WO2007060925A1 - 電気化学セル及び電気化学セルの製造方法 - Google Patents

電気化学セル及び電気化学セルの製造方法 Download PDF

Info

Publication number
WO2007060925A1
WO2007060925A1 PCT/JP2006/323152 JP2006323152W WO2007060925A1 WO 2007060925 A1 WO2007060925 A1 WO 2007060925A1 JP 2006323152 W JP2006323152 W JP 2006323152W WO 2007060925 A1 WO2007060925 A1 WO 2007060925A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
electrode
intermediate layer
hydrogen
proton conductor
Prior art date
Application number
PCT/JP2006/323152
Other languages
English (en)
French (fr)
Inventor
Hiroshige Matsumoto
Hitoshi Takamura
Tatsumi Ishihara
Original Assignee
Japan Science & Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science & Technology Agency filed Critical Japan Science & Technology Agency
Priority to EP06833002A priority Critical patent/EP1953540B1/en
Priority to JP2007546438A priority patent/JP4977621B2/ja
Priority to US12/084,885 priority patent/US20090169953A1/en
Publication of WO2007060925A1 publication Critical patent/WO2007060925A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to an electrochemical cell using a proton conductor as an electrolyte, and more particularly to an electrochemical cell excellent in stability against a gas containing carbon dioxide.
  • the proton conductor is typically a crystalline material having a perovskite structure, and is a solid material containing a proton that is a cation of hydrogen.
  • protons can move relatively freely at somewhat high temperatures.
  • the typical operating temperature range is about 600 ° C to 1000 ° C.
  • An electrochemical cell can be constructed by using a proton conductor having the above properties as an electrolyte and attaching two electrodes to the electrolyte.
  • Electrochemical cells using proton conductors as electrolytes have various functions. First, it acts to transport hydrogen in the form of protons when an electric current is applied. Such a function of an electrochemical cell using a proton conductor is called a hydrogen pump function, and an electrochemical cell used for such a function is called a hydrogen pump. Specifically, in the anode (anode), H ⁇ 2e "+ 2H + (1)
  • Electrodes of (1) and (2) above The reaction proceeds simultaneously by sending an electric current to the electrochemical cell, with the result that hydrogen is transported to the anode chamber power sword chamber.
  • An electrochemical cell using a proton conductor operates as a fuel cell. That is, when a so-called fuel gas is introduced into one electrode chamber and an oxidizing gas typified by air is introduced into the other electrode chamber, an electromotive force derived from the chemical energy of the fuel gas is generated between the two electrodes. Electric power can be taken out by connecting the electrode to an external load. Taking the case of using hydrogen as a fuel as an example, the electrode reaction occurring at the anode is equal to equation (1). In the power sword,
  • an electrochemical cell using a proton conductor as an electrolyte operates as a galvanic battery-type hydrogen sensor.
  • electrochemical cells using proton conductors as electrolytes also operate as membrane reactors and steam electrolyzers.
  • proton conductors are typically oxides having a perovskite structure, but can be broadly classified into those containing zirconium as a constituent element and those not containing zirconium.
  • examples of serrate-based perovskite oxides that do not contain zirconium include BaCe M 2 O 3 and SrCe_M 2 O. Where M is a metal with a valence of +3 or less, such as Y or In. 3- ⁇
  • those containing zirconium include BaZr M O, SrZr M O, l -x x 3- ⁇ 1 -x x 3- ⁇
  • zirconium has a problem that the activity of an electrode represented by, for example, a platinum electrode is lowered.
  • the inventors have proposed a technique relating to a palladium alloy and a high-temperature proton-electron mixed conductor as an electrode that is also effective for an electrolyte containing zirconium.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-52764
  • Patent Document 2 PCT / JP2004 / 017100
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-83611
  • the present invention is for solving the above-described problems, and is applicable when a zirconium-based electrolyte must be employed because a gas containing carbon dioxide is introduced into the electrode chamber.
  • An electrochemical cell and a method for manufacturing the same are provided.
  • the invention of claim 1 is an electrochemical cell using an electrolyte composed of a proton conductor containing zirconium (Zr), wherein at least one of the electrodes on the side of the electrolyte and the electrode It is characterized by comprising an intermediate layer containing a proton conductor containing no sulfur.
  • Zr zirconium
  • the invention of claim 2 is characterized in that the proton conductor is a proton conductor having a perovskite structure.
  • the invention of claim 3 is characterized in that it is a proton conductor containing cerium (Ce) containing no proton conductor.
  • the invention according to claim 4 is the electrochemical cell according to claim 1 or 2, wherein the intermediate layer comprises a mixed powder of a proton conductor not containing zirconium and an electrode material. .
  • the area where the electrode reaction occurs can be increased by using the mixed powder as an intermediate layer.
  • a mixed powder By using a mixed powder, sintering of electrode materials can be suppressed, and a decrease in electrode activity associated with sintering can be prevented.
  • X range is 0.8 ⁇ x ⁇ l. 2
  • y range is 0.01.y ⁇ 0.4
  • M is A1 (aluminum ), Sc (scandium), Ga (gallium), Y (yttrium), In (indium), and rare earth metals, excluding cerium, consisting of at least one element of atomic number 57 and 59 to 71.
  • the proton conductor is typically based on an oxide having an ABO composition, and cerium is selected for B.
  • the invention of claim 7 includes carbon dioxide (CO 2) on the electrode side through which the intermediate layer is interposed.
  • Electrode chamber contains carbon dioxide or carbon dioxide.
  • electrolyte containing zirconium it is necessary to use a palladium alloy or a high-temperature proton / electron mixed conductor as an electrode. The presence of an electrolyte containing zirconium allows a smooth electrode reaction.
  • the invention of claim 8 is a hydrogen pump device comprising the electrochemical cell according to each of the above inventions.
  • the invention of claim 9 is a fuel cell device comprising the electrochemical cell according to each of the above inventions.
  • the invention of claim 10 is the method for producing each electrochemical cell as described above, wherein zirconium is contained on at least one electrode side of an electrolyte composed of a proton conductor containing zirconium. It is characterized in that an intermediate layer containing a proton conductor is fixed, and then an electrode is fixed on the surface of the intermediate layer.
  • the term “fixed” means that a material containing a proton conductor that does not contain zirconium and is powdered and kneaded as a paste at room temperature is applied and fired.
  • the concept includes those formed by vapor deposition at room temperature.
  • It includes a step of baking at 50 ° C to 1550 ° C.
  • the intermediate layer in each of the electrochemical cells, has a film thickness of 0 to 1.
  • the thickness of the intermediate layer can be selected according to the thickness of the electrolyte, but since the thickness of the electrolyte can be about 1 m, the thickness of the intermediate layer may be 0.5 m or more. desirable. Also, from the viewpoint of keeping the electric resistance low, it is desirable that it is about 15 / zm or less.
  • the present invention By mounting the electrochemical cell according to the present invention on a fuel cell device and a hydrogen pump device, a small and high performance device can be realized. That is, with respect to the hydrogen pump device, the present invention can reduce the loss of energy generated at the electrode, and can pump hydrogen with less negative power. Similarly, in the fuel cell device, the present invention can reduce the energy loss caused by the electrodes, and enables more efficient power generation.
  • Hydrogen bombardment proceeds by the following electrode reaction when it proceeds well.
  • An electrochemical cell can be viewed as a device that involves the exchange of electrical energy and other forms of energy (eg, chemical energy).
  • electrical energy e.g, chemical energy
  • the work of separating hydrogen by electric energy is performed, and in the fuel cell, chemical energy latent in hydrogen is converted into electric energy.
  • These energy conversions proceed only when current flows through the electrochemical cell.
  • the electrode reaction must proceed in a certain direction and an ionic current must flow through the electrolyte.
  • an extra voltage that is, an overvoltage is required for the electrode and the electrolyte.
  • Each overvoltage is called electrode overvoltage (anode overvoltage and force sword overvoltage) and electrolyte resistance overvoltage.
  • the overvoltage can be quantified by a current interruption method (current interrupt method).
  • the potential of the anode and the force sword measured with reference to the reference electrode is higher or lower in the state where a certain current flows than in the open circuit state due to the overvoltage.
  • the potential of each electrode tries to return to the potential at the open circuit, in other words, the overvoltage tries to return to zero, but the relaxation of the electrode overvoltage is compared to the extremely quick recovery of the electrolyte resistance overvoltage. Slow. Due to this difference, the electrolyte resistance overvoltage is measured in the potential change when the current is interrupted.
  • a proton conductor cell is used, and hydrogen bombing is performed by simulating hydrogen separation for evaluation.
  • FIGS. 2 (a) and 2 (b) show the electrochemical cells 10A and 10B used for the evaluation.
  • SrZr Y 0 was used as the electrolyte 11.
  • a porous platinum electrode is directly attached to the electrolyte 11 for both the electrode 13a and the force sword electrode 13c.
  • the electrochemical cell 10B a prototype of the composition SrCe Yb 0 is formed on both surfaces of the electrolyte 11.
  • a thin-film conductor was attached as an intermediate layer 12 in the form of a thin film, and porous platinum electrodes 13a and 13c were attached thereon as in the electrochemical cell 10A.
  • the shape of electrolyte 11 is disk-shaped (disc-shaped), with a diameter of about 13.5 mm and a thickness of 0.5 mm.
  • platinum paste was applied in a circular shape with a diameter of 8 mm and baked at 950 ° C for 30 minutes.
  • electrochemical cell 10B the SrCe Yb 0
  • 0.95 0.05 3- ⁇ Powder was applied as a paste, applied to a circle with a diameter of 8 mm, baked at 1500 ° C for 5 hours, and then platinum paste with a diameter of 8 as in the electrochemical cell 10A. It was applied in a circle of mm and baked at 950 ° C for 30 minutes.
  • the thickness of the porous platinum electrodes 13a and 13c is about 5 microns, and the thickness of the SrC e Yb 0 intermediate layer 12 is about 10 microns.
  • Fig. 1 shows the configuration of the performance evaluation apparatus 1 for the electrochemical cell 10A.
  • the anode electrode 13a and the force sword electrode 13b are connected to lead wires 18a and 18b via a platinum net for collecting current and a platinum paste (both not shown).
  • a platinum electrode (not shown) was attached to the outer periphery of the disk-shaped electrolyte 11 as a reference electrode.
  • the reference electrode is provided as a standard for measuring the potential of the anode and force sword electrodes, and does not directly affect the electrochemical function of the cell.
  • the electrochemical cell 10A was sandwiched between the ceramic tubes 16 and 17 through a ring-shaped seal member 19 to constitute an anode chamber 16a and a force sword chamber 17a.
  • the ceramic tubes 16 and 17 are respectively gas introduction tubes. 16b, 17b and gas outlets 16c, 17c.
  • the configuration of the evaluation apparatus is the same for the electrochemical cell 10B described below and the electrochemical cells of other examples.
  • the electrochemical cell having the above configuration was kept at 800 ° C with an electric furnace, and the hydrogen bombardment test shown below was conducted.
  • Pure hydrogen was introduced into the anode chamber 16a, and argon gas containing 1% hydrogen was introduced into the sword chamber 17a at a gas flow rate of 30 mL / min. These gases were wetted with 17 ° C saturated water vapor (water vapor partial pressure of about 1900 Pa) in order to prevent reduction of the electrolyte sample.
  • the anode gas supplies hydrogen to the electrochemical cell for bombing.
  • Power sword gas sweeps hydrogen generated in the power sword chamber by hydrogen bombing. The reason why hydrogen is mixed in the sword sweep gas at a concentration of 1% is due to the convenience of potential measurement.
  • the DC power supply 24 is connected to the lead wires 18a and 18b in FIGS. 2 (a) and 2 (b), and a predetermined current is applied to the anode power sword (see the figure).
  • the arrow on the lead wire indicates the flow of electrons.
  • the pumping speed of hydrogen pumped to the anode chamber power sword chamber by energization was determined by quantifying the hydrogen concentration in the power sword outlet gas with a gas chromatograph.
  • the electrode characteristics of the anode and force sword were measured by the current interruption method (current interrupt method). The measurement procedure is as follows.
  • the potential of the anode and the power sword with respect to the reference electrode under open circuit conditions (state when no current was applied) and a state where a predetermined current was applied were measured.
  • the anode overvoltage and the power sword overvoltage were evaluated by subtracting the overvoltage (ohm loss) due to the electrolyte resistance measured by the current interruption method from the difference between the energization of each electrode and the open circuit.
  • FIG. 3 and FIG. 4 show overvoltages at the anode and the force sword, respectively.
  • the hydrogen generation rate was within the tested range, and always in accordance with Faraday's law (current efficiency was 1).
  • current efficiency was 1).
  • both the anode and force sword have a low current of 20 mA / cm 2 and a current density! in the cell an intermediate layer (10B), it can be seen that are summer much smaller and about 200 mV in both either overvoltage at a current density of 110 mA / cm 2. This confirmed the effectiveness of the intermediate layer.
  • Example 2
  • the electrochemical cell 20A is a combination of SrZr Ce Y 0 as the proton conductive electrolyte 21.
  • Ceramics having a composition of 0.5 0.4 0.1 3 - ⁇ were used.
  • an electrochemical cell 20 mm in which a porous platinum electrode 23 c was directly attached to the electrolyte 21 was used.
  • a proton conductor having a composition of SrCe Yb 2 O is formed on the electrolyte 21 as an intermediate layer 22 in the form of a thin film.
  • the porous platinum electrode 23c was attached on the same as the electrochemical cell 20mm. Furthermore, in the electrochemical cell 20C, as in the electrochemical cell 20B, a proton conductor having a composition of SrC e Yb 0 is attached as a thin film on the electrolyte 21 as an intermediate layer 22.
  • a porous metallic nickel electrode 24c was used by reduction with 1% hydrogen in the cell.
  • a palladium electrode 23a was used as the anode.
  • the shape of the electrolyte 21 was disk-shaped (disk-shaped), the diameter was about 13.5 mm, and the thickness was 0.5 mm.
  • the electrochemical cell 20A first, one side (anode surface) of this disk-shaped sample was used. In the center, apply palladium paste in a circle with a diameter of 8 mm, bake at 1400 ° C for 2 hours, and then apply platinum paste to the opposite surface (force sword surface) in a circle with a diameter of 8 mm. It was applied and baked at 950 ° C for 30 minutes.
  • paste SrCe Yb 2 O powder on one side (force sword side) of the disk-shaped electrolyte 21 and apply it to a diameter of 8 m.
  • palladium paste was applied to the center of the opposite surface (anode surface) in a circle with a diameter of 8 mm and baking at 1400 ° C for 2 hours . Furthermore, in the electrochemical cell 20B, platinum is applied to the force sword surface on which the SrCe Yb 2 O film is baked.
  • a strike was applied in a circle with a diameter of 8 mm and baked at 950 ° C for 30 minutes.
  • an acid-nickel paste is applied to the force sword surface on which the SrCe YbO film is baked.
  • the thickness of the porous platinum electrode 23c and the porous-packet electrode 24c is about 5 microns, and the thickness of the SrCe YbO intermediate layer 22 is about 10 mic. It was Ron.
  • Figure 6 shows the results of cathode overvoltage measurements for electrochemical cells 20A to 20C.
  • the cell 20A without the intermediate layer 22 generates a large overvoltage close to 600 mV at a low current density of 70 mA / cm 2 .
  • the intermediate layer 2 1 is approximately at a current density of the cell 20B in 680mA / cm 2 was platinum and electrode 170 mV, at 100 mA / cm 2 in the cell 20C in which the nickel electrode A small overvoltage of about 165 mV was exhibited.
  • Figures 7 (a) and (b) show the electrochemical cells 30A and 30B used in the evaluation.
  • a ceramic having a composition of SrZr Y 0 was used as the proton conductive electrolyte 31.
  • a proton conductor with a composition of Yb 0 is attached in the form of a thin film as the intermediate layer 32, and
  • a porous platinum electrode 33c was attached to the sword as in the electrochemical cell 30mm.
  • a palladium electrode 33a was used for the anode.
  • the processing and shape of the sample and the evaluation apparatus are the same as those in the above-described embodiment. However, in the evaluation apparatus 1, an oxygen-containing gas is introduced into the force sword electrode instead of the sweep gas.
  • the electrochemical cell with the above configuration was kept at 800 ° C with an electric furnace, and the following fuel cell power generation tests were conducted. Pure hydrogen was introduced into the anode chamber 16a and pure oxygen was introduced into the force sword chamber 17a at a gas flow rate of 30 mL / min. These gases were saturated steam at 17 ° C (water vapor partial pressure was about 1900).
  • the anode gas is a fuel
  • the power sword gas is an oxidant that oxidizes the fuel to produce water.
  • the cell 30B was able to extract a large current of 100 mA / cm 2 . This result confirms the effectiveness of the intermediate layer.
  • FIG. 10 shows the electrochemical cell 40 used for the evaluation.
  • ceramics having a composition of SrZr Y 0 was used as the proton conductive electrolyte 41. Water on the electrolyte
  • the shape of the electrolyte sample was disk-shaped (disc-shaped), with a diameter of about 13.5 mm and a thickness of 0.5 mm.
  • paste SrCe Yb 2 O powder on one side of the disk-shaped electrolyte (forced sword surface).
  • the platinum paste was applied in a circular shape with a diameter of 8 mm and baked at 950 ° C for 30 minutes.
  • the thickness of the porous platinum electrode 43c and the palladium electrode 43a is about 5 microns, SrCe Yb O
  • the thickness of the intermediate layer 42 was about 10 microns.
  • the same performance evaluation apparatus 1 as in Example 1 was used.
  • the electrochemical cell 40 was kept at 700 ° C in an electric furnace and the following tests were conducted.
  • pure hydrogen was introduced into the anode chamber 16a at a gas flow rate of lOOmL / min, and argon gas containing 1% hydrogen was introduced into the force sword chamber 17a at a gas flow rate of 30 mL / min.
  • it was moistened with saturated water vapor at 17 ° C (water vapor partial pressure was about 1900 Pa).
  • a DC power supply is connected to the lead wires 18a and 18b, and the anode force is 20 mA (current density 40) toward the power sword.
  • FIG. 11 shows changes with time in the overvoltage of the electrode and electrolyte resistance at this time.
  • the anode and power sword Both the electrode overvoltage and the resistance overvoltage of the electrolyte showed almost no change over time, and were almost constant. In addition, these values were almost unchanged even when the anode gas did not contain carbon monoxide.
  • the electrochemical cell 40 was kept at 700 ° C. with an electric furnace, and the following evaluation test was performed.
  • pure hydrogen was introduced into the anode chamber 16a at a gas flow rate of lOOmL / min, and argon gas containing 1% hydrogen was introduced into the force sword chamber 17a at a gas flow rate of 30 mL / min.
  • gases were wetted with 17 ° C saturated water vapor (water vapor partial pressure of about 1900 Pa) in order to prevent reduction of the electrolyte sample.
  • a DC power supply is connected to the lead wires 18a and 18b in the equipment drawing, and the anode force is also directed toward the power sword at a current of 20 mA (current density 40).
  • FIG. 12 shows changes with time in the overvoltage of the electrode and electrolyte resistance at this time.
  • a mixed gas of hydrogen (67%) and carbon dioxide (33%) as the anode gas
  • neither the electrode overvoltage of the anode and the power sword nor the resistance overvoltage of the electrolyte was observed to be substantially constant. there were.
  • the anode overvoltage should be a positive value by nature, and the negative values in the figure are due to test errors.
  • the present invention can be widely used as an electrochemical device used in hydrogen separation, fuel cells, etc. for hydrogen production.
  • FIG. 1 is a diagram showing an electrochemical cell performance evaluation apparatus 1 according to the present invention.
  • FIG. 2 shows electrochemical cells 10A and 10B.
  • FIG. 3 is a graph showing overvoltage characteristics at anodes of electrochemical cells 10A and 10B.
  • FIG. 4 is a graph showing the overvoltage characteristics of force swords of electrochemical cells 10A and 10B.
  • FIG. 5 shows electrochemical cells 20A to 20C.
  • FIG. 6 is a diagram showing overvoltage characteristics in force swords of electrochemical cells 20A to 20C.
  • FIG. 7 shows electrochemical cells 30A and 30B.
  • FIG. 8 is a diagram showing overvoltage characteristics in the force swords of the electrochemical cells 30A and 30B.
  • FIG. 9 is a graph showing the voltage characteristics between terminals of electrochemical cells 30A and 30B.
  • FIG. 10 is a diagram showing an electrochemical cell 40.
  • FIG. 11 is a diagram showing the overvoltage characteristics when a mixed gas of hydrogen and carbon monoxide is introduced into the anode chamber.
  • FIG. 12 is a graph showing the overvoltage characteristics when a mixed gas of hydrogen and carbon dioxide is introduced into the anode chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

【課題】電解質としてプロトン導電体を用い、特に二酸化炭素を含有するガスに対する安定性に優れた電気化学セルを提供する。 【解決手段】電気化学セル20Bはプロトン導電性電解質21として、 SrZr0.5Ce0.4Y0.1O3-δの組成を有するセラミックスを用いた。カソードとしては、電解質21の上にSrCe0.95Yb0.05O3-δなる組成のプロトン導電体を薄膜状に中間層22として取り付け、その上に多孔質白金電極23cを取り付けた。アノードは、全てパラジウム電極23aを用いた。中間層22がないセル20Aでは、70mA/cm2の低い電流密度において600mV近い大きな過電圧を生じている。これに対して、中間層21を設けたセル20Bにあっては680mA/cm2の電流密度において約170mVの小さな過電圧を示した。

Description

明 細 書
電気化学セル及び電気化学セルの製造方法
技術分野
[0001] 本発明は、電解質としてプロトン導電体を用いた電気化学セルに係り、特に二酸化 炭素を含有するガスに対する安定性に優れた電気化学セルに関する。
背景技術
[0002] 近年、地球環境保全及び省エネルギーの見地から、燃料電池等のエネルギー源と して水素が脚光を浴びている。これに伴い、水素製造に不可欠な技術である水素分 離や燃料電池のための有用な電気化学デバイスとして、プロトン導電体の研究が広 く進められている。プロトン導電体は、典型的にはぺロブスカイト構造を有する結晶性 の材料であり、水素の陽イオンであるプロトンを含有する固体材料である。プロトン導 電体中で、プロトンはある程度高い温度において比較的に自由に動くことができる。 典型的な作動温度範囲は 600°Cから 1000°C程度である。
イオンのみを選択的に流す材料を電解質と呼び、プロトン導電体は固体状の一種の 電解質である。また、電解質に二つの電極を取り付け、これを隔壁として二つの電極 室を持つ構造としたものを電気化学セルと呼ぶ。上述の性質をもつプロトン導電体を 電解質として、これに二つの電極を取り付けることにより電気化学セルを構成すること ができる。
[0003] プロトン導電体を電解質とした電気化学セルは、様々な機能を有する。まず、電流 の印加により水素をプロトンの形で輸送する働きをもつ。プロトン導電体を用いた電 気化学セルが有するこのような機能を水素ポンプ機能と称し、ある 、はこのような働き に用いる電気化学セルを水素ポンプと呼ぶ。具体的には、アノード(陽極)では、 H→2e" + 2H+ (1)
2
なる電極反応により水素が電解質へと取り込まれる。また、力ソード(陰極)において は、
2e" + 2H+→H (2)
2
なる電極反応により、プロトンが水素となって発生する。以上の(1)および(2)の電極 反応は、電気化学セルに電流を送ることにより同時に進行し、結果として水素がァノ ード室力 力ソード室へと輸送される。
また、プロトン導電体を用いた電気化学セルは、燃料電池として作動する。すなわち 、一つの電極室にいわゆる燃料ガスを、他方の電極室に空気に代表される酸化性ガ スを導入すると、両電極間には燃料ガスの化学エネルギーに由来する起電力を生じ 、この両電極を外部負荷に接続すれば電力を取り出すことができる。燃料として水素 を用いた場合を例にとれば、アノードで起きる電極反応は(1)式に等しい。力ソードで は、
2e" + 2H+ + 1/20→H O (3)
2 2
なる電極反応によりプロトンが酸素と反応して水を生じる。上記(1)および(3)式の反 応は、電気化学セルを外部負荷に接続することにより自発的に行われ、これにより電 力を作ることができる。
[0004] さらに、プロトン導電体を電解質とした電気化学セルは、ガルバ-電池式の水素セ ンサとして作動する。このほかにもプロトン導電体を電解質とした電気化学セルは膜 反応器や水蒸気電解装置などとしても作動する。
プロトン導電体は、上述の通り典型的にはぺロブスカイト型構造の酸ィ匕物であるが、 構成元素としてジルコニウムを含むものと含まないものに大別できる。ジルコニウムを 含まないセレート系ぺロブスカイト型酸化物としては、 BaCe M O 、 SrCe _ M O などが挙げられる。ここに、 Mは Yや Inなどの + 3価以下の価数を取る金属で 3- δ
ある。また、ジルコニウムを含むものとしては、 BaZr M O 、 SrZr M O 、 l -x x 3- δ 1 -x x 3- δ
BaZr Ce M O 、 SrZr Ce M O などが挙げられる。
1— x ~ y y x 3— δ 1— x ~ y y x 3— δ
[0005] プロトン導電体を電解質として用いる電気化学セルにおいては、(1)式や(2)式、 あるいは(3)式に示したような電極反応が円滑に進むことが望ましい。この点、セレー ト系電解質は、導電率は高いが雰囲気中の二酸化炭素と反応しやすいという欠点が ある。これに対してジルコニウムは、プロトン導電体の化学的安定性を高める働きがあ り、ジルコニウムの添力卩はニ酸ィ匕炭素との反応性を抑制する効果がある。従来、二酸 化炭素の生成が不可避な燃料電池等への応用のため、ジルコニウム系電解質を用 V、た電解質の研究開発が進んで!/、た (例えば特許文献 1)。 しカゝしながら、ジルコニウムの添カ卩は、例えば白金電極に代表される電極の活性を 低下させるという問題がある。発明者らは、ジルコニウムを含む電解質にも有効な電 極として、パラジウム合金や高温型プロトン電子混合導電体に関する技術を提案して
V、るが(例えば特許文献 2)、このような電極を用いても十分でな 、場合も存在する。
[0006] また、ベロブスカイト型固体電解質と両電極の間に中間層を介在させる技術が開示 されている(例えば特許文献 3)。し力しながらこの技術は、 LaGaO系電解質につい
3
て混合伝導を防止し、酸素イオンの輸率を向上させることを目的とするものであり、二 酸ィ匕炭素を含むガスとの反応性を抑制するための、ジルコニウム系電解質の採用を 前提とする技術に関するものではない。
特許文献 1:特開平 9— 52764号公報
特許文献 2: PCT/JP2004/017100
特許文献 3:特開 2002— 83611号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は上記課題を解決するためのものであって、電極室に二酸化炭素を含むガ スが導入されるためジルコニウム系電解質を採用せざるを得ない場合に適用可能な
、電気化学セル及びその製造方法を提供するものである。
課題を解決するための手段
[0008] 発明者らは鋭意研究の結果、電極と電解質間に電極反応を活性化させる中間層を 介在させることによって、電極反応駆動力の評価指標となる電極過電圧を小さぐ電 流密度を大きくできることを見出し、試験により確認して以下の発明を完成した。すな わち、
[0009] 請求項 1の発明は、ジルコニウム (Zr)を含有するプロトン導電体から成る電解質を 用いた電気化学セルであって、少なくとも一方の電極側の電解質と電極との間に、ジ ルコ-ゥムを含有しないプロトン導電体を含んで成る中間層を介在させて成ることを 特徴とする。
[0010] 請求項 2の発明は、前記プロトン導電体が、ぺロブスカイト構造のプロトン導電体で あることを特徴とする。 [0011] 請求項 3の発明は、前記ジルコニウムを含有しないプロトン導電体力 セリウム (Ce) を含有するプロトン導電体であることを特徴とする。
[0012] 請求項 4の発明は、前記中間層が、ジルコニウムを含有しないプロトン導電体と電 極材料の混合粉とを含んで成ることを特徴とする請求項 1又は 2に記載の電気化学 セル。
一般に、電極反応は「プロトン導電体と電極材料」の界面で起こりうるので、その混合 粉を中間層として用いることにより、電極反応が起きる場所の面積を大きくすることが できる。カロえて、混合粉とすることで電極材料同士の焼結を押さえることができ、焼結 に伴う電極活性の低下を防止することができる。
[0013] 請求項 5の発明は、前記ジルコニウムを含有しないプロトン導電体が、
一般式 A Ce M O であることを特徴とする。ここに、 Aは Ca (カルシウム)、 Sr (ス
X 1 -y y 3 - δ
トロンチウム)、 Ba (バリウム)の少なくとも 1種類力 なり、 Xの範囲は 0.8≤x≤l. 2で あり、 yの範囲は 0. 01≤y≤0. 4であり、 Mは、 A1 (アルミニウム)、 Sc (スカンジウム)、 Ga (ガリウム)、 Y (イットリウム)、 In (インジウム)および希土類金属のうちセリウムを除く 原子番号 57および 59から 71の元素の、少なくとも 1種類からなる。
[0014] プロトン導電体は典型的に ABOの組成の酸化物を母体とし、 Bにセリウムを選択す
3
ることが導電特性や電極との適合性に優れることは、上述のとおりである。プロトン導 電性を生じさせるためには、このほかに価数力 価である Bを 3価の Mで部分置換す ることが不可欠である。プロトン濃度は、置換する Mの量とともに増大するので、 Mの 量が多い方が好ましいが、多すぎてもプロトン導電性を低下させることが知られており 、本発明の範囲が適量である。さらに、 Ceと Mからなる Bに対して、 Aの量論は 1でなく てもよく AZBが 0. 8〜1. 2の範囲でプロトン導電体として働く。
[0015] 請求項 6の発明は、前記ジルコニウムを含有しないプロトン導電体が、
SrCe Yb O であることを特徴とする。
0.95 0.05 3 - δ
請求項 7の発明は、前記中間層を介在させた電極側に、二酸化炭素 (CO )を含ま
2 な!、ガスを導入するように構成して成ることを特徴とする。
[0016] プロトン導電体を用いた電気化学セルを利用する場合に、どちらかの電極室に二 酸ィ匕炭素が含まれる場合が少なくない。このときには、ジルコニウムを含む電解質を 使わざるを得ないが、その場合、パラジウム合金や高温型プロトン電子混合導電体を 電極として用いることができる力 その他に、炭酸ガスの存在しない方の電極室には 、電極と電解質との間にジルコニウムを含む電解質を存在させることにより、円滑な電 極反応が可能となる。
[0017] 請求項 8の発明は、上記各発明による電気化学セルを搭載して成ることを特徴とす る水素ポンプ装置である。
[0018] 請求項 9の発明は、上記各発明による電気化学セルを搭載して成ることを特徴とす る燃料電池装置である。
[0019] 請求項 10の発明は、上記記載の各電気化学セルの製造方法であって、ジルコニゥ ムを含有するプロトン導電体から成る電解質の少なくとも一方の電極側に、ジルコ二 ゥムを含有しな 、プロトン導電体を含んで成る中間層を固定し、次 、で中間層表面 に電極を固定することを特徴とする。
本発明にお 、て「固定」とは、ジルコニウムを含有しな 、プロトン導電体を含む材料 を、粉末状にして室温でペーストとして練ったものを塗りつけ、これを焼成して形成す るものや、室温で蒸着法によって形成するものを含む概念である。
[0020] 請求項 11の発明は、前記中間層表面への電極を固定する過程において、温度 14
50°C乃至 1550°Cで焼き付けを行う工程を含むことを特徴とする。
請求項 12の発明は、上記各電気化学セルにおいて中間層膜厚が 0. 乃至 1
5 μ mであることを特徴とする。
中間層膜厚は電解質膜厚に対応して選択することができるが、電解質膜厚として 1 m程度とすることが可能であるため、中間層膜厚としては 0. 5 m以上であること が望ましい。また、電気抵抗を低く抑える観点から 15 /z m程度以下であることが望ま しい。
発明の効果
[0021] 上記各発明により、二酸化炭素を含む反応ガスに対しても電極過電圧が小さぐ電 流密度が大きぐ材料化学的安定性の高い電気化学セルを実現することが可能とな つた。これにより、例えば改質ガス反応等により二酸ィ匕炭素を含むガスが電極室に導 入されるため、ジルコニウム系電解質を採用せざるを得ない場合にも適用可能な電 気化学セルが実現できた。
[0022] 本発明による電気化学セルを燃料電池装置、水素ポンプ装置に搭載することにより 、小型、高性能の装置が実現可能となった。すなわち、水素ポンプ装置については、 本発明により電極で生じるエネルギーの損失を減少させることができ、より少な ヽ電 力で水素をポンプすることができるようになった。燃料電池装置についても同様に、 本発明により電極で生じるエネルギーの損失を減少させることができ、より効率の高 い発電が可能になった。
発明を実施するための最良の形態
[0023] 以下、本発明による電気化学セルを用いて水素分離性能及び燃料電池としての発 電特性を評価した結果について説明する。評価は、本発明による中間層を設けた電 気化学セルと、従来の中間層を持たない電気化学セルについて、水素発生速度及 び過電圧特性を比較することにより行った。評価原理は以下の通りである。
[0024] (a)水素発生速度
水素のボンビングは,それが良好に進行している状態においては,以下の電極反応 により進行する。
[0025] アノード H→2H++2e"
2
[0026] 力ソード 2H++2e—→H
2
単位電極面積あたりに J [mA/cm2]の電流密度で電流が通電されたときには、 1 A= l C/sec (クーロン毎秒)であるので、力ソードには J X 10— 3 X 60 [C/min'cm2]の速度で電 子が供給される。一方、上記の電極反応の通り、 2電子により 1分子の水素が生じるこ と力 、 1 molの水素が発生するためには 2F [C/mol]の電子が必要である。ここで、 F はファラデー定数であり 96485
C/molに等しい。以上より、単位電極面積あたりに J
[mA/cm2]の電流密度で電流が通電されたときの水素の理論発生速度は以下のよう になる。
[0027] (水素の理論発生速度) = (J X 10—3 X 60) /2F mol/min-cm2]
[0028] 試験により得られる水素発生速度が理論水素発生速度に一致するときには、直流 電源により供給された電気の全てが水素のポンプに使われたことになり、電流効率が
1であることに他ならない。しかし、実際には様々な要因により、ある量以上の電流を 通電すると実際の水素発生速度が理論値に満たなくなる状態が生じる。このような状 態は、水素のボンビングが正常に行われているとは言えない。したがって、電流効率 を 1に保ってどれだけの電流密度の電流を流すことができるかは、重要な性能である 力 電極はこの量を支配する一つの要因である。したがって、できるだけ多くの電流 を流せる電極が性能の高 、電極であると評価できる。
[0029] (b)過電圧特性
電気化学セルは、電気エネルギーとその他の形態のエネルギー(例えば化学エネル ギー)のやりとりを介在する装置と捉えることができる。例えば水素分離においては、 電気工ネルギ一により水素を分離する仕事が行われ、また、燃料電池においては水 素に潜在する化学エネルギーが電気エネルギーに変換される。これらのエネルギー 変換は電気化学セルに電流が流れることで初めて進行する。そのためには電極反応 がある方向に進行し、かつ、電解質にイオン電流が流れなければならないが、このと き電極および電解質には、余分の電圧、つまり、過電圧が必要となる。それぞれの過 電圧は電極過電圧 (アノード過電圧および力ソード過電圧)および電解質抵抗過電 圧と称される。過電圧により消費される電気エネルギーは熱として散逸するために、 前記のエネルギーのやりとりに関してエネルギーの損失となる。したがって、電極に 関する過電圧、すなわちアノード過電圧および力ソード過電圧ができるだけ低減され ることがエネルギー効率の向上につながる。
[0030] 前記の過電圧は電流遮断法 (カレントインタラプト法)により定量することができる。
すなわち、参照極を基準として測定されるアノードおよび力ソードの電位は、ある電流 が流れている状態では、開回路状態におけるそれらに比べて過電圧の分高ぐある いは低くなつている。電流を遮断すると、それぞれの電極の電位は開回路時の電位 に戻ろうとする、言い換えれば過電圧がゼロに戻ろうとするが、電解質抵抗過電圧の 復帰が極めて速いのに比べ、電極過電圧の緩和は比較的遅い。この差により、電流 遮断時の電位変化においては、電解質抵抗過電圧が測定される。各電極の電位の 通電時と開回路時との差から、電流遮断法により測定した電解質抵抗による過電圧( オーム損)を差し引くことによりアノード過電圧および力ソード過電圧が求められる。 実施例 1
[0031] 本実施例はプロトン導電体セルを用い、水素分離を模擬して水素のボンビングを行 い、評価するものである.
[0032] (試料)
図 2 (a)、(b)は評価に用いた電気化学セル 10A、 10Bを示した図である。同図に おいて、電解質 11としては SrZr Y 0 を用いた。電気化学セル 10Aは、アノード
0.9 0.1 3- δ
極 13a、力ソード極 13cともに多孔質白金電極を上記電解質 11に直接取り付けて!/ヽ る。電気化学セル 10Bでは、電解質 11両面上に SrCe Yb 0 なる組成のプロト
0.95 0.05 3 - δ
ン導電体を薄膜状に中間層 12として取り付け、その上に電気化学セル 10Aと同様に 多孔質白金電極 13a、 13cを取り付けた。電解質 11の形状はディスク状(円盤状)で あり,直径は約 13.5 mm,厚さは 0.5 mmである。このディスク状試料の両面の中央に、 電気化学セル 10Aでは、白金ペーストを直径 8 mmの円状に塗布し、 950°Cで 30分焼 き付けた。電気化学セル 10Bでは、ディスク状電解質の両面に SrCe Yb 0 の
0.95 0.05 3 - δ 粉末をペースト状にしてこれを塗布し、直径 8 mmの円状に塗布し、 1500°Cで 5時間焼 き付けた後、電気化学セル 10Aと同様に白金ペーストを直径 8 mmの円状に塗布し、 950°Cで 30分焼き付けた。多孔質白金電極 13a、 13cの厚さは約 5ミクロンであり、 SrC e Yb 0 中間層 12の厚さは約 10ミクロンである。
0.95 0.05 3 - δ
[0033] (評価装置)
図 1に電気化学セル 10Aの性能評価装置 1の構成を示す。同図において、ァノー ド極 13aおよび力ソード極 13bは、集電用の白金ネット及び白金ペースト(いずれも不 図示)を介してリード線 18a、 18bに接続されている。ディスク状電解質 11の外周には 、参照極として白金電極(図示せず)を取り付けた。このようにして電解質 11及びァノ ード極 13a、力ソード極 13bよりなる電気化学セル 10Aを構成した。なお、参照極は、 アノード極及び力ソード極の電位を測定するための基準として設けたものであり、セ ルの電気化学的機能に直接影響を与えるものではない。電気化学セル 10Aを、リン グ状のシール部材 19を介してセラミックス管 16、 17で上下力 挟み、アノード室 16a 及び力ソード室 17aを構成した。なお、セラミックス管 16、 17は、それぞれガス導入管 16b、 17b及びガス排出口 16c、 17cを備えている。なお、評価装置の構成は、以下 の電気化学セル 10B他、他の実施例の電気化学セルにつ!、ても同様である。
[0034] 以上の構成の電気化学セルを電気炉により 800°Cに保ち,以下に示す水素のボン ビング試験を行った。アノード室 16aに純水素を,力ソード室 17aに 1%水素を含むァ ルゴンガスをそれぞれ 30mL/minのガス流速にて導入した。これらのガスは電解質試 料の還元を防ぐ目的で 17°Cの飽和水蒸気 (水蒸気分圧は約 1900 Pa)にて湿潤させ た。アノードガスはボンビングするための水素を電気化学セルに供給するものである 。力ソードガスは,水素のボンビングにより力ソード室に発生する水素をスイープする ものである。なお,力ソードスイープガス中に 1%の濃度で水素が混入されているのは 電位測定の都合によるものである。
以上のようにガスを導入した状態で,図 2 (a)、 (b)においてリード線 18a、 18bに直流 電源 24を接続し,アノード力 力ソードに向かって所定の電流を通電した(同図にお いてリード線上の矢印は電子の流れを示す)。通電によりアノード室力 力ソード室へ ポンプされる水素のポンプ速度,すなわち力ソードでの水素発生速度は,力ソード出 口ガス中の水素濃度をガスクロマトグラフで定量することにより求めた。アノードおよ び力ソードの電極特性は,電流遮断法 (カレントインタラプト法)により測定した。その 測定手順は以下のようである。開回路条件 (電流を流して 、な 、状態)および所定の 電流を通電した状態でのアノードおよび力ソードの参照極に対する電位を測定した。 各電極の電位の通電時と開回路時との差から,電流遮断法により測定した電解質抵 抗による過電圧 (オーム損)を差し引くことによりアノード過電圧および力ソード過電圧 を評価した。
[0035] (評価結果) アノード、力ソードにおける過電圧をそれぞれ図 3及び図 4に示す。水 素の発生速度は、試験を行った範囲で 、つでもファラデー則に従って 、た (電流効 率が 1であった)。中間層がないセル(10A)にあっては、アノード、力ソードともに 20 mA/cm2の低 、電流密度にお!、て IVを超える大きな過電圧を生じて!/、るのに対して 、中間層を設けたセル(10B)にあっては、 110 mA/cm2の電流密度においてもどちら の過電圧ともに 200 mV程度と非常に小さくなつていることが判る。これにより中間層の 有効性が確かめられた。 実施例 2
[0036] 本実施例は、実施例 1と同様にプロトン導電体セルを用いて水素分離を模擬して, 水素のポンビング評価を行ったものである.
(試料)
図 5 (a)乃至(c)に、評価に用いた電気化学セル 20A乃至 20Cを示す。同図にお いて、電気化学セル 20Aはプロトン導電性電解質 21として、 SrZr Ce Y 0 の組
0.5 0.4 0.1 3 - δ 成を有するセラミックスを用いた。力ソードとしては、電気化学セル 20Αは多孔質白金 電極 23cを電解質 21に直接取り付けたものを用いた。電気化学セル 20Bは、電解質 21の上に SrCe Yb O なる組成のプロトン導電体を薄膜状に中間層 22として取
0.95 0.05 3 - δ
り付け、その上に電気化学セル 20Αと同様に多孔質白金電極 23cを取り付けた。さら に電気化学セル 20Cにおいては、電気化学セル 20Bと同様に電解質 21の上に SrC e Yb 0 なる組成のプロトン導電体を薄膜状に中間層 22として取り付け、これに
0.95 0.05 3 - δ
酸ィ匕ニッケルを焼き付けた後、セル中で 1%の濃度の水素で還元することにより多孔質 の金属ニッケル電極 24cとしたものを用いた。アノードは、全てパラジウム電極 23aを 用いた。
[0037] 電解質 21の形状はディスク状(円盤状)であり,直径は約 13.5 mm,厚さは 0.5 mmで あった.電気化学セル 20Aでは、まず、このディスク状試料の片面(アノード面)の中 央に、パラジウムペーストを直径 8 mmの円状に塗布し、 1400°Cで 2時間焼き付け、そ の後、反対側の面 (力ソード面)に白金ペーストを直径 8 mmの円状に塗布し、 950°C で 30分焼き付けた。電気化学セル 20B、 20Cでは、まず、ディスク状電解質 21の片 面(力ソード面)に SrCe Yb O の粉末をペースト状にしてこれを塗布し、直径 8 m
0.95 0.05 3 - δ
mの円状に塗布し、 1500°Cで 5時間焼き付けた後、反対の面 (アノード面)の中央に、 パラジウムペーストを直径 8 mmの円状に塗布し、 1400°Cで 2時間焼き付けた。さらに 電気化学セル 20Bでは、 SrCe Yb O 膜が焼き付けられた力ソード面に白金べ
0.95 0.05 3 - δ
一ストを直径 8 mmの円状に塗布し、 950°Cで 30分焼き付けた。電気化学セル 20Cで は、 SrCe Yb O 膜が焼き付けられた力ソード面に酸ィ匕ニッケルペーストを直径 8
0.95 0.05 3 - δ
mmの円状に塗布し、 950°Cで 30分焼き付けた。多孔質白金電極 23c、多孔質-ッケ ル電極 24cの厚さは約 5ミクロンであり、 SrCe Yb O 中間層 22の厚さは約 10ミク ロンであった。
[0038] (評価結果)
評価装置、評価方法は実施例 1と同一である。電気化学セル 20A乃至 20Cのカソ ード過電圧測定結果を図 6に示す。中間層 22がないセル 20Aでは、 70mA/cm2の低 い電流密度において 600mV近い大きな過電圧を生じている。これに対して、中間層 2 1を設けたセルにあっては、白金を電極としたセル 20Bでは 680mA/cm2の電流密度 において約 170mV、ニッケルを電極としたセル 20Cでは 100mA/cm2において約 165m Vの小さな過電圧を示した。
実施例 3
[0039] 本実施例は、プロトン導電体セルを用い,水素を燃料とした燃料電池の発電特性を 評価したものである。
(試料)
図 7 (a)、 (b)に、評価に用いた電気化学セル 30A、 30Bを示す。同図において、 プロトン導電性電解質 31として、 SrZr Y 0 の組成を有するセラミックスを用いた。
0.9 0.1 3 - δ
また、電気化学セル 30Αにおいては、力ソードとして直径 8mmの多孔質白金電極 33 cを電解質 31に直接取り付け、電気化学セル 30Bにおいては電解質 31の上に SrCe
0
Yb 0 なる組成のプロトン導電体を薄膜状に中間層 32として取り付け、その上
.95 0.05 3- δ
に電気化学セル 30Αと同様に多孔質白金電極 33cを取り付け力ソードとした。ァノー ドはパラジウム電極 33aを用いた。試料の加工'処理と形状、さらに評価装置は上述 の実施例と同じである。但し、評価装置 1において、力ソード極にはスイープガスに替 えて含酸素ガスを導入して 、る。
[0040] (評価方法)
上記構成の電気化学セルを電気炉により 800°Cに保ち,以下に示す燃料電池の発 電試験を行った。アノード室 16aに純水素を、力ソード室 17aに純酸素をそれぞれ 30 mL/minのガス流速にて導入した.これらのガスは 17°Cの飽和水蒸気 (水蒸気分圧は 約 1900
Pa)にて湿潤させた.アノードガスは燃料であり、力ソードガスは燃料を酸ィ匕して水を 生じる酸化剤である。以上のようにガスを導入した状態で,リード線 18a、 18bに外部 負荷 34を接続し,アノードから力ソードに向かって所定の電流を取り出した。アノード および力ソードの電極特性は,電流遮断法 (カレントインタラプト法)により測定した。 その測定手順は実施例 1に同じである。
[0041] (評価結果)
両試験での力ソードの過電圧を下図に示す。中間層 32がないセル 30Aでは、カソ ード過電圧は 12 mA/cm2の低 、電流密度にお!、て 170mV程度の過電圧を生じて!/ヽ るのに対して、中間層を設けたセル 30Bにあっては、 100 mA/cm2の電流密度におい ても過電圧が 60 mV程度と非常に小さくなつていることが判る。これに伴い、端子間電 圧が 0.4 V時の電流密度は、セル 30Aでは 12
mA/cm2程度であるのに対して、セル 30Bでは 100 mA/cm2と多くの電流を取り出すこ とができた。この結果から中間層の有効性が確かめられた。
[0042] さらに、アノード室に二酸化炭素を含むガスが存在する場合の電気化学セルの安 定性を評価するため、以下(実施例 4 · 5)の評価を行った。
実施例 4
[0043] メタンなどの炭化水素ガスを部分酸ィ匕すると水素と一酸ィ匕炭素の混合ガスが得られ るが、その際、水蒸気が加えられるため、(4)式の反応により二酸ィ匕炭素が生じる。 CO+H 0→CO +H (4)
2 2 2
本実施例では、炭化水素ガスの部分酸ィ匕により発生する二酸ィ匕炭素を想定して、水 蒸気添加された水素と一酸化炭素の混合ガスから水素を分離する試験を行った。 (試料)
図 10に、評価に用いた電気化学セル 40を示す。同図において、プロトン導電性電 解質 41として SrZr Y 0 の組成を有するセラミックスを用いた。電解質の上に、水
0.9 0.1 3 - δ
素が発生する力ソード側においてのみ、 SrCe Yb 0 なる糸且成のプロトン導電体
0.95 0.05 3 - δ
を薄膜状に中間層 42として取り付け、その上に多孔質白金電極 43cを取り付けた。 アノードはパラジウム電極 43aを用いた。
電解質試料の形状はディスク状(円盤状)であり,直径は約 13.5mm,厚さは 0.5mmで あった.まず、ディスク状電解質の片面(力ソード面)に SrCe Yb O の粉末をぺ
0.95 0.05 3 - δ
一スト状にしてこれを塗布し、直径 8mmの円状に塗布し、 1500°Cで 5時間焼き付けた 後、反対の面(アノード面)の中央に、パラジウムペーストを直径 8mmの円状に塗布し 、 1400°Cで 2時間焼き付けた。さらに SrCe Yb 0 膜が焼き付けられた力ソード面
0.95 0.05 3 - δ
に白金ペーストを直径 8 mmの円状に塗布し、 950°Cで 30分焼き付けた。
多孔質白金電極 43c、パラジウム電極 43aの厚さは約 5ミクロンであり、 SrCe Yb O
0.95 0.05 中間層 42の厚さは約 10ミクロンであった。
[0044] (評価方法)
実施例 1と同じ性能評価装置 1を用 V、た。電気化学セル 40を電気炉により 700°Cに保 ち,以下に示す試験を行った。まず、アノード室 16aに純水素を lOOmL/minのガス流 速で,力ソード室 17aに 1%水素を含むアルゴンガスをそれぞれ 30mL/minのガス流速 にて導入した.これらのガスは電解質試料の還元を防ぐ目的で 17°Cの飽和水蒸気( 水蒸気分圧は約 1900Pa)にて湿潤させた。以上のようにガスを導入した状態で,リー ド線 18a、 18bに直流電源を接続し,アノード力も力ソードに向かって 20 mAの電流( 電流密度で 40
mA/cm2)を通電し、 4時間保持した。その後、アノード室 16aに lOOmL/minの水素に カロえて、一酸ィ匕炭素 50mL/minを混合し、水素と一酸ィ匕炭素が 2 : 1の混合ガスを導入 した (混合比については、メタン (CH )の部分酸化反応((5)式)によって得られるガ
4
スを想定し、 CO :H = 1 : 2 (体積比)とした)。
2
CH +1/20→C〇+2H (5)
4 2 2
引き続き、 40mA/cm2の電流密度で電流を印加し続け、これを 7時間保持した。通電 によりアノード室 16aから力ソード室 17aへポンプされる水素のポンプ速度,すなわち 力ソードでの水素発生速度は,力ソード出口ガス中の水素濃度をガスクロマトグラフ で定量することにより求めた。アノードおよび力ソードの電極特性は,電流遮断法 (力 レントインタラプト法)により測定した。その測定手順は実施例 1と同様である。
[0045] (評価結果)
アノードガスに水素を用いた試験、および水素と一酸ィ匕炭素の混合ガスを用いた試 験にわたって水素のポンプ量は理論値の 97%以上であり、ほぼ 1に近い電流効率で あった。このときの電極および電解質抵抗の過電圧の経時変化を図 11に示す。ァノ ードガスに水素と一酸ィ匕炭素の混合ガスを用いた試験では、アノードおよび力ソード の電極過電圧および電解質の抵抗過電圧ともに大きな経時的変化は見られず、ほ ぼ一定であった。また、それらの値は、アノードガスが一酸ィ匕炭素を含まない場合か らもほとんど変化が見られな力つた。これらの結果は、本電気化学セルが、(5)の反 応によって生じる二酸ィ匕炭素によっても劣化せず、天然ガス等の炭化水素の改質ガ スカも安定的に水素を分離できることを示したものである。
実施例 5
[0046] 本実施例では、二酸ィ匕炭素の影響をよりはっきりと見るために、水素と二酸化炭素の 混合ガスから水素を分離する試験を行った。
(試料)
実施例 4の電気化学セル 40と同一試料を用いた。
[0047] (評価方法)
実施例 1と同じ性能評価装置 1を用い、電気化学セル 40を電気炉により 700°Cに保ち ,以下に示す評価試験を行った。まず、アノード室 16aに純水素を lOOmL/minのガス 流速で,力ソード室 17aに 1%水素を含むアルゴンガスをそれぞれ 30mL/minのガス流 速にて導入した。これらのガスは電解質試料の還元を防ぐ目的で 17°Cの飽和水蒸気 (水蒸気分圧は約 1900 Pa)にて湿潤させた。以上のようにガスを導入した状態で,装 置図においてリード線 18a、 18bに直流電源を接続し,アノード力も力ソードに向かつ て 20 mAの電流(電流密度で 40
mA/cm2)を通電し、 2時間保持した。その後、アノード室に lOOmL/minの水素に加え て、二酸ィ匕炭素 50mL/minを混合し、水素と二酸ィ匕炭素が 2 : 1の混合ガスを導入した 。引き続き、 40mA/cm2の電流密度で電流を印加し続け、これを 3時間保持した。 通電によりアノード室 16aから力ソード室 17aへポンプされる水素のポンプ速度,すな わち力ソードでの水素発生速度は,力ソード出口ガス中の水素濃度をガスクロマトグ ラフで定量することにより求めた。アノードおよび力ソードの電極特性は,電流遮断法 (カレントインタラプト法)により測定した。その測定手順は実施例 1と同様である。
[0048] (評価結果)
アノードガスに水素を用いた試験、および水素と二酸ィ匕炭素の混合ガスを用いた試 験にわたって水素のポンプ量は理論値の 98%以上であり、ほぼ 1に近い電流効率で あった。このときの電極および電解質抵抗の過電圧の経時変化を図 12に示す。ァノ ードガスに水素(67%)と二酸化炭素(33%)の混合ガスを用いた試験では、アノード および力ソードの電極過電圧および電解質の抵抗過電圧ともに大きな経時的変化は 見られず、ほぼ一定であった。なお、アノード過電圧は本来正の値であるべきであり、 図中で負の値を示しているのは試験誤差によるものである。また、過電圧の値は、ァ ノードガスが二酸ィ匕炭素を含まない場合と比較して、ほとんど変化が見られな力つた 。これらの結果は、本発明に係る電気化学セルが 33%の二酸ィ匕炭素によっても劣化 せず、安定的に水素を分離できることを示したものである。 産業上の利用可能性
[0049] 本発明は、水素製造のための水素分離や燃料電池等に用いる電気化学デバイス として広く利用可能である。
図面の簡単な説明
[0050] [図 1]本発明に係る電気化学セル性能評価装置 1を示す図である。
[図 2]電気化学セル 10A、 10Bを示す図である。
[図 3]電気化学セル 10A、 10Bのアノードにおける過電圧特性を示す図である。
[図 4]電気化学セル 10A、 10Bの力ソードにおける過電圧特性を示す図である。
[図 5]電気化学セル 20A乃至 20Cを示す図である。
[図 6]電気化学セル 20A乃至 20Cの力ソードにおける過電圧特性を示す図である。
[図 7]電気化学セル 30A、 30Bを示す図である。
[図 8]電気化学セル 30A、 30Bの力ソードにおける過電圧特性を示す図である。
[図 9]電気化学セル 30A、 30Bの端子間電圧特性を示す図である。
[図 10]電気化学セル 40を示す図である。
[図 11]アノード室に水素と一酸ィ匕炭素の混合ガスを導入したときの過電圧特性を示 す図である。
[図 12]アノード室に水素と二酸ィ匕炭素の混合ガスを導入したときの過電圧特性を示 す図である。
符号の説明 ··性能評価装置
A、 10B、 20A、 20B、 20C、 30A、 30B、 40· · ·電気ィ匕学セル 、 21、 31、 40· · 'プロトン導電性電解質
、 22, 32、 40···中間層
a' ··アノード極
b、 13c…力ソード極
···セラミックス管
a' ··アノード室
a' ··力ソード室
aゝ 18b…リード線
···シール部材
a, 33a、 43a- · 'ノ《ラジウム電極
c、 33c、 43c, · ·多孔質白金電極
····直流電源
c- ··多孔質ニッケル電極
····外部負荷

Claims

請求の範囲
[1] ジルコニウム (Zr)を含有するプロトン導電体から成る電解質を用いた電気化学セル であって、少なくとも一方の電極側の電解質と電極との間に、ジルコニウムを含有しな いプロトン導電体を含んで成る中間層を介在させて成ることを特徴とする電気化学セ ル。
[2] 前記プロトン導電体が、ぺロブスカイト構造のプロトン導電体であることを特徴とする 請求項 1に記載の電気化学セル。
[3] 前記ジルコニウムを含有しないプロトン導電体が、セリウム (Ce)を含有するプロトン導 電体であることを特徴とする請求項 1又は 2に記載の電気化学セル。
[4] 前記中間層が、ジルコニウムを含有しないプロトン導電体と電極材料の混合粉とを含 んで成ることを特徴とする請求項 1又は 2に記載の電気化学セル。
[5] 前記ジルコニウムを含有しな 、プロトン導電体が、
一般式 A Ce M O (Aは Ca (カルシウム)、 Sr (ストロンチウム)、 Ba (バリウム)の
X 1 -y y 3 - δ
少なくとも 1種類からなり、 χの範囲は 0.8≤χ≤1. 2であり、 yの範囲は 0. 01≤y≤0. 4であり、 Mは、 A1 (アルミニウム)、 Sc (スカンジウム)、 Ga (ガリウム)、 Y (イットリウム)、 I n (インジウム)および希土類金属のうちセリウムをのぞく原子番号 57および 59から 71 の元素の少なくとも 1種類力もなる。 )であることを特徴とする請求項 1乃至 4に記載の 電気化学セル。
[6] 前記ジルコニウムを含有しな 、プロトン導電体が、
SrCe Yb O であることを特徴とする請求項 1乃至 5に記載の電気化学セル。
0.95 0.05 3 - δ
[7] 前記中間層を介在させた電極側に、二酸化炭素 (CO )を含まないガスを導入するよ
2
うに構成して成ることを特徴とする請求項 1乃至 5に記載の電気化学セル。
[8] 請求項 1乃至 7に記載の電気化学セルを備えて成ることを特徴とする水素ポンプ装 置。
[9] 請求項 1乃至 7に記載の電気化学セルを備えて成ることを特徴とする燃料電池装置
[10] 請求項 1乃至 7に記載の電気化学セルの製造方法であって、
ジルコニウムを含有するプロトン導電体から成る電解質の少なくとも一方の電極側 に、ジルコニウムを含有しないプロトン導電体を含んで成る中間層を固定し、 次いで中間層表面に電極を固定することを特徴とする電気化学セルの製造方法。
[11] 前記中間層を固定する過程において、温度 1450°C乃至 1550°Cで焼き付けを行う 工程を含むことを特徴とする請求項 10に記載の電気化学セルの製造方法。
[12] 前記中間層膜厚が、 0. 5 m乃至 15 mであることを特徴とする請求項 1乃至 7に 記載の電気化学セル。
PCT/JP2006/323152 2005-11-24 2006-11-21 電気化学セル及び電気化学セルの製造方法 WO2007060925A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06833002A EP1953540B1 (en) 2005-11-24 2006-11-21 Electrochemical cell and method for producing electrochemical cell
JP2007546438A JP4977621B2 (ja) 2005-11-24 2006-11-21 電気化学セル及び電気化学セルの製造方法
US12/084,885 US20090169953A1 (en) 2005-11-24 2006-11-21 Electrochemical Cell and Method for Producing Electrochemical Cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-339357 2005-11-24
JP2005339357 2005-11-24

Publications (1)

Publication Number Publication Date
WO2007060925A1 true WO2007060925A1 (ja) 2007-05-31

Family

ID=38067152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323152 WO2007060925A1 (ja) 2005-11-24 2006-11-21 電気化学セル及び電気化学セルの製造方法

Country Status (4)

Country Link
US (1) US20090169953A1 (ja)
EP (1) EP1953540B1 (ja)
JP (1) JP4977621B2 (ja)
WO (1) WO2007060925A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306569A1 (en) * 2008-07-15 2011-04-06 National University Corporation Hokkaido University Fuel cell and electricity generation method using the same
JP2015149242A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 燃料電池
WO2016076078A1 (ja) * 2014-11-13 2016-05-19 住友電気工業株式会社 セル構造体、その製造方法、および、燃料電池
JP2019505951A (ja) * 2015-12-17 2019-02-28 エレクトリシテ・ドゥ・フランス 集積化された改質を伴うプロトン伝導性電気化学デバイス及びそれに関連する製造方法
JP2019175733A (ja) * 2018-03-29 2019-10-10 東邦瓦斯株式会社 プロトン伝導性固体電解質およびプロトン伝導燃料電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015705A (ko) 2012-07-12 2014-02-07 삼성전자주식회사 연료 전지용 전극 촉매, 이의 제조 방법, 및 이를 포함한 막 전극 접합체 및 연료 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019152A (ja) * 1998-07-01 2000-01-21 Tokyo Yogyo Co Ltd 水素ガスセンサ
JP2002083611A (ja) 2000-07-04 2002-03-22 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2004017100A (ja) 2002-06-17 2004-01-22 Asahi Tec Corp 車両用ホイールの製造方法
EP1598892A1 (en) 2004-05-11 2005-11-23 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2450679C (en) * 2001-06-29 2010-08-31 Nextech Materials, Ltd. Nano-composite electrodes and method of making the same
GB0125276D0 (en) * 2001-10-20 2001-12-12 Strathclyde Improvements in fuel cells related devices
US7901730B2 (en) * 2004-04-26 2011-03-08 Johnson Research & Development Co., Inc. Thin film ceramic proton conducting electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019152A (ja) * 1998-07-01 2000-01-21 Tokyo Yogyo Co Ltd 水素ガスセンサ
JP2002083611A (ja) 2000-07-04 2002-03-22 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2004017100A (ja) 2002-06-17 2004-01-22 Asahi Tec Corp 車両用ホイールの製造方法
EP1598892A1 (en) 2004-05-11 2005-11-23 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1953540A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306569A1 (en) * 2008-07-15 2011-04-06 National University Corporation Hokkaido University Fuel cell and electricity generation method using the same
EP2306569A4 (en) * 2008-07-15 2011-08-17 Univ Hokkaido Nat Univ Corp FUEL CELL AND POWER GENERATION METHOD THEREFOR
US8962217B2 (en) 2008-07-15 2015-02-24 National University Corporation Hokkaido University Fuel cell and electricity generation method using the same
JP2015149242A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 燃料電池
WO2016076078A1 (ja) * 2014-11-13 2016-05-19 住友電気工業株式会社 セル構造体、その製造方法、および、燃料電池
JP2019505951A (ja) * 2015-12-17 2019-02-28 エレクトリシテ・ドゥ・フランス 集積化された改質を伴うプロトン伝導性電気化学デバイス及びそれに関連する製造方法
US10833344B2 (en) 2015-12-17 2020-11-10 Electricite De France Proton-conductive electrochemical device with integrated reforming and associated production method
JP7000325B2 (ja) 2015-12-17 2022-01-19 エレクトリシテ・ドゥ・フランス 集積化された改質を伴うプロトン伝導性電気化学デバイス及びそれに関連する製造方法
JP2019175733A (ja) * 2018-03-29 2019-10-10 東邦瓦斯株式会社 プロトン伝導性固体電解質およびプロトン伝導燃料電池

Also Published As

Publication number Publication date
US20090169953A1 (en) 2009-07-02
JPWO2007060925A1 (ja) 2009-05-07
EP1953540B1 (en) 2012-01-11
JP4977621B2 (ja) 2012-07-18
EP1953540A4 (en) 2011-01-12
EP1953540A1 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
Kim-Lohsoontorn et al. Performance of solid oxide electrolysis cells based on composite La0. 8Sr0. 2MnO3− δ–yttria stabilized zirconia and Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ oxygen electrodes
Khan et al. Effect of GDC interlayer thickness on durability of solid oxide fuel cell cathode
Tian et al. Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer
Kim-Lohsoontorn et al. Gadolinium doped ceria-impregnated nickel–yttria stabilised zirconia cathode for solid oxide electrolysis cell
US9825306B2 (en) Mixed ionic and electronic conductor based on Sr2Fe2-xMoxO6 perovskite
US7655346B2 (en) Electrode material and fuel cell
JP4977621B2 (ja) 電気化学セル及び電気化学セルの製造方法
JP2006283103A (ja) 水蒸気電解セル
CN111048814A (zh) 一种薄膜氢电极固体氧化物电池及其制备方法
Li et al. Investigation on the oxygen reduction reaction mechanism of PrBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ@ La2NiO4+ δ core-shell structure cathode for solid oxide fuel cells
JP5481611B2 (ja) 高温水蒸気電解セル
JP2009209441A (ja) 電気化学セル
JP5005431B2 (ja) 固体電解質型燃料電池セル
Hu et al. Enhancing puncture voltage of La0. 8Sr0. 2Ga0. 8Mg0. 2O3-δ solid electrolyte membrane by improving CO2 reduction kinetics
JP2002280017A (ja) 単室型固体電解質型燃料電池及びその製造方法
US20110053032A1 (en) Manifold for series connection on fuel cell
JP5935220B2 (ja) 電気化学リアクターセル
KR20200041214A (ko) 코발트 산화물 나노 입자가 함침된 lsm-esb 계열 복합 공기극 및 그 제조 방법
JP2008053194A (ja) 低級炭化水素を燃料に用いる一室型固体酸化物燃料電池
Zheng et al. Ni–La2O3 cermet hydrogen electrode originating from the in-situ decomposition of the La2NiO4+ δ oxide for quasi-symmetrical solid oxide fuel cells
US7758992B2 (en) Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
JP2009129602A (ja) 固体酸化物形燃料電池
Yoo et al. Electrochemical Performance of Solid Oxide Electrolysis Cells with LSCF6428-SDC/SDC Electrode for H2O/CO2 High Temperature Co-Electrolysis
JP2008041305A (ja) 固体電解質形燃料電池の運転方法
WO2005052215A1 (ja) 電気化学セル用電極及び電気化学セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546438

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12084885

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006833002

Country of ref document: EP