WO2016080506A1 - ウエハの接合方法 - Google Patents

ウエハの接合方法 Download PDF

Info

Publication number
WO2016080506A1
WO2016080506A1 PCT/JP2015/082618 JP2015082618W WO2016080506A1 WO 2016080506 A1 WO2016080506 A1 WO 2016080506A1 JP 2015082618 W JP2015082618 W JP 2015082618W WO 2016080506 A1 WO2016080506 A1 WO 2016080506A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
film
bonding
metal layer
oxide film
Prior art date
Application number
PCT/JP2015/082618
Other languages
English (en)
French (fr)
Inventor
政和 福光
山田 修平
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016560294A priority Critical patent/JP6172555B2/ja
Publication of WO2016080506A1 publication Critical patent/WO2016080506A1/ja
Priority to US15/599,714 priority patent/US10118247B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0603Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0648Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/035Soldering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device

Definitions

  • the present invention bonds the first wafer and the second wafer by bonding the first metal layer formed on the surface of the first wafer and the second metal film formed on the surface of the second wafer.
  • the present invention relates to a wafer bonding method.
  • Patent Documents 1 and 2 disclose, for example, dilute hydrofluoric acid or forming on both the bonding surface of the metal layer of the first wafer and the bonding surface of the metal layer of the second wafer, which are bonding targets. A pretreatment for removing or reducing the oxide film by gas or sputtering is performed.
  • Non-Patent Document 1 pretreatment for removing or reducing the oxide film is performed on both the bonding surface of the metal layer of the first wafer and the bonding surface of the metal layer of the second wafer that are to be bonded.
  • a relatively large load is applied to a pair of wafers stacked on each other to apply a mechanical impact to the bonding surfaces of both metal layers, thereby mechanically destroying the oxide film.
  • the oxide film is removed, and at the same time, the bonding surfaces are eutectic bonded.
  • Patent Documents 1 and 2 if one of the wafers is a piezoelectric resonator of a MEMS (Micro Electro Mechanical Systems) wafer, the pretreatment for removing or reducing the oxide film is also performed on the piezoelectric resonator. Depending on the process, the vibration characteristics of the piezoelectric resonator may change to an unacceptable level. In Non-Patent Document 1, a high-load mechanical impact may cause cracking of the wafer itself.
  • MEMS Micro Electro Mechanical Systems
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a wafer bonding method capable of bonding wafers with high reliability while suppressing the influence on the wafer.
  • a wafer bonding method includes: A first wafer on which a first metal layer having a first rigidity is formed on a surface and a second wafer on which a second metal layer having a second rigidity higher than the first rigidity is formed are prepared. And a process of Removing the oxide film on the surface of the second metal layer while not removing the oxide film on the surface of the first metal layer; Bonding the surface of the first wafer and the surface of the second wafer.
  • the present invention it is possible to provide a wafer bonding method capable of bonding wafers with high reliability while suppressing the influence on the wafer.
  • FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. It is sectional drawing for demonstrating the manufacturing method of the piezoelectric resonance apparatus which concerns on one Embodiment of this invention. It is sectional drawing for demonstrating the manufacturing method of the piezoelectric resonance apparatus which concerns on one Embodiment of this invention. It is sectional drawing for demonstrating the manufacturing method of the piezoelectric resonance apparatus which concerns on one Embodiment of this invention. It is sectional drawing for demonstrating the manufacturing method of the piezoelectric resonance apparatus which concerns on one Embodiment of this invention.
  • FIG. 1 is a perspective view schematically showing an appearance of a piezoelectric resonance device 10 according to one specific example.
  • the piezoelectric resonance device 10 includes a lower substrate 11, an upper substrate 12 that forms a vibration space between the lower substrate 11, and a piezoelectric resonance that is sandwiched and held between the lower substrate 11 and the upper substrate 12. And a child 13.
  • the piezoelectric resonator 13 is a MEMS resonator manufactured using MEMS technology.
  • the piezoelectric resonance device 10 functions as a timing device incorporated in an electronic device such as a smartphone.
  • FIG. 2 is an exploded perspective view schematically showing the structure of the piezoelectric resonance device 10 according to one specific example.
  • the piezoelectric resonator 13 includes a support frame 14 that extends in a rectangular frame shape along the XY plane in the orthogonal coordinate system of FIG. 2, and an XY plane that extends from one end of the support frame 14 into the support frame 14.
  • a plurality of vibrating arms 16a to 16d extending along the XY plane from a fixed end connected to one end of the base 15 toward the free end.
  • four vibrating arms 16a to 16d extend in parallel to the Y axis.
  • the number of vibrating arms is not limited to four, and is set to an arbitrary number of four or more, for example.
  • FIG. 3 is a plan view of the piezoelectric resonator 10 with the upper substrate 12 removed.
  • the vibrating arms 16a to 16d are formed in a prismatic shape and have the same size.
  • the lower substrate 11 includes a flat bottom plate 17 extending along the XY plane, and a side wall 18 rising from the peripheral edge of the bottom plate 17 in the Z-axis direction.
  • a recess 19 is formed by the inner surface of the lower substrate 11, that is, the surface of the bottom plate 17 and the inner surface of the side wall 18. The recess 19 forms part of the vibration space of the vibrating arms 16a to 16d.
  • FIG. 4 is a cross-sectional view of the piezoelectric resonance device 10 taken along line 4-4 of FIG.
  • the support frame 14 of the piezoelectric resonator 13 is received on the side wall 18 of the lower substrate 11, and the upper substrate 12 is mounted on the piezoelectric resonator 13. Cover.
  • the piezoelectric resonator 13 is held between the lower substrate 11 and the upper substrate 12, and the vibration space of the vibrating arms 16a to 16d is formed by the lower substrate 11, the upper substrate 12, and the support frame 14 of the piezoelectric resonator 13. Is done.
  • This vibration space is kept airtight and a vacuum state is maintained.
  • the upper substrate 12 is formed in a flat plate shape, for example. In order to secure a larger vibration space, a recess (not shown) having a depth of, for example, about 50 ⁇ m may be formed on the inner surface of the upper substrate 12.
  • the bottom plate 17 and the side wall 18 of the lower substrate 11 are integrally formed from Si (silicon).
  • a silicon oxide film (for example, SiO 2 (silicon dioxide) film) 21 is formed on the upper surface of the side wall 18, and this silicon oxide film 21 is located between the lower substrate 11 and the support frame 14 of the piezoelectric resonator 13. Used for bonding.
  • the thickness of the lower substrate 11 defined in the Z-axis direction is set to 150 ⁇ m, for example, and the depth of the recess 19 is set to 50 ⁇ m, for example.
  • the support frame 14, the base portion 15, and the vibrating arms 16 a to 16 d are formed of a Si (silicon) layer 22 and an AlN (aluminum nitride) layer 23 stacked on the Si layer 22.
  • the length defined in the Y-axis direction is set to, for example, about 500 ⁇ m
  • the width defined in the X-axis direction for example, about 50 ⁇ m
  • the thickness defined in the Z-axis direction for example, set to about 6 ⁇ m.
  • Each of the vibrating arms 16a to 16d includes first and second Mo (molybdenum) layers 24 and 25 formed so as to sandwich the AlN layer 23 between the upper and lower surfaces of the AlN layer 23 described above.
  • the first and second Mo layers 24 and 25 form first and second electrodes.
  • An AlN layer 23 ′ is stacked on the Mo layer 25.
  • the first and second Mo layers 24 and 25 are connected to, for example, an AC power source (not shown) provided outside the piezoelectric resonator 13.
  • an electrode not shown formed on the outer surface of the upper substrate 12 or a through silicon via (TSV) (not shown) formed in the upper substrate 12 is used.
  • TSV through silicon via
  • the AlN layer 23 ′ is a layer for protecting the Mo layer 25.
  • the AlN layer 23 ' is not limited to aluminum nitride as long as it is a layer made of an insulator.
  • the AlN layer 23 is a piezoelectric film that converts an applied voltage into vibration.
  • a ScAlN (scandium aluminum nitride) layer may be used.
  • the AlN layer 23 expands and contracts in the in-plane direction of the XY plane, that is, the Y-axis direction, according to the electric field applied to the AlN layer 23 by the first and second Mo layers 24 and 25. Due to the expansion and contraction of the AlN layer 23, the vibrating arms 16a to 16d are bent and displaced in the direction perpendicular to the XY plane (Z-axis direction). That is, the vibrating arms 16a to 16d displace their free ends toward the inner surfaces of the lower substrate 11 and the upper substrate 12, and vibrate in an out-of-plane bending vibration mode.
  • the phase of the electric field applied to the outer vibrating arms 16a and 16d and the phase of the electric field applied to the inner vibrating arms 16b and 16c are set to have opposite phases to each other, the outer vibrating arms 16a and 16d and the inner vibrating arms 16b and 16c are displaced in opposite directions.
  • the outer vibrating arms 16 a and 16 d displace the free ends toward the inner surface of the upper substrate 12
  • the inner vibrating arms 16 b and 16 c displace the free ends toward the inner surface of the lower substrate 11.
  • the upper substrate 12 is made of flat Si (silicon) having a predetermined thickness extending along the XY plane. As is clear from FIG. 4, the upper substrate 12 is received on the support frame 14 of the piezoelectric resonator 13 at the periphery. The piezoelectric resonator 13 and the upper side are formed by eutectic bonding between the first metal layer 26 formed on the upper surface of the support frame 14 of the piezoelectric resonator 13 and the second metal 27 formed on the peripheral portion of the lower surface of the upper substrate 12. The substrate 12 is bonded.
  • the first metal layer is preferably formed from a metal containing Al (aluminum) as a main component
  • the second metal layer is preferably formed from a metal containing Ge (germanium) as a main component.
  • the metal mainly composed of Al is a metal containing 95 wt% or more of Al by weight.
  • the metal which has Ge as a main component says the metal which contains 95 wt% or more of Ge by weight ratio.
  • the first metal layer will be described as an Al film 26 and the second metal layer will be described as a Ge film 27.
  • the first metal layer is formed of an AlCu (aluminum copper-copper alloy) film or an AlSiCu (aluminum copper-silicon-copper alloy) film.
  • the weight ratio of Cu is, for example, 0.5% wt or 1.0% wt.
  • FIG. 5 is a cross-sectional view for explaining a method of manufacturing the piezoelectric resonance device 10 according to one embodiment of the present invention.
  • a flat wafer that is, a lower wafer 31 is prepared.
  • the lower wafer 31 is made of, for example, silicon.
  • the lower wafer 31 is defined with a plurality of sections arranged at predetermined intervals, and each section corresponds to the lower substrate 11. In the present embodiment, only one section is illustrated for convenience of explanation. As shown in FIG.
  • a recess 19 having a predetermined depth is formed on the flat upper surface of the lower wafer 31 by etching, for example. Simultaneously with the formation of the recess 19, a plurality of lower substrates 11 are formed on the lower wafer 31.
  • a silicon oxide film 21 for bonding is patterned on the upper surface of the side wall 18.
  • a flat Si substrate 32 is bonded onto the silicon oxide film 21 by, for example, direct bonding.
  • a first Mo film 33, an AlN film 34, a second Mo film 35, and an AlN film 34 ' are sequentially formed on the Si substrate 32 by sputtering, for example.
  • the first Mo film 33 and the second Mo film 35 do not need to be formed on the entire upper surface of the Si substrate 32, and are formed only in a region including the formation positions of the first and second electrodes, for example.
  • the first Mo film 33, the AlN film 34, the second Mo film 35, and the AlN film 34 ′ are dry-etched or wet-etched, for example, so that the above-described support frame 14, base 15 and The shapes of the vibrating arms 16a to 16d are formed.
  • the piezoelectric resonator 13 supported by the support frame 14 is formed on each side wall 18 of the plurality of lower substrates 11 partitioned by the lower wafer 31.
  • a plurality of piezoelectric resonators 13 are formed on the lower wafer 31 to form a first wafer, that is, a MEMS wafer 36.
  • a first metal layer that is, an Al film 26 is formed on the surface, that is, the upper surface of the support frame 14 that is a joint portion with the upper substrate 12.
  • the Al film 26 has a first rigidity, that is, a rigidity of 26 GPa. Since the surface of the Al film 26 is oxidized in the atmosphere, an Al oxide film (not shown) is formed on the surface, that is, the bonding surface. In the present embodiment, the pretreatment for removing the oxide film formed on the surface of the Al film 26 is not performed.
  • the “removal” of the oxide film includes a process of substantially removing the oxide film by “reducing” the oxide film, for example.
  • a second wafer that is, an upper wafer 37 is prepared.
  • the upper wafer 37 is made of, for example, silicon.
  • a plurality of sections arranged at a predetermined interval are defined on the upper wafer 37, and each section corresponds to the upper substrate 12. At the same time, each section is associated with the position of the lower substrate 11 of the lower wafer 31.
  • a second metal layer, that is, a Ge film 27 is formed in advance at the junction between the upper wafer 37 and the support frame 14 by sputtering, for example.
  • the Ge film 27 has a second rigidity higher than the first rigidity, that is, a rigidity of 41 GPa.
  • the surface of the Ge film 27 is oxidized in the atmosphere, so that a Ge oxide film (not shown) is formed on the surface, that is, the bonding surface.
  • pretreatment for removing the oxide film formed on the surface of the Ge film 27 is performed in advance.
  • the bonding surface is cleaned by dilute hydrofluoric acid (HF) to remove the oxide film, the oxide film is removed by sputtering using an ion beam, and the oxide film is reduced by forming gas or the like.
  • HF dilute hydrofluoric acid
  • the Ge film 27 is positioned on the Al film 26 with the back surface of the upper wafer 37 facing the surface of the MEMS wafer 36.
  • the lower wafer 31, the MEMS wafer 36, and the upper wafer 37 are sandwiched between the lower heater 38 and the upper heater 39.
  • the lower wafer 31, the MEMS wafer 36, and the upper wafer 37 are heated by the lower heater 38 and the upper heater 39 at a temperature of, for example, 400 ° C. to 450 ° C. for a predetermined time.
  • a load with a pressure of 15 MPa acts on the lower wafer 31, the MEMS wafer 36, and the upper wafer 37.
  • the oxide film of the Ge film 27 having a high rigidity is removed in advance by pretreatment. Therefore, when the Al film 26 and the Ge film 27 are joined, a mechanical load is applied.
  • the Ge film 27 can easily destroy the oxide film of the Al film 26 having a lower rigidity than the Ge film 27 by impact. As a result, since the non-oxidized Al film 26 is exposed at the bonding surface of the Al film 26, the Al film 26 and the Ge film 27 can be eutectic bonded with high reliability. Further, since the pretreatment is not performed on the MEMS wafer 36, the influence on the MEMS wafer 36, that is, the influence on the vibration characteristics of the piezoelectric resonator 13 is minimized.
  • Non-Patent Document 1 the oxide film is not removed at both the bonding surface of the Al film and the bonding surface of the Ge film before bonding, and acts on the Al film and the Ge film at the time of bonding.
  • the oxide films of the Al film and the Ge film are mechanically destroyed.
  • setting the load large increases the risk that the wafer to be bonded will break.
  • the present invention when the eutectic bonding is performed, it is only necessary to remove the oxide film of the Al film 26 having a low rigidity, so that the lower wafer 31, the MEMS wafer 36, and the upper wafer can be removed.
  • the wafer 37 By applying a relatively small load to the wafer 37, eutectic bonding between the Al film 26 and the Ge film 27 can be easily realized.
  • it is sufficient to apply a low load to the lower wafer 31, the MEMS wafer 36 and the upper wafer 37 the risk of cracking of the lower wafer 31, the MEMS wafer 36 and the upper wafer 37 can be significantly reduced. .
  • Patent Documents 1 and 2 when the techniques described in Patent Documents 1 and 2 are applied to the MEMS wafer as in the present application, for example, by the pretreatment for removing the oxide film with dilute hydrofluoric acid, It causes sticking such as adhesion.
  • the removal of the oxide film by dilute hydrofluoric acid, forming gas, and sputtering removes not only the Al film and Ge film but also the oxide film of Si and SiO 2 constituting the piezoelectric resonator. May be changed to an unacceptable level.
  • the oxide film formed on the surface of the Al film 26 having a low rigidity is removed by a mechanical impact due to a low load acting during eutectic bonding.
  • the MEMS wafer 36 having the Al film 26 does not require pretreatment for removing the oxide film. Therefore, according to the wafer bonding method of the present invention, inconveniences such as sticking of the vibrating arms 16 to 16d and removal of an oxide film that does not need to be removed can be avoided reliably. As a result, the possibility of changing the vibration characteristics of the piezoelectric resonator 13 can be minimized.
  • the present inventors verified the effect of the wafer bonding method of the present invention.
  • the present inventors prepared first to third samples.
  • a first wafer in which Si, AlN, and Al are laminated with a film thickness of 525 ⁇ m, 0.5 ⁇ m, and 0.9 ⁇ m, respectively, and Si, SiO 2 , Ti, and Ge are respectively 525 ⁇ m, 0.5 ⁇ m, and 0.1 ⁇ m.
  • the first wafer corresponds to the MEMS wafer 36 described above
  • the second wafer corresponds to the upper wafer 37 described above.
  • the conditions for the pretreatment (oxide film removal treatment) to be performed on each sample were changed.
  • the first sample no pretreatment was performed on both the Al bonding surface and the Ge bonding surface, whereas in the second sample, both the Al bonding surface and the Ge bonding surface were performed.
  • Pretreatment was performed.
  • pretreatment was not performed on the Al bonding surface, whereas pretreatment was performed on the Ge bonding surface. That is, the third sample corresponds to a specific example of the present invention.
  • the first wafer and the second wafer are superposed so that Al and Ge are in contact, and the first wafer and the second wafer are heated at 400 ° C. for 20 minutes by a heater, and then at 440 ° C. for 15 minutes. Heated. During the heating, a load was applied to the first wafer and the second wafer at a pressure of 15 MPa. After heating, the cross section of the bonding surface of Al and Ge was observed with an infrared (IR) microscope.
  • IR infrared
  • the piezoelectric resonance apparatus 10 which concerns on the said embodiment was demonstrated so that it might function as a timing device, you may be comprised so that it may function as a gyro sensor, for example.
  • Al and Ge are metal materials that are unlikely to be a contamination source of the Si semiconductor production line, any device capable of withstanding a temperature of, for example, about 400 ° C. to 450 ° C. at the time of bonding is used. It is clear that the method can be applied.
  • this embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 ウエハに与える影響を抑制しつつ高い信頼度でウエハ同士を接合することができるウエハの接合方法を提供する。ウエハの接合方法は、第1剛性率を有する第1金属層を表面に形成した第1ウエハと、第1剛性率よりも高い第2剛性率を有する第2金属層を表面に形成した第2ウエハと、を用意する工程と、第1金属層の表面の酸化膜を除去しない一方で、第2金属層の表面の酸化膜を除去する工程と、第1ウエハの表面と第2ウエハの表面とを接合する工程と、を含む。

Description

ウエハの接合方法
 本発明は、第1ウエハの表面に形成された第1金属層と、第2ウエハの表面に形成された第2金属膜と、を接合することによって第1ウエハと第2ウエハとを互いに接合するウエハの接合方法に関する。
 ウエハ同士を接合する際に例えば共晶接合が実施される。ウエハの表面に形成された金属層の接合面は大気中で酸化され、接合面に酸化膜が形成される。この酸化膜はウエハ同士の接合を阻害することが知られている。この接合の阻害の回避にあたって、特許文献1や特許文献2では、接合対象である第1ウエハの金属層の接合面及び第2ウエハの金属層の接合面の両方に、例えば希フッ酸やフォーミングガス、スパッタリングによって酸化膜を除去又は還元する前処理が実施されている。
 その一方で、非特許文献1では、接合対象である第1ウエハの金属層の接合面及び第2ウエハの金属層の接合面のいずれにも、酸化膜を除去又は還元する前処理は実施されていない。その代わり、非特許文献1では、接合時、互いに重ね合わせられた1対のウエハに比較的大きな荷重を作用させて両金属層の接合面に機械的衝撃を加え、酸化膜を機械的に破壊することによって、酸化膜を除去すると同時に接合面同士を共晶接合している。
米国特許第7442570号明細書 特開2014-107393号公報
EV Group (EVG)、「Wafer Bonding Processes for the Manufacture of MEMS devices for the Mobile Applications」、SEMICON Taiwan 2012、2012年9月5日~7日
 特許文献1及び2では、一方のウエハが、MEMS(Micro Electro Mechanical Systems)ウエハの圧電共振子である場合、酸化膜を除去又は還元する前処理が圧電共振子にも実施されると、この前処理によって圧電共振子の振動特性が、許容することができない程度まで変化してしまうことがある。また、非特許文献1では、高荷重の機械的衝撃がウエハ自体の割れなどを生じさせることがある。
 本発明はこのような事情に鑑みてなされたものであり、ウエハに与える影響を抑制して高い信頼度でウエハ同士を接合することができるウエハの接合方法を提供することを目的とする。
 本発明の一側面に係るウエハの接合方法は、
 第1剛性率を有する第1金属層を表面に形成した第1ウエハと、前記第1剛性率よりも高い第2剛性率を有する第2金属層を表面に形成した第2ウエハと、を用意する工程と、
 前記第1金属層の表面の酸化膜を除去しない一方で、前記第2金属層の表面の酸化膜を
除去する工程と、
 前記第1ウエハの表面と前記第2ウエハの表面とを接合する工程と、を含む。
 本発明によれば、ウエハに与える影響を抑制しつつ高い信頼度でウエハ同士を接合することができるウエハの接合方法を提供することができる。
一具体例に係る圧電共振装置の外観を概略的に示す斜視図である。 一具体例に係る圧電共振装置の構造を概略的に示す分解斜視図である。 上側基板を取り外した圧電共振装置の平面図である。 図3の4-4線に沿った断面図である。 本発明の一実施形態に係る圧電共振装置の製造方法を説明するための断面図である。 本発明の一実施形態に係る圧電共振装置の製造方法を説明するための断面図である。 本発明の一実施形態に係る圧電共振装置の製造方法を説明するための断面図である。
 以下、添付の図面を参照して本発明の一実施形態について説明する。図1は、一具体例に係る圧電共振装置10の外観を概略的に示す斜視図である。この圧電共振装置10は、下側基板11と、下側基板11との間に振動空間を形成する上側基板12と、下側基板11及び上側基板12の間に挟み込まれて保持される圧電共振子13と、を備えている。圧電共振子13は、MEMS技術を用いて製造されるMEMS共振子である。この圧電共振装置10は、例えばスマートフォンなどの電子機器内に組み込まれるタイミングデバイスとして機能する。
 図2は、一具体例に係る圧電共振装置10の構造を概略的に示す分解斜視図である。図2に示すように、圧電共振子13は、図2の直交座標系におけるXY平面に沿って矩形の枠状に広がる支持枠14と、支持枠14の一端から支持枠14内にXY平面に沿って平板状に広がる基部15と、基部15の一端に接続された固定端から自由端に向かってXY平面に沿って延びる複数の振動腕16a~16dと、を備えている。本実施形態では、Y軸に平行に4本の振動腕16a~16dが延びている。なお、振動腕の数は、4本に限定されず、例えば4本以上の任意の数に設定される。
 図3は、上側基板12を取り外した圧電共振装置10の平面図である。図2及び図3を併せて参照すると、各振動腕16a~16dは、角柱形状に形成され、それぞれ同一のサイズを有している。下側基板11は、XY平面に沿って広がる平板状の底板17と、底板17の周縁部からZ軸方向に立ち上がる側壁18と、を備えている。下側基板11の内面すなわち底板17の表面と側壁18の内面とによって凹部19が形成される。凹部19は振動腕16a~16dの振動空間の一部を形成する。
 図4は、図3の4-4線に沿った圧電共振装置10の断面図である。図4を併せて参照すると、一具体例に係る圧電共振装置10では、下側基板11の側壁18上に圧電共振子13の支持枠14が受け止められ、圧電共振子13上に上側基板12が覆い被さる。こうして下側基板11と上側基板12との間に圧電共振子13が保持され、下側基板11と上側基板12と圧電共振子13の支持枠14とによって振動腕16a~16dの振動空間が形成される。この振動空間は気密に保持され、真空状態が維持されている。上側基板12は例えば平板状に形成されている。なお、振動空間をさらに大きく確保するため、上側基板12の内面に例えば50μm程度の深さの凹部(図示せず)を形成してもよい。
 下側基板11の底板17及び側壁18はSi(シリコン)から一体的に形成されている。側壁18の上面には酸化ケイ素膜(例えばSiO2(二酸化ケイ素)膜)21が形成されており、この酸化ケイ素膜21は、下側基板11と圧電共振子13の支持枠14との間の接合のために用いられる。Z軸方向に規定される下側基板11の厚みは例えば150μm、凹部19の深さは例えば50μmに設定される。
 圧電共振子13では、支持枠14や基部15、振動腕16a~16dは、Si(シリコン)層22と、Si層22上に積層されたAlN(窒化アルミニウム)層23とから形成されている。振動腕16a~16dについて、Y軸方向に規定される長さは例えば500μm程度、X軸方向に規定される幅例えば50μm程度、Z軸方向に規定される厚みは例えば6μm程度に設定される。
 各振動腕16a~16dは、前述のAlN層23の上面及び下面にAlN層23を挟み込むように形成された第1及び第2Mo(モリブデン)層24、25を備えている。第1及び第2Mo層24、25は第1及び第2電極を形成する。また、Mo層25の上にはAlN層23´が積層されている。第1及び第2Mo層24、25は、例えば圧電共振子13の外部に設けられた交流電源(図示せず)に接続されている。接続にあたって、例えば上側基板12の外面に形成された電極(図示せず)や上側基板12内に形成されたスルーシリコンビア(TSV)(図示せず)が用いられる。AlN層23´はMo層25を保護するための層である。なお、AlN層23´は絶縁体から成る層であれば、窒化アルミニウムに限定されない。
 AlN層23は、印加される電圧を振動に変換する圧電膜である。AlN層23に代えて、例えばScAlN(窒化スカンジウムアルミニウム)層が用いられてもよい。AlN層23は、第1及び第2Mo層24、25によってAlN層23に印加される電界に応じて、XY平面の面内方向すなわちY軸方向に伸縮する。このAlN層23の伸縮によって、振動腕16a~16dは、XY平面に対して垂直方向(Z軸方向)に屈曲変位する。すなわち、振動腕16a~16dは、下側基板11及び上側基板12の内面に向かってその自由端を変位させ、面外の屈曲振動モードで振動する。
 一具体例に係る圧電共振装置10では、図4から明らかなように、外側の振動腕16a、16dに印加される電界の位相と、内側の振動腕16b、16cに印加される電界の位相とが互いに逆位相になるように設定されることによって、外側の振動腕16a、16dと内側の振動腕16b、16cとが互いに逆方向に変位する。例えば外側の振動腕16a、16dが上側基板12の内面に向かって自由端を変位させると、内側の振動腕16b、16cは下側基板11の内面に向かって自由端を変位させる。
 上側基板12は、XY平面に沿って広がる所定の厚みの平板状のSi(シリコン)から形成されている。図4から明らかなように、上側基板12はその周縁部で圧電共振子13の支持枠14上に受け止められている。圧電共振子13の支持枠14の上面に形成された第1金属層26と、上側基板12の下面の周縁部に形成された第2金属27と、の共晶接合によって圧電共振子13と上側基板12とが接合されている。
 なお、第1金属層は、Al(アルミニウム)を主成分とする金属から形成されることが好ましく、第2金属層は、Ge(ゲルマニウム)を主成分とする金属から形成されることが好ましい。Alを主成分とする金属は、Alを重量比率で95wt%以上含む金属をいう。またGeを主成分とする金属は、Geを重量比率で95wt%以上含む金属をいう。
 本実施形態においては、一例として、第1金属層をAl膜26とし、第2金属層をGe膜27として説明する。
 なお、より好適には、第1金属層はAlCu(アルミニウム - 銅合金)膜またはAlSiCu(アルミニウム - シリコン - 銅合金)膜で形成される。この場合例えば、Cuの重量比率は例えば、0.5%wtや1.0%wtである。
 第1金属層にAlCu膜やAlSiCu膜を用いる場合、Alのマイグレーションやヒロックは、接合工程あるいはそれ以前の工程における熱処理において抑制される。従って、第1金属層としてAlCu膜やAlSiCu膜を用いた場合には、局所的にボイドが発生することを防ぐことが可能になる。
 次に、本発明の一実施形態に係る圧電共振装置10の製造方法について以下に説明する。図5は、本発明の一実施形態に係る圧電共振装置10の製造方法を説明するための断面図である。図5(a)に示すように、まず、平板状のウエハすなわち下側ウエハ31を用意する。下側ウエハ31は、例えばシリコンから成る。下側ウエハ31には、所定の間隔で配列された複数の区画が規定され、各区画が下側基板11に対応する。本実施形態では、説明の便宜上、1つの区画のみを図示する。図5(b)に示すように、下側ウエハ31の平坦な上面に例えばエッチングによって所定の深さの凹部19が形成される。凹部19の形成と同時に下側ウエハ31には複数の下側基板11が形成される。
 その後、図5(c)に示すように、側壁18の上面に接合用の酸化ケイ素膜21がパターニングされる。次に、図5(d)に示すように、酸化ケイ素膜21上に平板状のSi基板32を例えば直接接合によって接合する。続いて、図5(e)に示すように、Si基板32上に例えばスパッタリングによって第1Mo膜33、AlN膜34、第2Mo膜35及びAlN膜34´が順次成膜される。このとき、第1Mo膜33及び第2Mo膜35は、Si基板32の上面の全体に形成される必要はなく、例えば第1及び第2電極の形成位置を含む領域のみに形成される。
 その後、図6(a)に示すように、第1Mo膜33、AlN膜34、第2Mo膜35及びAlN膜34´を例えばドライエッチング又はウェットエッチングすることによって、前述の支持枠14、基部15及び振動腕16a~16dの形状が形成される。このようにして、下側ウエハ31に区画された複数の下側基板11の各々の側壁18上に支持枠14によって支持された圧電共振子13が形成される。本実施形態では、下側ウエハ31上に複数の圧電共振子13が形成されることで、第1ウエハすなわちMEMSウエハ36が構成される。
 その後、図6(b)に示すように、上側基板12との接合箇所である支持枠14の表面すなわち上面に第1金属層すなわちAl膜26が成膜される。Al膜26は、第1剛性率、すなわち、26GPaの剛性率を有している。Al膜26の表面は大気中で酸化されるので、その表面すなわち接合面にはAlの酸化膜(図示せず)が形成される。本実施形態では、Al膜26の表面に形成された酸化膜を除去する前処理は実施されない。なお、本実施形態において、酸化膜の「除去」には、例えば酸化膜を「還元」することによって実質的に酸化膜を除去する処理が含まれるものとする。
 その後、図6(c)に示すように、第2ウエハすなわち上側ウエハ37が用意される。上側ウエハ37は、例えばシリコンから成る。上側ウエハ37には、所定の間隔で配列された複数の区画が規定され、各区画が上側基板12に対応する。同時に、各区画は、下側ウエハ31の下側基板11の位置に対応付けられている。上側ウエハ37の支持枠14との接合箇所には例えばスパッタリングによって第2金属層すなわちGe膜27が予め形成されている。Ge膜27は、第1剛性率より高い第2剛性率、すなわち、41GPaの剛性率を有している。
 Al膜26と同様に、Ge膜27の表面は大気中で酸化されるので、その表面すなわち接合面にはGeの酸化膜(図示せず)が形成される。本実施形態では、Ge膜27の表面に形成された酸化膜を除去する前処理が予め実施される。前処理には、例えば、希フッ酸(HF)によって接合面を洗浄して酸化膜を除去する処理、イオンビーム等によるスパッタリングによって酸化膜を除去する処理、及び、フォーミングガス等によって酸化膜を還元して酸化膜を除去する処理が含まれる。
 図7に示すように、MEMSウエハ36の表面に上側ウエハ37の裏面を向き合わせて、Al膜26上にGe膜27が位置決めされる。下側ウエハ31、MEMSウエハ36及び上側ウエハ37は下側ヒータ38及び上側ヒータ39に挟み込まれる。下側ヒータ38及び上側ヒータ39によって下側ウエハ31、MEMSウエハ36及び上側ウエハ37は、所定の時間にわたって例えば400℃~450℃の温度で加熱される。加熱時、下側ウエハ31、MEMSウエハ36及び上側ウエハ37には例えば15MPaの圧力による荷重が作用する。
 このとき、荷重の作用によってAl膜26及びGe膜27の接合面には機械的衝撃が加えられる。Ge膜27の剛性率はAl膜26の剛性率よりも高いので、機械的衝撃によってGe膜27の接合面との接触によってAl膜26の酸化膜は容易に破壊される。その結果、Al膜26の接合面から酸化膜が除去されるので、加熱及び荷重によってAl膜26とGe膜27との間で共晶接合が確立される。こうして上側ウエハ37がMEMSウエハ36に接合される。その後、例えばダイシングによって各圧電共振装置10が切り出され、圧電共振装置10が製造される。
 以上のような圧電共振装置10の製造方法では、剛性率の高いGe膜27の酸化膜は前処理によって予め除去されているので、Al膜26とGe膜27との接合時、荷重による機械的衝撃によってGe膜27が、Ge膜27よりも剛性率の低いAl膜26の酸化膜を容易に破壊することができる。その結果、Al膜26の接合面では非酸化状態のAl膜26が露出するので、Al膜26とGe膜27とを高い信頼度で共晶接合することができる。また、MEMSウエハ36には前処理が実施されないので、MEMSウエハ36に与える影響、すなわち、圧電共振子13の振動特性に与える影響は最小限に抑制される。
 これに対して、上記非特許文献1に開示の技術では、接合前にAl膜の接合面及びGe膜の接合面の両方で酸化膜が除去せず、接合にあたってAl膜及びGe膜に作用する荷重を大きく設定することによって、Al膜及びGe膜の酸化膜を機械的に破壊するようにしている。しかしながら、荷重を大きく設定することによって、接合対象であるウエハが割れるといった危険性を増大させてしまう。また、荷重を大きく設定するために、接合機械の設備コストが上昇してしまうことが想定される。
 その一方で、本発明では、上述したように、共晶接合の実施時に、剛性率の低いAl膜26の酸化膜のみを除去することができればよいので、下側ウエハ31、MEMSウエハ36及び上側ウエハ37に相対的に小さな荷重を作用させることによって、Al膜26とGe膜27との共晶接合を容易に実現することができる。また、下側ウエハ31、MEMSウエハ36及び上側ウエハ37に低荷重を作用させれば足りるので、下側ウエハ31、MEMSウエハ36及び上側ウエハ37の割れなどの危険性を著しく低下させることができる。
 また、上記特許文献1及び2に記載の技術が、本願のようなMEMSウエハに適用される場合、希フッ酸による酸化膜の除去の前処理によって、例えば圧電共振子の振動腕の先端同士の付着といったスティッキングを引き起こす。また、希フッ酸やフォーミングガス、スパッタリングによる酸化膜の除去は、Al膜やGe膜のみならず、圧電共振子を構成するSiやSiO2の酸化膜も同時に除去してしまうため、圧電共振子の振動特性を、許容することができない程度まで変化させてしまうことがある。
 その一方で、本発明では、上述したように、剛性率の低いAl膜26の表面に形成された酸化膜を、共晶接合時に作用する低荷重による機械的衝撃によって除去するようにしているので、Al膜26を有するMEMSウエハ36には酸化膜の除去のための前処理は必要とされない。従って、本発明のウエハの接合方法によれば、振動腕16~16dのスティッキングや、除去する必要のない酸化膜の除去といった不都合を確実に回避することができる。その結果、圧電共振子13の振動特性を変化させる可能性を最小限に抑制することができる。
 本発明者らは本発明のウエハの接合方法の効果を検証した。検証にあたって、本発明者らは第1~第3サンプルを用意した。各サンプルでは、Si、AlN、Alをそれぞれ525μm、0.5μm、0.9μmの膜厚で積層した第1ウエハと、Si、SiO2、Ti、Geをそれぞれ525μm、0.5μm、0.1μm、0.5μmの膜厚で積層した第2ウエハと、をそれぞれ用意した。第1ウエハは上述のMEMSウエハ36に対応し、第2ウエハは上述の上側ウエハ37に対応する。
 検証にあたって、各サンプルに対して実施する前処理(酸化膜の除去処理)に関する条件を変更した。第1サンプルでは、Alの接合面及びGeの接合面の両方に対して前処理を実施しなかったのに対して、第2サンプルでは、Alの接合面及びGeの接合面の両方に対して前処理を実施した。また、第3サンプルでは、Alの接合面に前処理を実施しなかったのに対して、Geの接合面に対して前処理を実施した。すなわち、第3サンプルが本発明の具体例に相当する。
 各サンプルにおいて、Al及びGeが接触するように第1ウエハ及び第2ウエハを重ね合わせ、ヒータによって第1ウエハ及び第2ウエハを、20分間にわたって400℃で加熱した後、15分間にわたって440℃で加熱した。加熱中、第1ウエハ及び第2ウエハには15MPaの圧力で荷重を作用させた。加熱後、Al及びGeの接合面の断面を赤外線(IR)顕微鏡で観察した。
 その結果、前処理を一切実施していない第1サンプルでは、AlとGeとの間で共晶反応が無いことを確認した。従って、接合面に対して前処理が実施されなければ、共晶接合を実現することが困難であることが確認された。また、両接合面に前処理を実施した第2サンプルでは共晶反応を確認した。さらに、本発明の具体例である第3サンプルでも共晶反応を確認した。この検証によって、剛性率の高いGe膜の酸化膜を除去するのみでも、AlとGeとの間で確実に共晶接合が確立されることを確認することができた。なお、本発明者らは、第3サンプルについては5MPaの圧力でも共晶接合を確認した。また、第1サンプルについて、AlとGeとの間で接合を確立するには、本発明の接合荷重の例えば数倍程度の接合荷重が必要とされることが想定される。
 なお、上記実施形態に係る圧電共振装置10は、タイミングデバイスとして機能するように説明されたが、例えばジャイロセンサとして機能するように構成されてもよい。また、AlやGeは、Siの半導体製造ラインの汚染源になりにくい金属材料であるため、接合時の例えば400℃~450℃程度の温度に耐え得るデバイスであれば、本発明の接合方法及び製造方法を適用することができることは明らかである。
 なお、本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。
 10 圧電共振装置
 13 圧電共振子
 26 第1金属層(Al膜)
 27 第2金属層(Ge膜)
 31 下側ウエハ
 36 MEMSウエハ
 37 上側ウエハ

Claims (5)

  1.  第1剛性率を有する第1金属層を表面に形成した第1ウエハと、前記第1剛性率よりも高い第2剛性率を有する第2金属層を表面に形成した第2ウエハと、を用意する工程と、
     前記第1金属層の表面の酸化膜を除去しない一方で、前記第2金属層の表面の酸化膜を除去する工程と、
     前記第1ウエハの前記表面と前記第2ウエハの前記表面とを接合する工程と、を含むウエハの接合方法。
  2.  前記第1金属層はアルミニウムを主成分とする金属から形成され、前記第2金属層はゲルマニウムを主成分とする金属から形成される、請求項1に記載のウエハの接合方法。
  3.  前記アルミニウムを主成分とする金属は、アルミニウムと銅とから成る合金又は、アルミニウムとシリコンと銅とから成る合金である、請求項2に記載のウエハの接合方法。
  4.  前記第1ウエハには圧電共振子が形成されている、請求項1~3のいずれか一項に記載のウエハの接合方法。
  5.  第1剛性率を有する第1金属層を表面に形成した第1ウエハと、前記第1剛性率よりも高い第2剛性率を有する第2金属層を表面に形成した第2ウエハと、を用意する工程と、
     前記第1金属層の表面の酸化膜を除去しない一方で、前記第2金属層の表面の酸化膜を除去する工程と、
     前記第1ウエハの前記表面と前記第2ウエハの前記表面とを接合する工程と、を含み、
     前記第1ウエハには圧電共振子が形成されている、圧電共振装置の製造方法。
PCT/JP2015/082618 2014-11-21 2015-11-19 ウエハの接合方法 WO2016080506A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016560294A JP6172555B2 (ja) 2014-11-21 2015-11-19 ウエハの接合方法
US15/599,714 US10118247B2 (en) 2014-11-21 2017-05-19 Method for bonding wafers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-236976 2014-11-21
JP2014236976 2014-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/599,714 Continuation US10118247B2 (en) 2014-11-21 2017-05-19 Method for bonding wafers

Publications (1)

Publication Number Publication Date
WO2016080506A1 true WO2016080506A1 (ja) 2016-05-26

Family

ID=56014038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082618 WO2016080506A1 (ja) 2014-11-21 2015-11-19 ウエハの接合方法

Country Status (3)

Country Link
US (1) US10118247B2 (ja)
JP (1) JP6172555B2 (ja)
WO (1) WO2016080506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159410A1 (ja) * 2018-02-14 2019-08-22 株式会社村田製作所 共振装置及び共振装置製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083467A1 (fr) * 2018-07-05 2020-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de scellement de pieces entre elles avec un alliage eutectique a base d'aluminium
JP7470780B2 (ja) 2020-03-30 2024-04-18 富士フイルム株式会社 組成物、膜及び光センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070627A1 (ja) * 2009-12-11 2011-06-16 パイオニア株式会社 半導体基板の接合方法およびmemsデバイス
JP2011200933A (ja) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd 接合方法
WO2014020648A1 (ja) * 2012-08-01 2014-02-06 パイオニア株式会社 電子デバイス
JP2014192653A (ja) * 2013-03-27 2014-10-06 Nippon Dempa Kogyo Co Ltd 圧電デバイス及び圧電デバイスの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442570B2 (en) 2005-03-18 2008-10-28 Invensence Inc. Method of fabrication of a AL/GE bonding in a wafer packaging environment and a product produced therefrom
JP5352546B2 (ja) * 2010-08-25 2013-11-27 東京エレクトロン株式会社 接合システム、接合方法、プログラム及びコンピュータ記憶媒体
JP2014107393A (ja) 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd 常温接合デバイス、常温接合デバイスを有するウェハおよび常温接合方法
DE102014202808A1 (de) * 2014-02-17 2015-08-20 Robert Bosch Gmbh Verfahren zum eutektischen Bonden zweier Trägereinrichtungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070627A1 (ja) * 2009-12-11 2011-06-16 パイオニア株式会社 半導体基板の接合方法およびmemsデバイス
JP2011200933A (ja) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd 接合方法
WO2014020648A1 (ja) * 2012-08-01 2014-02-06 パイオニア株式会社 電子デバイス
JP2014192653A (ja) * 2013-03-27 2014-10-06 Nippon Dempa Kogyo Co Ltd 圧電デバイス及び圧電デバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159410A1 (ja) * 2018-02-14 2019-08-22 株式会社村田製作所 共振装置及び共振装置製造方法
JPWO2019159410A1 (ja) * 2018-02-14 2021-01-14 株式会社村田製作所 共振装置及び共振装置製造方法

Also Published As

Publication number Publication date
US20170252855A1 (en) 2017-09-07
JPWO2016080506A1 (ja) 2017-06-15
US10118247B2 (en) 2018-11-06
JP6172555B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6468350B2 (ja) 共振子及び共振装置
JP5462289B2 (ja) 熱膨張係数が局所的に適合するヘテロ構造の生成方法
JP6278246B2 (ja) 共振装置
WO2017047663A1 (ja) Memsデバイス、及びその製造方法
US11757425B2 (en) Resonance device and method for producing resonance device
WO2017090380A1 (ja) 共振装置及びその製造方法
JP6864274B2 (ja) 共振装置
JP6172555B2 (ja) ウエハの接合方法
WO2019225047A1 (ja) Memsデバイス及びmemsデバイス製造方法
JP7265729B2 (ja) 共振装置及び共振装置製造方法
US20210371273A1 (en) Resonance device and resonance device manufacturing method
US11597648B2 (en) MEMS device manufacturing method and mems device
JP2014205235A (ja) 機能デバイス
JP6569850B2 (ja) Mems製造方法
JP2011177824A (ja) 電子装置の製造方法
CN112689957B (zh) 共振装置和共振装置的制造方法
JP2013081022A (ja) 水晶振動子及びその製造方法
WO2022097328A1 (ja) 共振装置及び共振装置製造方法
JP2015056580A (ja) Memsデバイス及びmemsデバイスの製造方法
JP2014232090A (ja) 物理量センサ
JP2015088638A (ja) 複合基板の製造方法
JP2016072732A (ja) Memsデバイス及びmemsデバイスの製造方法
JP2016072339A (ja) Memsデバイス及びmemsデバイスの製造方法
JP2016072336A (ja) Memsデバイス及びmemsデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861044

Country of ref document: EP

Kind code of ref document: A1