident light beam passes through the image side lens surface at a position farther from the optical axis Ax than the object side lens surface in the third lens L3, and is largely refracted on the image side lens surface. . For this reason, it is difficult to correct coma aberration, and the amount of peripheral light decreases, which is not preferable.
  • conditional expression (13) it is desirable to set the upper limit value of conditional expression (13) to ⁇ 0.30.
  • the photographic lens PL having such a configuration satisfies the condition expressed by the following conditional expression (14).
  • Conditional expression (14) is a conditional expression for defining an appropriate range for the relationship between the focal length f of the entire imaging lens PL system and the focal length f1 of the first lens L1.
  • condition exceeds the upper limit value of the conditional expression (14)
  • the first lens L1 has a positive refractive power
  • the negative refractive power of the lens on the image side relative to the aperture stop S becomes too large, and thus correction of coma aberration is performed. Is difficult, and the amount of light at the periphery is also unfavorable.
  • the first lens L1 has negative refractive power, the back focus becomes longer than necessary, which is not preferable because the entire length of the imaging lens becomes longer.
  • the photographic lens PL having such a configuration satisfies the condition expressed by the following conditional expression (15).
  • f2 Focal length of the second lens L2.
  • Conditional expression (15) is a conditional expression for defining an appropriate range for the relationship between the focal length f2 of the second lens L2 and the focal length f of the entire imaging lens PL. If the condition is lower than the lower limit value of the conditional expression (15), the focal length f2 of the second lens L2 becomes too short, which makes it difficult to correct various aberrations such as spherical aberration and coma aberration. On the other hand, when the condition exceeds the upper limit value of the conditional expression (15), the focal length f2 of the second lens L2 becomes too long, which is not preferable because the entire length of the imaging lens becomes long.
  • Conditional expression (16) is a conditional expression for defining an appropriate range for the relationship between the maximum image height Y of the imaging lens PL, the F number Fno of the imaging lens PL, and the focal length f1 of the first lens L1. is there.
  • the condition is less than the lower limit value of the conditional expression (16)
  • the negative refractive power of the first lens L1 becomes too large, and the back focus becomes longer than necessary.
  • the condition exceeds the upper limit value of the conditional expression (16)
  • the positive refractive power of the first lens L1 becomes large, and the negative refractive power of the lens on the image side with respect to the aperture stop S becomes too large. Correction is difficult, and the amount of peripheral light is undesirably reduced.
  • Conditional expression (17) is a conditional expression for defining an appropriate range for the relationship between the focal length f1 of the first lens L1 and the combined focal length f23 of the second lens L2 and the third lens L3.
  • conditional expression (17) is less than the lower limit value of conditional expression (17)
  • the negative refractive power of the first lens L1 becomes too large, it is necessary to shorten the combined focal length f23, which makes it difficult to correct spherical aberration, which is not preferable.
  • the positive refractive power of the first lens L1 is too large, the incident angle of the lower light beam incident on the second lens L2 becomes large, which makes it difficult to correct coma aberration, which is not preferable.
  • the photographic lens PL having such a configuration for example, as shown by a two-dot chain line in FIG. 1, at least one of the first lens L1, the second lens L2, and the third lens L3 has an adhesive multilayer.
  • a type of diffractive optical element DOE may be provided. According to such a configuration, axial chromatic aberration can be favorably corrected. As described above, according to the second embodiment, it is possible to shorten the overall length of the imaging lens PL and obtain good imaging performance.
  • the shape of the image plane I is a curved shape with a concave surface facing the object side as illustrated in the examples described later.
  • the curved shape is effective from the viewpoint of manufacturing, but is not limited to a spherical surface, and may be an aspherical concave surface.
  • FIG. 1 is a lens configuration diagram of an imaging lens PL (PL1) according to the first embodiment.
  • the imaging lens PL1 according to the first example includes a first lens L1 having a negative refractive power, a second lens L2 having a positive refractive power, and a negative refractive power, which are arranged in order from the object side along the optical axis Ax.
  • the third lens L3 includes a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power.
  • the image plane I of the imaging lens PL1 is curved in a spherical shape so that the concave surface faces the object side. Further, between the fifth lens L5 and the image plane I, a plane parallel plate CV made of a cover glass of an image sensor or the like is disposed.
  • the lens surfaces on both sides of the first lens L1 are aspheric surfaces curved so that the convex surface faces the object side.
  • An aperture stop S is provided near the image side lens surface of the first lens L1 by insert molding.
  • the lens surfaces on both sides of the second lens L2 are aspheric.
  • the lens surfaces on both sides of the third lens L3 are aspheric.
  • the lens surfaces on both sides of the fourth lens L4 are aspheric.
  • the lens surfaces on both sides of the fifth lens L5 are aspheric.
  • Tables 1 to 3 are shown below, and these are the tables listing the values of the specifications of the imaging lenses according to the first to third examples.
  • the focal length f, F number Fno, half angle of view ⁇ , and maximum image height Y of the imaging lens PL are shown.
  • the first column (surface number) is the lens surface number when counted from the object side
  • the second column R is the radius of curvature of the lens surface
  • the third column D is the lens surface number.
  • subjected to the right of the 1st column shows that the lens surface is an aspherical surface.
  • [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression.
  • the distance (sag amount) in the optical axis direction from the apex of the lens surface is Z
  • the distance from the optical axis Ax is h
  • the curvature (reciprocal of the radius of curvature) is c.
  • the conic constant is ⁇
  • the secondary aspherical coefficient A2 is 0, and the description is omitted.
  • “En” indicates “ ⁇ 10 ⁇ n ”.
  • the focal length f, the radius of curvature R, and other length units listed in all the following specifications are generally “mm”, but the optical system may be proportionally enlarged or reduced. Since equivalent optical performance can be obtained, the present invention is not limited to this.
  • the same reference numerals as those in the present embodiment are used for specification values in second to third embodiments described later.
  • Table 1 below shows each item in the first embodiment. Note that the curvature radii R of the first to thirteenth surfaces in Table 1 correspond to the symbols R1 to R13 attached to the first to thirteenth surfaces in FIG. In the first embodiment, the lens surfaces of the first surface, the second surface, and the fourth to eleventh surfaces are aspherical.
  • the first lens L1 is the lens closest to the object among the five lenses L1 to L5.
  • the second lens L2 and the third lens L3 are a positive lens and a negative lens having a maximum combined refractive power among positive lenses and negative lenses arranged side by side on the image side of the positive lenses. It is a pair.
  • the third lens L3 is a negative lens using an optical material having an Abbe number of 40 or less.
  • f45 is the combined focal length of the fourth lens L4 and the fifth lens L5.
  • the fourth lens L4 and the fifth lens L5 are a combination of a positive lens and a negative lens arranged side by side on the image side of the positive lens, and are a positive lens and a negative lens having a maximum combined refractive power and a positive refractive power. Not a pair. For this reason, the corresponding value of the reference expression (B) is not included in the range of the conditional expression (1).
  • FIG. 2 is a diagram showing various aberrations of the imaging lens PL1 according to the first example.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • RFH indicates the image height ratio (Relative Field Height). The description of the aberration diagrams is the same in the other examples.
  • FIG. 3 is a lens configuration diagram of the imaging lens PL (PL2) according to the second embodiment.
  • the imaging lens PL2 according to the second example has a first lens L1 having a positive refractive power, a second lens L2 having a positive refractive power, and a negative refractive power arranged in order from the object side along the optical axis Ax.
  • the third lens L3 includes a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power.
  • the image plane I of the imaging lens PL2 is curved in a spherical shape so that the concave surface faces the object side. Further, between the fifth lens L5 and the image plane I, a plane parallel plate CV made of a cover glass of an image sensor or the like is disposed.
  • the lens surfaces on both sides of the first lens L1 are aspheric surfaces curved so that the convex surface faces the object side.
  • An aperture stop S is provided near the image side lens surface of the first lens L1 by insert molding.
  • the lens surfaces on both sides of the second lens L2 are aspheric.
  • the lens surfaces on both sides of the third lens L3 are aspheric.
  • the lens surfaces on both sides of the fourth lens L4 are aspheric.
  • the lens surfaces on both sides of the fifth lens L5 are aspheric.
  • Table 2 below shows each item in the second embodiment.
  • the curvature radii R of the first to thirteenth surfaces in Table 2 correspond to the symbols R1 to R13 attached to the first to thirteenth surfaces in FIG.
  • the lens surfaces of the first surface, the second surface, and the fourth to eleventh surfaces are formed in an aspheric shape.
  • the first lens L1 is the lens closest to the object among the five lenses L1 to L5.
  • the second lens L2 and the third lens L3 are a positive lens and a negative lens having a maximum combined refractive power among positive lenses and negative lenses arranged side by side on the image side of the positive lenses. It is a pair.
  • the third lens L3 is a negative lens using an optical material having an Abbe number of 40 or less.
  • the fourth lens L4 and the fifth lens L5 are a pair of negative lenses arranged side by side on the image side of the positive lens and the positive lens.
  • the positive lens and the negative lens that have the maximum combined refractive power are the positive and negative lenses. It is not a pair of lenses. For this reason, the corresponding value of the reference expression (B) is not included in the range of the conditional expression (1).
  • FIG. 4 is a diagram showing various aberrations of the imaging lens PL2 according to the second example. From the aberration diagrams, it can be seen that in the second example, various aberrations are corrected satisfactorily and the imaging performance is excellent. As a result, by mounting the imaging lens PL2 of the second embodiment, excellent imaging performance can be ensured also in the imaging device CMR.
  • FIG. 5 is a lens configuration diagram of the imaging lens PL (PL3) according to the third example.
  • the imaging lens PL3 according to the third example includes a first lens L1 having a positive refractive power, a second lens L2 having a positive refractive power, and a negative refractive power arranged in order from the object side along the optical axis Ax.
  • the third lens L3 includes a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power.
  • the image plane I of the imaging lens PL3 is curved in a spherical shape so that the concave surface faces the object side. Further, between the fifth lens L5 and the image plane I, a plane parallel plate CV made of a cover glass of an image sensor or the like is disposed.
  • the lens surfaces on both sides of the first lens L1 are aspheric surfaces curved so that the convex surface faces the object side.
  • An aperture stop S is provided near the image side lens surface of the first lens L1 by insert molding.
  • the lens surfaces on both sides of the second lens L2 are aspheric.
  • the lens surfaces on both sides of the third lens L3 are aspheric.
  • the lens surfaces on both sides of the fourth lens L4 are aspheric.
  • the lens surfaces on both sides of the fifth lens L5 are aspheric.
  • Table 3 below shows each item in the third example. Note that the curvature radii R of the first to thirteenth surfaces in Table 3 correspond to the symbols R1 to R13 attached to the first to thirteenth surfaces in FIG.
  • the lens surfaces of the first surface, the second surface, and the fourth to eleventh surfaces are formed in an aspheric shape.
  • the first lens L1 is the lens closest to the object among the five lenses L1 to L5.
  • the second lens L2 and the third lens L3 are a positive lens and a negative lens having a maximum combined refractive power among positive lenses and negative lenses arranged side by side on the image side of the positive lenses. It is a pair.
  • the third lens L3 is a negative lens using an optical material having an Abbe number of 40 or less.
  • the fourth lens L4 and the fifth lens L5 are a pair of negative lenses arranged side by side on the image side of the positive lens and the positive lens.
  • the positive lens and the negative lens that have the maximum combined refractive power are the positive and negative lenses. It is not a pair of lenses. For this reason, the corresponding value of the reference expression (B) is not included in the range of the conditional expression (1).
  • FIG. 6 is a diagram showing various aberrations of the imaging lens PL3 according to the third example. From the aberration diagrams, it can be seen that in the third example, various aberrations are satisfactorily corrected and the imaging performance is excellent. As a result, by mounting the imaging lens PL3 of the third embodiment, excellent imaging performance can be ensured also in the imaging device CMR.
  • each embodiment it is possible to realize an imaging lens having a short overall length and good imaging performance, and an imaging apparatus including the imaging lens.
  • the image plane I of the imaging lens PL is curved in a spherical shape so that the concave surface is directed toward the object side, but is not limited to this, and is curved in an aspherical shape, for example. It only has to be curved in a curved shape.
  • the fourth lens L4 has a positive refractive power, but is not limited thereto, and may have a negative refractive power.
  • the fifth lens L5 has negative refractive power, but is not limited to this, and may have positive refractive power.
  • the second lens L2 and the third lens L3 have the maximum positive refractive power among the combination of the negative lenses arranged side by side on the image side of the positive lens and the positive lens.
  • it is a pair of a positive lens and a negative lens
  • the present invention is not limited to this, and the pair of a positive lens and a negative lens in which the fourth lens L4 and the fifth lens L5 have the maximum positive refractive power. You may be comprised so that it may become.
  • At least one of the first lens L1, the second lens L2, and the third lens L3 has a contact multilayer diffraction.
  • An optical element DOE may be provided.
  • the aperture stop S is disposed in the vicinity of the first lens L1, and is preferably disposed in the vicinity of the lens surface on the image side of the first lens L1 for aberration correction.
  • a lens frame may be used instead of a member as an aperture stop.

Abstract

 物体側に凹面を向けるように像面(I)が湾曲した撮像レンズ(PL)であって、正レンズおよび負レンズの両方を含む5枚のレンズからなり、これら5枚のレンズに含まれる負レンズのうち少なくとも1枚は、正レンズの像側に並んで配置されており、前記正レンズおよび前記正レンズの像側に並んで配置された前記負レンズの組のうち、合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの組において、以下の条件式を満足する。 0.5<fc/f<1.2 但し、fcは前記合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの合成焦点距離、fは前記撮像レンズの焦点距離。

Description

撮像レンズおよび撮像装置
 本発明は、携帯端末等に搭載される撮像装置に好適な撮影レンズに関する。
 携帯端末等に搭載された小型の撮像装置に用いられる撮像レンズ(例えば、特許文献1を参照)には、撮像素子の画素の微細化に伴って、像面上で1~2μm程度の高い解像力が要求される。また、このような撮像レンズには、携帯端末等の薄型化に伴って、撮像レンズの全長を短くすることも要求される。撮像レンズの解像力を高めるには、レンズ面を非球面にする方法が考えられる。ところが、小型の撮像装置に用いられる従来の撮像レンズでは、殆どのレンズ面が非球面である。また、撮像レンズの解像力を高めるには、レンズの枚数を増やす方法も考えられる。しかしながら、レンズの枚数を増やすと、レンズを挿入するための空間が必要になり、撮像レンズの全長が長くなる。
国際公開第2013/027641号パンフレット
 このように、従来の撮像レンズでは、撮像レンズの全長を短くして結像性能を高めるための方策が求められている。
 本発明は、このような問題に鑑みてなされたものであり、全長が短くて良好な結像性能を有した撮像レンズおよび、これを用いた撮像装置を提供することを目的とする。
 このような目的達成のため、第1の発明に係る撮像レンズは、物体側に凹面を向けるように像面が湾曲した撮像レンズであって、正レンズおよび負レンズの両方を含む5枚のレンズからなり、前記5枚のレンズに含まれる負レンズのうち少なくとも1枚は、正レンズの像側に並んで配置されており、前記正レンズおよび前記正レンズの像側に並んで配置された前記負レンズの組のうち、合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの組において、以下の条件式を満足している。
 0.5<fc/f<1.2
 但し、
 fc:前記合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの合成焦点距離、
  f:前記撮像レンズの焦点距離。
 また、第2の発明に係る撮像レンズは、物体側に凹面を向けるように像面が湾曲した撮像レンズであって、光軸に沿って物体側から順に並んだ、両側のレンズ面が物体側に凸面を向けるように湾曲した第1レンズと、正屈折力を有する第2レンズと、負屈折力を有する第3レンズと、正屈折力もしくは負屈折力を有する第4レンズと、正屈折力もしくは負屈折力を有する第5レンズとからなり、以下の条件式を満足している。
 0.5<f23/f<1.2
 但し、
 f23:前記第2レンズおよび前記第3レンズの合成焦点距離、
  f:前記撮像レンズの焦点距離。
 また、本発明に係る撮像装置は、物体の像を撮像面上に結像させる撮像レンズと、前記撮像面上に結像した前記物体の像を撮像する撮像素子とを備え、前記撮像レンズは、正レンズおよび負レンズの両方を含む5枚のレンズからなり、前記5枚のレンズに含まれる負レンズのうち少なくとも1枚は、正レンズの像側に並んで配置されており、前記正レンズおよび前記正レンズの像側に並んで配置された前記負レンズの組のうち、合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの組において、以下の条件式を満足している。
 0.5<fc/f<1.2
 但し、
 fc:前記合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの合成焦点距離、
  f:前記撮像レンズの焦点距離。
 本発明によれば、撮像レンズの全長を短くして良好な結像性能を得ることができる。
第1実施例に係る撮像レンズのレンズ構成図である。 第1実施例に係る撮像レンズの諸収差図である。 第2実施例に係る撮像レンズのレンズ構成図である。 第2実施例に係る撮像レンズの諸収差図である。 第3実施例に係る撮像レンズのレンズ構成図である。 第3実施例に係る撮像レンズの諸収差図である。 撮像装置の断面図である。
 以下、本願の好ましい実施形態について図を参照しながら説明する。本願に係る撮像レンズを備えた撮像装置CMRが図7に示されている。なお、図7は携帯端末等に搭載された撮像装置CMRの断面図である。撮像装置CMRは、携帯端末等の装置本体BDに設けられた鏡筒部BRと、鏡筒部BRに収容保持された撮影レンズPLと、鏡筒部BR側に収容された撮像素子SRと、装置本体BD側に収容された制御部PUとを主体に構成される。撮影レンズPLは、被写体(物体)の像を撮像素子SRの撮像面上に結像させる。
 撮像素子SRは、例えばCCDやCMOS等のイメージセンサーを用いて構成され、撮影レンズPLの像面Iに合わせて配置される。撮像素子SRの表面には、画素(光電変換素子)が二次元的に配置された撮像面が形成される。撮像素子SRの撮像面は、物体側に凹面を向けるように湾曲しており、撮影レンズPLの像面Iが撮像素子SRの撮像面に沿って湾曲して形成される。例えば、撮像素子SRの撮像面は、球面状の凹面や、非球面状の凹面となる。撮像素子SRは、撮影レンズPLにより撮像面上で結像した被写体からの光を光電変換し、被写体の画像データを制御部PU等に出力する。
 制御部PUには、撮像素子SRと、携帯端末等の装置本体BDの外側に設けられた入出力部DSと、装置本体BDに収容された記憶部MRとが電気的に接続される。入出力部DSは、タッチパネルおよび液晶パネル等から構成され、ユーザーの操作(撮像操作等)に応じた処理を行うとともに、撮像素子SRにより撮像された被写体の画像表示等を行う。記憶部MRは、撮像素子SR等の作動に必要なデータや、撮像素子SRにより撮像取得された被写体の画像データを記憶する。制御部PUは、撮像素子SR、入出力部DS、記憶部MR等をそれぞれ制御する。また、制御部PUは、撮像素子SRにより撮像取得された被写体の画像データに対して種々の画像処理を行うことができる。
 ここで、撮影レンズPLの第1実施形態について説明する。第1実施形態の撮影レンズPLは、例えば図1に示すように、正レンズおよび負レンズの両方を含む5枚のレンズL1~L5からなり、物体側に凹面を向けるように像面Iが湾曲している。すなわち、撮影レンズPLの像面Iは、光軸Axから周辺部へ向かうにつれて物体側へ大きく湾曲するようになっている。5枚のレンズL1~L5に含まれる負レンズのうち少なくとも1枚は、正レンズの像側に並んで配置されており、当該正レンズおよび正レンズの像側に並んで配置された負レンズの組のうち、合成屈折力が最大の正屈折力となる正レンズおよび負レンズ(例えば、正屈折力を有する第2レンズL2および負屈折力を有する第3レンズL3)の組において、次の条件式(1)で表される条件を満足している。
 0.5<fc/f<1.2 …(1)
 但し、
 fc:合成屈折力が最大の正屈折力となる正レンズおよび負レンズの合成焦点距離、
  f:撮像レンズPLの焦点距離。
 本実施形態においては、撮影レンズPLの像面Iを物体側に凹面を向けるように湾曲させることで、像面湾曲の補正の負担を軽減している。これにより、レンズの枚数を減らして撮影レンズPLの全長を短縮しながらも、良好な結像性能を得ることが可能になる。条件式(1)は、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの合成焦点距離fcと、撮像レンズPL全系の焦点距離fとの関係について、適切な範囲を規定する条件式である。条件式(1)の下限値を下回る条件である場合、合成焦点距離fcが短くなりすぎるため、像面湾曲の補正が困難となり好ましくない。なお、像面湾曲の補正のためにレンズの枚数を増やすと、撮影レンズの全長が長くなり、バックフォーカスが足りなくなる。一方、条件式(1)の上限値を上回る条件である場合、合成焦点距離fcが長くなりすぎるため、撮影レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(1)の下限値を0.80にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(1)の上限値を1.10にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(2)で表される条件を満足することが好ましい。
 -0.3<SAG/fc<-0.09 …(2)
 但し、
 SAG:最大像高における像面Iの光軸方向湾曲量。
 条件式(2)は、最大像高における像面Iの光軸方向湾曲量SAGと、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの合成焦点距離fcとの関係について、適切な範囲を規定するための条件式である。条件式(2)の下限値を下回る条件である場合、合成焦点距離fcが短くなりすぎると、コマ収差等の諸収差の補正が困難となり好ましくない。また、像面Iの光軸方向湾曲量SAGがマイナス方向に大きくなりすぎると、最終レンズと撮像素子との干渉を避けるためにバックフォーカスを長くする必要があり、結果として撮影レンズの全長が長くなる。一方、条件式(2)の上限値を上回る条件である場合、像面Iの光軸方向湾曲量SAGが小さくなりすぎると、像面湾曲を補正するためのレンズの負担が大きくなる。その結果、像面湾曲の補正が困難となり好ましくない。なお、像面湾曲の補正のためにレンズの枚数を増やすと、撮影レンズの全長が長くなる。また、合成焦点距離fcが長くなりすぎると、撮影レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(2)の下限値を-0.20にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(2)の上限値を-0.12にすることが望ましい。
 このような構成の撮影レンズPLにおいて、5枚のレンズL1~L5は、アッベ数が40以下の光学材料を用いた負レンズを少なくとも1枚含み、次の条件式(3)で表される条件を満足することが好ましい。
 (ra+rb)/(ra-rb)<0 …(3)
 但し、
 ra:アッベ数が40以下の光学材料を用いた負レンズにおける物体側のレンズ面の曲率半径、
 rb:アッベ数が40以下の光学材料を用いた負レンズにおける像側のレンズ面の曲率半径。
 色収差を補正するには、アッベ数の小さい光学材料を用いた負レンズが少なくとも1枚必要になる。かつ、色収差を良好に補正するには、負レンズの屈折力をある程度大きくする必要がある。条件式(3)は、アッベ数が40以下の光学材料を用いた負レンズのシェイプファクターについて、適切な範囲を規定するための条件式である。条件式(3)の上限値を上回る条件である場合、アッベ数が40以下の光学材料を用いた負レンズにおける像側のレンズ面の曲率半径が、物体側のレンズ面の曲率半径よりも小さくなる。その結果、斜入射光束の上側光束が、当該負レンズにおいて物体側のレンズ面よりも光軸Axから離れた位置で像側のレンズ面を通過し、像側のレンズ面において大きく屈折される。そのため、コマ収差の補正が困難となり、周辺光量も低下して好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(3)の上限値を-0.30にすることが望ましい。また、アッベ数が40以下の光学材料を用いた負レンズは、合成屈折力が最大の正屈折力となる組の負レンズ(例えば、負屈折力を有する第3レンズL3)であることが望ましい。
 このような構成の撮影レンズPLにおいて、5枚のレンズL1~L5のうち最も物体側のレンズ(第1レンズL1)における両側のレンズ面は、物体側に凸面を向けるように湾曲し、次の条件式(4)で表される条件を満足することが好ましい。
 |f/fa|<0.5 …(4)
 但し、
 fa:最も物体側のレンズの焦点距離。
 レンズの長さを短く保つため、物体側のレンズ面が当該レンズ面の中心よりも物体側に突出するのは好ましくない。そのため、5枚のレンズL1~L5のうち最も物体側のレンズには、物体側に凸形状になる部分が必要になる。条件式(4)は、撮像レンズPL全系の焦点距離fと、最も物体側のレンズの焦点距離faとの関係について、適切な範囲を規定するための条件式である。条件式(4)の上限値を上回る条件である場合、最も物体側のレンズが正屈折力を有するときには、開口絞りSよりも像側のレンズにおける負屈折力が大きくなりすぎるため、コマ収差の補正が困難となり、周辺光量も低下して好ましくない。また、最も物体側のレンズが負屈折力を有するときには、バックフォーカスが必要以上に長くなるため、撮像レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(4)の上限値を0.25にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(5)で表される条件を満足することが好ましい。
 0.5<fp/f<0.7 …(5)
 但し、
 fp:合成屈折力が最大の正屈折力となる組の正レンズの焦点距離。
 条件式(5)は、合成屈折力が最大の正屈折力となる組の正レンズの焦点距離fpと、撮像レンズPL全系の焦点距離fとの関係について、適切な範囲を規定するための条件式である。条件式(5)の下限値を下回る条件である場合、正レンズの焦点距離fpが短くなりすぎるため、球面収差、コマ収差等の諸収差の補正が困難となり好ましくない。一方、条件式(5)の上限値を上回る条件である場合、正レンズの焦点距離fpが長くなりすぎるため、撮像レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(5)の下限値を0.55にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(5)の上限値を0.65にすることが望ましい。
 このような構成の撮影レンズPLにおいて、5枚のレンズL1~L5のうち最も物体側のレンズ(第1レンズL1)における両側のレンズ面は、物体側に凸面を向けるように湾曲し、次の条件式(6)~(7)で表される条件を満足することが好ましい。
 -0.12<Y/(Fno×fa)<0.15 …(6)
 |fa/fc|>5            …(7)
 但し、
  Y:撮像レンズPLの最大像高、
 Fno:撮像レンズPLのFナンバー、
 fa:最も物体側のレンズの焦点距離。
 条件式(6)は、撮像レンズPLの最大像高Yと、撮像レンズPLのFナンバーFnoと、最も物体側のレンズの焦点距離faとの関係について、適切な範囲を規定するための条件式である。条件式(6)の下限値を下回る条件である場合、最も物体側のレンズの負屈折力が大きくなりすぎて、バックフォーカスが必要以上に長くなるため、撮像レンズの全長が長くなり好ましくない。一方、条件式(6)の上限値を上回る条件である場合、最も物体側のレンズの正屈折力が大きくなり、開口絞りSよりも像側のレンズの負屈折力が大きくなりすぎるため、コマ収差の補正が困難となり、周辺光量も低下して好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(6)の下限値を-0.05にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(6)の上限値を0.05にすることが望ましい。
 条件式(7)は、最も物体側のレンズの焦点距離faと、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの合成焦点距離fcとの関係について、適切な範囲を規定するための条件式である。条件式(7)の下限値を下回る条件である場合、最も物体側のレンズの負屈折力が大きくなりすぎると、合成焦点距離fcを短くする必要があるため、球面収差の補正が困難となり好ましくない。また、最も物体側のレンズの正屈折力が大きくなりすぎると、合成屈折力が最大の正屈折力となる組の正レンズに入射する下側光束の入射角度が大きくなるため、コマ収差の補正が困難となり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(7)の下限値を10.0にすることが望ましい。
 このような構成の撮影レンズPLにおいて、5枚のレンズL1~L5のうち最も物体側のレンズ(第1レンズL1)における両側のレンズ面は、物体側に凸面を向けるように湾曲し、例えば図1の二点鎖線で示すように、最も物体側のレンズ、合成屈折力が最大の正屈折力となる正レンズおよび負レンズのうち少なくともいずれかのレンズ面に、密着複層型の回折光学素子DOEが設けられてもよい。このような構成によれば、軸上色収差を良好に補正することができる。以上に説明したように、第1実施形態によれば、撮像レンズPLの全長を短くして良好な結像性能を得ることができる。
 次に、撮影レンズPLの第2実施形態について説明する。第2実施形態の撮影レンズPLは、第1実施形態の撮影レンズPLと同様の構成であるため、第1実施形態と同じ符号を用いて説明する。第2実施形態の撮影レンズPLは、例えば図1に示すように、光軸Axに沿って物体側から順に並んだ、両側のレンズ面が物体側に凸面を向けるように湾曲した第1レンズL1と、正屈折力を有する第2レンズL1と、負屈折力を有する第3レンズL3と、正屈折力(もしくは負屈折力)を有する第4レンズL4と、負屈折力(もしくは正屈折力)を有する第5レンズL5とからなり、物体側に凹面を向けるように像面Iが湾曲している。すなわち、撮影レンズPLの像面Iは、光軸Axから周辺部へ向かうにつれて物体側へ大きく湾曲するようになっている。このような構成の撮影レンズPLにおいて、次の条件式(11)で表される条件を満足している。
 0.5<f23/f<1.2 …(11)
 但し、
 f23:第2レンズL2および第3レンズL3の合成焦点距離、
  f:撮像レンズPLの焦点距離。
 本実施形態においては、撮影レンズPLの像面Iを物体側に凹面を向けるように湾曲させることで、像面湾曲の補正の負担を軽減している。これにより、レンズの枚数を減らして撮影レンズPLの全長を短縮しながらも、良好な結像性能を得ることが可能になる。条件式(11)は、第2レンズL2および第3レンズL3の合成焦点距離f23と、撮像レンズPL全系の焦点距離fとの関係について、適切な範囲を規定する条件式である。条件式(11)の下限値を下回る条件である場合、合成焦点距離f23が短くなりすぎるため、像面湾曲の補正が困難となり好ましくない。なお、像面湾曲の補正のためにレンズの枚数を増やすと、撮影レンズの全長が長くなり、バックフォーカスが足りなくなる。一方、条件式(11)の上限値を上回る条件である場合、合成焦点距離f23が長くなりすぎるため、撮影レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(11)の下限値を0.80にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(11)の上限値を1.10にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(12)で表される条件を満足することが好ましい。
 -0.3<SAG/f23<-0.09 …(12)
 但し、
 SAG:最大像高における像面Iの光軸方向湾曲量。
 条件式(12)は、最大像高における像面Iの光軸方向湾曲量SAGと、第2レンズL2および第3レンズL3の合成焦点距離f23との関係について、適切な範囲を規定するための条件式である。条件式(12)の下限値を下回る条件である場合、合成焦点距離f23が短くなりすぎると、コマ収差等の諸収差の補正が困難となり好ましくない。また、像面Iの光軸方向湾曲量SAGがマイナス方向に大きくなりすぎると、最終レンズと撮像素子との干渉を避けるためにバックフォーカスを長くする必要があり、結果として撮影レンズの全長が長くなる。一方、条件式(12)の上限値を上回る条件である場合、像面Iの光軸方向湾曲量SAGが小さくなりすぎると、像面湾曲を補正するためのレンズの負担が大きくなる。その結果、像面湾曲の補正が困難となり好ましくない。なお、像面湾曲の補正のためにレンズの枚数を増やすと、撮影レンズの全長が長くなる。また、合成焦点距離f23が長くなりすぎると、撮影レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(12)の下限値を-0.20にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(12)の上限値を-0.12にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(13)で表される条件を満足することが好ましい。
 (r31+r32)/(r31-r32)<0 …(13)
 但し、
 r31:第3レンズL3における物体側のレンズ面の曲率半径、
 r32:第3レンズL3における像側のレンズ面の曲率半径。
 色収差を補正するには、アッベ数の小さい光学材料を用いた負レンズが少なくとも1枚必要になる。かつ、色収差を良好に補正するには、負レンズの屈折力をある程度大きくする必要がある。条件式(13)は、負屈折力を有する第3レンズL3のシェイプファクターについて、適切な範囲を規定するための条件式である。条件式(13)の上限値を上回る条件である場合、第3レンズL3における像側のレンズ面の曲率半径が、物体側のレンズ面の曲率半径よりも小さくなる。その結果、斜入射光束の上側光束が、第3レンズL3において物体側のレンズ面よりも光軸Axから離れた位置で像側のレンズ面を通過し、像側のレンズ面において大きく屈折される。そのため、コマ収差の補正が困難となり、周辺光量も低下して好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(13)の上限値を-0.30にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(14)で表される条件を満足することが好ましい。
 |f/f1|<0.5 …(14)
 但し、
 f1:第1レンズL1の焦点距離。
 レンズの長さを短く保つため、物体側のレンズ面が当該レンズ面の中心よりも物体側に突出するのは好ましくない。そのため、5枚のレンズL1~L5のうち最も物体側の第1レンズL1には、物体側に凸形状になる部分が必要になる。条件式(14)は、撮像レンズPL全系の焦点距離fと、第1レンズL1の焦点距離f1との関係について、適切な範囲を規定するための条件式である。条件式(14)の上限値を上回る条件である場合、第1レンズL1が正屈折力を有するときには、開口絞りSよりも像側のレンズにおける負屈折力が大きくなりすぎるため、コマ収差の補正が困難となり、周辺光量も低下して好ましくない。また、第1レンズL1が負屈折力を有するときには、バックフォーカスが必要以上に長くなるため、撮像レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(14)の上限値を0.25にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(15)で表される条件を満足することが好ましい。
 0.5<f2/f<0.7 …(15)
 但し、
 f2:第2レンズL2の焦点距離。
 条件式(15)は、第2レンズL2の焦点距離f2と、撮像レンズPL全系の焦点距離fとの関係について、適切な範囲を規定するための条件式である。条件式(15)の下限値を下回る条件である場合、第2レンズL2の焦点距離f2が短くなりすぎるため、球面収差、コマ収差等の諸収差の補正が困難となり好ましくない。一方、条件式(15)の上限値を上回る条件である場合、第2レンズL2の焦点距離f2が長くなりすぎるため、撮像レンズの全長が長くなり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(15)の下限値を0.55にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(15)の上限値を0.65にすることが望ましい。
 このような構成の撮影レンズPLにおいて、次の条件式(16)~(17)で表される条件を満足することが好ましい。
 -0.12<Y/(Fno×f1)<0.15 …(16)
 |f1/f23|>5            …(17)
 但し、
  Y:撮像レンズPLの最大像高、
 Fno:撮像レンズPLのFナンバー、
 f1:第1レンズL1の焦点距離。
 条件式(16)は、撮像レンズPLの最大像高Yと、撮像レンズPLのFナンバーFnoと、第1レンズL1の焦点距離f1との関係について、適切な範囲を規定するための条件式である。条件式(16)の下限値を下回る条件である場合、第1レンズL1の負屈折力が大きくなりすぎて、バックフォーカスが必要以上に長くなるため、撮像レンズの全長が長くなり好ましくない。一方、条件式(16)の上限値を上回る条件である場合、第1レンズL1の正屈折力が大きくなり、開口絞りSよりも像側のレンズにおける負屈折力が大きくなりすぎるため、コマ収差の補正が困難となり、周辺光量も低下して好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(16)の下限値を-0.05にすることが望ましい。一方、本実施形態の効果を良好に発揮するために、条件式(16)の上限値を0.05にすることが望ましい。
 条件式(17)は、第1レンズL1の焦点距離f1と、第2レンズL2および第3レンズL3の合成焦点距離f23との関係について、適切な範囲を規定するための条件式である。条件式(17)の下限値を下回る条件である場合、第1レンズL1の負屈折力が大きくなりすぎると、合成焦点距離f23を短くする必要があるため、球面収差の補正が困難となり好ましくない。また、第1レンズL1の正屈折力が大きくなりすぎると、第2レンズL2に入射する下側光束の入射角度が大きくなるため、コマ収差の補正が困難となり好ましくない。
 本実施形態の効果を良好に発揮するために、条件式(17)の下限値を10.0にすることが望ましい。
 このような構成の撮影レンズPLにおいて、例えば図1の二点鎖線で示すように、第1レンズL1、第2レンズL2、および第3レンズL3のうち少なくともいずれかのレンズ面に、密着複層型の回折光学素子DOEが設けられてもよい。このような構成によれば、軸上色収差を良好に補正することができる。以上に説明したように、第2実施形態によれば、撮像レンズPLの全長を短くして良好な結像性能を得ることができる。
 なお、上述の各実施形態において、像面Iの形状は、後述する実施例において図示したごとく物体側に凹面を向けた湾曲形状である。湾曲形状は、球面であることが製造上からも有効であるが、球面に限られるものではなく、非球面の凹面とすることも可能である。
 (第1実施例)
 以下、本願の各実施例について添付図面に基づいて説明する。まず、第1実施形態および第2実施形態の第1実施例について、図1~図2および表1を用いて説明する。図1は第1実施例に係る撮像レンズPL(PL1)のレンズ構成図である。第1実施例に係る撮像レンズPL1は、光軸Axに沿って物体側から順に並んだ、負屈折力を有する第1レンズL1と、正屈折力を有する第2レンズL2と、負屈折力を有する第3レンズL3と、正屈折力を有する第4レンズL4と、負屈折力を有する第5レンズL5とから構成される。撮像レンズPL1の像面Iは、物体側に凹面を向けるように球面状に湾曲している。また、第5レンズL5と像面Iとの間には、撮像素子のカバーガラス等から構成される平行平面板CVが配置される。
 第1レンズL1における両側のレンズ面は、物体側に凸面を向けるように湾曲した非球面となっている。また、第1レンズL1における像側のレンズ面の近傍には、インサートモールド成型により開口絞りSが設けられる。第2レンズL2における両側のレンズ面は非球面となっている。第3レンズL3における両側のレンズ面は非球面となっている。第4レンズL4における両側のレンズ面は非球面となっている。第5レンズL5における両側のレンズ面は非球面となっている。
 以下に、表1~表3を示すが、これらは第1~第3実施例に係る撮像レンズの諸元の値をそれぞれ掲げた表である。各表の[全体諸元]には、撮像レンズPLの焦点距離f、FナンバーFno、半画角ω、最大像高Yの値をそれぞれ示す。また、[レンズ諸元]において、第1カラム(面番号)は物体側から数えた際のレンズ面の番号を、第2カラムRはレンズ面の曲率半径を、第3カラムDはレンズ面の光軸上の間隔を、第4カラムndはd線(波長λ=587.6nm)に対する屈折率を、第5カラムνdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。なお、第1カラム(面番号)の右に付した*は、そのレンズ面が非球面であることを示す。また、曲率半径「∞」は平面を示し、空気の屈折率nd=1.000000はその記載を省略している。[条件式対応値]には、各条件式の対応値を示す。
 [非球面データ]において示す非球面係数は、レンズ面頂点からの光軸方向の距離(サグ量)をZとし、光軸Axからの距離をhとし、曲率(曲率半径の逆数)をcとし、コーニック定数をκとし、n次(n=4,6,8,10,12,14)の非球面係数をAnとしたとき、次式(A)で表される。なお、各実施例において、2次の非球面係数A2は0であり、記載を省略している。また、[非球面データ]において、「E-n」は「×10-n」を示す。
 Z=(c×h2)/[1+{1-(1+κ)×c2×h21/2
  +A4×h4+A6×h6+A8×h8+A10×h10+A12×h12+A14×h14 …(A)
 なお、以下の全ての諸元値において掲載されている焦点距離f、曲率半径R、その他の長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、後述の第2~第3実施例の諸元値においても、本実施例と同様の符号を用いる。
 下の表1に、第1実施例における各諸元を示す。なお、表1における第1面~第13面の曲率半径Rは、図1における第1面~第13面に付した符号R1~R13に対応している。また、第1実施例において、第1面、第2面、および第4面~第11面の各レンズ面は非球面形状に形成されている。
(表1)
[全体諸元]
 f    5.853
 Fno   2.0
 ω    42.3°
 Y    4.7
[レンズ諸元]
 面番号    R      D     nd    νd
 物体面    ∞      ∞
  1*    3.58814   0.60000   1.53500   55.73
  2*    2.99418   0.20000
  3      ∞     0.10000           (開口絞り)
  4*    3.59385   1.10000   1.59240   68.33
  5*    -4.61425   0.05000
  6*   -10.89554   0.60000   1.63970   23.52
  7*    30.11963   1.00000
  8*    -8.47947   1.10000   1.53500   55.73
  9*    -2.70651   0.20000
  10*   97.15970   0.60000   1.53500   55.73
  11*    2.57369   0.80000
  12     ∞     0.30000   1.51680   64.17
  13     ∞     1.00406
  像面  -18.57734
[非球面データ]
 第1面
 κ=0.000000,A4=-1.905098E-02,A6=-3.925321E-03,A8=2.940908E-05
 A10=8.107142E-05,A12=0.000000E+00,A14=0.000000E+00
 第2面
 κ=0.000000,A4=-1.592238E-02,A6=-8.636819E-03,A8=9.117990E-04
 A10=1.435611E-04,A12=0.000000E+00,A14=0.000000E+00
 第4面
 κ=0.000000,A4=6.376984E-03,A6=-3.842839E-03,A8=4.330670E-04
 A10=-9.794193E-05,A12=-4.879042E-06,A14=0.000000E+00
 第5面
 κ=0.000000,A4=-9.600867E-04,A6=-1.317960E-03,A8=2.128628E-03
 A10=-8.214733E-04,A12=8.378415E-05,A14=0.000000E+00
 第6面
 κ=0.000000,A4=-6.998459E-03,A6=5.165677E-04,A8=1.993257E-03
 A10=-3.097902E-04,A12=0.000000E+00,A14=0.000000E+00
 第7面
 κ=0.000000,A4=-2.021762E-03,A6=2.534751E-03,A8=-7.708647E-04
 A10=7.084518E-04,A12=-1.090781E-04,A14=0.000000E+00
 第8面
 κ=0.000000,A4=4.244460E-03,A6=-4.450262E-03,A8=4.302994E-04
 A10=-9.411797E-05,A12=1.538679E-05,A14=0.000000E+00
 第9面
 κ=-10.060074,A4=-1.325119E-02,A6=2.160387E-03,A8=-5.991852E-04
 A10=1.430015E-04,A12=-9.851887E-06,A14=0.000000E+00
 第10面
 κ=0.000000,A4=-4.569543E-02,A6=4.500491E-03,A8=2.552752E-05
 A10=-7.551026E-06,A12=-5.327296E-07,A14=0.000000E+00
 第11面
 κ=-11.216551,A4=-2.423316E-02,A6=3.655799E-03,A8=-3.443295E-04
 A10=1.790314E-05,A12=-4.145952E-07,A14=4.096204E-10
[条件式対応値]
  条件式(1) fc/f=0.811
  条件式(2) SAG/fc=-0.127
  条件式(3) (ra+rb)/(ra-rb)=-0.469
  条件式(4) |f/fa|=0.112
  条件式(5) fp/f=0.613
  条件式(6) Y/(Fno×fa)=-0.045
  条件式(7) |fa/fc|=10.991
 条件式(11) f23/f=0.811
 条件式(12) SAG/f23=-0.127
 条件式(13) (r31+r32)/(r31-r32)=-0.469
 条件式(14) |f/f1|=0.112
 条件式(15) f2/f=0.613
 条件式(16) Y/(Fno×f1)=-0.045
 条件式(17) |f1/f23|=10.991
  参考式(B) f45/f=-3.412
 このように本実施例では、条件式(1)~(7)および条件式(11)~(17)が全て満たされていることが分かる。なお、第1レンズL1は、5枚のレンズL1~L5のうち最も物体側のレンズである。また、第2レンズL2および第3レンズL3は、正レンズおよび正レンズの像側に並んで配置された負レンズの組のうち、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組である。また、第3レンズL3は、アッベ数が40以下の光学材料を用いた負レンズである。そのため、条件式(1)と条件式(11)、条件式(2)と条件式(12)、条件式(3)と条件式(13)、条件式(4)と条件式(14)、条件式(5)と条件式(15)、条件式(6)と条件式(16)、条件式(7)と条件式(17)は、それぞれ同等の式になる。
 また、参考式(B)において、f45は第4レンズL4および第5レンズL5の合成焦点距離である。第4レンズL4および第5レンズL5は、正レンズおよび正レンズの像側に並んで配置された負レンズの組であるが、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組ではない。そのため、参考式(B)の対応値は、条件式(1)の範囲に含まれないことを示している。
 図2は、第1実施例に係る撮像レンズPL1の諸収差図である。なお、非点収差を示す収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示している。また、コマ収差を示す収差図において、RFHは像高比(Relative Field Height)を示す。以上、収差図の説明は他の実施例においても同様である。
 そして、各収差図より、第1実施例では、諸収差が良好に補正され、優れた結像性能を有していることがわかる。その結果、第1実施例の撮像レンズPL1を搭載することにより、撮像装置CMRにおいても、優れた結像性能を確保することができる。
 (第2実施例)
 次に、第1実施形態および第2実施形態の第2実施例について、図3~図4および表2を用いて説明する。図3は第2実施例に係る撮像レンズPL(PL2)のレンズ構成図である。第2実施例に係る撮像レンズPL2は、光軸Axに沿って物体側から順に並んだ、正屈折力を有する第1レンズL1と、正屈折力を有する第2レンズL2と、負屈折力を有する第3レンズL3と、正屈折力を有する第4レンズL4と、負屈折力を有する第5レンズL5とから構成される。撮像レンズPL2の像面Iは、物体側に凹面を向けるように球面状に湾曲している。また、第5レンズL5と像面Iとの間には、撮像素子のカバーガラス等から構成される平行平面板CVが配置される。
 第1レンズL1における両側のレンズ面は、物体側に凸面を向けるように湾曲した非球面となっている。また、第1レンズL1における像側のレンズ面の近傍には、インサートモールド成型により開口絞りSが設けられる。第2レンズL2における両側のレンズ面は非球面となっている。第3レンズL3における両側のレンズ面は非球面となっている。第4レンズL4における両側のレンズ面は非球面となっている。第5レンズL5における両側のレンズ面は非球面となっている。
 下の表2に、第2実施例における各諸元を示す。なお、表2における第1面~第13面の曲率半径Rは、図3における第1面~第13面に付した符号R1~R13に対応している。また、第2実施例において、第1面、第2面、および第4面~第11面の各レンズ面は非球面形状に形成されている。
(表2)
[全体諸元]
 f    5.868
 Fno   2.0
 ω    43.1°
 Y    4.7
[レンズ諸元]
 面番号    R      D     nd    νd
 物体面    ∞      ∞
  1*    3.12316   0.60000   1.53500   55.73
  2*    3.05090   0.28000
  3      ∞     0.02000           (開口絞り)
  4*    3.56272   1.10000   1.53500   55.73
  5*    -3.56250   0.05000
  6*    -4.67268   0.60000   1.63970   23.52
  7*   -42.90935   1.00000
  8*    -9.78933   1.10000   1.53500   55.73
  9*    -2.54179   0.20000
  10*   -37.12583   0.60000   1.53500   55.73
  11*    2.83700   0.80000
  12     ∞     0.30000   1.51680   64.17
  13     ∞     1.00507
  像面  -13.99771
[非球面データ]
 第1面
 κ=0.000000,A4=-1.213526E-02,A6=-2.914001E-03,A8=7.340890E-05
 A10=-1.382644E-04,A12=0.000000E+00,A14=0.000000E+00
 第2面
 κ=0.000000,A4=-1.154281E-02,A6=-4.833499E-03,A8=4.157969E-04
 A10=-2.796214E-05,A12=0.000000E+00,A14=0.000000E+00
 第4面
 κ=0.000000,A4=1.304745E-03,A6=-1.954684E-03,A8=2.937754E-04
 A10=-1.478835E-04,A12=4.498558E-05,A14=0.000000E+00
 第5面
 κ=0.000000,A4=-2.875187E-03,A6=-1.877794E-03,A8=2.482260E-03
 A10=-8.617318E-04,A12=1.323289E-04,A14=0.000000E+00
 第6面
 κ=0.000000,A4=-5.124018E-03,A6=8.417598E-04,A8=1.415639E-03
 A10=-2.007317E-04,A12=0.000000E+00,A14=0.000000E+00
 第7面
 κ=0.000000,A4=6.386856E-04,A6=2.174683E-03,A8=-8.719897E-04
 A10=5.003192E-04,A12=-7.353934E-05,A14=0.000000E+00
 第8面
 κ=0.000000,A4=2.009774E-03,A6=-3.895257E-03,A8=4.667208E-04
 A10=-1.104665E-04,A12=1.321651E-05,A14=0.000000E+00
 第9面
 κ=-7.856781,A4=-1.658180E-02,A6=2.039827E-03,A8=-6.157134E-04
 A10=1.423582E-04,A12=-9.305220E-06,A14=0.000000E+00
 第10面
 κ=0.000000,A4=-4.436982E-02,A6=4.362051E-03,A8=2.832907E-05
 A10=-1.029337E-05,A12=-1.152115E-06,A14=0.000000E+00
 第11面
 κ=-12.819868,A4=-2.519875E-02,A6=3.788695E-03,A8=-3.536631E-04
 A10=1.752252E-05,A12=-4.061527E-07,A14=1.602396E-09
[条件式対応値]
  条件式(1) fc/f=0.967
  条件式(2) SAG/fc=-0.143
  条件式(3) (ra+rb)/(ra-rb)=-1.244
  条件式(4) |f/fa|=0.045
  条件式(5) fp/f=0.600
  条件式(6) Y/(Fno×fa)=0.018
  条件式(7) |fa/fc|=22.922
 条件式(11) f23/f=0.967
 条件式(12) SAG/f23=-0.143
 条件式(13) (r31+r32)/(r31-r32)=-1.244
 条件式(14) |f/f1|=0.045
 条件式(15) f2/f=0.600
 条件式(16) Y/(Fno×f1)=0.018
 条件式(17) |f1/f23|=22.922
  参考式(B) f45/f=-5.840
 このように本実施例では、条件式(1)~(7)および条件式(11)~(17)が全て満たされていることが分かる。なお、第1レンズL1は、5枚のレンズL1~L5のうち最も物体側のレンズである。また、第2レンズL2および第3レンズL3は、正レンズおよび正レンズの像側に並んで配置された負レンズの組のうち、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組である。また、第3レンズL3は、アッベ数が40以下の光学材料を用いた負レンズである。そのため、条件式(1)と条件式(11)、条件式(2)と条件式(12)、条件式(3)と条件式(13)、条件式(4)と条件式(14)、条件式(5)と条件式(15)、条件式(6)と条件式(16)、条件式(7)と条件式(17)は、それぞれ同等の式になる。
 また、第4レンズL4および第5レンズL5は、正レンズおよび正レンズの像側に並んで配置された負レンズの組であるが、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組ではない。そのため、参考式(B)の対応値は、条件式(1)の範囲に含まれないことを示している。
 図4は、第2実施例に係る撮像レンズPL2の諸収差図である。そして、各収差図より、第2実施例では、諸収差が良好に補正され、優れた結像性能を有していることがわかる。その結果、第2実施例の撮像レンズPL2を搭載することにより、撮像装置CMRにおいても、優れた結像性能を確保することができる。
 (第3実施例)
 次に、第1実施形態および第2実施形態の第3実施例について、図5~図6および表3を用いて説明する。図5は第3実施例に係る撮像レンズPL(PL3)のレンズ構成図である。第3実施例に係る撮像レンズPL3は、光軸Axに沿って物体側から順に並んだ、正屈折力を有する第1レンズL1と、正屈折力を有する第2レンズL2と、負屈折力を有する第3レンズL3と、正屈折力を有する第4レンズL4と、負屈折力を有する第5レンズL5とから構成される。撮像レンズPL3の像面Iは、物体側に凹面を向けるように球面状に湾曲している。また、第5レンズL5と像面Iとの間には、撮像素子のカバーガラス等から構成される平行平面板CVが配置される。
 第1レンズL1における両側のレンズ面は、物体側に凸面を向けるように湾曲した非球面となっている。また、第1レンズL1における像側のレンズ面の近傍には、インサートモールド成型により開口絞りSが設けられる。第2レンズL2における両側のレンズ面は非球面となっている。第3レンズL3における両側のレンズ面は非球面となっている。第4レンズL4における両側のレンズ面は非球面となっている。第5レンズL5における両側のレンズ面は非球面となっている。
 下の表3に、第3実施例における各諸元を示す。なお、表3における第1面~第13面の曲率半径Rは、図5における第1面~第13面に付した符号R1~R13に対応している。また、第3実施例において、第1面、第2面、および第4面~第11面の各レンズ面は非球面形状に形成されている。
(表3)
[全体諸元]
 f    5.912
 Fno   2.0
 ω    43.8°
 Y    4.7
[レンズ諸元]
 面番号    R      D     nd    νd
 物体面    ∞      ∞
  1*    3.46239   0.60000   1.53500   55.73
  2*    3.37137   0.20000
  3      ∞     0.10000           (開口絞り)
  4*    4.13127   1.10000   1.53500   55.73
  5*    -3.61119   0.05000
  6*    -5.92015   0.60000   1.63970   23.52
  7*    55.55715   1.00000
  8*    -5.64814   1.10000   1.53500   55.73
  9*    -3.35055   0.20000
  10*    4.50000   0.60000   1.53500   55.73
  11*    3.00000   0.80000
  12     ∞     0.30000   1.51680   64.17
  13     ∞     1.49748
  像面  -11.08945
[非球面データ]
 第1面
 κ=0.000000,A4=-1.043677E-02,A6=-2.424656E-03,A8=-1.490177E-04
 A10=-6.686761E-05,A12=0.000000E+00,A14=0.000000E+00
 第2面
 κ=0.000000,A4=-8.096253E-03,A6=-4.461763E-03,A8=4.434949E-04
 A10=-7.974020E-05,A12=0.000000E+00,A14=0.000000E+00
 第4面
 κ=0.000000,A4=2.120646E-03,A6=-1.633784E-03,A8=1.124988E-04
 A10=1.176972E-04,A12=-2.438439E-07,A14=0.000000E+00
 第5面
 κ=0.000000,A4=1.667268E-03,A6=-2.587821E-03,A8=2.439766E-03
 A10=-6.904527E-04,A12=9.927198E-05,A14=0.000000E+00
 第6面
 κ=0.000000,A4=-5.019878E-04,A6=-7.035886E-04,A8=1.592027E-03
 A10=-3.233124E-04,A12=0.000000E+00,A14=0.000000E+00
 第7面
 κ=0.000000,A4=3.710473E-03,A6=1.595928E-03,A8=-6.116918E-04
 A10=2.977347E-04,A12=-4.597579E-05,A14=0.000000E+00
 第8面
 κ=0.000000,A4=6.888376E-03,A6=-3.990456E-03,A8=7.084014E-04
 A10=-7.314271E-05,A12=-1.825776E-06,A14=0.000000E+00
 第9面
 κ=-5.819945,A4=-1.716600E-02,A6=2.897915E-03,A8=-7.084160E-04
 A10=1.231249E-04,A12=-1.039563E-05,A14=0.000000E+00
 第10面
 κ=0.000000,A4=-3.991829E-02,A6=3.550748E-03,A8=-8.771361E-05
 A10=-1.017952E-05,A12=3.852730E-07,A14=0.000000E+00
 第11面
 κ=-3.550880,A4=-2.666443E-02,A6=3.458725E-03,A8=-2.919526E-04
 A10=1.576851E-05,A12=-5.422026E-07,A14=9.142382E-09
[条件式対応値]
  条件式(1) fc/f=1.072
  条件式(2) SAG/fc=-0.165
  条件式(3) (ra+rb)/(ra-rb)=-0.807
  条件式(4) |f/fa|=0.032
  条件式(5) fp/f=0.641
  条件式(6) Y/(Fno×fa)=0.013
  条件式(7) |fa/fc|=29.137
 条件式(11) f23/f=1.072
 条件式(12) SAG/f23=-0.165
 条件式(13) (r31+r32)/(r31-r32)=-0.807
 条件式(14) |f/f1|=0.032
 条件式(15) f2/f=0.641
 条件式(16) Y/(Fno×f1)=0.013
 条件式(17) |f1/f23|=29.137
  参考式(B) f45/f=6.214
 このように本実施例では、条件式(1)~(7)および条件式(11)~(17)が全て満たされていることが分かる。なお、第1レンズL1は、5枚のレンズL1~L5のうち最も物体側のレンズである。また、第2レンズL2および第3レンズL3は、正レンズおよび正レンズの像側に並んで配置された負レンズの組のうち、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組である。また、第3レンズL3は、アッベ数が40以下の光学材料を用いた負レンズである。そのため、条件式(1)と条件式(11)、条件式(2)と条件式(12)、条件式(3)と条件式(13)、条件式(4)と条件式(14)、条件式(5)と条件式(15)、条件式(6)と条件式(16)、条件式(7)と条件式(17)は、それぞれ同等の式になる。
 また、第4レンズL4および第5レンズL5は、正レンズおよび正レンズの像側に並んで配置された負レンズの組であるが、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組ではない。そのため、参考式(B)の対応値は、条件式(1)の範囲に含まれないことを示している。
 図6は、第3実施例に係る撮像レンズPL3の諸収差図である。そして、各収差図より、第3実施例では、諸収差が良好に補正され、優れた結像性能を有していることがわかる。その結果、第3実施例の撮像レンズPL3を搭載することにより、撮像装置CMRにおいても、優れた結像性能を確保することができる。
 以上、各実施例によれば、全長が短くて良好な結像性能を有した撮像レンズおよび、これを備えた撮像装置を実現することができる。
 上述の各実施例において、撮像レンズPLの像面Iは、物体側に凹面を向けるように球面状に湾曲しているが、これに限られるものではなく、例えば非球面状に湾曲していてもよく、曲面状に湾曲していればよい。
 上述の各実施例において、第4レンズL4は、正屈折力を有しているが、これに限られるものではなく、負屈折力を有していてもよい。また、第5レンズL5は、負屈折力を有しているが、これに限られるものではなく、正屈折力を有していてもよい。
 上述の各実施例において、第2レンズL2および第3レンズL3が、正レンズおよび正レンズの像側に並んで配置された負レンズの組のうち、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組となっているが、これに限られるものではなく、第4レンズL4および第5レンズL5が、合成屈折力が最大の正屈折力となる正レンズおよび負レンズの組となるように構成されてもよい。
 上述の各実施例において、例えば図1の二点鎖線で示すように、第1レンズL1、第2レンズL2、および第3レンズL3のうち少なくともいずれかのレンズ面に、密着複層型の回折光学素子DOEが設けられてもよい。
 上述の各実施例において、開口絞りSは、第1レンズL1の近傍に配置されており、収差補正上、第1レンズL1における像側のレンズ面近傍に配置されることが好ましい。また、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
CMR 撮像装置
 SR 撮像素子
 PL 撮像レンズ
 L1 第1レンズ            L2 第2レンズ
 L3 第3レンズ            L4 第4レンズ
 L5 第5レンズ
  S 開口絞り              I 像面
DOE 回折光学素子

Claims (24)

  1.  物体側に凹面を向けるように像面が湾曲した撮像レンズであって、
     正レンズおよび負レンズの両方を含む5枚のレンズからなり、
     前記5枚のレンズに含まれる負レンズのうち少なくとも1枚は、正レンズの像側に並んで配置されており、
     前記正レンズおよび前記正レンズの像側に並んで配置された前記負レンズの組のうち、合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの組において、以下の条件式を満足することを特徴とする撮像レンズ。
     0.5<fc/f<1.2
     但し、
     fc:前記合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの合成焦点距離、
      f:前記撮像レンズの焦点距離。
  2.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     -0.3<SAG/fc<-0.09
     但し、
     SAG:最大像高における前記像面の光軸方向湾曲量。
  3.  前記5枚のレンズは、アッベ数が40以下の光学材料を用いた負レンズを少なくとも1枚含み、
     以下の条件式を満足することを特徴とする請求項1または2に記載の撮像レンズ。
     (ra+rb)/(ra-rb)<0
     但し、
     ra:前記アッベ数が40以下の光学材料を用いた負レンズにおける物体側のレンズ面の曲率半径、
     rb:前記アッベ数が40以下の光学材料を用いた負レンズにおける像側のレンズ面の曲率半径。
  4.  前記アッベ数が40以下の光学材料を用いた負レンズは、前記合成屈折力が最大の正屈折力となる組の前記負レンズであることを特徴とする請求項3に記載の撮像レンズ。
  5.  前記5枚のレンズのうち最も物体側のレンズにおける両側のレンズ面は、物体側に凸面を向けるように湾曲し、
     以下の条件式を満足することを特徴とする請求項1から4のいずれか一項に記載の撮像レンズ。
     |f/fa|<0.5
     但し、
     fa:前記最も物体側のレンズの焦点距離。
  6.  以下の条件式を満足することを特徴とする請求項1から5のいずれか一項に記載の撮像レンズ。
     0.5<fp/f<0.7
     但し、
     fp:前記合成屈折力が最大の正屈折力となる組の前記正レンズの焦点距離。
  7.  前記5枚のレンズのうち最も物体側のレンズにおける両側のレンズ面は、物体側に凸面を向けるように湾曲し、
     以下の条件式を満足することを特徴とする請求項1から6のいずれか一項に記載の撮像レンズ。
     -0.12<Y/(Fno×fa)<0.15
     |fa/fc|>5
     但し、
      Y:前記撮像レンズの最大像高、
     Fno:前記撮像レンズのFナンバー、
     fa:前記最も物体側のレンズの焦点距離。
  8.  前記5枚のレンズのうち最も物体側のレンズにおける両側のレンズ面は、物体側に凸面を向けるように湾曲し、
     前記最も物体側のレンズ、前記合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズのうち少なくともいずれかのレンズ面に、密着複層型の回折光学素子が設けられることを特徴とする請求項1から7のいずれか一項に記載の撮像レンズ。
  9.  物体側に凹面を向けるように像面が湾曲した撮像レンズであって、
     光軸に沿って物体側から順に並んだ、両側のレンズ面が物体側に凸面を向けるように湾曲した第1レンズと、正屈折力を有する第2レンズと、負屈折力を有する第3レンズと、正屈折力もしくは負屈折力を有する第4レンズと、正屈折力もしくは負屈折力を有する第5レンズとからなり、
     以下の条件式を満足することを特徴とする撮像レンズ。
     0.5<f23/f<1.2
     但し、
     f23:前記第2レンズおよび前記第3レンズの合成焦点距離、
      f:前記撮像レンズの焦点距離。
  10.  以下の条件式を満足することを特徴とする請求項9に記載の撮像レンズ。
     -0.3<SAG/f23<-0.09
     但し、
     SAG:最大像高における前記像面の光軸方向湾曲量。
  11.  以下の条件式を満足することを特徴とする請求項9または10に記載の撮像レンズ。
     (r31+r32)/(r31-r32)<0
     但し、
     r31:前記第3レンズにおける物体側のレンズ面の曲率半径、
     r32:前記第3レンズにおける像側のレンズ面の曲率半径。
  12.  以下の条件式を満足することを特徴とする請求項9から11のいずれか一項に記載の撮像レンズ。
     |f/f1|<0.5
     但し、
     f1:前記第1レンズの焦点距離。
  13.  以下の条件式を満足することを特徴とする請求項9から12のいずれか一項に記載の撮像レンズ。
     0.5<f2/f<0.7
     但し、
     f2:前記第2レンズの焦点距離。
  14.  以下の条件式を満足することを特徴とする請求項9から13のいずれか一項に記載の撮像レンズ。
     -0.12<Y/(Fno×f1)<0.15
     |f1/f23|>5
     但し、
      Y:前記撮像レンズの最大像高、
     Fno:前記撮像レンズのFナンバー、
     f1:前記第1レンズの焦点距離。
  15.  前記第1レンズ、前記第2レンズ、および前記第3レンズのうち少なくともいずれかのレンズ面に、密着複層型の回折光学素子が設けられることを特徴とする請求項9から14のいずれか一項に記載の撮像レンズ。
  16.  物体の像を撮像面上に結像させる撮像レンズと、
     前記撮像面上に結像した前記物体の像を撮像する撮像素子とを備え、
     前記撮像レンズは、正レンズおよび負レンズの両方を含む5枚のレンズからなり、
     前記5枚のレンズに含まれる負レンズのうち少なくとも1枚は、正レンズの像側に並んで配置されており、
     前記正レンズおよび前記正レンズの像側に並んで配置された前記負レンズの組のうち、合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの組において、以下の条件式を満足することを特徴とする撮像装置。
     0.5<fc/f<1.2
     但し、
     fc:前記合成屈折力が最大の正屈折力となる前記正レンズおよび前記負レンズの合成焦点距離、
      f:前記撮像レンズの焦点距離。
  17.  前記5枚のレンズは、アッベ数が40以下の光学材料を用いた負レンズを少なくとも1枚含み、
     以下の条件式を満足することを特徴とする請求項16に記載の撮像装置。
     (ra+rb)/(ra-rb)<0
     但し、
     ra:前記アッベ数が40以下の光学材料を用いた負レンズにおける物体側のレンズ面の曲率半径、
     rb:前記アッベ数が40以下の光学材料を用いた負レンズにおける像側のレンズ面の曲率半径。
  18.  前記アッベ数が40以下の光学材料を用いた負レンズは、前記合成屈折力が最大の正屈折力となる組の前記負レンズであることを特徴とする請求項17に記載の撮像装置。
  19.  前記5枚のレンズのうち最も物体側のレンズにおける両側のレンズ面は、物体側に凸面を向けるように湾曲し、
     以下の条件式を満足することを特徴とする請求項16から18のいずれか一項に記載の撮像装置。
     |f/fa|<0.5
     但し、
     fa:前記最も物体側のレンズの焦点距離。
  20.  以下の条件式を満足することを特徴とする請求項16から19のいずれか一項に記載の撮像装置。
     0.5<fp/f<0.7
     但し、
     fp:前記合成屈折力が最大の正屈折力となる組の前記正レンズの焦点距離。
  21.  前記5枚のレンズのうち最も物体側のレンズにおける両側のレンズ面は、物体側に凸面を向けるように湾曲し、
     以下の条件式を満足することを特徴とする請求項16から20のいずれか一項に記載の撮像装置。
     -0.12<Y/(Fno×fa)<0.15
     |fa/fc|>5
     但し、
      Y:前記撮像レンズの最大像高、
     Fno:前記撮像レンズのFナンバー、
     fa:前記最も物体側のレンズの焦点距離。
  22.  前記5枚のレンズのうち最も物体側のレンズにおける両側のレンズ面は、物体側に凸面を向けるように湾曲し、
     前記最も物体側のレンズ、前記合成屈折力が最大となる前記正レンズおよび前記負レンズのうち少なくともいずれかのレンズ面に、密着複層型の回折光学素子が設けられることを特徴とする請求項16から21のいずれか一項に記載の撮像装置。
  23.  物体側に凹面を向けるように前記撮像面が湾曲し、
     前記撮像レンズの像面が前記撮像面に沿って湾曲して形成されることを特徴とする請求項16から22のいずれか一項に記載の撮像装置。
  24.  以下の条件式を満足することを特徴とする請求項23に記載の撮像装置。
     -0.3<SAG/fc<-0.09
     但し、
     SAG:最大像高における前記像面の光軸方向湾曲量。
PCT/JP2014/005968 2014-11-28 2014-11-28 撮像レンズおよび撮像装置 WO2016084117A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561100A JP6455522B2 (ja) 2014-11-28 2014-11-28 撮像レンズおよび撮像装置
PCT/JP2014/005968 WO2016084117A1 (ja) 2014-11-28 2014-11-28 撮像レンズおよび撮像装置
US15/605,670 US20170261726A1 (en) 2014-11-28 2017-05-25 Imaging lens and image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/005968 WO2016084117A1 (ja) 2014-11-28 2014-11-28 撮像レンズおよび撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/605,670 Continuation US20170261726A1 (en) 2014-11-28 2017-05-25 Imaging lens and image capturing device

Publications (1)

Publication Number Publication Date
WO2016084117A1 true WO2016084117A1 (ja) 2016-06-02

Family

ID=56073742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005968 WO2016084117A1 (ja) 2014-11-28 2014-11-28 撮像レンズおよび撮像装置

Country Status (3)

Country Link
US (1) US20170261726A1 (ja)
JP (1) JP6455522B2 (ja)
WO (1) WO2016084117A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190080527A (ko) * 2017-12-28 2019-07-08 오필름코리아(주) 촬상 광학계
US10620426B2 (en) 2016-01-28 2020-04-14 Olympus Corporation Image pickup apparatus and capsule endoscope
CN111929846A (zh) * 2020-09-22 2020-11-13 瑞泰光学(常州)有限公司 摄像光学镜头

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876001B (zh) * 2018-08-31 2022-05-17 南昌欧菲光电技术有限公司 摄像光学系统及电子装置
CN110231705B (zh) * 2019-08-06 2019-11-05 瑞声光电科技(常州)有限公司 摄像光学镜头
WO2021127852A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188292A (ja) * 1992-01-14 1993-07-30 Konica Corp 小型のズームレンズ
JPH07120677A (ja) * 1993-10-22 1995-05-12 Olympus Optical Co Ltd コンパクトな3群ズームレンズ
JP2001356266A (ja) * 2000-06-13 2001-12-26 Olympus Optical Co Ltd ズームレンズ
JP2007279282A (ja) * 2006-04-05 2007-10-25 Fujinon Corp 撮像レンズおよび撮像装置
JP2010008562A (ja) * 2008-06-25 2010-01-14 Konica Minolta Opto Inc 撮像レンズ
JP2012141423A (ja) * 2010-12-28 2012-07-26 Kantatsu Co Ltd 撮像レンズ
JP2012252193A (ja) * 2011-06-03 2012-12-20 Konica Minolta Advanced Layers Inc 撮像装置用の撮像レンズ、撮像装置及び携帯端末
WO2013027641A1 (ja) * 2011-08-19 2013-02-28 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ及び撮像装置
US20130321932A1 (en) * 2012-06-05 2013-12-05 Largan Precision Co., Ltd. Image capturing optical lens assembly
US20140029116A1 (en) * 2012-07-27 2014-01-30 Largan Precision Co., Ltd. Optical image capturing lens system
JP2014178624A (ja) * 2013-03-15 2014-09-25 Hitachi Maxell Ltd 広角レンズおよび撮像装置
JP2015001644A (ja) * 2013-06-17 2015-01-05 コニカミノルタ株式会社 撮像レンズ及び撮像装置
JP2015022152A (ja) * 2013-07-19 2015-02-02 コニカミノルタ株式会社 撮像レンズ及び撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215457A (ja) * 2002-01-25 2003-07-30 Canon Inc ズームレンズ及びそれを有する光学機器
JP6003235B2 (ja) * 2012-05-29 2016-10-05 ブラザー工業株式会社 プログラム,画像処理装置,画像処理システムおよびエラー報知方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188292A (ja) * 1992-01-14 1993-07-30 Konica Corp 小型のズームレンズ
JPH07120677A (ja) * 1993-10-22 1995-05-12 Olympus Optical Co Ltd コンパクトな3群ズームレンズ
JP2001356266A (ja) * 2000-06-13 2001-12-26 Olympus Optical Co Ltd ズームレンズ
JP2007279282A (ja) * 2006-04-05 2007-10-25 Fujinon Corp 撮像レンズおよび撮像装置
JP2010008562A (ja) * 2008-06-25 2010-01-14 Konica Minolta Opto Inc 撮像レンズ
JP2012141423A (ja) * 2010-12-28 2012-07-26 Kantatsu Co Ltd 撮像レンズ
JP2012252193A (ja) * 2011-06-03 2012-12-20 Konica Minolta Advanced Layers Inc 撮像装置用の撮像レンズ、撮像装置及び携帯端末
WO2013027641A1 (ja) * 2011-08-19 2013-02-28 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ及び撮像装置
US20130321932A1 (en) * 2012-06-05 2013-12-05 Largan Precision Co., Ltd. Image capturing optical lens assembly
US20140029116A1 (en) * 2012-07-27 2014-01-30 Largan Precision Co., Ltd. Optical image capturing lens system
JP2014178624A (ja) * 2013-03-15 2014-09-25 Hitachi Maxell Ltd 広角レンズおよび撮像装置
JP2015001644A (ja) * 2013-06-17 2015-01-05 コニカミノルタ株式会社 撮像レンズ及び撮像装置
JP2015022152A (ja) * 2013-07-19 2015-02-02 コニカミノルタ株式会社 撮像レンズ及び撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620426B2 (en) 2016-01-28 2020-04-14 Olympus Corporation Image pickup apparatus and capsule endoscope
KR20190080527A (ko) * 2017-12-28 2019-07-08 오필름코리아(주) 촬상 광학계
KR102004423B1 (ko) * 2017-12-28 2019-07-26 오필름코리아(주) 촬상 광학계
CN111929846A (zh) * 2020-09-22 2020-11-13 瑞泰光学(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
JP6455522B2 (ja) 2019-01-23
US20170261726A1 (en) 2017-09-14
JPWO2016084117A1 (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6489134B2 (ja) 撮像レンズおよび撮像装置
JP5915462B2 (ja) 撮像レンズおよび撮像装置
JP6021617B2 (ja) 撮像レンズ
JP6403711B2 (ja) 撮像レンズ
JP5201690B2 (ja) 撮像レンズ
JP6555342B2 (ja) 撮像レンズおよび撮像装置
JP6455522B2 (ja) 撮像レンズおよび撮像装置
JP5993604B2 (ja) 赤外線用光学系
US11262530B2 (en) Imaging lens composed of five optical elements
JP6033658B2 (ja) 撮像レンズ
JP5571255B2 (ja) 対物光学系およびこれを用いた内視鏡装置
JP6001430B2 (ja) 撮像レンズ
US7480106B2 (en) Imaging lens
JP2010039243A (ja) 赤外線用レンズおよび撮像装置
JP6390907B2 (ja) 単焦点レンズ系、交換レンズ装置及びカメラシステム
JP2019045665A (ja) 撮像レンズ
JP2018155833A (ja) 撮像レンズおよび撮像装置
JP2019053113A (ja) 撮像レンズ系及び撮像装置
JP2018200444A (ja) 撮像レンズ
JP6126431B2 (ja) 光学系及びそれを有する撮像装置
JP6587293B2 (ja) 撮像レンズ
JP6474434B2 (ja) 撮像レンズ
JP7193362B2 (ja) 撮像レンズ及び撮像装置
JP3717487B2 (ja) 撮像レンズ
JP5308915B2 (ja) 撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906689

Country of ref document: EP

Kind code of ref document: A1