JP2014207215A - 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池 Download PDF

Info

Publication number
JP2014207215A
JP2014207215A JP2013202728A JP2013202728A JP2014207215A JP 2014207215 A JP2014207215 A JP 2014207215A JP 2013202728 A JP2013202728 A JP 2013202728A JP 2013202728 A JP2013202728 A JP 2013202728A JP 2014207215 A JP2014207215 A JP 2014207215A
Authority
JP
Japan
Prior art keywords
layer
anode
electrolyte layer
paste
anode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013202728A
Other languages
English (en)
Other versions
JP6338342B2 (ja
Inventor
和樹 古性
Kazuki Kosho
和樹 古性
雅俊 下村
Masatoshi Shimomura
雅俊 下村
浩平 細井
Kohei Hosoi
浩平 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013202728A priority Critical patent/JP6338342B2/ja
Publication of JP2014207215A publication Critical patent/JP2014207215A/ja
Application granted granted Critical
Publication of JP6338342B2 publication Critical patent/JP6338342B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】高い発電性能を有するSOFCを提供する。
【解決手段】SOFCハーフセル1Aは、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアと酸化ニッケルとを含むアノード活性層20Aと、スカンジア安定化ジルコニアを主成分として含むカソード側電解質層10Aと、アノード活性層20Aと接するようにカソード側電解質層10Aとアノード活性層20Aとの間に位置し、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアを主成分として含むアノード側電解質層10Bと、を備える。カソード側電解質層10Aの厚みは、カソード側電解質層10Aの厚み及びアノード側電解質層20Aの厚みの和の30%以上である。
【選択図】図1

Description

本発明は、固体酸化物形燃料電池ハーフセル、及びそのハーフセルを備えた固体酸化物形燃料電池に関する。
近年、燃料電池は、クリーンエネルギー源として注目されている。燃料電池のうち、電解質に固体のセラミックスを使用している固体酸化物形燃料電池(以下、「SOFC」ということがある)は、作動温度が高いので排熱を利用でき、さらに高効率で電力を得ることができる等の長所を有している。このため、SOFCは、家庭用電源から大規模発電まで幅広い分野での活用が期待されている。
SOFCは、基本構造として、カソード(空気極)とアノード(燃料極)との間にセラミックスからなる固体電解質層が配置された構造を有する。例えば平型のSOFCは、カソード、固体電解質層及びアノードを重ね合せたものを単セルとし、この単セルがインターコネクターを挟んで複数積み重ねられることによって高出力を得る。このような平型のSOFCには、電解質を支持体としてセルの強度を維持する電解質支持型セル(ESC)とアノードを支持体としてセルの強度を維持するアノード支持型セル(ASC)とがある。また、SOFCの半製品として、アノード及び電解質層のみが形成されカソードが未だ形成されていないSOFCハーフセルが提供されることもある。
特許文献1には、空気極と、燃料極と、空気極側の第一の層と燃料極側の第二の層との2層からなる電解質膜と、電解質膜と燃料極との間に設けられた燃料側電極反応層と、を備えているSOFCが開示されている。第一の層がスカンジアを固溶させたジルコニア(SSZ)からなり、第二の層がイットリアを固溶させたジルコニア(YSZ)からなる電解質膜が例示されている。第二の層としてYSZを用いる場合、燃料側電極反応層として、NiOとSSZとが均一に混合された層が好ましいことが記載されている。
特許文献1の構成によれば、SOFCの運転時の燃料極への燃料ガスの供給に伴い、燃料側電極反応層でニッケルがSSZと剥離することによってSOFCの出力が低下する可能性がある。
非特許文献1には、(CeO20.01(Sc230.10(ZrO20.89(1Ce10ScZr)の粒子がYSZ層と結合し、YSZ層の表面を部分的に覆っている構成が開示されている。非特許文献1の構成を用いたSOFCは、発電性能を高める余地を有している。
特開2004−259691号公報
Zhenwei Wang、他4名、「Journal of Power Sources」、2006年6月1日、第156巻、第2号、p.306−310
本発明は、ニッケルと安定化ジルコニアとの剥離を低減し、かつ電解質層の酸化物イオン伝導度を高めることによって、高い発電性能を有するSOFCを提供することを目的とする。
本発明は、
イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアと酸化ニッケルとを含むアノード活性層と、
スカンジア安定化ジルコニアを主成分として含むカソード側電解質層と、
前記アノード活性層と接するように前記カソード側電解質層と前記アノード活性層との間に位置し、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアを主成分として含むアノード側電解質層と、を備え、
前記カソード側電解質層の厚みは、前記カソード側電解質層の厚み及び前記アノード側電解質層の厚みの和の30%以上である、固体酸化物形燃料電池ハーフセルを提供する。
本発明は、
上記の固体酸化物形燃料電池ハーフセルと、
前記カソード側電解質層の前記アノード活性層と反対側に形成されたカソードと、を備える固体酸化物形燃料電池を提供する。
本発明によれば、アノード活性層とカソード側電解質層との界面及びアノード活性層において、燃料ガスの供給に伴うニッケルと安定化ジルコニアとの剥離を抑制できる。また、カソード側電解質層が所定の厚みを有するので、電解質層の酸素イオン伝導度が高まる。その結果、高い発電性能を有するSOFCを提供することができる。
本発明に係るSOFCハーフセルの一実施形態を模式的に示す断面図 本発明に係るSOFCの一実施形態を模式的に示す断面図
以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれによって限定されるものではない。
図1に示すように、SOFCハーフセル1Aは、電解質層10と、アノード20と、バリア層40とを備えている。アノード20は、電解質層10の一方面側に形成されている。バリア層40は、電解質層10のアノード20と反対側に形成されている。図2に示すように、SOFC1Bは、SOFCハーフセル1Aと、SOFCハーフセル1Aの上に形成されたカソード30とを備えている。
アノード20は、アノード活性層20Aを有する。アノード活性層20Aは、SOFC1Bの電気化学反応が実質的に行われる層である。アノード20は、さらに、アノード基板20Bを含んでいる。図1に示すように、アノード20は、アノード活性層20Aとアノード基板20Bとの積層構造を有する。アノード基板20BはSOFC1Bの支持体として形成されている。すなわち、SOFC1Bは、ASCである。アノード20は、アノード活性層20Aを備えていればよい。例えば、アノード20は、アノード活性層20Aのみから構成されていてもよい。
アノード活性層20A及びアノード基板20Bは、導電性を与えるための導電成分と、骨格成分であるセラミックス質とを主たる構成材料として含んでいる。アノード活性層20Aは、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニア(以下、「活性層用安定化ジルコニア」という)と、酸化ニッケルとを含む。具体的に、アノード活性層は、活性層用安定化ジルコニアの粉体と酸化ニッケルの粉体との混合物を焼成することによって形成されている。ここで、酸化ニッケルが導電成分であり、活性層用安定化ジルコニアが骨格成分である。なお、酸化ニッケル自体の電気伝導率は低いが、SOFC1Bの稼働時の還元性雰囲気で酸化ニッケルが還元されて金属ニッケルに変化することによってアノード活性層20Aの導電成分が高い電気伝導性を示すようになる。また、活性層用安定化ジルコニアは、酸素イオン伝導性を有している。これにより、電気化学反応の反応場が広がるので、電気化学反応の活性を向上させることができる。導電成分として、酸化ニッケル以外に、金属、金属酸化物又は複合金属酸化物を含んでいてもよい。
アノード基板20Bの導電成分としては、ニッケル、コバルト、鉄、白金、パラジウム、ルテニウム等の金属;酸化ニッケル、酸化コバルト、酸化鉄のようにSOFC1Bの稼動時の還元性雰囲気で導電性金属に変化する金属酸化物、あるいはこれらの酸化物を2種以上含有するニッケルフェライト、コバルトフェライト等の複合金属酸化物が使用される。これらは単独で使用し得るほか、必要により2種以上を適宜組み合わせて使用できる。
アノード基板20Bの骨格成分としては、ジルコニア、アルミナ、マグネシア、チタニア、窒化アルミニウム、ムライト等が単独又は複合して使用される。これらの中でも最も汎用性の高いのは安定化ジルコニアである。安定化ジルコニアとしては、ジルコニアに、安定化剤としてMgO、CaO、SrO、BaO等のアルカリ土類金属の酸化物;Y23、La23、CeO2、Pr23、Nd23、Sm23、Eu23、Gd23、Tb23、Dy23、Er23、Tm23、Yb23等の希土類元素の酸化物;Sc23;Bi23;及びIn23等から選ばれる少なくとも何れか1種の酸化物を固溶させたもの、あるいは更に、これらに分散強化剤としてアルミナ、チタニア、Ta25及びNb25等が添加された分散強化型ジルコニア等が望ましいものとして例示される。また、骨格成分として、CeO2又はBi23に、CaO、SrO、BaO、Y23、La23、Ce23、Pr23、Nb23、Sm23、Eu23、Gd23、Tb23、Dr23、Ho23、Er23、Yb23、PbO、WO3、MoO3、V25、Ta25及びNb25からなる群から選ばれる少なくとも1つを添加した、セリア系又はビスマス系セラミックスも使用可能である。また、LaGaO3のようなガレート系セラミックスも使用可能である。これらは単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、骨格成分としては、安定化ジルコニア、セリア系セラミックス及びランタンガレートが望ましく、安定化ジルコニアがより望ましく、特に望ましいのは2.5〜12モル%のイットリアで安定化されたジルコニア、3〜15モル%のスカンジアで安定化されたジルコニア、4〜15モル%のイッテルビアで安定化されたジルコニアである。
アノード活性層20Aの厚さ及びアノード基板20Bの厚さは特に限定されない。例えば、アノード活性層20Aの厚さは5μm〜30μmである。また、アノード基板20Bの厚さは150μm〜1500μmである。
図1に示すように、電解質層10は、カソード側電解質層10Aと、アノード側電解質層10Bとを備えている。カソード側電解質層10Aは、スカンジア安定化ジルコニアを主成分として含む。本明細書において、「主成分」とは質量基準で最も多く含まれる成分を意味する。カソード側電解質層10Aに主成分として含まれるスカンジア安定化ジルコニアは、例えば、4〜11モル%のスカンジアで安定化されたジルコニアである。カソード側電解質層10Aに主成分として含まれるスカンジア安定化ジルコニアには、所定の金属酸化物がドープされていてもよい。このドープされる金属酸化物は、例えば、CeO2、Al23、Bi23である。カソード側電解質層10Aに主成分として含まれるスカンジア安定化ジルコニアとしては、例えば、10モル%スカンジア1モル%セリア安定化ジルコニアが望ましい。カソード側電解質層10Aは、上記のスカンジア安定化ジルコニア以外の成分を含んでいてもよい。また、カソード側電解質層10Aは、上記のスカンジア安定化ジルコニアからなることが望ましい。
アノード側電解質層10Bは、アノード活性層20Aと接するようにカソード側電解質層10Aとアノード活性層20Aとの間に位置している。また、アノード側電解質層10Bは、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニア(以下、「電解質用安定化ジルコニア」という)を主成分として含む。電解質用安定化ジルコニアは、例えば、イットリア安定化ジルコニア、イッテルビア安定化ジルコニア、又はエルビア安定化ジルコニアである。イットリア安定化ジルコニアは、例えば、2.5〜12モル%イットリア安定化ジルコニアである。イッテルビア安定化ジルコニアは、例えば、2.5〜12モル%イッテルビア安定化ジルコニアである。エルビア安定化ジルコニアは、例えば、2.5〜12モル%エルビア安定化ジルコニアである。電解質用安定化ジルコニアは、8〜10モル%イットリア安定化ジルコニア、8〜10モル%イッテルビア安定化ジルコニア、又は8〜10モル%エルビア安定化ジルコニアであることが望ましい。アノード側電解質層10Bは、電解質用安定化ジルコニア以外の成分を含んでいてもよい。また、アノード側電解質層10Bは、上記の電解質用安定化ジルコニアからなることが望ましい。
電解質層10の厚みは特に制限されないが、例えば、1〜30μmである。スカンジア安定化ジルコニアの酸化物イオン伝導度は、電解質用安定化ジルコニアの酸化物イオン伝導度よりも大きい。このため、高い発電性能を有するSOFCを提供するためには、カソード側電解質層10Aの厚みは大きい方がよい。そこで、カソード側電解質層10Aの厚みは、カソード側電解質層10Aの厚み及びアノード側電解質層10Bの厚みの和は例えば30%以上である。カソード側電解質層10Aの厚みは、カソード側電解質層10Aの厚み及びアノード側電解質層10Bの厚みの和の35%以上であることが望ましく、40%以上であることがより望ましく、45%以上であることがさらに望ましい。また、カソード側電解質層10Aの厚みは、例えば、カソード側電解質層10Aの厚み及びアノード側電解質層10Bの厚みの和の95%以下である。これにより、アノード側電解質層10Bが所定の厚みを有することを確保できる。このため、アノード側電解質層10Bを電解質層10の全体にわたって貫通孔等の欠陥を生じさせることなく均質に作製することができる。その結果、SOFC生産時の歩留まりを高めることでき、SOFCの出力のばらつきを抑制できる。
図2に示すように、SOFC1Bは、SOFCハーフセル1Aと、カソード30とを備える。カソード30は、カソード側電解質層10Aのアノード側電解質層10Bと反対側に形成されている。カソード30の材料としては、例えば金属、金属の酸化物、金属の複合酸化物等を用いることができる。このうち金属としては、Pt、Au、Ag、Pd、Ir、Ru、Ru等の金属又は2種以上の金属を含有する合金を挙げることができる。また、金属の酸化物としては、La、Sr、Ce、Co、Mn、Fe等の酸化物(例えば、La23、SrO、Ce23、Co23、MnO2、FeO等)を挙げることができる。また、金属の複合酸化物としては、La、Pr、Sm、Sr、Ba、Co、Fe、Mn等のうちの少なくとも1種を含有する各種の複合酸化物(例えば、La1-xSrxCoO3系複合酸化物、La1-xSrxFeO3系複合酸化物、La1-xSrxCo1-yFey3系複合酸化物、La1-xSrxMnO3系複合酸化物、Pr1-xBaxCoO3系複合酸化物、Sm1-xSrxCoO3系複合酸化物等)を挙げることができる。ここで、0<x<1、0<y<1である。これらの中でも、カソード40の材料としては、La1-xSrxCo1-yFey3系複合酸化物(以下、「LSCF」ということがある)が望ましい。
バリア層40は、SOFC1Bの作製過程においてカソード30を焼成するとき又はSOFC1Bを運転するときに、電解質層10とカソード30とが反応して高抵抗物質層が形成されることを防止する。これにより、SOFCの発電性能が低下することを抑制できる。バリア層40の材料としてはセリア及び希土類元素を主成分とする材料を使用できる。例えば、ガドリニアをドープしたセリア(GDC)、サマリアをドープしたセリア(SDC)等を用いることができる。バリア層40の厚みは特に限定されないが、例えば0.5〜20μmである。また、バリア層40は必須の構成ではなく、電解質層10の材料とカソード30の材料との組み合わせによっては省略してもよい。
SOFC1Bの運転時に、アノード活性層20Aに水素ガス等の燃料ガスが供給される。このため、アノード活性層20Aに含まれる酸化ニッケルが還元雰囲気に曝されるので、酸化ニッケルは金属ニッケルに変化する。その結果、アノード活性層20Aの導電成分が収縮するので、金属ニッケルが、金属ニッケルの周囲の安定化ジルコニアから剥離しようとする。例えば、金属ニッケルの周囲の安定化ジルコニアがスカンジア安定化ジルコニアであると、ニッケルの剥離が生じやすい。これに対し、ニッケルの周囲の安定化ジルコニアがイットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアであると、ニッケルの剥離が抑制される。
アノード活性層20A及びアノード活性層20Aと電解質層10との界面における結晶粒界の結合の強さは、安定化ジルコニアに安定化剤として添加される金属酸化物に由来する金属イオンのイオン半径がジルコニウムイオンZr4+のイオン半径よりも小さい場合に強くなると考えられる。また、その結晶粒界の結合の強さが上記の剥離の抑制に影響すると考えられる。Sc3+のイオン半径は、Zr4+のイオン半径と同程度であるのに対し、Y3+、Yb3+、及びEr3+のイオン半径は、Zr4+のイオン半径よりも小さい。このため、ニッケルの周囲の安定化ジルコニアがイットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアであると、ニッケルの剥離が抑制されうる。
本実施形態では、アノード活性層20Aがイットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアと酸化ニッケルとを含む。さらに、アノード側電解質層10Bが、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアを主成分として含む。このため、SOFC1Bの運転時に、アノード活性層20Aの酸化ニッケルの還元によって生じた金属ニッケルが、アノード活性層20A及びアノード活性層20Aとアノード側電解質層10Bとの界面で、活性層用安定化ジルコニア又は電解質用安定化ジルコニアから剥離することが抑制される。その結果、スカンジア安定化ジルコニアを主成分とするカソード側電解質層10Aの厚みがカソード側電解質層10Aの厚み及びアノード側電解質層10Bの厚みの和が30%以上であることと相まって、SOFC1Bは高い発電性能を示す。
次に、本実施形態のSOFC1Bの製造方法について説明する。
カソード側電解質層10A、アノード側電解質層10B、アノード活性層20A、アノード基板20B、カソード30、及びバリア層40の各層は、それぞれ、これらを構成する材料の粉体に、バインダー及び溶剤を添加し、さらに必要に応じて分散剤、可塑剤、潤滑剤及び消泡剤等を添加してスラリー又はペーストを調製し、このスラリー又はペーストを用いてグリーンシート又はグリーン層を形成し、これらを乾燥及び焼成することによって形成できる。以下に、SOFC1Bの製造方法の一例を示す。
アノード基板20Bを構成する材料の粉末に、バインダー及び溶剤を添加し、さらに必要に応じて分散剤、可塑剤、潤滑剤、及び消泡剤等を添加してスラリーを調製する。次に、このスラリーをシート状に成形して乾燥させ、アノード基板20B用のグリーンシートを作製する。このアノード基板20B用のグリーンシートを焼成することによってアノード基板20Bが作製される。焼成温度等の焼成条件は、アノード基板20に用いられる材料の種類等に応じて、適宜決定すればよい。アノード基板20B用のスラリーの作製に用いられるバインダー及び溶剤等の種類には制限がなく、従来のSOFCの製造方法で公知となっているバインダー及び溶剤等の中から適宜選択できる。
アノード基板20Bの一方の主面上に、アノード活性層20A用のペーストを所定の厚さで塗布し、この塗膜を乾燥させることによってアノード活性層20A用のグリーン層が形成される。このグリーン層を焼成することによって、アノード活性層20Aが得られる。焼成温度等の焼成条件は、アノード活性層20Aに用いられる材料の種類等に応じて、適宜決定すればよい。また、アノード活性層20Aの材料は、上記で説明したとおりである。アノード活性層20A用のペーストの作製に用いられるバインダー及び溶剤等の種類には制限がなく、従来のSOFCの製造方法で公知となっているバインダー及び溶剤等の中から適宜選択できる。
アノード活性層20Aの上に、アノード側電解質層10B用のペーストを所定の厚さで塗布し、この塗膜を乾燥させることによってアノード側電解質層10B用のグリーン層が形成される。このグリーン層を焼成することによって、アノード側電解質層10Bが形成される。アノード側電解質層10Bの上に、カソード側電解質層10A用のペーストを所定の厚さで塗布し、この塗膜を乾燥させることによってカソード側電解質層10A用のグリーン層が形成される。このグリーン層を焼成することによって、カソード側電解質層10Aが形成される。これらのグリーン層の焼成温度等の焼成条件は、カソード側電解質層10A又はアノード側電解質層10Bに用いられる材料の種類等に応じて、適宜決定すればよい。また、カソード側電解質層10A又はアノード側電解質層10Bの材料は、上記で説明したとおりである。また、カソード側電解質層10A又はアノード側電解質層10Bのためのペーストの作製に用いられるバインダー及び溶剤等の種類には制限がなく、従来のSOFCの製造方法で公知となっているバインダー及び溶剤等の中から適宜選択できる。
カソード側電解質層10Aの上に、バリア層40用のペーストを所定の厚さで塗布し、この塗膜を乾燥させることによってバリア層40用のグリーン層が形成される。このグリーン層を焼成することによって、バリア層40が形成される。このようにして、SOFC1Bのアノード支持型のハーフセル1Aが作製される。このグリーン層の焼成条件は、バリア層40に用いられる材料に応じて、適宜決定すればよい。バリア層40の材料は上記で説明したとおりである。また、バリア層40用のペーストの作製に用いられるバインダー及び溶剤等の種類には制限がなく、従来のSOFCの製造方法で公知となっているバインダー及び溶剤等の中から適宜選択できる。
また、次の方法のように、アノード基板20Bのグリーンシート、アノード活性層20Aのグリーン層、アノード側電解質層10Bのグリーン層、カソード側電解質層10Aのグリーン層、及びバリア層40のグリーン層を同時に焼成することによって、ハーフセルを作製してもよい。アノード基板20Bのグリーンシートの上にアノード活性層20A用のペーストを所定の厚さで塗布し、その塗膜を乾燥させることによってアノード活性層20A用のグリーン層を形成する。次に、アノード活性層20A用のグリーン層の上に、アノード側電解質層10B用のペーストを所定の厚さで塗布し、その塗膜を乾燥させることによってアノード側電解質層10B用のグリーン層を形成する。次に、アノード側電解質層10B用のグリーン層の上に、カソード側電解質層10A用のペーストを所定の厚さで塗布し、その塗膜を乾燥させることによってカソード側電解質層10A用のグリーン層を形成する。次に、カソード側電解質層10Aのグリーン層の上に、バリア層40用のペーストを所定の厚さで塗布し、その塗膜を乾燥させることによって、バリア層40用のグリーン層を形成する。次に、これらを同時に焼成する。このようにしてハーフセル1Aを作製する。焼成条件は、アノード基板20B用のグリーンシート、アノード活性層20A用のグリーン層、アノード側電解質層10B用のグリーン層、カソード側電解質層10A用のグリーン層、及びバリア層40用のグリーン層に用いられる材料の種類等に応じて、適宜決定すればよい。
次に、上記の方法で作製されたハーフセル1Aのバリア層40の上に、カソード30を形成する。カソード30を構成する材料の粉末に、バインダー及び溶剤を添加し、さらに必要に応じて分散剤、可塑剤、潤滑剤、及び消泡剤等を添加してペーストを調整する。このペーストをハーフセルのバリア層40の上に所定の厚さで塗布し、その塗膜を乾燥させることによって、カソード30用のグリーン層を形成する。次に、このグリーン層を焼成することによってカソード30が形成される。カソード30用のグリーン層の焼成条件は、カソード30に用いられる材料の種類等に応じて適宜決定すればよい。カソード30用のペーストの作製に用いられるバインダー及び溶剤等の種類には制限がなく、従来のSOFCの製造方法で公知となっているバインダー及び溶剤等の中から適宜選択できる。
以下に、実施例を用いて本発明を詳細に説明する。なお、以下の実施例は本発明の一例であり、本発明は以下の実施例に限定されない。
<アノード活性層用ペーストの作製>
まず、各実施例又は各比較例に係るSOFCの作製に用いたアノード活性層用ペーストの作製方法について説明する。
(8YSZアノードペースト)
導電成分としての酸化ニッケル(キシダ化学社製)36質量部、骨格成分としての8モル%イットリア安定化ジルコニア(8YSZ)の粉末(第一稀元素社製、商品名「HSY−8」)24質量部、気孔形成剤としてのカーボンブラック(SECカーボン社製、SGP−3)2質量部、溶剤としてのα−テルピネオール(和光純薬工業社製)36質量部、バインダーとしてのエチルセルロース(和光純薬工業製)4質量部、可塑剤としてのジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてのソルビタン脂肪酸エステル系界面活性剤4質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質:アルミナ)を用いて解砕し、アノード活性層用ペースト(8YSZ)を作製した。
(10YSZアノードペースト)
導電成分としての酸化ニッケル(キシダ化学社製)36質量部、骨格成分としての10モル%イットリア安定化ジルコニア(10YSZ)の粉末(第一稀元素社製、商品名「HSY−10」)24質量部、気孔形成剤としてのカーボンブラック(SECカーボン社製、SGP−3)2質量部、溶剤としてのα−テルピネオール(和光純薬工業社製)36質量部、バインダーとしてのエチルセルロース(和光純薬工業製)4質量部、可塑剤としてのジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてのソルビタン脂肪酸エステル系界面活性剤4質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質:アルミナ)を用いて解砕し、アノード活性層用ペースト(10YSZ)を作製した。
(10Sc1CeSZアノードペースト)
導電成分としての酸化ニッケル(キシダ化学社製)36質量部、骨格成分としての10モル%スカンジア1モル%セリア安定化ジルコニア(10Sc1CeSZ)の粉末(第一稀元素社製、商品名「10Sc1CeSZ」)24質量部、気孔形成剤としてのカーボンブラック(SECカーボン社製、SGP−3)2質量部、溶剤としてのα−テルピネオール(和光純薬工業社製)36質量部、バインダーとしてのエチルセルロース(和光純薬工業製)4質量部、可塑剤としてのジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてのソルビタン脂肪酸エステル系界面活性剤4質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質:アルミナ)を用いて解砕し、アノード活性層用ペースト(10Sc1CeSZ)を作製した。
(10ErSZアノードペースト)
導電成分としての酸化ニッケル(キシダ化学社製)36質量部、骨格成分としての10モル%エルビア安定化ジルコニア粉末24質量部、気孔形成剤としてのカーボンブラック(SECカーボン社製、SGP−3)2質量部、溶剤としてのα−テルピネオール(和光純薬工業社製)36質量部、バインダーとしてのエチルセルロース(和光純薬工業製)4質量部、可塑剤としてのジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてのソルビタン脂肪酸エステル系界面活性剤4質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質:アルミナ)を用いて解砕し、アノード活性層用ペースト(10ErSZ)を作製した。
(10YbSZアノードペースト)
導電成分としての酸化ニッケル(キシダ化学社製)36質量部、骨格成分としての10モル%イッテルビア安定化ジルコニア(10YbSZ)の粉末24質量部、気孔形成剤としてのカーボンブラック(SECカーボン社製、SGP−3)2質量部、溶剤としてのα−テルピネオール(和光純薬工業社製)36質量部、バインダーとしてのエチルセルロース(和光純薬工業製)4質量部、可塑剤としてのジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてのソルビタン脂肪酸エステル系界面活性剤4質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質:アルミナ)を用いて解砕し、アノード活性層用ペースト(10YbSZ)を作製した。
<電解質層用ペーストの作製>
次に、各実施例又は各比較例に係るSOFCの作製に用いた電解質層用ペーストの作製方法について説明する。
(8YSZ電解質ペースト)
セラミックス質としての8モル%イットリア安定化ジルコニア(8YSZ)の粉末(第一稀元素社製、商品名「HSY−8」)60質量部、バインダーとしてエチルセルロース(和光純薬工業社製)5質量部、溶剤としてα−テルピネオール(和光純薬工業社製)40質量部、可塑剤としてジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてソルビタン酸エステル系界面活性剤(三洋化成社製、商品名「イオネットS−80」)5質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」ロール材質:アルミナ)を用いて解砕し、電解質層用ペースト(8YSZ)を作製した。
(10YSZ電解質ペースト)
セラミックス質としての10モル%イットリア安定化ジルコニア(10YSZ)の粉末(第一稀元素社製、商品名「HSY−10」)60質量部、バインダーとしてエチルセルロース(和光純薬工業社製)5質量部、溶剤としてα−テルピネオール(和光純薬工業社製)40質量部、可塑剤としてジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてソルビタン酸エステル系界面活性剤(三洋化成社製、商品名「イオネットS−80」)5質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」ロール材質:アルミナ)を用いて解砕し、電解質層用ペースト(10YSZ)を作製した。
(10Sc1CeSZ電解質ペースト)
セラミックス質としての10モル%スカンジア1モル%セリア安定化ジルコニア(10Sc1CeSZ)の粉末(第一稀元素社製、商品名「10Sc1CeSZ」)60質量部、バインダーとしてエチルセルロース(和光純薬工業社製)5質量部、溶剤としてα−テルピネオール(和光純薬工業社製)40質量部、可塑剤としてジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてソルビタン酸エステル系界面活性剤(三洋化成社製、商品名「イオネットS−80」)5質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」ロール材質:アルミナ)を用いて解砕し、電解質層用ペースト(10Sc1CeSZ)を作製した。
(10ErSZ電解質ペースト)
セラミックス質としての10モル%エルビア安定化ジルコニア(10ErSZ)の粉末60質量部、バインダーとしてエチルセルロース(和光純薬工業社製)5質量部、溶剤としてα−テルピネオール(和光純薬工業社製)40質量部、可塑剤としてジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてソルビタン酸エステル系界面活性剤(三洋化成社製、商品名「イオネットS−80」)5質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」ロール材質:アルミナ)を用いて解砕し、電解質層用ペースト(10ErSZ)を作製した。
(10YbSZ電解質ペースト)
セラミックス質としての10モル%イッテルビア安定化ジルコニア(10YbSZ)の粉末60質量部、バインダーとしてエチルセルロース(和光純薬工業社製)5質量部、溶剤としてα−テルピネオール(和光純薬工業社製)40質量部、可塑剤としてジブチルフタレート(和光純薬工業社製)6質量部、及び分散剤としてソルビタン酸エステル系界面活性剤(三洋化成社製、商品名「イオネットS−80」)5質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」ロール材質:アルミナ)を用いて解砕し、電解質層用ペースト(10YbSZ)を作製した。
<バリア層用のペーストの作製>
次に、各実施例又は各比較例に係るSOFCの作製に用いたバリア層用ペーストの作製方法について説明する。セラミックス質として、10モル%ガドリニアがドープされているセリアの粉末(阿南化成株式会社製)60質量部、バインダーとしてのエチルセルロース(和光純薬工業株式会社製)5質量部、溶剤としてのα−テルピネオール(和光純薬工業株式会社製)40質量部、可塑剤としてのジブチルフタレート(和光純薬工業株式会社製)6質量部、及び分散剤としてのソルビタン酸エステル系界面活性剤(三洋化成工業株式会社製、商品名「イオネットS−80」)5質量部を、乳鉢を用いて混合した後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質;アルミナ)を用いて解砕した。このようにして、バリア層用ペーストを作製した。
<実施例1>
(アノード基板用グリーンシートの作製)
導電成分としての酸化ニッケル(正同化学社製)60質量部、骨格成分としての3モル%イットリア安定化ジルコニア(3YSZ)の粉末(東ソー社製、商品名「TZ3Y」)40質量部、空孔形成剤としてのカーボンブラック(SECカーボン社製、SGP−3)10質量部、メタクリレート系共重合体からなるバインダー(分子量:30,000、ガラス転移温度:−8℃、固形分濃度:50質量部)30質量部、可塑剤としてジブチルフタレート2質量部、及び分散媒としてトルエン/イソプロピルアルコール(質量比=3/2)の混合溶剤80質量部を、ボールミルにより混合して、アノード基板用のスラリーを調製した。得られたスラリーをドクターブレード法によってシート成形し、70℃で5時間乾燥させて、厚さ約300μmのアノード基板用グリーンシートを作製した。
(アノード活性層用グリーン層の形成)
アノード活性層用ペースト(8YSZ)を、上記のアノード基板用グリーンシートに、焼成後の厚さが約20μmとなるようにスクリーン印刷によって印刷し、100℃で30分間乾燥させ、アノード活性層用グリーン層を形成した。
(電解質層用グリーン層の形成)
上記のアノード活性層用グリーン層の上に、電解質層用ペースト(8YSZ)を焼成後の厚さが約2μmとなるようにスクリーン印刷によって印刷した。さらにその上に、電解質層用ペースト(10Sc1CeSZ)を焼成後の厚さが約10μmとなるようにスクリーン印刷によって印刷し、100℃で30分間乾燥させ、カソード側電解質層用グリーン層及びアノード側電解質層用グリーン層を形成した。ここで、電解質層用ペースト(8YSZ)によって形成されたグリーン層がアノード側電解質層用グリーン層であり、電解質層用ペースト(10Sc1CeSZ)によって形成されたグリーン層がカソード側電解質層用グリーン層である。
(バリア層用グリーン層の形成)
カソード側電解質層用グリーン層の上に、上記のバリア層用ペーストを焼成後の厚さが3μm以下となるようにスクリーン印刷によって印刷した。これを100℃で30分間乾燥させることによって、バリア層用グリーン層を形成した。
(焼成)
バリア層用グリーン層、カソード側電解質層用グリーン層、アノード側電解質層用グリーン層、及びアノード活性層用グリーン層が形成されたアノード基板用グリーンシートを、焼成後の1辺が60mmの正方形になるように打ち抜いた。打ち抜いた後、1300℃で2時間焼成してバリア層を有するハーフセルを得た。
(LSCFの粉体材料の調製)
LSCFカソードの原料となる粉体材料として、市販の純度99.9%のLa23、SrCO3、純度99%のCoO及びFe23の粉末を元素比がLa0.6Sr0.4Co0.2Fe0.8となるように混合した。得られた混合物にエタノールを加えて、これをビーズミルで1時間粉砕混合した。次いで、得られた混合物を乾燥させてから、800℃で1時間仮焼した。仮焼後の混合物に対し、さらにエタノールを加えてビーズミルで1時間粉砕混合してから、乾燥させた。その後、1200℃で混合物を5時間固相反応させることによって、粉末を得た。この粉末にエタノールを加え、さらにボールミルで10時間粉砕混合してから乾燥させて、粉末を得た。この粉末は、X線回折によって、ペロブスカイトからなる単一相であることが確認された。その後、遊星ボールミルを用い、回転数と回転時間を調整しながら粉砕することによって、平均粒子径(D50)が0.52μmのLSCF粉末を得た。なお、本明細書で平均粒子径(D50)とは、レーザー回折式粒度分布測定法によって測定した粒度分布において、体積累積が50%に相当する粒径を意味する。
(カソード用ペーストの調製)
上記のLSCF粉末100質量部、バインダーとしてのエチルセルロース3質量部、及び溶剤としてのα−テルピネオール30質量部を乳鉢に加え、乳鉢で混合した。その後、3本ロールミル(EXAKT technologies社製、型式「M−80S」、ロール材質:アルミナ)を用いて混練し、カソード用ペーストを得た。
(カソードの形成)
上記のハーフセルのバリア層の上に、上記カソード用ペーストを1cm×1cmの正方形状にスクリーン印刷によって塗布し、90℃で1時間乾燥させ、カソード用グリーン層を形成した。このカソード用グリーン層を、1000℃で2時間焼成し、実施例1のSOFCを得た。
<実施例2>
実施例1において、カソード側電解質層用グリーン層の焼成後の厚み及びアノード側電解質層用グリーン層の焼成後の厚みがともに約5μmとなるように、カソード側電解質層用グリーン層及びアノード側電解質層用グリーン層の印刷条件を変更した以外は、実施例1と同様にして実施例2のSOFCを作製した。
<実施例3>
実施例1において、アノード活性層用ペースト(8YSZ)の代わりにアノード活性層用ペースト(10YSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(8YSZ)の代わりに電解質層用ペースト(10YSZ)を用いてアノード側電解質層用グリーン層を形成した以外は、実施例1と同様にして実施例3のSOFCを作製した。
<実施例4>
実施例2において、アノード活性層用ペースト(8YSZ)の代わりにアノード活性層用ペースト(10YSZ)を用いてアノード活性層用グリーン層の形成し、電解質層用ペースト(8YSZ)の代わりに電解質層用ペースト(10YSZ)を用いてアノード側電解質層用グリーン層を形成した以外は、実施例2と同様にして実施例4のSOFCを作製した。
<実施例5>
実施例3において、アノード側電解質層用グリーン層の焼成後の厚みが約1μm、カソード側電解質層用グリーン層の焼成後の厚みが約10μmになるように調整した以外は、実施例3と同様にして実施例5のSOFCを作製した。
<実施例6>
実施例5において、上記のアノード活性層用ペースト(10YSZ)の作製において、酸化ニッケルと10モル%イットリア安定化ジルコニア(10YSZ)の粉末とをボールミルで混合/粉砕する処理を行い、その処理した混合粉を使用してアノード活性層用ペースト(10YSZ)を作製した以外は、実施例5と同様にして実施例6のSOFCを作製した。
<実施例7>
実施例4において、アノード活性層用ペースト(10YSZ)の代わりにアノード活性層用ペースト(10ErSZ)を用いてアノード活性層用グリーン層の形成し、電解質層用ペースト(10YSZ)の代わりに電解質層用ペースト(10ErSZ)を用いてアノード側電解質層用グリーン層を形成した以外は、実施例4と同様にして実施例7のSOFCを作製した。
<実施例8>
実施例4において、アノード活性層用ペースト(10YSZ)の代わりにアノード活性層用ペースト(10YbSZ)を用いてアノード活性層用グリーン層の形成し、電解質層用ペースト(10YSZ)の代わりに電解質層用ペースト(10YbSZ)を用いてアノード側電解質層用グリーン層を形成した以外は、実施例4と同様にして実施例8のSOFCを作製した。
<比較例1>
実施例2において、アノード活性層用ペースト(8YSZ)の代わりにアノード活性層用ペースト(10Sc1CeSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(10Sc1CeSZ)を使用して焼成後の厚みが約10μmとなるように単層の電解質層用グリーン層を形成した以外は、実施例2と同様に比較例1のSOFCを作製した。
<比較例2>
比較例1において、アノード活性層用ペースト(10Sc1CeSZ)の代わりにアノード活性層用ペースト(8YSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(10Sc1CeSZ)の代わりに電解質層用ペースト(8YSZ)を用いて単層の電解質層用グリーン層を形成した以外は、比較例1と同様にして比較例2のSOFCを作製した。
<比較例3>
比較例1において、アノード活性層用ペースト(10Sc1CeSZ)の代わりにアノード活性層用ペースト(10YSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(10Sc1CeSZ)の代わりに電解質層用ペースト(10YSZ)を用いて単層の電解質層用グリーン層を形成した以外は、比較例1と同様にして比較例3のSOFCを作製した。
<比較例4>
実施例1において、アノード活性層用グリーン層の上に、電解質層用ペースト(10Sc1CeSZ)を焼成後の厚さが約10μmとなるようにスクリーン印刷によってアノード側電解質層用グリーン層を形成し、電解質層用ペースト(8YSZ)を焼成後の厚さが約2μmとなるようにスクリーン印刷によってカソード側電解質層用グリーン層を形成した以外は、実施例1と同様にして比較例4のSOFCを作製した。
<比較例5>
比較例4において、アノード活性層用ペースト(8YSZ)の代わりにアノード活性層用ペースト(10YSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(8YSZ)の代わりに電解質層用ペースト(10YSZ)を用いてカソード側電解質層用グリーン層を形成した以外は、比較例4と同様にして比較例5のSOFCを作製した。
<比較例6>
比較例1において、アノード活性層用ペースト(10Sc1CeSZ)の代わりにアノード活性層用ペースト(8YSZ)を用いてアノード活性層用グリーン層を形成した以外は、比較例1と同様にして比較例6のSOFCを作製した。
<比較例7>
比較例6において、アノード活性層用ペースト(8YSZ)の代わりにアノード活性層用ペースト(10YSZ)を用いてアノード活性層用グリーン層を形成した以外は、比較例6と同様にして比較例7のSOFCを作製した。
<比較例8>
実施例2において、アノード活性層用ペースト(8YSZ)の代わりにアノード活性層用ペースト(10Sc1CeSZ)を用いてアノード活性層用グリーン層を形成した以外は、実施例2と同様にして比較例8のSOFCを作製した。
<比較例9>
比較例8において、電解質層用ペースト(8YSZ)の代わりに電解質層用ペースト(10YSZ)を用いてアノード側電解質層用グリーン層を形成した以外は、比較例8と同様にして比較例9のSOFCを作製した。
<比較例10>
比較例3において、アノード活性層用ペースト(10YSZ)の代わりにアノード活性層用ペースト(10ErSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(10YSZ)の代わりに電解質層用ペースト(10ErSZ)を用いて単層の電解質層を形成した以外は、比較例3と同様にして比較例10のSOFCを作製した。
<比較例11>
比較例10において、アノード活性層用ペースト(10ErSZ)の代わりにアノード活性層用ペースト(10YbSZ)を用いてアノード活性層用グリーン層を形成し、電解質層用ペースト(10ErSZ)の代わりに電解質層用ペースト(10YbSZ)を用いて単層の電解質層を形成した以外は、比較例10と同様にして比較例11のSOFCを作製した。
次に、各実施例及び各比較例のSOFCの評価方法について説明する。
<電池性能評価試験>
各実施例及び各比較例のSOFCの電池性能を以下の方法によって評価した。SOFCのアノードに窒素を100mL/分で、カソードに空気を100mL/分で供給しつつ、100℃/時間の速度で測定温度(750℃)までSOFCを昇温した。昇温後、アノード及びカソードの出口側で流量計を用いてガス流量を測定し、ガスの漏れが無いことを確認した。次に、水素を6mL/分、窒素を194mL/分の加湿した混合ガスをアノードへ、400mL/分の空気をカソードへ供給した。供給開始から10分以上経過後に、起電力が発生したこと及びガス漏れが無いことを再度確認した。次に、加湿水素を200mL/分の流量でアノードへ供給した。起電力が安定してから10分以上経過後に、電流−電圧特性による電池性能評価試験を実施した。測定された電流密度−電圧特性から、0.8Vにおける出力密度(W/cm2)を求めた。表1に、各実施例及び各比較例の電池性能評価試験の結果を示す。
<電解質層の厚み測定>
実施例1〜5及び比較例1〜9のSOFCについて、上記の電池性能評価試験の後に、水素6mL/分、窒素を194mL/分の混合ガスをアノードへ供給してSOFCの降温を行うことによって、アノード活性層の導電成分が金属ニッケルの状態を常温において維持しているサンプルを得た。この各サンプルをガラスカッターによって切断し、断面観察用サンプルを作製した。この断面観察用サンプルの断面を、電界放出型走査電子顕微鏡(日本電子社製:JSM−7600F)を用いて撮影した。
断面観察用サンプルの断面の撮影は、カソードが形成されている部分に対する中央部分及びカソードの端部から約2mm離れた位置において行い、3つの視野の写真を得た。それぞれの視野について任意の5点(合計15点)で測定した電解質層の厚みの算術平均値を、電解質層の厚みとした。なお、アノード側電解質層とカソード側電解質層との境界は、エネルギー分散型X線分析装置を用いて各金属酸化物の分布を調べることによって判断した。測定結果を表1に示す。
<ニッケル粒子の粒径の測定>
実施例1〜6のSOFCに係る断面観察用サンプルについて、電界放出型走査電子顕微鏡を用いて、断面観察用サンプルの電解質層/アノード活性層の境界面付近の断面観察を行い、倍率1万倍の拡大写真を撮影した。この撮影はカソードが形成されている部分の中央部分に対して行い、拡大写真を得た。得られた拡大写真を用いてアノード活性層中のニッケルの大きさを測定した。具体的には、電解質層/アノード活性層の境界面とその境界面からアノード活性層側に5μm離れた位置との間に存在する任意のニッケルの粒子100個について、Media Cybernetics社製の画像解析用ソフトImage-Pro(version 4.0.0.11)を用いて拡大写真中のニッケル粒子の周長を計測し、その周長と等しい円周を有する真円の直径を求めた。この直径をアノード活性層中のニッケルの粒子径とみなし、100個のニッケル粒子の粒子径の個数分布から、10%粒子径及び90%粒子径をそれぞれ求めた。結果を表2に示す。
表1に示すように、実施例1〜8のSOFCの出力密度は、いずれも0.700W/cm2以上を示し、各比較例のSOFCの出力密度よりも高い値を示した。特に、実施例1、3、5、及び6のSOFCの出力密度は、0.75W/cm2以上を示した。これにより、アノード側電解質層の厚み及びカソード側電解質層の厚みの和に対するカソード側電解質層の厚みの比が大きくなることによって、SOFCの発電性能がさらに高まることが示唆された。
Figure 2014207215
Figure 2014207215
本発明によれば、発電性能の高いSOFCを提供することができる。
1A SOFCハーフセル
1B SOFC
10 電解質層
10A カソード側電解質層
10B アノード側電解質層
20A アノード活性層

Claims (2)

  1. イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアと酸化ニッケルとを含むアノード活性層と、
    スカンジア安定化ジルコニアを主成分として含むカソード側電解質層と、
    前記アノード活性層と接するように前記カソード側電解質層と前記アノード活性層との間に位置し、イットリア、イッテルビア、及びエルビアからなる群より選ばれる少なくとも1つの金属酸化物によって安定化されたジルコニアを主成分として含むアノード側電解質層と、を備え、
    前記カソード側電解質層の厚みは、前記カソード側電解質層の厚み及び前記アノード側電解質層の厚みの和の30%以上である、固体酸化物形燃料電池ハーフセル。
  2. 請求項1に記載の固体酸化物形燃料電池ハーフセルと、
    前記カソード側電解質層の前記アノード活性層と反対側に形成されたカソードと、を備える固体酸化物形燃料電池。
JP2013202728A 2013-03-21 2013-09-27 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池 Active JP6338342B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202728A JP6338342B2 (ja) 2013-03-21 2013-09-27 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013057523 2013-03-21
JP2013057523 2013-03-21
JP2013202728A JP6338342B2 (ja) 2013-03-21 2013-09-27 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池

Publications (2)

Publication Number Publication Date
JP2014207215A true JP2014207215A (ja) 2014-10-30
JP6338342B2 JP6338342B2 (ja) 2018-06-06

Family

ID=52120605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202728A Active JP6338342B2 (ja) 2013-03-21 2013-09-27 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池

Country Status (1)

Country Link
JP (1) JP6338342B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076078A1 (ja) * 2014-11-13 2016-05-19 住友電気工業株式会社 セル構造体、その製造方法、および、燃料電池
KR20170110124A (ko) * 2015-02-06 2017-10-10 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 전해질 형성 공정
JP2020068195A (ja) * 2018-10-18 2020-04-30 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP2020091949A (ja) * 2018-12-03 2020-06-11 国立大学法人 東京大学 混合伝導体層を有する固体酸化物燃料電池
US10897056B2 (en) 2015-02-06 2021-01-19 Ceres Intellectual Property Company Limited Electrolyte forming process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259691A (ja) * 2002-09-13 2004-09-16 Toto Ltd 固体酸化物形燃料電池
JP2004303712A (ja) * 2002-09-13 2004-10-28 Toto Ltd 固体酸化物形燃料電池
JP2008243475A (ja) * 2007-03-26 2008-10-09 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用燃料極材料
JP2008258170A (ja) * 2002-09-13 2008-10-23 Toto Ltd 固体酸化物形燃料電池
JP2009140730A (ja) * 2007-12-06 2009-06-25 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用の燃料極材料およびその製造方法
JP2010505235A (ja) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド 異なる組成の領域を備えた電解質シートおよびそれを含む燃料電池デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259691A (ja) * 2002-09-13 2004-09-16 Toto Ltd 固体酸化物形燃料電池
JP2004303712A (ja) * 2002-09-13 2004-10-28 Toto Ltd 固体酸化物形燃料電池
JP2008258170A (ja) * 2002-09-13 2008-10-23 Toto Ltd 固体酸化物形燃料電池
JP2010505235A (ja) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド 異なる組成の領域を備えた電解質シートおよびそれを含む燃料電池デバイス
JP2008243475A (ja) * 2007-03-26 2008-10-09 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用燃料極材料
JP2009140730A (ja) * 2007-12-06 2009-06-25 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用の燃料極材料およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
工藤 徹一 ほか, 燃料電池 熱力学から学ぶ基礎と開発の実際技術, JPN6017031866, 10 October 2005 (2005-10-10), JP, pages 166 - 169, ISSN: 0003626184 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076078A1 (ja) * 2014-11-13 2016-05-19 住友電気工業株式会社 セル構造体、その製造方法、および、燃料電池
KR20170110124A (ko) * 2015-02-06 2017-10-10 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 전해질 형성 공정
KR102077682B1 (ko) * 2015-02-06 2020-02-14 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 전해질 형성 공정
US10897056B2 (en) 2015-02-06 2021-01-19 Ceres Intellectual Property Company Limited Electrolyte forming process
US10978727B2 (en) 2015-02-06 2021-04-13 Ceres Intellectual Property Company Limited Electrolyte forming process for a metal-supported solid-oxide fuel cell
JP2020068195A (ja) * 2018-10-18 2020-04-30 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP7336702B2 (ja) 2018-10-18 2023-09-01 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP2020091949A (ja) * 2018-12-03 2020-06-11 国立大学法人 東京大学 混合伝導体層を有する固体酸化物燃料電池
JP7194936B2 (ja) 2018-12-03 2022-12-23 国立大学法人 東京大学 混合伝導体層を有する固体酸化物燃料電池

Also Published As

Publication number Publication date
JP6338342B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6018639B2 (ja) 固体酸化物形燃料電池ハーフセル及び固体酸化物形燃料電池
WO2014168071A1 (ja) 空気極材料及び燃料電池セル
JP6338342B2 (ja) 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池
JP2011119178A (ja) 固体酸化物形燃料電池
JP2012134122A (ja) 固体酸化物型燃料電池
JP2017022111A (ja) 積層体
JP6573243B2 (ja) 空気極組成物、空気極およびこれを含む燃料電池
JP7089838B2 (ja) 固体酸化物形燃料電池用単セル及びその製造方法、並びに、固体酸化物形燃料電池用カソード及びその製造方法
JP5546559B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP2017076520A (ja) 固体酸化物形燃料電池用の電極材料とこれを用いた固体酸化物形燃料電池
JP2013229311A (ja) 固体酸化物形燃料電池
JP2016072037A (ja) 固体酸化物形燃料電池用単セルの製造方法、固体酸化物形燃料電池用カソード及び固体酸化物形燃料電池用単セル
KR102111859B1 (ko) 고체산화물 연료 전지 및 이를 포함하는 전지 모듈
JP2018152200A (ja) 固体酸化物形電気化学セル用ハーフセル、固体酸化物形電気化学セル及び固体酸化物形電気化学セル用ハーフセルの製造方法
JP2014216119A (ja) 固体酸化物形燃料電池用グリーンシートおよびその製造方法
JP2015191810A (ja) 固体酸化物形燃料電池用アノード支持基板及び固体酸化物形燃料電池用セル
JP6151212B2 (ja) 低温作動型の固体酸化物形燃料電池およびその製造方法
JP5655032B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP6071368B2 (ja) 固体酸化物形燃料電池セル用中間層、固体酸化物形燃料電池セル、固体酸化物形燃料電池セル用中間層の製造方法および固体酸化物形燃料電池セルの製造方法
JP6199680B2 (ja) 固体酸化物形燃料電池のハーフセル及び固体酸化物形燃料電池セル
JP6891008B2 (ja) イオン伝導性材料及び固体酸化物形電気化学セル
JP2016072046A (ja) 固体酸化物形燃料電池用ハーフセル及び固体酸化物形燃料電池用単セル
JP7208764B2 (ja) 固体酸化物形燃料電池とこれに用いる集電部形成用材料
JP2016072047A (ja) 固体酸化物形燃料電池用ハーフセル及び固体酸化物形燃料電池用単セル
JP2012074305A (ja) 固体酸化物形燃料電池用発電セル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170807

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6338342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150