WO2016076078A1 - セル構造体、その製造方法、および、燃料電池 - Google Patents

セル構造体、その製造方法、および、燃料電池 Download PDF

Info

Publication number
WO2016076078A1
WO2016076078A1 PCT/JP2015/079495 JP2015079495W WO2016076078A1 WO 2016076078 A1 WO2016076078 A1 WO 2016076078A1 JP 2015079495 W JP2015079495 W JP 2015079495W WO 2016076078 A1 WO2016076078 A1 WO 2016076078A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
anode
electrolyte layer
cathode
compound
Prior art date
Application number
PCT/JP2015/079495
Other languages
English (en)
French (fr)
Inventor
孝浩 東野
陽平 野田
千尋 平岩
奈保 水原
博匡 俵山
竹内 久雄
真嶋 正利
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP15859401.0A priority Critical patent/EP3220464B1/en
Priority to CN201580061586.5A priority patent/CN107112564B/zh
Priority to US15/525,104 priority patent/US10424801B2/en
Priority to JP2016558945A priority patent/JP6642446B2/ja
Priority to KR1020177009856A priority patent/KR20170082511A/ko
Publication of WO2016076078A1 publication Critical patent/WO2016076078A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cell structure and a fuel cell including a solid electrolyte having proton conductivity.
  • a fuel cell is a device that generates electricity by an electrochemical reaction between a fuel such as hydrogen and air (oxygen), and has high power generation efficiency because it can directly convert chemical energy into electricity.
  • a solid oxide fuel cell hereinafter referred to as SOFC
  • SOFC solid oxide fuel cell
  • an operating temperature 700 ° C. or higher, particularly about 800 to 1000 ° C.
  • the operating temperature is very high, the use is limited to large power generation facilities and household power generation.
  • SOFC solid oxide fuel cell
  • solid electrolytes having proton conductivity examples include compounds having a perovskite structure, such as barium zirconate doped with yttrium (hereinafter referred to as BZY), barium cerate doped with yttrium (hereinafter referred to as BCY), and the like.
  • BZY barium zirconate doped with yttrium
  • BCY barium cerate doped with yttrium
  • a metal oxide is known (Patent Document 1).
  • Metal oxides are susceptible to moisture.
  • metal oxides containing cerium are more susceptible to moisture than metal oxides containing zirconium (Non-Patent Document 1).
  • BZY is used as the solid electrolyte layer of the fuel cell
  • the durability is excellent, but the power generation performance is inferior. This is because BZY is relatively stable against moisture, but has poor grain sinterability and high resistance due to poor sinterability.
  • Patent Document 1 a perovskite oxide (BZCY) containing zirconium and cerium has also been proposed, but its power generation performance is low because of its higher resistance than when BCY is used.
  • BZCY perovskite oxide
  • One aspect of the present invention includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode and having proton conductivity, the solid electrolyte layer having a perovskite structure, zirconium , Cerium and a compound containing a rare earth element other than cerium, and when the thickness of the solid electrolyte layer is T, the zirconium and the cerium at a position of 0.25 T from the cathode side surface of the solid electrolyte layer Element ratio: Zr C / Ce C and element ratio of Zr A / Ce A at the position of 0.25 T from the anode side surface of the solid electrolyte layer: Zr A / Ce A are Zr C / Ce C It relates to a cell structure satisfying> Zr A / Ce A and satisfying Zr C / Ce C > 1.
  • Another aspect of the present invention is that, as a cathode material, an anode material, and a solid electrolyte, the following formula (2): A2Zr x Ce y B2 1-xy O 3- ⁇ (where A2 is alkaline earth) B2 is a rare earth element other than cerium, x1 / y1> 1, 0.4 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 0.5, and ⁇ is the amount of oxygen deficiency) Z and the following formula (3): A3Zr x2 Ce y2 B3 1-x2-y2 O 3- ⁇ (where A3 is an alkaline earth metal element, B3 is a rare earth element other than cerium, and x1 / y1> x2 / y2, 0 ⁇ x2 ⁇ 0.5, 0.4 ⁇ y2 ⁇ 1, and ⁇ is the amount of oxygen deficiency), and a first step of preparing the anode material for the anode A second step of forming into
  • Still another aspect of the present invention is a fuel comprising the above cell structure, and having an oxidant flow path for supplying an oxidant to the cathode and a fuel flow path for supplying fuel to the anode. It relates to batteries.
  • a cell structure that exhibits excellent power generation performance and durability can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a fuel cell according to an embodiment of the present invention. It is a graph which shows the output density of the fuel cell which concerns on an Example and a comparative example. It is a graph which shows the voltage change of the fuel cell which concerns on an Example and a comparative example.
  • a cell structure according to a first aspect of the present invention includes (1) a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode and having proton conductivity, and the solid electrolyte.
  • the layer has a perovskite structure, contains a compound containing rare earth elements other than zirconium, cerium, and cerium, and when the thickness of the solid electrolyte layer is T, 0.25 T from the surface on the cathode side of the solid electrolyte layer Element ratio of zirconium to cerium at the position of: Zr C / Ce C, and element ratio of zirconium to cerium at a position of 0.25 T from the surface on the anode side of the solid electrolyte layer: Zr A / Ce A satisfies Zr C / Ce C > Zr A / Ce A and Zr C / Ce C > 1. When this cell structure is applied to a fuel cell, excellent power generation efficiency and durability can be exhibited.
  • the compound has an average composition of the entire solid electrolyte represented by the following formula (1): A1Zr x Ce y B1 1-xy O 3- ⁇ (where A1 is an alkaline earth metal element, B1 is a rare earth element other than cerium, and is preferably represented by 0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.4, and ⁇ is the amount of oxygen deficiency. This is because the proton conductivity is excellent.
  • the method for producing a cell structure according to the second aspect of the present invention includes the following formula (2): A2Zr x1 Ce y1 B2 1-x1-y1 as a cathode material, an anode material, and a solid electrolyte.
  • A2 is an alkaline earth metal element
  • B2 is a rare earth element other than cerium
  • formula (3) A3Zr x2 Ce y2 B3 1-x2-y2 O 3- ⁇ (where A3 is an alkaline earth metal element and B3 is cerium And a compound C represented by x1 / y1> x2 / y2, 0 ⁇ x2 ⁇ 0.5, 0.4 ⁇ y2 ⁇ 1, and ⁇ is an oxygen deficiency amount).
  • a fuel cell according to a third aspect of the present invention includes (5) an oxidant flow path for supplying an oxidant to the cathode, and a fuel for supplying fuel to the anode. It has a flow path. This fuel cell exhibits excellent power generation efficiency and durability.
  • the cell structure 1 of the present embodiment includes a cathode 2, an anode 4, a solid electrolyte layer 3 interposed between the cathode 2 and the anode 4 and having proton conductivity, Is provided.
  • the cathode 2, the solid electrolyte layer 3, and the anode 4 are integrated by sintering.
  • FIG. 1A shows a stacked cell structure, the shape of the cell structure is not limited to this. For example, it may have a cylindrical shape rounded with the anode 4 inside so as to have a hollow.
  • Solid electrolyte layer In the cathode 2, water is generated by the reaction between the proton conducted from the solid electrolyte layer 3 and the oxidizing agent. Therefore, it is desirable that at least the cathode side of the solid electrolyte layer 3 contains a large amount of zirconium having low reactivity with water. However, a fuel cell using a metal oxide containing a large amount of zirconium as a solid electrolyte has low output and poor power generation performance.
  • the element ratio of zirconium and cerium is changed between the cathode side and the anode side of the solid electrolyte layer 3 in order to improve the power generation performance while suppressing the reaction with water and improving the durability.
  • the cathode side of the solid electrolyte layer 3 refers to the side of the solid electrolyte layer 3 facing the cathode 2
  • the anode side refers to the side of the solid electrolyte layer 3 facing the anode 4.
  • the solid electrolyte layer includes a compound having a perovskite structure (ABO 3 ).
  • the B site of the above compound contains zirconium (Zr) and cerium (Ce). Further, a part of the B site is substituted with a rare earth element other than cerium, and the above compound exhibits proton conductivity by such a dopant.
  • the metal element entering the A site is not particularly limited, but may be an alkaline earth metal such as barium (Ba), calcium (Ca), or strontium (Sr). These can be used alone or in combination of two or more.
  • Ba is preferably contained in the A site from the viewpoint of proton conductivity. In this case, the ratio of Ba occupying the A site is preferably 50 atomic% or more with respect to the total of Ba and other elements.
  • rare earth elements other than cerium, yttrium (Y), scandium (Sc), neodymium (Nd), samarium (Sm), gadolinium (Gd), ytterbium (Yb), holmium (Ho), erbium (Er) , Thulium (Tm) and the like.
  • Y occupies a part of B site from a viewpoint of proton conductivity.
  • the ratio of Y to the total dopant is preferably 50 atomic% or more with respect to the total of Y and other dopants.
  • the solid electrolyte layer may contain components other than the above compounds, but its content is preferably small. For example, 99% by mass or more of the solid electrolyte layer is preferably the above compound.
  • Components other than the above compounds are not particularly limited, and examples of the solid electrolyte include known compounds (including compounds having no proton conductivity).
  • the solid electrolyte layer has a low Zr reactivity with water at a position of 0.25 T with respect to the thickness T from the surface 3C on the cathode side (see FIG. 1B. Hereinafter, it may be simply referred to as the vicinity of the surface 3C). Contains a lot of elements.
  • the element of Zr in the surface 3C near (Zr C) is an element of susceptible Ce moisture (Ce C) greater than (element ratio: Zr C / Ce C> 1 ) for resistance to water improves.
  • the element ratio in the vicinity of the surface 3C: Zr C / Ce C is preferably 2 or more (Zr C / Ce C ⁇ 2). When the element ratio in the vicinity of the surface 3C: Zr C / Ce C is within this range, resistance to water is further improved. Element ratio: Zr C / Ce C is more preferably 3 or more (Zr C / Ce C ⁇ 3 ).
  • the element ratio in the vicinity of the surface 3A: Zr A / Ce A is preferably less than 2 (Zr A / Ce A ⁇ 2). When the element ratio near the surface 3A: Zr A / Ce A is within this range, the resistance at the interface is further reduced.
  • the element ratio: Zr A / Ce A is more preferably 1.7 or less (Zr A / Ce A ⁇ 1.7).
  • the element ratio in the solid electrolyte layer can be determined by evaluating the element distribution state (depth profile) using energy dispersive X-ray spectroscopy (EDX). For example, when a normal line to the main surface of the solid electrolyte layer passing through a certain point of the solid electrolyte layer is drawn, the boundary between the cathode and the solid electrolyte layer on the normal line to the boundary between the solid electrolyte layer and the anode is Let it be the thickness (T) of the solid electrolyte layer. The thickness T is divided into four equal parts, and the profile of the position inside the surface 0.25T from the surface 3C and the position inside the surface 3A to 0.25T is evaluated.
  • EDX energy dispersive X-ray spectroscopy
  • the same evaluation is performed for another certain point of the solid electrolyte layer.
  • the element ratio can be obtained by performing averaging for a plurality of arbitrary points (for example, 5 points) and averaging. Also, evaluate the distribution of Zr and Ce in the thickness direction by using X-ray photoelectron spectroscopy (also called XPS (X-ray Photoelectron Spectroscopy) or ESCA (Electron Spectroscopy for Chemical Analysis)) and ion etching in combination.
  • X-ray photoelectron spectroscopy also called XPS (X-ray Photoelectron Spectroscopy) or ESCA (Electron Spectroscopy for Chemical Analysis)
  • the compound having a perovskite structure contained in the solid electrolyte layer is represented, for example, by the following formula (1).
  • Formula (1) A1Zr x Ce y B1 1-xy O 3- ⁇
  • A1 is an alkaline earth metal element
  • B1 is a rare earth element other than cerium, and preferably satisfies 0.4 ⁇ x ⁇ 0.6 and 0 ⁇ y ⁇ 0.4.
  • is the amount of oxygen deficiency.
  • Formula (1) has shown the average composition of the whole solid electrolyte. In terms of water resistance, the element amounts x and y more preferably satisfy x> y.
  • the soot element A1 is an alkaline earth metal element that occupies the A site of the perovskite structure, and specific examples thereof include the same elements as described above. Especially, it is preferable that element A1 is Ba.
  • the element B1 is a dopant that occupies a part of the B site of the perovskite structure, and specific examples thereof include the same elements as described above. Especially, it is preferable that the element B1 is Y.
  • the average composition represented by the formula (1) can be determined by EDX, for example. Specifically, a normal line passing through a certain point is drawn in the same manner as described above, and element distribution states (depth profiles) at a plurality of locations (for example, five locations) at different distances from the surface 3C on the normal are evaluated. By averaging the obtained profiles, an average composition can be obtained.
  • the element ratio of Zr to Ce in the first region Zr R1 / Ce R1 is The element ratio between Zr and Ce is preferably larger than Zr R2 / Ce R2 . This is because the amount of Zr element on the cathode side increases and the resistance to water is further improved. Furthermore, by relatively increasing the proportion of the Ce element in other portions, not only the interface but also the resistance of the grain boundary inside the solid electrolyte layer is reduced, and the output is easily improved.
  • the element ratio in the region from the surface 3C to 0.3T: Zr 0.3 / Ce 0.3 and the element ratio in the other region: Zr 0.7 / Ce 0.7 are Zr 0. More preferably, 3 / Ce 0.3 > Zr 0.7 / Ce 0.7 is satisfied. This is because if the region with a high Ce ratio is wide, the output characteristics are easily improved.
  • the element ratio in the first region and the second region is an average value in each region and can be obtained in the same manner as described above. Specifically, a normal line is drawn in the same manner as described above, and in a range (first region) from the surface 3C to 0.5T at a plurality of locations (for example, three locations) at different distances from the surface 3C on the normal line. The profile is evaluated by EDX and averaged to obtain the element ratio of Zr and Ce in the first region. The element ratio of Zr and Ce can be similarly determined for the second region.
  • the element ratio in the first region: Zr R1 / Ce R1 is preferably 2 or more (Zr R1 / Ce R1 ⁇ 2).
  • the element ratio in the second region: Zr R2 / Ce R2 is preferably less than 2 (Zr R2 / Ce R2 ⁇ 2).
  • the thickness of the solid electrolyte layer 3 is not particularly limited, but is preferably about 5 ⁇ m to 25 ⁇ m from the viewpoint of further reducing the resistance.
  • Zr / Ce may change so as to decrease from the cathode side toward the anode side. This change may be continuous or stepwise as long as it can be grasped as an overall trend.
  • a normal passing through one point is drawn, and the depth profiles at a plurality of locations (for example, 5 locations) at different distances from the surface 3C on the normal are evaluated by EDX, and the element ratio at each location is evaluated. : Zr / Ce is calculated.
  • the element ratio thus calculated: Zr / Ce is plotted on a graph in which the horizontal axis is the distance from the surface 3C and the vertical axis is the element ratio: Zr / Ce. From this graph, when the approximate straight line or approximate curve obtained by the least square method is downward-sloping, the overall tendency is that the element ratio: Zr / Ce decreases from the cathode side toward the anode side. It can be determined that
  • the respective element ratios: Zr 0.2 / Ce 0.2 and Zr 0.4 / Ce 0.4 are the same, or Zr 0.2 / Even when Ce 0.2 ⁇ Zr 0.4 / Ce 0.4 is satisfied, the relationship with the element ratio at the points of 0.2T, 0.5T, and 0.7T is Zr 0.2 / Ce 0. .2 > Zr 0.5 / Ce 0.5 and Zr 0.5 / Ce 0.5 > Zr 0.7 / Ce 0.7 , the element ratio: Zr / Ce is on the cathode side It can be considered that it becomes small continuously as it goes to the anode side.
  • the element ratio in the first region occupying the range from the surface 3C to 0.5T for example, the change rate of the element ratio is 20% or less
  • the element ratio in the second region occupying the remaining range There is almost no change (for example, the change rate of the element ratio is 20% or less)
  • the average element ratio Zr L1 / Ce L1 in the first region and the average element ratio Zr L2 / in the second region When Ce L2 satisfies Zr L1 / Ce L1 > Zr L2 / Ce L2 , the element ratio: Zr / Ce can be considered to decrease stepwise from the cathode side toward the anode side. it can.
  • the cathode 2 can adsorb oxygen molecules, dissociate them and ionize them, and has a porous structure.
  • a reaction oxygen reduction reaction
  • Oxide ions are generated by dissociation of an oxidant (oxygen) introduced from an oxide flow path, which will be described later.
  • a known material used as a cathode of a fuel cell or a gas decomposition apparatus can be used.
  • a compound having a perovskite structure is preferable.
  • LSCF lanthanum strontium cobalt ferrite
  • LSM Lanthanum strontium manganite
  • LSC Lanthanum strontium manganite
  • LSC La 1-d Sr d CoO 3- ⁇ , 0 ⁇ d ⁇ 1, ⁇ is the oxygen deficiency amount
  • SSC samarium strontium cobaltite
  • SSC Sm 1-e Sr e CoO 3- ⁇ , 0 ⁇ e
  • the cathode 2 may contain a catalyst such as Ag. This is because the reaction between the proton and the oxidizing agent is promoted.
  • the cathode 2 can be formed by mixing the catalyst and the above materials and sintering.
  • the thickness of the cathode 2 is not particularly limited, but may be about 10 ⁇ m to 30 ⁇ m.
  • the anode 4 has a porous structure.
  • a reaction fuel oxidation reaction
  • a fuel such as hydrogen introduced from a flow path to be described later is oxidized to release protons and electrons.
  • the material of the anode for example, a known material used as an anode of a fuel cell can be used. Specifically, nickel oxide (NiO) which is a catalyst component, yttrium oxide (Y 2 O 3 ), BCY, BZY, or a solid electrolyte represented by the above formula (1) (hereinafter sometimes referred to as BZCY) And the like.
  • NiO nickel oxide
  • Y 2 O 3 yttrium oxide
  • BCY yttrium oxide
  • BZY solid electrolyte represented by the above formula (1)
  • BZCY solid electrolyte represented by the above formula (1)
  • the anode 4 containing such a composite oxide can be formed by mixing and sintering NiO powder and BZCY powder, for example. Further, the thickness of the anode 4 may be about 30 ⁇ m to 800 ⁇ m, for example. The anode 4 may be increased in thickness to function as a support for the cell structure 1.
  • FIG. 1 shows the case where the anode 4 is thicker than the cathode 2 and the anode 4 functions as a support for the cell structure 1.
  • the size of the anode 4 is not limited to this, and may be smaller than the cathode 2, for example.
  • the cell structure has gas decomposition performance, and this cell structure can be used in a gas decomposition apparatus.
  • a catalyst having a function of decomposing the gas may be included in the anode.
  • the catalyst having a function of decomposing gas such as ammonia include compounds containing at least one catalyst component selected from the group consisting of Fe, Co, Ti, Mo, W, Mn, Ru, and Cu.
  • a buffer layer may be interposed between the cathode 2 and the solid electrolyte layer 3.
  • the buffer layer has a function of suppressing peeling and cracking between the cathode 2 and the solid electrolyte layer 3.
  • the soot buffer layer has proton conductivity and has low reactivity with the cathode 2 and the solid electrolyte layer 3.
  • the coefficient of thermal expansion of the material used for the buffer layer is preferably a value between the coefficients of thermal expansion of the cathode 2 and the solid electrolyte layer 3. Examples of such a material include lanthanum zirconate doped with yttrium having a pyrochlore structure.
  • the thickness of the buffer layer is not particularly limited, but may be about 1 ⁇ m to 5 ⁇ m.
  • a cell structure including solid electrolyte layers having different element ratios: Zr / Ce on the cathode side and the anode side can be produced, for example, as follows.
  • a cathode material, an anode material (both will be described later), and two types of solid electrolytes having different element ratios of Zr and Ce: Zr / Ce are prepared (first step).
  • a compound having a relatively large Zr / Ce is referred to as Compound Z
  • a compound having a relatively small Zr / Ce is referred to as Compound C.
  • Compound Z is represented by the following formula (2), for example.
  • Formula (2) A2Zr x1 Ce y1 B2 1-x1-y1 O 3- ⁇
  • x1 / y1> 1 is satisfied.
  • the element A2 is preferably an alkaline earth metal element
  • the element B2 is preferably a rare earth element other than cerium, and preferably satisfies 0.4 ⁇ x1 ⁇ 1 and 0 ⁇ y1 ⁇ 0.5.
  • is the amount of oxygen deficiency.
  • Compound C is represented, for example, by the following formula (3).
  • Formula (3) A3Zr x2 Ce y2 B3 1-x2-y2 O 3- ⁇
  • x1 / y1> x2 / y2 is satisfied.
  • the element A3 is preferably an alkaline earth metal element
  • the element B3 is preferably a rare earth element other than cerium, and preferably satisfies 0 ⁇ x2 ⁇ 0.5 and 0.4 ⁇ y2 ⁇ 1.
  • is the amount of oxygen deficiency.
  • Examples of the soot element A2 and the element A3 include the same elements as exemplified as the element A1.
  • Examples of the element B2 and the element B3 include the same elements as exemplified as the element B1.
  • the element A2 and the element A3 may be the same or different.
  • the element B2 and the element B3 may be the same or different.
  • a paste obtained by mixing the powder of compound C and the binder resin on the surface of the molded anode material so as to have a predetermined thickness Laminate by screen printing, spray coating, spin coating, dip coating, etc. (third step).
  • a paste prepared by mixing the compound Z powder and the binder resin on the surface of the compound C is laminated in the same manner so as to have a predetermined thickness, and is sintered at a temperature of 1300 to 1500 ° C., for example.
  • a solid electrolyte layer is formed (fourth step).
  • a cathode material is laminated on the surface of the solid electrolyte layer by the same method, and then sintered in an oxygen atmosphere at, for example, 800 to 1100 ° C. (fifth step).
  • the preliminary sintering may be performed at a temperature lower than the temperature at which the anode material is sintered (for example, 900 to 1100 ° C.). By pre-sintering, the compound C is easily laminated in the third step.
  • the binder resin may be removed by heating to a relatively low temperature of about 600 to 800 ° C., and then the temperature may be raised to 1300 to 1500 ° C. for sintering.
  • the material for the buffer layer may be laminated on the surface of the solid electrolyte layer, and then the cathode material may be laminated. Thereby, a buffer layer is formed between the solid electrolyte layer and the cathode. Examples of the method for laminating the buffer layer material include the same method as in the case of the solid electrolyte.
  • the anode material and the compound C are co-sintered, and the compound C and the compound Z are co-sintered.
  • compound C and compound Z are co-sintered, mutual diffusion of Zr and Ce occurs. Therefore, in the solid electrolyte layer to be formed, the element ratio of Zr and Ce changes so as to continuously decrease from the cathode side toward the anode side.
  • the solid electrolyte to be used is not limited to two types, and may be three or more types.
  • a step of stacking a compound having an intermediate element ratio: Zr / Ce between the compound C and the compound Z may be added between the stacking steps of the compound C and the compound Z.
  • the element ratio of Zr and Ce increases as it goes from the cathode side to the anode side.
  • a solid electrolyte layer that is significantly smaller can be formed.
  • the layer containing the compound Z is laminated and sintered to suppress the mutual diffusion of Zr and Ce between the compound C and the compound Z. Because. It should be noted that the interface of each layer may include a very thin region where Zr and Ce are interdiffused.
  • a method in which compound Z is laminated after compound C in the third step and then co-sintered with compound C and compound Z in the fourth step is preferable.
  • the solid electrolyte used is not limited to two types, and may be three or more types.
  • a step of laminating and sintering a compound having an intermediate element ratio: Zr / Ce between the compound C and the compound Z may be added between the sintering step of the compound C and the laminating step of the compound Z.
  • element ratio: Zr / Ce can be changed in 3 steps or more.
  • a solid electrolyte in which Ba occupies A site and Y occupies part of B site can be synthesized by the following method. Powders of barium carbonate, zirconium oxide, cerium oxide and yttrium oxide are mixed at a predetermined ratio, and pulverized and kneaded for 24 hours using a ball mill. The obtained mixture is uniaxially compressed at 20 to 50 MPa and formed into pellets, and then fired at 1200 to 1600 ° C. for 10 to 24 hours in an air atmosphere. By changing the blending of zirconium oxide and cerium oxide, the element ratio of Zr and Ce can be changed. The obtained solid electrolyte is pulverized and kneaded again for 10 to 100 hours using a ball mill to obtain a solid electrolyte powder.
  • FIG. 2 schematically shows a cross section of the structure of the fuel cell 10.
  • the fuel cell 10 includes a cell structure 1, an oxidant flow path 23 for supplying an oxidant to the cathode, and a fuel flow path 43 for supplying fuel to the anode.
  • the oxidant flow path 23 has an oxidant inlet into which the oxidant flows and an oxidant discharge port through which water generated by the reaction, unused oxidant, and the like are discharged (both not shown).
  • a gas containing oxygen is exemplified.
  • the fuel flow path 43 has a fuel gas inlet through which fuel gas flows, and a fuel gas outlet through which unused fuel, N 2 or CO 2 generated by the reaction, and the like are discharged (both not shown).
  • the fuel cell 10 includes a proton conductive solid electrolyte layer, the fuel cell 10 can be operated at an intermediate temperature range of less than 700 ° C., preferably about 400 to 600 ° C.
  • the oxidant channel 23 may be formed in, for example, the cathode side separator 22 disposed outside the cathode.
  • the fuel flow path 43 may be formed in the anode side separator 42 arrange
  • the fuel cell 10 is configured by stacking a plurality of cell structures, for example, the cell structure 1, the cathode separator 22, and the anode separator 42 are stacked as a unit.
  • the plurality of cell structures 1 may be connected in series by, for example, a separator having gas channels (oxidant channels and fuel channels) on both surfaces.
  • the material of the heel separator examples include heat-resistant alloys such as stainless steel, nickel-base alloy, and chromium-base alloy in terms of conductivity and heat resistance. Of these, stainless steel is preferable because it is inexpensive. Since PCFC has an operating temperature of about 400 to 600 ° C., stainless steel can be used as a separator material.
  • the fuel cell 10 may further include a current collector.
  • the fuel cell 10 includes a cathode-side current collector 21 disposed between the cathode and the cathode-side separator 22, and an anode-side current collector 41 disposed between the anode and the anode-side separator 52. You may have.
  • the cathode current collector 21 functions to supply the cathode while diffusing the oxidant gas introduced from the oxidant flow path 23.
  • the anode-side current collector 41 functions to supply fuel to the anode while diffusing the fuel gas introduced from the fuel flow path 43. Therefore, each current collector is preferably a breathable structure.
  • Examples of structures used for each current collector include metal porous bodies including platinum, silver, silver alloys, nickel, nickel alloys, metal meshes, punching metals, expanded metals, and the like.
  • a metal porous body is preferable at the point of lightweight property or air permeability.
  • a porous metal body having a three-dimensional network structure is preferable.
  • the three-dimensional network structure refers to a structure in which rod-like or fibrous metals constituting a metal porous body are three-dimensionally connected to form a network.
  • a sponge-like structure or a nonwoven fabric-like structure can be mentioned.
  • the metal porous body can be formed, for example, by coating a resin porous body having continuous voids with the metal as described above. When the internal resin is removed after the metal coating process, a cavity is formed inside the skeleton of the metal porous body, and the metal becomes hollow.
  • nickel “Celmet” registered trademark manufactured by Sumitomo Electric Industries, Ltd. can be used.
  • Example 1 Production of cell structure A cell structure was produced by the following procedure. NiO is mixed with BZY (BaZr 0.8 Y 0.2 O 2.9 ) powder and BCY (BaCe 0.8 Y 0.2 O 2.9 ) powder so as to contain 70% by volume of Ni (catalyst component). And pulverized and kneaded by a ball mill. The BZY powder and the BCY powder were mixed so that the volume ratio was 1: 1.
  • the circular sheet-like molded object which comprises an anode was formed by press molding, and it pre-sintered at 1000 degreeC for 10 hours.
  • a paste obtained by mixing BCY (BaCe 0.8 Y 0.2 O 2.9 ) powder, an organic solvent (butyl acetate carbitol) and a binder resin (ethyl cellulose) on one surface of the molded body was screened. Applied by printing.
  • a paste obtained by mixing BZY (BaZr 0.8 Y 0.2 O 2.9 ) powder, the same organic solvent as described above, and a binder resin is applied by screen printing, and then water-soluble at 750 ° C.
  • the functional binder resin was removed.
  • an LSCF paste was prepared by mixing LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- ⁇ ) powder and the same organic solvent as described above.
  • the LSCF paste was applied to the surface of the solid electrolyte layer by spraying. Subsequently, heat treatment was performed at 1000 ° C. for 2 hours to sinter LSCF to form a cathode (thickness 20 ⁇ m).
  • Comparative Example 1 A fuel cell a was produced and evaluated 1 and 2 in the same manner as in Example 1 except that only BCY (BaCe 0.8 Y 0.2 O 2.9 ) powder was used as the solid electrolyte.
  • Comparative Example 2 A fuel cell b was prepared and evaluated 1 in the same manner as in Example 1 except that only BZY (BaZr 0.8 Y 0.2 O 2.9 ) powder was used as the solid electrolyte.
  • Comparative Example 3 A fuel cell c was prepared and evaluated 1 in the same manner as in Example 1 except that only BZCY (BaZr 0.6 Ce 0.2 Y 0.2 O 2.9 ) powder was used as the solid electrolyte. It was. Element ratio: Zr / Ce was 3.0 at any of point 1, point 2, and point 3, and no change in element ratio was observed between the anode side and the cathode side.
  • BZCY BaZr 0.6 Ce 0.2 Y 0.2 O 2.9
  • Battery A in which the element ratio of the solid electrolyte layer on the cathode side and the anode side: Zr / Ce is changed has a much higher output than the battery b using only BZY as the solid electrolyte and the battery c using BZCY. Indicated.
  • the battery a using BCY as a solid electrolyte was excellent in initial output, but the voltage decreased with time and was inferior in durability.
  • the battery A does not show a decrease in voltage over time and is excellent in durability.
  • the cell structure of the present invention is excellent in power density and durability, and can be applied to various solid oxide fuel cells.

Abstract

カソードと、アノードと、前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、前記固体電解質層は、ペロブスカイト構造を有し、ジルコニウム、セリウムおよびセリウム以外の希土類元素を含む化合物を含み、前記固体電解質層の厚みをTとするとき、前記固体電解質層の前記カソード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceと、前記固体電解質層の前記アノード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceとが、Zr/Ce>Zr/Ceを満たし、かつ、Zr/Ce>1である、セル構造体。

Description

セル構造体、その製造方法、および、燃料電池
  本発明は、プロトン伝導性を有する固体電解質を備えるセル構造体および燃料電池に関する。
  燃料電池は、水素などの燃料と空気(酸素)との電気化学反応によって発電する装置であり、化学エネルギーを電気に直接変換できるため、発電効率が高い。なかでも、動作温度が700℃以上、特には800~1000℃程度である固体酸化物型燃料電池(以下、SOFCと称する)は、反応速度が速く、セルの構成要素がすべて固体であるため、取り扱いが容易である。一方で、動作温度が非常に高温であるため、用途が大型発電設備や家庭用発電に限られている。省エネルギーが求められる現在、発電効率が高く、低騒音で、環境負荷物質の排出が少なく、セル構造が簡単なSOFCの用途拡大が求められている。
  SOFCの動作温度が高温であるのは、酸化物イオンをセラミックス材料からなる固体電解質の中で移動させるためである。そこで、電荷のキャリアとして、酸化物イオンではなく、中温域(例えば、400~600℃)でも移動可能な水素イオン(プロトン)を用いたPCFC(Protonic Ceramic Fuel Cells、プロトン伝導性酸化物型燃料電池)が研究されている。この場合、固体電解質には、プロトン伝導性が求められる。プロトン伝導性を有する固体電解質としては、ペロブスカイト構造を有する化合物、例えば、イットリウムがドープされたジルコン酸バリウム(以下、BZYと称する)、イットリウムがドープされたセリウム酸バリウム(以下、BCYと称する)等の金属酸化物が知られている(特許文献1)。
  金属酸化物は、水分の影響を受けやすい。特に、セリウムを含む金属酸化物は、ジルコニウムを含む金属酸化物に比べて、より水分の影響を受けやすいことが報告されている(非特許文献1)。
特開2001-307546号公報
Solid State Ionics 145 (2001) 349-355
  燃料電池の固体電解質層としてBCYを用いると、初期は良好な発電性能を示すものの、耐久性は低い。これは、燃料電池の発電の過程において、カソードで生成した水とBCYとが反応して、BCYが分解したり、カソードと固体電解質層との界面に反応生成物が生じたりするためであると考えられる。
  一方、燃料電池の固体電解質層としてBZYを用いると、耐久性には優れるものの、発電性能に劣る。BZYは、水分に対して比較的安定であるが、焼結性に劣るため粒界が多く、抵抗が大きいためである。
  特許文献1では、ジルコニウムとセリウムとを含むペロブスカイト型の酸化物(BZCY)も提案されているが、BCYを用いる場合と比較して抵抗が大きいため、発電性能が低い。
  本発明の一局面は、カソードと、アノードと、前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、前記固体電解質層は、ペロブスカイト構造を有し、ジルコニウム、セリウムおよびセリウム以外の希土類元素を含む化合物を含み、前記固体電解質層の厚みをTとするとき、前記固体電解質層の前記カソード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceと、前記固体電解質層の前記アノード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceとが、Zr/Ce>Zr/Ceを満たし、かつ、Zr/Ce>1である、セル構造体に関する。
  本発明の他の一局面は、カソード用材料、アノード用材料、および、固体電解質として、下記式(2):A2ZrCeB21-x-y3-δ(ただし、A2はアルカリ土類金属元素であり、B2はセリウム以外の希土類元素であり、x1/y1>1、0.4≦x1≦1、0≦y1≦0.5、δは酸素欠損量である)で表わされる化合物Zと、下記式(3):A3Zrx2Cey2B31-x2-y23-δ(ただし、A3はアルカリ土類金属元素であり、B3はセリウム以外の希土類元素であり、x1/y1>x2/y2、0≦x2<0.5、0.4≦y2≦1、δは酸素欠損量である)で表わされる化合物Cと、を準備する第1工程と、前記アノード用材料をアノードの形状に成形する第2工程と、前記アノード用材料の表面に前記化合物Cを積層する第3工程と、積層された前記化合物Cの表面に前記化合物Zを積層し、焼結して、固体電解質層を形成する第4工程と、前記固体電解質層の表面に、前記カソード用材料を積層し、焼結する第5工程と、を備える、セル構造体の製造方法に関する。
  本発明のさらに他の一局面は、上記セル構造体を備え、前記カソードに酸化剤を供給するための酸化剤流路、および、前記アノードに燃料を供給するための燃料流路を有する、燃料電池に関する。
  本発明によれば、燃料電池に適用した場合に、優れた発電性能および耐久性を発揮するセル構造体を提供することができる。
本発明の一実施形態に係るセル構造体を模式的に示す断面図である。 図1Aにおける固体電解質層付近を拡大した断面図である。 本発明の一実施形態に係る燃料電池を模式的に示す断面図である。 実施例および比較例に係る燃料電池の出力密度を示すグラフである。 実施例および比較例に係る燃料電池の電圧変化を示すグラフである。
[発明の実施形態の説明]
  最初に本発明の実施形態の内容を列記して説明する。
  本発明の第1の局面に係るセル構造体は、(1)カソードと、アノードと、前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、前記固体電解質層は、ペロブスカイト構造を有し、ジルコニウム、セリウムおよびセリウム以外の希土類元素を含む化合物を含み、前記固体電解質層の厚みをTとするとき、前記固体電解質層の前記カソード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceと、前記固体電解質層の前記アノード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceとが、Zr/Ce>Zr/Ceを満たし、かつ、Zr/Ce>1である。このセル構造体を、燃料電池に適用すると、優れた発電効率および耐久性を発揮することができる。
  (2)前記元素比:Zr/Ce≧2であり、前記元素比:Zr/Ce<2であることが好ましい。これにより、発電効率および耐久性がより向上する。
  (3)前記化合物は、固体電解質全体の平均的な組成として、下記式(1):A1ZrCeB11-x-y3-δ(ただし、A1はアルカリ土類金属元素であり、B1はセリウム以外の希土類元素であり、0.4<x≦0.6、0<y≦0.4、δは酸素欠損量である)で表わされることが好ましい。プロトン伝導性に優れるためである。
  本発明の第2の局面に係るセル構造体の製造方法は、(4)カソード用材料、アノード用材料、および、固体電解質として、下記式(2):A2Zrx1Cey1B21-x1-y13-δ(ただし、A2はアルカリ土類金属元素であり、B2はセリウム以外の希土類元素であり、x1/y1>1、0.4≦x1≦1、0≦y1≦0.5、δは酸素欠損量である)で表わされる化合物Zと、下記式(3):A3Zrx2Cey2B31-x2-y23-δ(ただし、A3はアルカリ土類金属元素であり、B3はセリウム以外の希土類元素であり、x1/y1>x2/y2、0≦x2<0.5、0.4≦y2≦1、δは酸素欠損量である)で表わされる化合物Cと、を準備する第1工程と、前記アノード用材料をアノードの形状に成形する第2工程と、成形された前記アノード用材料の表面に前記化合物Cを積層する第3工程と、積層された前記化合物Cの表面に前記化合物Zを積層し、焼結して、固体電解質層を形成する第4工程と、前記固体電解質層の表面に、前記カソード用材料を積層し、焼結する第5工程と、を備える。この方法により製造されるセル構造体を、燃料電池やガス分解装置に適用すると、優れた発電効率および耐久性を発揮することができる。
  本発明の第三の局面に係る燃料電池は、(5)上記セル構造体を備え、前記カソードに酸化剤を供給するための酸化剤流路、および、前記アノードに燃料を供給するための燃料流路を有する。この燃料電池は、優れた発電効率および耐久性を発揮する。
[発明の実施形態の詳細]
  本発明の実施形態を具体的に以下に説明する。なお、本発明は、以下の内容に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  本実施形態のセル構造体1は、例えば、図1Aに示されるように、カソード2と、アノード4と、カソード2およびアノード4の間に介在し、プロトン伝導性を備える固体電解質層3と、を備える。カソード2と固体電解質層3とアノード4とは、焼結により一体化されている。図1Aでは、積層型のセル構造体を示しているが、セル構造体の形状はこれに限定されない。例えば、中空を有するように、アノード4を内側にして丸めた円筒形状であっても良い。
[固体電解質層]
  カソード2では、固体電解質層3から伝導されたプロトンと酸化剤との反応により、水が生成する。そのため、固体電解質層3の少なくともカソード側は、水との反応性の低いジルコニウムを多く含むことが望ましい。しかし、ジルコニウムを多く含む金属酸化物を固体電解質として用いる燃料電池は、出力が低く発電性能に劣る。本実施形態では、水との反応を抑制して耐久性を向上させながら、発電性能をより向上させるため、固体電解質層3のカソード側とアノード側とで、ジルコニウムとセリウムとの元素比を変化させる。
固体電解質層3のカソード側とは、固体電解質層3のカソード2と対向する側をいい、アノード側とは、固体電解質層3のアノード4と対向する側をいう。
  固体電解質層は、ペロブスカイト構造(Perovskite structure、ABO)を有する化合物を含む。上記化合物のBサイトには、ジルコニウム(Zr)およびセリウム(Ce)が含まれる。さらに、Bサイトの一部は、セリウム以外の希土類元素で置換されており、このようなドーパントによって、上記化合物はプロトン伝導性を発現する。
  Aサイトに入る金属元素は特に限定されないが、例えば、バリウム(Ba)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属であっても良い。これらは、単独で、あるいは2種以上を組み合わせて用いることができる。なかでも、プロトン伝導性の観点から、BaがAサイトに入っていることが好ましい。この場合、Aサイトを占めるBaの割合は、Baと他の元素との合計に対して、50原子%以上であることが好ましい。
  セリウム以外の希土類元素(ドーパント)としては、イットリウム(Y)、スカンジウム(Sc)、ネオジウム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、イッテルビウム(Yb)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)等が挙げられる。なかでも、プロトン伝導性の観点から、YがBサイトの一部を占めていることが好ましい。この場合、Yのドーパント全体に対する割合は、Yと他のドーパントとの合計に対して、50原子%以上であることが好ましい。
  固体電解質層は、上記化合物以外の成分を含み得るが、その含有量は少ないことが好ましい。例えば、固体電解質層の99質量%以上が、上記化合物であることが好ましい。上記化合物以外の成分としては特に限定されず、固体電解質として公知の化合物(プロトン伝導性を有さない化合物を含む)を挙げることができる。
  固体電解質層は、カソード側の表面3Cから、厚みTに対して0.25Tの位置(図1B参照。以下、単に表面3C近傍と称す場合がある)において、水との反応性の低いZrの元素を多く含んでいる。つまり、表面3C近傍におけるZrの元素量(Zr)が、水分の影響を受けやすいCeの元素量(Ce)より多い(元素比:Zr/Ce>1)ため、水に対する耐性が向上する。
  一方、アノード側の表面3Cから、厚みTに対して0.25Tの位置(以下、単に表面3A近傍と称す場合がある)では、Ceの元素を相対的に多く含む。つまり、表面3A近傍の元素比:Zr/Ceは、表面3C近傍よりも小さい(Zr/Ce>Zr/Ce)。これにより、固体電解質層とアノードとの界面の抵抗が小さくなり、出力が向上する。また、後述するように、アノードが酸化ニッケル(NiO)を含む場合、表面3A近傍のCe量が多いことで、アノードから拡散したNiによって固体電解質層が受ける影響は小さくなり易い。
  表面3C近傍における元素比:Zr/Ceは、2以上(Zr/Ce≧2)であることが好ましい。表面3C近傍での元素比:Zr/Ceがこの範囲であると、水に対する耐性がさらに向上する。元素比:Zr/Ceは、3以上(Zr/Ce≧3)であることがより好ましい。
  表面3A近傍における元素比:Zr/Ceは、2未満(Zr/Ce<2)であることが好ましい。表面3A近傍での元素比:Zr/Ceがこの範囲であると、界面における抵抗がさらに小さくなる。元素比:Zr/Ceは、1.7以下(Zr/Ce≦1.7)であることがより好ましい。
  固体電解質層の内部の元素比は、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray Spectroscopy)を用いて、元素分布状態(デプスプロファイル)を評価することによって求めることができる。例えば、固体電解質層のある一点を通る、固体電解質層の主面に対する法線を引いたとき、法線上にある、カソードと固体電解質層との境界から固体電解質層とアノードとの境界までを、固体電解質層の厚み(T)とする。この厚みTを4等分して、表面3Cから0.25T内部の位置および表面3Aから0.25T内部の位置のプロファイルを評価する。また固体電解質層の別のある一点に対しても同じように評価を行う。これを、例えば任意の複数点(例えば、5点)に対して行い、平均化することによって、元素比を求めることができる。また、X線光電子分光法(XPS(X-ray Photoelectron Spectroscopy)またはESCA(Electron Spectroscopy for Chemical Analysis)とも言われる)とイオンエッチングとを併用して、厚み方向におけるZrおよびCeの分布を評価することによって、元素比を求めても良い。
  固体電解質層に含まれるペロブスカイト構造を有する化合物は、例えば、下記式(1)で表わされる。
      式(1):A1ZrCeB11-x-y3-δ
  式(1)において、A1はアルカリ土類金属元素、B1はセリウム以外の希土類元素であって、0.4<x≦0.6、0<y≦0.4を満たすことが好ましい。δは酸素欠損量である。また、式(1)は、固体電解質全体の平均的な組成を示している。耐水性の点で、元素量xおよびyは、x>yを満たすことがより好ましい。
  元素A1は、ペロブスカイト構造のAサイトを占めるアルカリ土類金属元素であり、具体的には上記と同様の元素が例示される。なかでも、元素A1は、Baであることが好ましい。元素B1は、ペロブスカイト構造のBサイトの一部を占めるドーパントであり、具体的には上記と同様の元素が例示される。なかでも、元素B1は、Yであることが好ましい。
  式(1)で表わされる平均的な組成は、例えば、EDXにより求めることができる。具体的には、上記と同じようにある一点を通る法線を引いて、法線上にある表面3Cからの距離の異なる複数個所(例えば5個所)における元素分布状態(デプスプロファイル)を評価する。得られたプロファイルを平均化することによって、平均的な組成を求めることができる。
  表面3Cから0.5Tまでの範囲を第1領域、第1領域以外の範囲を第2領域とすると、第1領域におけるZrとCeとの元素比:ZrR1/CeR1は、第2領域における、ZrとCeとの元素比:ZrR2/CeR2よりも大きいことが好ましい。カソード側のZr元素が多くなって、水に対する耐性がより向上するためである。さらに、その他の部分のCe元素の割合を相対的に大きくすることで、界面だけではなく、固体電解質層内部における粒界の抵抗が小さくなり、出力が向上し易くなる。
  なかでも、表面3Cから0.3Tまでの領域における元素比:Zr0.3/Ce0.3と、これ以外の領域における元素比:Zr0.7/Ce0.7とが、Zr0.3/Ce0.3>Zr0.7/Ce0.7を満たすことがより好ましい。Ceの割合の高い領域が広いと、出力特性が向上し易いためである。
  第1領域および第2領域における元素比は、各領域における平均値であって、上記と同様にして求めることができる。具体的には、上記と同じように法線を引き、表面3Cから0.5Tまでの範囲(第1領域)において、法線上にある表面3Cからの距離の異なる複数個所(例えば3個所)におけるプロファイルをEDXにより評価し、平均化することによって、第1領域のZrおよびCeの元素比を求める。第2領域についても、同じようにしてZrおよびCeの元素比を求めることができる
  第1領域における元素比:ZrR1/CeR1は、2以上(ZrR1/CeR1≧2)であることが好ましい。第2領域における元素比:ZrR2/CeR2は、2未満(ZrR2/CeR2<2)であることが好ましい。また、固体電解質層3の厚みは、特に限定されないが、5μm~25μm程度であることが、抵抗がさらに低く抑えられる点で好ましい。
  固体電解質層に含まれるZrとCeとの元素比:Zr/Ceは、カソード側からアノード側に向かうに従って、小さくなるように変化していてもよい。この変化は、連続的であっても良いし、段階的であっても良く、全体的な傾向として把握できる程度であればよい。
  例えば、上記と同じようにある一点を通る法線を引いて、法線上にある表面3Cからの距離の異なる複数個所(例えば5個所)におけるデプスプロファイルをEDXにより評価し、各個所での元素比:Zr/Ceを算出する。このようにして算出された元素比:Zr/Ceを、横軸が表面3Cからの距離、縦軸が元素比:Zr/Ceであるグラフにプロットする。このグラフから、最小二乗法によって得られた近似直線あるいは近似曲線が、右下がりになっている場合に、全体的な傾向として、カソード側からアノード側に向かうに従って、元素比:Zr/Ceが小さくなっていると判断することができる。
  表面3Cから0.2Tの地点と0.4Tの地点において、それぞれの元素比:Zr0.2/Ce0.2およびZr0.4/Ce0.4が同じ、あるいは、Zr0.2/Ce0.2<Zr0.4/Ce0.4を満たす場合であっても、0.2T、0.5Tおよび0.7Tの地点における元素比との関係が、Zr0.2/Ce0.2>Zr0.5/Ce0.5、かつ、Zr0.5/Ce0.5>Zr0.7/Ce0.7を満たす場合には、元素比:Zr/Ceは、カソード側からアノード側に向かうに従って、連続的に小さくなっているとみなすことができる。
  また、表面3Cから0.5Tまでの範囲を占める第1領域における元素比の変化はほとんどなく(例えば、元素比の変化率が20%以下)、残りの範囲を占める第2領域における元素比の変化もほとんどない(例えば、元素比の変化率が20%以下)場合であって、第1領域の平均的な元素比ZrL1/CeL1と、第2領域の平均的な元素比ZrL2/CeL2とが、ZrL1/CeL1>ZrL2/CeL2を満たす場合には、元素比:Zr/Ceは、カソード側からアノード側に向かうに従って、段階的に小さくなっているとみなすことができる。
[カソード]
  カソード2は、酸素分子を吸着し、解離させてイオン化することができ、かつ、多孔質の構造を有している。カソード2では、固体電解質層3を介して伝導されてきたプロトンと、酸化物イオンとの反応(酸素の還元反応)が生じている。酸化物イオンは、後述する酸化物流路から導入された酸化剤(酸素)が解離することにより生成する。
  カソードの材料としては、例えば、燃料電池やガス分解装置のカソードとして用いられる公知の材料を用いることができる。なかでも、ペロブスカイト構造を有する化合物であることが好ましい。具体的には、ランタンストロンチウムコバルトフェライト(LSCF、La1-aSrCo1-bFe3-δ、0<a<1、0<b<1、δは酸素欠損量である)、ランタンストロンチウムマンガナイト(LSM、La1-cSrMnO3-δ、0<c<1、δは酸素欠損量である)、ランタンストロンチウムコバルタイト(LSC、La1-dSrCoO3-δ、0<d<1、δは酸素欠損量である)、サマリウムストロンチウムコバルタイト(SSC、Sm1-eSrCoO3-δ、0<e<1、δは酸素欠損量である)等が挙げられる。
  カソード2は、Ag等の触媒を含んでいても良い。プロトンと酸化剤との反応が促進されるためである。触媒を含む場合、カソード2は、触媒と上記材料とを混合して、焼結することにより形成することができる。また、カソード2の厚みは、特に限定されないが、10μm~30μm程度であれば良い。
[アノード]
  アノード4は、多孔質の構造を有している。アノード4では、後述する流路から導入される水素などの燃料を酸化して、プロトンと電子とを放出する反応(燃料の酸化反応)が行われる。
  アノードの材料としては、例えば、燃料電池のアノードとして用いられる公知の材料を用いることができる。具体的には、触媒成分である酸化ニッケル(NiO)と、酸化イットリウム(Y)、BCY、BZYまたは上記式(1)で表わされる固体電解質(以下、BZCYと称す場合がある)との複合酸化物等が挙げられる。BZCYを用いると、アノード4と固体電解質層3に含まれる金属元素の実質的な相互拡散が抑制されるため、抵抗が高くなり難い。また、BCYを用いると、アノード材料に含まれるCeが固体電解質層へと拡散することにより、固体電解質層の表面3A近傍の元素比Zr/Ceが小さくなり易い。
  このような複合酸化物を含むアノード4は、例えば、NiO粉末とBZCY粉末等とを混合して焼結することにより形成することができる。また、アノード4の厚みは、例えば、30μm~800μm程度であれば良い。アノード4は、その厚みを大きくして、セル構造体1の支持体として機能させても良い。図1は、アノード4の厚みをカソード2よりも厚く示し、アノード4がセル構造体1の支持体として機能する場合を示している。アノード4の大きさは、これに限定されるものではなく、例えば、カソード2よりも小さくても良い。
  アノードに、分解して水素を生成するアンモニア、メタン、プロパン等の気体を含むガスを導入すると、アノードでは、これらの気体の分解反応が起こり、水素が発生する。つまり、セル構造体は、ガス分解性能を備えており、このセル構造体をガス分解装置に用いることが可能である。
  例えば、アンモニアの分解により発生した水素は、アノードによって酸化され、プロトンが生成する。生成したプロトンは、固体電解質層3を通って、カソード2に移動する。
一方、アンモニアの分解により同時に生成したNは、排気ガスとして後述する燃料ガス出口から排出される。アノードには、上記ガスを分解する機能を有する触媒を含ませてもよい。アンモニア等のガスを分解する機能を有する触媒としては、Fe、Co、Ti、Mo、W、Mn、RuおよびCuよりなる群から選択される少なくとも1種の触媒成分を含む化合物が挙げられる。
[バッファ層]
  カソード2と固体電解質層3との間に、バッファ層を介在させても良い。バッファ層は、カソード2と固体電解質層3との間の剥離やクラックを抑制する機能を有する。
  バッファ層は、プロトン伝導性を有し、かつ、カソード2および固体電解質層3との反応性が低いことが望ましい。また、バッファ層に用いられる材料の熱膨張率は、カソード2と固体電解質層3の熱膨張率の間の値であることが望ましい。このような材料としては、パイロクロア(pyrochlore)構造を有するイットリウムがドープされたジルコン酸ランタン等が挙げられる。バッファ層の厚みは、特に限定されないが、1μm~5μm程度であれば良い。
[セル構造体の製造方法]
  カソード側とアノード側とで元素比:Zr/Ceが異なる固体電解質層を含むセル構造体は、例えば、以下のようにして作製することができる。
  まず、カソード用材料、アノード用材料(いずれも、後述する)、および、ZrとCeとの元素比:Zr/Ceが異なる2種類の固体電解質を準備する(第1工程)。以下、相対的にZr/Ceの大きい化合物を化合物Zと称し、相対的にZr/Ceの小さい化合物を化合物Cと称す。
  化合物Zは、例えば、下記式(2)で表わされる。
式(2):A2Zrx1Cey1B21-x1-y13-δ
  式(2)において、x1/y1>1を満たす。元素A2はアルカリ土類金属元素、元素B2はセリウム以外の希土類元素であることが好ましく、0.4≦x1≦1、0≦y1≦0.5を満たすことが好ましい。δは酸素欠損量である。
  化合物Cは、例えば下記式(3)で表わされる。
式(3):A3Zrx2Cey2B31-x2-y23-δ
  式(3)において、x1/y1>x2/y2を満たす。元素A3はアルカリ土類金属元素、元素B3はセリウム以外の希土類元素であることが好ましく、0≦x2<0.5、0.4≦y2≦1を満たすことが好ましい。δは酸素欠損量である。
  元素A2および元素A3としては、元素A1として例示したのと同様の元素を挙げることができる。元素B2および元素B3としては、元素B1として例示したのと同様の元素を挙げることができる。元素A2および元素A3は、それぞれ同じであっても良いし、異なっていても良い。元素B2および元素B3も、それぞれ同じであっても良いし、異なっていても良い。
  アノード用材料を用いてアノードの形状を形成した後(第2工程)、成形されたアノード用材料の表面に、化合物Cの粉末とバインダ樹脂とを混合したペーストを、所定の厚みになるように、スクリーン印刷、スプレー塗布、スピンコート、ディップコート等により積層する(第3工程)。続いて、化合物Cの表面に、化合物Zの粉末とバインダ樹脂とを混合したペーストを、所定の厚みになるように、同様に積層し、例えば、1300~1500℃の温度条件にて焼結することによって、固体電解質層を形成する(第4工程)。最後に、固体電解質層の表面に、カソード用材料を同様の方法により積層した後、酸素雰囲気下で、例えば800~1100℃で焼結する(第5工程)。
  第2工程の後、第3工程の前に、アノード用材料を仮焼結する工程を備えることが好ましい。仮焼結は、アノード用材料が焼結される温度よりも低い温度(例えば、900~1100℃)で行えばよい。仮焼結を行うことにより、第3工程において化合物Cを積層し易くなる。
  第4工程において、まず、600~800℃程度の比較的低い温度に加熱してバインダ樹脂を除去した後、1300~1500℃に昇温して焼結させてもよい。また、第5工程において、固体電解質層の表面に、バッファ層の材料を積層した後、カソード用材料を積層しても良い。これにより、固体電解質層とカソードとの間に、バッファ層が形成される。バッファ層材料の積層方法としては、固体電解質の場合と同じ方法が例示される。
  第4工程では、アノード用材料と化合物Cとが共焼結されるとともに、化合物Cと化合物Zとが共焼結される。化合物Cと化合物Zとが共焼結される際に、ZrおよびCeの相互拡散が生じる。そのため、形成される固体電解質層内部では、ZrとCeとの元素比が、カソード側からアノード側に向かうに従って、連続的に小さくなるように変化する。
  使用する固体電解質は2種類に限定されず、3種以上であっても良い。例えば、化合物Cおよび化合物Zの積層工程の間に、化合物Cおよび化合物Zの中間の元素比:Zr/Ceを有する化合物を積層する工程を加えても良い。
  また、第3工程の後、第4工程の前に、アノード用材料と化合物Cとを共焼結する工程を加えると、ZrとCeとの元素比が、カソード側からアノード側に向かうに従って段階的に小さくなる固体電解質層を形成することができる。アノード用材料と化合物Cとを、一旦、共焼結させた後、化合物Zを含む層を積層し、焼結することにより、化合物Cおよび化合物Zの間のZrおよびCeの相互拡散が抑制されるためである。なお、各層の界面は、ZrおよびCeが相互拡散している非常に薄い領域を含み得る。なかでも、焼結性の点で、第3工程において、化合物Cに続いて化合物Zを積層した後、第4工程で化合物Cと化合物Zとの共焼結を行う方法が好ましい。
  この場合も、使用する固体電解質は2種類に限定されず、3種以上であっても良い。例えば、化合物Cの焼結工程および化合物Zの積層工程の間に、化合物Cおよび化合物Zの中間の元素比:Zr/Ceを有する化合物を積層し、焼結する工程を加えても良い。これにより、元素比:Zr/Ceを、3段階以上に分けて変化させることができる。
  なお、例えば、AサイトをBaが占有し、Bサイトの一部をYが占める固体電解質は、次のような方法により合成することができる。
  炭酸バリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムの粉末を所定の割合で混合し、ボールミルを用いて24時間、粉砕混練を行う。得られた混合物を、20~50MPaで一軸圧縮成形してペレット状に成形した後、大気雰囲気下で1200~1600℃で10~24時間焼成する。酸化ジルコニウムおよび酸化セリウムの配合を変化させることにより、ZrとCeとの元素比を変化させることができる。得られた固体電解質を再び、ボールミルを用いて10~100時間の粉砕混練を行うことにより、固体電解質の粉末を得ることができる。
[燃料電池]
  図2に燃料電池10の構造の断面を、模式的に示す。
  燃料電池10は、セル構造体1と、カソードに酸化剤を供給するための酸化剤流路23、および、アノードに燃料を供給するための燃料流路43を有する。
  酸化剤流路23は、酸化剤が流入する酸化剤入口と、反応で生成した水や未使用の酸化剤などを排出する酸化剤排出口を有する(いずれも図示せず)。酸化剤としては、酸素を含むガスが例示される。燃料流路43は、燃料ガスが流入する燃料ガス入口と、未使用の燃料、反応により生成するNまたはCO等を排出する燃料ガス排出口を有する(いずれも図示せず)。
  燃料電池10は、プロトン伝導性の固体電解質層を含むため、700℃未満、好ましくは、400~600℃程度の中温域で作動することができる。
[セパレータ]
  酸化剤流路23は、例えば、カソードの外側に配置されるカソード側セパレータ22に形成されていても良い。同様に、燃料流路43は、例えば、アノードの外側に配置されるアノード側セパレータ42に形成されていても良い。
  複数のセル構造体が積層されて、燃料電池10が構成される場合には、例えば、セル構造体1と、カソード側セパレータ22と、アノード側セパレータ42とが、一単位として積層される。複数のセル構造体1は、例えば、両面にガス流路(酸化剤流路および燃料流路)を備えるセパレータにより、直列に接続されていてもよい。
  セパレータの材料としては、導電性および耐熱性の点で、ステンレス鋼、ニッケル基合金、クロム基合金等の耐熱合金が例示できる。なかでも、安価である点で、ステンレス鋼が好ましい。PCFCでは、動作温度が400~600℃程度であるため、ステンレス鋼をセパレータの材料として用いることができる。
[集電体]
  燃料電池10は、さらに集電体を備えていてもよい。例えば、燃料電池10は、カソードとカソード側セパレータ22との間に配置されるカソード側集電体21と、アノードとアノード側セパレータ52との間に配置されるアノード側集電体41とを、備えていてもよい。カソード側集電体21は、集電機能に加え、酸化剤流路23から導入される酸化剤ガスを拡散させながら、カソードに供給する機能を果たす。アノード側集電体41は、集電機能に加え、燃料流路43から導入される燃料ガスを拡散させながら、アノードに供給する機能を果たす。そのため、各集電体は、通気性を有する構造体であることが好ましい。
  各集電体に用いられる構造体としては、例えば、白金、銀、銀合金、ニッケル、ニッケル合金等を含む金属多孔体、金属メッシュ、パンチングメタル、エキスパンドメタル等が挙げられる。なかでも、軽量性や通気性の点で、金属多孔体が好ましい。特に、三次元網目状の構造を有する金属多孔体が好ましい。三次元網目状の構造とは、金属多孔体を構成する棒状や繊維状の金属が相互に三次元的に繋がり合い、ネットワークを形成している構造を指す。例えば、スポンジ状の構造や不織布状の構造が挙げられる。
  金属多孔体は、例えば、連続空隙を有する樹脂製の多孔体を、前記のような金属で被覆することにより形成できる。金属被覆処理の後、内部の樹脂が除去されると、金属多孔体の骨格の内部に空洞が形成されて、中空となる。このような構造を有する市販の金属多孔体としては、住友電気工業株式会社製のニッケルの「セルメット」(登録商標)等を用いることができる。
  以下、実施例に基づき、本発明をより具体的に説明するが、以下の実施例は本発明を限定するものではない。
《実施例1》
(1)セル構造体の作製
  下記の手順でセル構造体を作製した。
  BZY(BaZr0.80.22.9)粉末およびBCY(BaCe0.80.22.9)粉末に、Ni(触媒成分)を70体積%含むようにNiOを混合し、ボールミルによって粉砕混練した。BZY粉末とBCY粉末とは、体積比で1:1となるように混合した。
  次いで、プレス成形により、アノードを構成する円形シート状成形体(厚さ500μm)を形成し、1000℃で10時間、仮焼結した。その後、上記成形体の一方の面に、BCY(BaCe0.80.22.9)粉末と有機溶媒(酢酸ブチルカルビトール)とバインダ樹脂(エチルセルロース)とを混合したペーストを、スクリーン印刷によって塗布した。続いて、その上から、BZY(BaZr0.80.22.9)粉末と上記と同じ有機溶媒とバインダ樹脂とを混合したペーストを、スクリーン印刷によって塗布した後、750℃で水溶性バインダ樹脂を除去した。次いで、1400℃で10時間の加熱処理を行うことにより焼結させ、アノードと固体電解質層(厚さ20μm)とを形成した。
  カソード用の材料としてLSCF(La0.6Sr0.4Co0.2Fe0.83-δ)の粉末と上記と同じ有機溶媒とを混合したLSCFペーストを準備した。LSCFペーストを固体電解質層の表面にスプレーによって塗布した。続いて、1000℃で2時間の熱処理を行って、LSCFを焼結させて、カソード(厚さ20μm)を形成した。
  得られたセル構造体における固体電解質層について、カソード側の表面から厚み方向に、厚みTの25%(0.25T)の地点1、45%(0.45T)の地点2、75%(0.75T)の地点3の組成を、EDXにより測定し、元素比:Zr/Ceを算出した。元素比:Zr/Ceは、地点1では3.5、地点2では3.5、地点3では1.6であり、元素比は、連続的に変化していた。また、固体電解質層全体の平均的な組成は、BaZr0.5Ce0.30.23-δであった。
(2)燃料電池の作製
  上記で得られたセル構造体(直径90mm)のカソードおよびアノードのそれぞれの表面に、ニッケル多孔質体(住友電気工業株式会社製、セルメット、厚み1mm、気孔率95体積%)で構成された集電体を積層した。さらに、カソード側の集電体の上に、酸化剤流路を有するステンレス鋼製のカソード側セパレータを積層し、アノード側集電体の上に、燃料流路を有するステンレス鋼製のアノード側セパレータを積層して、図2に示す燃料電池Aを製作した。各集電体には、リード線の一方の端部を接合した。上記リード線の他方の端部は、燃料電池の外部に引き出し、各リード線の間の電流値および電圧値を計測できるように、計測器に接続した。
(評価1)出力密度
  動作温度を600℃として、作製された燃料電池のアノードに燃料ガスとして水素を100cm/分で流し、カソードに空気を200cm/分で流した時の初期の出力密度を求めた。結果を図3に示す。
(評価2)電圧変化
  (1)と同様の条件で、定電流(120mA/cm)で発電させたときの電圧の変化を測定した。結果を図4に示す。
《比較例1》
  固体電解質としてBCY(BaCe0.80.22.9)粉末のみを使用したこと以外は、実施例1と同様にして、燃料電池aを作製し、評価1および2を行った。
《比較例2》
  固体電解質としてBZY(BaZr0.80.22.9)粉末のみを使用したこと以外は、実施例1と同様にして、燃料電池bを作製し、評価1を行った。
《比較例3》
  固体電解質としてBZCY(BaZr0.6Ce0.20.22.9)粉末のみを使用したこと以外は、実施例1と同様にして、燃料電池cを作製し、評価1を行った。元素比:Zr/Ceは、地点1、地点2、地点3のいずれにおいても3.0であり、アノード側とカソード側とで、元素比の変化は見られなかった。
  カソード側とアノード側とで固体電解質層の元素比:Zr/Ceを変えた電池Aは、固体電解質としてBZYのみを使用した電池bおよびBZCYを使用した電池cに比べて、非常に高い出力を示した。固体電解質としてBCYを使用した電池aは、初期の出力に優れるものの、経時的に電圧が低下し、耐久性に劣るものであった。一方、電池Aは、経時的な電圧の低下は見られず、耐久性に優れている。
  本発明のセル構造体は、出力密度および耐久性に優れるため、様々な固体酸化物型燃料電池に適用することができる。
  1:セル構造体、2:カソード、3:固体電解質層、4:アノード、10:燃料電池、21、41:集電体、22、42:セパレータ、23:燃料流路、43:酸化剤流路

Claims (5)

  1.   カソードと、
      アノードと、
      前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、
      前記固体電解質層は、ペロブスカイト構造を有し、ジルコニウム、セリウムおよびセリウム以外の希土類元素を含む化合物を含み、
      前記固体電解質層の厚みをTとするとき、
      前記固体電解質層の前記カソード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceと、
      前記固体電解質層の前記アノード側の表面から0.25Tの位置における前記ジルコニウムと前記セリウムとの元素比:Zr/Ceとが、
      Zr/Ce>Zr/Ceを満たし、かつ、Zr/Ce>1である、セル構造体。
  2.   前記元素比:Zr/Ce≧2であり、
      前記元素比:Zr/Ce<2である、請求項1に記載のセル構造体。
  3.   前記化合物が、下記式(1):
    A1ZrCeB11-x-y3-δ
    (ただし、A1はアルカリ土類金属元素であり、B1はセリウム以外の希土類元素であり、0.4<x≦0.6、0<y≦0.4、δは酸素欠損量である)
    で表わされる、請求項1または2に記載のセル構造体。
  4.   カソード用材料、アノード用材料、および、固体電解質として、下記式(2):
    A2Zrx1Cey1B21-x1-y13-δ
    (ただし、A2はアルカリ土類金属元素であり、B2はセリウム以外の希土類元素であり、x1/y1>1、0.4≦x1≦1、0≦y1≦0.5、δは酸素欠損量である)
    で表わされる化合物Zと、下記式(3):
    A3Zrx2Cey2B31-x2-y23-δ
    (ただし、A3はアルカリ土類金属元素であり、B3はセリウム以外の希土類元素であり、x1/y1>x2/y2、0≦x2<0.5、0.4≦y2≦1、δは酸素欠損量である)
    で表わされる化合物Cと、を準備する第1工程と、
      前記アノード用材料をアノードの形状に成形する第2工程と、
      成形された前記アノード用材料の表面に前記化合物Cを積層する第3工程と、
      積層された前記化合物Cの表面に前記化合物Zを積層し、焼結して、固体電解質層を形成する第4工程と、
      前記固体電解質層の表面に、前記カソード用材料を積層し、焼結する第5工程と、を備える、セル構造体の製造方法。
  5.   請求項1に記載のセル構造体を備え、
      前記カソードに酸化剤を供給するための酸化剤流路、および、前記アノードに燃料を供給するための燃料流路を有する、燃料電池。
PCT/JP2015/079495 2014-11-13 2015-10-20 セル構造体、その製造方法、および、燃料電池 WO2016076078A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15859401.0A EP3220464B1 (en) 2014-11-13 2015-10-20 Cell structure, method for manufacturing the same, and fuel cell
CN201580061586.5A CN107112564B (zh) 2014-11-13 2015-10-20 电池结构体及其制造方法以及燃料电池
US15/525,104 US10424801B2 (en) 2014-11-13 2015-10-20 Cell structure, method for manufacturing the same, and fuel cell
JP2016558945A JP6642446B2 (ja) 2014-11-13 2015-10-20 セル構造体、その製造方法、および、燃料電池
KR1020177009856A KR20170082511A (ko) 2014-11-13 2015-10-20 셀 구조체, 그 제조 방법, 및, 연료 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-230625 2014-11-13
JP2014230625 2014-11-13

Publications (1)

Publication Number Publication Date
WO2016076078A1 true WO2016076078A1 (ja) 2016-05-19

Family

ID=55954170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079495 WO2016076078A1 (ja) 2014-11-13 2015-10-20 セル構造体、その製造方法、および、燃料電池

Country Status (6)

Country Link
US (1) US10424801B2 (ja)
EP (1) EP3220464B1 (ja)
JP (1) JP6642446B2 (ja)
KR (1) KR20170082511A (ja)
CN (1) CN107112564B (ja)
WO (1) WO2016076078A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105375A (ja) * 2014-12-01 2016-06-09 住友電気工業株式会社 セル構造体、電解質膜−電極接合体、および、燃料電池
WO2018230248A1 (ja) * 2017-06-15 2018-12-20 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP2019197692A (ja) * 2018-05-11 2019-11-14 日本碍子株式会社 燃料電池セル
JPWO2019171905A1 (ja) * 2018-03-06 2021-02-12 住友電気工業株式会社 セル構造体
US20210057763A1 (en) * 2018-05-01 2021-02-25 Sumitomo Electric Industries, Ltd. Fuel cell
WO2021140817A1 (ja) * 2020-01-07 2021-07-15 パナソニックIpマネジメント株式会社 電解質膜、膜電極接合体、電気化学セル、電解質膜の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748033A4 (en) * 2018-01-29 2021-07-07 Mitsui Mining & Smelting Co., Ltd. OXYGEN PERMEABLE ELEMENT AND TARGET SPRAY MATERIAL
JP6773240B2 (ja) 2018-08-30 2020-10-21 堺化学工業株式会社 固体酸化物形燃料電池用電解質材料とその前駆体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303712A (ja) * 2002-09-13 2004-10-28 Toto Ltd 固体酸化物形燃料電池
JP2006302602A (ja) * 2005-04-19 2006-11-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池及び固体酸化物形燃料電池の製造方法
WO2007060925A1 (ja) * 2005-11-24 2007-05-31 Japan Science & Technology Agency 電気化学セル及び電気化学セルの製造方法
JP2012023017A (ja) * 2010-06-15 2012-02-02 Ngk Insulators Ltd 燃料電池セル
JP2013105718A (ja) * 2011-11-16 2013-05-30 Toyota Motor Corp 電解質膜の製造方法
JP2014207215A (ja) * 2013-03-21 2014-10-30 株式会社日本触媒 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733030B2 (ja) 2000-02-14 2006-01-11 松下電器産業株式会社 イオン伝導体
US7632596B2 (en) * 2003-11-05 2009-12-15 Illinois Institute Of Technology Distributed feed fuel cell stack
JP5443325B2 (ja) 2010-12-02 2014-03-19 日本電信電話株式会社 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル
DE112012001206T5 (de) 2011-11-30 2014-07-03 Panasonic Corporation Brennstoffzellen-System
CN103613105B (zh) * 2013-11-25 2016-01-06 中国科学院宁波材料技术与工程研究所 单电池、其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303712A (ja) * 2002-09-13 2004-10-28 Toto Ltd 固体酸化物形燃料電池
JP2006302602A (ja) * 2005-04-19 2006-11-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池及び固体酸化物形燃料電池の製造方法
WO2007060925A1 (ja) * 2005-11-24 2007-05-31 Japan Science & Technology Agency 電気化学セル及び電気化学セルの製造方法
JP2012023017A (ja) * 2010-06-15 2012-02-02 Ngk Insulators Ltd 燃料電池セル
JP2013105718A (ja) * 2011-11-16 2013-05-30 Toyota Motor Corp 電解質膜の製造方法
JP2014207215A (ja) * 2013-03-21 2014-10-30 株式会社日本触媒 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220464A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105375A (ja) * 2014-12-01 2016-06-09 住友電気工業株式会社 セル構造体、電解質膜−電極接合体、および、燃料電池
WO2018230248A1 (ja) * 2017-06-15 2018-12-20 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JPWO2019171905A1 (ja) * 2018-03-06 2021-02-12 住友電気工業株式会社 セル構造体
JP7136185B2 (ja) 2018-03-06 2022-09-13 住友電気工業株式会社 セル構造体
US20210057763A1 (en) * 2018-05-01 2021-02-25 Sumitomo Electric Industries, Ltd. Fuel cell
US11888185B2 (en) * 2018-05-01 2024-01-30 Sumitomo Electric Industries, Ltd. Fuel cell
JP2019197692A (ja) * 2018-05-11 2019-11-14 日本碍子株式会社 燃料電池セル
WO2021140817A1 (ja) * 2020-01-07 2021-07-15 パナソニックIpマネジメント株式会社 電解質膜、膜電極接合体、電気化学セル、電解質膜の製造方法

Also Published As

Publication number Publication date
CN107112564B (zh) 2020-07-14
US10424801B2 (en) 2019-09-24
EP3220464B1 (en) 2018-11-28
EP3220464A4 (en) 2017-09-20
JP6642446B2 (ja) 2020-02-05
KR20170082511A (ko) 2017-07-14
US20170317371A1 (en) 2017-11-02
EP3220464A1 (en) 2017-09-20
JPWO2016076078A1 (ja) 2017-08-17
CN107112564A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6642446B2 (ja) セル構造体、その製造方法、および、燃料電池
JP6783042B2 (ja) セル構造体の製造方法
JP6601488B2 (ja) プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
WO2017014069A1 (ja) 燃料電池用電解質層-アノード複合部材およびその製造方法
JP6658754B2 (ja) 固体酸化物形燃料電池、および電解質層−アノード接合体の製造方法
JP6370696B2 (ja) セル構造体、電解質膜−電極接合体、および、燃料電池
JP6698892B2 (ja) セルおよびセルスタック装置並びに電気化学モジュール、電気化学装置
KR101421245B1 (ko) 금속지지형 고체산화물 연료전지의 제조방법 및 이에 의해 제조되는 금속지지형 고체산화물 연료전지
JP6664132B2 (ja) 多孔質構造体とその製造方法、及びそれを用いた電気化学セルとその製造方法
JP7107875B2 (ja) 燃料極-固体電解質層複合体の製造方法
WO2019167437A1 (ja) 燃料電池
JP7243709B2 (ja) 燃料電池用電解質層-アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法
WO2020261935A1 (ja) 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
JP7124860B2 (ja) 金属多孔体およびその製造方法、ならびに燃料電池
Choi et al. Application of Low Temperature Ceramic Coating Process for SOFC Electrolyte and Electrode Fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558945

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177009856

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015859401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15525104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE