WO2016074445A1 - 封装方法、封装结构及显示装置 - Google Patents

封装方法、封装结构及显示装置 Download PDF

Info

Publication number
WO2016074445A1
WO2016074445A1 PCT/CN2015/077671 CN2015077671W WO2016074445A1 WO 2016074445 A1 WO2016074445 A1 WO 2016074445A1 CN 2015077671 W CN2015077671 W CN 2015077671W WO 2016074445 A1 WO2016074445 A1 WO 2016074445A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
package
heat dissipation
forming
region
Prior art date
Application number
PCT/CN2015/077671
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
王瑞勇
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/785,643 priority Critical patent/US9680134B2/en
Publication of WO2016074445A1 publication Critical patent/WO2016074445A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to the field of display, and in particular, to a packaging method, a package structure, and a display device.
  • the luminescent materials and functional materials in the organic electroluminescent device are sensitive to water and gas, and therefore, the sealing requirements for oxygen and the barrier to water are high.
  • the current small and medium-sized OLED display devices are mostly packaged by a laser sealing process and a Frit material (glass material), that is, using a laser beam to move and heat the glass encapsulant to make the glass package.
  • the glue melts and the molten glass encapsulant forms a hermetic package connection between the upper and lower glass substrates to provide a hermetic seal.
  • the instantaneous temperature during the packaging process can reach several hundred degrees. Such a high package temperature can damage the backplane structure of the driving transistor in the OLED device, thereby affecting the lifetime of the device.
  • the technical problem to be solved by the present invention is to provide a packaging method, a package structure and a display device, which can effectively suppress a rapid rise of the substrate temperature caused by laser irradiation and reduce damage to the driving back plate.
  • an embodiment of the present invention provides a packaging method, including:
  • the pattern of the encapsulant is laser irradiated, and the encapsulant is melt sintered to form an encapsulant structure between the first substrate and the second substrate.
  • the present invention further provides a package structure including a first substrate, a second substrate, and a package adhesive structure located in the package region to seal the first substrate and the second substrate, the package The region is further provided with a heat dissipation structure between the first substrate and the second substrate.
  • the present invention also provides a display device including the above package structure.
  • FIG. 1 is a flow chart of a packaging method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of fabricating a heat dissipation structure using a carbon nanotube material according to an embodiment of the present invention
  • 3a-3g are schematic views of the direction of film drawing of the carbon nanotube film provided by the embodiment of the present invention.
  • FIG. 4 is a flow chart of fabricating a heat dissipation structure using a graphene material according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a heat dissipation structure formed by using a graphene material according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a package structure according to an embodiment of the present invention.
  • FIG. 7 is a schematic view of a package adhesive structure provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a heat dissipation structure according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another package structure provided by an embodiment of the present invention.
  • FIG. 1 is a flowchart of a packaging method according to an embodiment of the present invention, where the packaging method includes:
  • S11 forming a pattern of the encapsulant on the package region of the first substrate, and forming a heat dissipation structure on the package region of any one of the first substrate and the second substrate;
  • S12 bonding the first substrate and the second substrate, and aligning a package area of the first substrate with a package area of the second substrate;
  • the packaging method provided by the embodiment of the present invention, by fabricating a heat dissipation structure on the package area, when the package glue is melted by laser irradiation, heat can be quickly dissipated by the heat dissipation structure, and the substrate caused by laser irradiation is effectively suppressed.
  • the rapid rise in temperature reduces damage to the drive backplane.
  • the packaging method provided by the embodiments of the present invention can be used for packaging of, for example, an organic electroluminescent device (OLED), wherein the material for forming the heat dissipation structure may be a material such as a metal or a nanocarbon material.
  • OLED organic electroluminescent device
  • the material for forming the heat dissipation structure may be a material such as a metal or a nanocarbon material.
  • a nanocarbon layer is formed on the package region of any one of the first substrate and the second substrate as the heat dissipation structure, wherein the nanocarbon layer may be a carbon nanotube material or a graphene material, preferably,
  • a multilayer nanocarbon layer can be provided as the heat dissipation structure.
  • the following steps may be added in the process of forming the nanocarbon layer as the heat dissipation structure: doping the carbon nano layer with the metal compound particles to form a doped layer.
  • doping may be performed by doping by vacuum evaporation.
  • the metal compound particles may have a particle diameter of 10 nm to 50 nm, for example, 20 nm, 30 nm, or 40 nm, and the material of the metal compound particles may be a material such as aluminum chloride or zinc iodide.
  • the heat dissipation effect can be improved by 30% to 40%.
  • Table 1 for example, for the heat dissipation structure of No. 8, the composition includes only two layers of graphene layers having a heat transfer coefficient of 4180 W/m*K, which is doped with aluminum chloride particles having a particle diameter of 10 nm.
  • the heat transfer coefficient can reach 6000 W/m*K, which greatly improves the heat dissipation effect.
  • the above doped layer may be formed between the plurality of nanocarbon layers.
  • the step of forming the nanocarbon layer in the package region of any of the substrates includes forming a nanocarbon layer matching the shape of the package region of the substrate on the package region of any of the substrates.
  • the nanocarbon layer can be formed on the package region of the substrate by the following method:
  • a nanocarbon film is formed on the bonding region, and the nanocarbon film is patterned to form a nanocarbon layer matching the shape of the package region of the substrate on the package region of the substrate.
  • the obtained nanocarbon film is attached to the bonding zone.
  • FIG. 2 is a flow chart of fabricating a heat dissipation structure by using the above method 1 and carbon nanotube material, including:
  • the first substrate may be a cap plate
  • the second substrate is a BP substrate ( TFT substrate)
  • the bonding region may be formed by UV glue; in particular, UV glue may be first coated on the BP substrate (TFT substrate), and the process of coating the UV glue may be printing, Spin coating, Slit (slit coating), Spin & Slit (slack-type coating first, then applying a uniform coating and flattening of the coating by rotation), and then pre-baking the substrate coated with the UV glue. Volatile part of the solvent forms the bonding zone described above;
  • S22 forming a carbon nanotube film by using a die-casting process on the bonding region, specifically, covering the carbon nanotubes on the pre-baked substrate, and covering the carbon nanotubes with the carbon nanotube covering structure.
  • the film is formed by a film.
  • the carbon nanotube covering structure can be formed by pulling the film in different pulling directions as shown in FIGS. 3a-3g, wherein in FIGS. 3a-3g, marking the carbon nanotube layer 2
  • the upper black line indicates the direction of the die. For example, for the mode in FIG. 3a, the die direction is the short side direction of the BP substrate 1, and for the mode in FIG. 3b, the die direction is the long side direction of the BP substrate 1. ;
  • the UV glue is used to form the bonding region
  • the bonding region can be formed by using other materials such as a thermosetting resin.
  • a bonding region is formed using a thermosetting resin in step S21, a curing treatment is performed in a step S23 using a thermal curing process.
  • the above heat dissipation structure can be fabricated on a BP substrate or a cover plate, preferably on a BP substrate.
  • the pattern shape of the package glue and the pattern shape of the heat dissipation structure may be Same, and make the two face each other.
  • FIG. 4 is a flow chart of fabricating a heat dissipation structure by using the above method 1 and graphene materials, including:
  • the first substrate may be a cap plate
  • the second substrate is a BP substrate
  • the TFT substrate may be coated with a thermosetting resin on a package region of the BP substrate, and the process of applying the thermosetting resin may be a printing, a Spin, a Slit, a Spin & Slit process, or the like.
  • S33 forming a photoresist layer on the graphene film, for example, coating a surface of the graphene film with UV glue, and pre-baking the UV glue to form a photoresist layer;
  • the above method 2 for example, it can be completed by directly attaching a pattern and a specification of the graphene film to the BP substrate, that is, obtaining a patterned graphene layer in advance, and then patterning the graphene.
  • the layer can be attached directly to the bonding area.
  • the heat dissipation structure is further formed with a vertical through hole, wherein the through hole may be formed together in the step of fabricating a nanocarbon layer matching the shape of the package area, Via holes may also be formed in the nanocarbon layer after the nanocarbon layer matching the shape of the package region is formed. For example, a corresponding via pattern may be formed again on the nanocarbon layer matching the shape of the package region by a laser ashing process or a photolithography process.
  • the adhesion between the two side portions of the heat dissipation structure can be enhanced, and the influence of the heat dissipation structure on the effect of the subsequent package can be reduced.
  • the packaging method provided by the embodiment of the present invention, by fabricating a heat dissipation structure on the package area, when the package glue is melted by laser irradiation, heat can be quickly dissipated by the heat dissipation structure, and the substrate caused by laser irradiation is effectively suppressed.
  • the rapid rise of the temperature reduces the damage to the driving backplane, and at the same time, the LSD (Laser Sealing Damage) is not caused by the introduction of the heat dissipation structure.
  • High product packaging yield the use of nano-carbon materials has the advantages of low cost and simple process, and because the nano-carbon structure has a large heat transfer coefficient and good heat dissipation performance, the heat dissipation effect can be further improved.
  • an embodiment of the present invention further provides a package structure including a first substrate 4 , a second substrate 7 , and a package region 8 for the first substrate 4 and the second substrate A sealed encapsulant structure 5, wherein the package region 8 is further provided with a heat dissipation structure 6 between the first substrate 4 and the second substrate 7.
  • the first substrate may be a cap plate and the second substrate is a BP substrate (TFT substrate).
  • the heat dissipation structure is further formed with a vertical through hole.
  • the encapsulating structure 5 may be a Frit material.
  • the heat dissipating structure is a nano carbon material, for example, a carbon nanotube material, a graphene material, or the like.
  • the shape of the encapsulation structure 5 is as shown in FIG. 7.
  • the pattern shape of the heat dissipation structure 6 can be made the same as the pattern shape of the encapsulation structure 5, that is, form. The shape shown in Figure 8.
  • the heat dissipation structure in the embodiment of the present invention includes not only a nanocarbon layer, but also a doped layer formed by doping the nanocarbon layer with metal compound particles.
  • the package structure includes a first substrate. a second substrate 7 and an encapsulant structure 5 located in the package region 8 to seal the first substrate 4 and the second substrate 7.
  • the package region 8 is further provided on the first substrate 4 a heat dissipation structure 6 between the second substrate 7 and the second substrate 7, wherein the heat dissipation structure 6 includes a first nanocarbon layer 61, a second nanocarbon layer 62, and is disposed between the first nanocarbon layer 61 and the second nanocarbon layer 62.
  • the doping layer 63 can significantly improve the heat dissipation effect of the heat dissipation structure by adding the doping layer 63 to the heat dissipation structure.
  • the metal compound particles may have a particle diameter of 10 nm to 50 nm, for example, 20 nm, 30 nm, or 40 nm, and the material of the metal compound particles may be a material such as aluminum chloride or zinc iodide.
  • the present invention provides a display device including the above package structure.
  • the display device provided by the embodiment of the present invention may be any product or component having a display function such as a notebook computer display screen, a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, a tablet computer, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种封装方法、封装结构及显示装置,该封装方法包括:在第一基板(4)的封装区域(8)上形成封装胶的图案,在第一基板(4)和第二基板(7)中任一个基板的封装区域(8)上形成散热结构(3,6);将第一基板(4)与第二基板(7)贴合,并使第一基板的封装区域与第二基板的封装区域对位;对封装胶的图案进行激光照射,将封装胶熔融烧结,以在第一基板与第二基板之间形成封装胶结构(5)。在封装区域(8)上制作散热结构(3,6),当进行激光照射使封装胶熔融时,通过该散热结构能够使热量快速散去,有效抑制由于激光照射而造成的基板温度的快速上升,减小对驱动背板造成的损伤。

Description

封装方法、封装结构及显示装置
相关申请的交叉引用
本申请要求于2014年11月12日向中国国家知识产权局递交的中国专利申请No.201410645978.3的权益,通过引用将该中国专利申请的全文合并于此。
技术领域
本发明涉及显示领域,尤其涉及一种封装方法、封装结构及显示装置。
背景技术
有机电致发光器件(OLED)内的发光材料和功能材料对水和气比较敏感,因此,对氧的密封要求以及对水的阻隔要求均较高。为防止水汽和氧气对OLED器件的影响,目前中小尺寸的OLED显示器件多采用激光封装(Laser sealing)工艺和Frit材料(玻璃材料)进行封装,即利用激光束移动加热玻璃封装胶,使玻璃封装胶熔化,熔化的玻璃封装胶在上下两玻璃基板间形成密闭的封装连接,从而提供气密式密封。然而,封装过程中的瞬间温度会达到几百度,如此高的封装温度会损伤OLED器件中驱动晶体管的背板结构,从而影响器件的寿命。
发明内容
本发明要解决的技术问题是提供一种封装方法、封装结构及显示装置,能够有效抑制由于激光照射而造成的基板温度的快速上升,减小对驱动背板造成的损伤。
为解决上述技术问题,本发明的实施方式提供了一种封装方法,包括:
在第一基板的封装区域上形成封装胶的图案,在第一基板和第二基板中任一个基板的封装区域上形成散热结构;
将所述第一基板与所述第二基板贴合,并使所述第一基板的封装区域与所述第二基板的封装区域对位;
对所述封装胶的图案进行激光照射,将封装胶熔融烧结,以在所述第一基板与所述第二基板之间形成封装胶结构。
为解决上述技术问题,本发明还提供了一种封装结构,包括第一基板、第二基板以及位于封装区域以将所述第一基板与所述第二基板密封的封装胶结构,所述封装 区域还设有位于所述第一基板与所述第二基板之间的散热结构。
为解决上述技术问题,本发明还提供了一种显示装置,包括上述的封装结构。
附图说明
图1是本发明实施方式提供的一种封装方法的流程图;
图2是本发明实施方式提供的使用碳纳米管材料制作散热结构的流程图;
图3a-3g是本发明实施方式提供的碳纳米管薄膜拉膜方向的示意图;
图4是本发明实施方式提供的使用石墨烯材料制作散热结构的流程图;
图5是本发明实施方式提供的采用石墨烯材料形成的散热结构的示意图;
图6是本发明实施方式提供的一种封装结构的示意图;
图7是本发明实施方式提供的一种封装胶结构的示意图;
图8是本发明实施方式提供的一种散热结构的示意图;
图9是本发明实施方式提供的另一种封装结构的示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
图1是本发明实施方式提供的一种封装方法的流程图,该封装方法包括:
S11:在第一基板的封装区域上形成封装胶的图案,在第一基板和第二基板中任一个基板的封装区域上形成散热结构;
S12:将所述第一基板与所述第二基板贴合,并使所述第一基板的封装区域与所述第二基板的封装区域对位;
S13:对所述封装胶的图案进行激光照射,将封装胶熔融烧结,以在所述第一基板与所述第二基板之间形成封装胶结构。
在本发明实施方式提供的封装方法中,通过在封装区域上制作散热结构,当进行激光照射使封装胶熔融时,通过该散热结构能够使热量快速散去,有效抑制由于激光照射而造成的基板温度的快速上升,减小对驱动背板造成的损伤。
本发明实施方式提供的封装方法可用于例如有机电致发光器件(OLED)的封装,其中,用于形成散热结构的材料可以为金属或者纳米碳材料等材料。具体地,优选可在第一基板和第二基板中任一个基板的封装区域上形成纳米碳层作为所述散热结构,其中,纳米碳层可以采用碳纳米管材料或石墨烯材料,优选地,为了提高散热效 果,可设置多层纳米碳层作为所述散热结构。
优选地,为了进一步地提高散热效果,可在上述形成纳米碳层作为散热结构的过程中增加以下步骤:对碳纳米层进行金属化合物粒子掺杂形成掺杂层。具体地,可采用真空蒸镀的方式进行掺杂形成掺杂层。
其中,上述金属化合物粒子的粒径可以为10nm~50nm,例如,可以为20nm、30nm、40nm,金属化合物粒子的材料可以为氯化铝、碘化锌等材料。通过在散热结构中增加金属化合物形成的掺杂层,其散热效果可提升30%~40%。如表1所示,例如,对于序号8的散热结构,其组分仅包括两层石墨烯层,其传热系数为4180W/m*K,当采用粒径10nm的氯化铝粒子进行掺杂时(如序号1的散热结构,包括两层石墨烯层和一层氯化铝粒子形成的掺杂层),其传热系数可达到6000W/m*K,大大提高了散热效果。
表1
Figure PCTCN2015077671-appb-000001
优选地,对于包含多层纳米碳层的散热结构,上述的掺杂层可以形成在多层纳米碳层之间。
在一实施方式中,上述在任一个基板的封装区域中形成纳米碳层的步骤包括:在任一个基板的封装区域上形成与该基板的封装区域形状相匹配的纳米碳层。具体地,可通过以下方法在基板的封装区域上形成纳米碳层:
方法一:
在基板的封装区域中形成粘合区;
在所述粘合区上形成纳米碳薄膜,对所述纳米碳薄膜进行图案化处理,以在该基板的封装区域上形成与该基板的封装区域形状相匹配的纳米碳层。
方法二:
获取与基板的封装区域形状相匹配的纳米碳薄膜;
在该基板的封装区域中形成粘合区;
将获取的纳米碳薄膜贴附至所述粘合区。
参见图2,图2是采用上述方法一和碳纳米管材料制作散热结构的流程图,包括:
S21:在第一基板和第二基板中任一个基板的封装区域中形成粘合区;例如,对于有机电致发光器件(OLED),第一基板可以为盖板,第二基板为BP基板(TFT基板),该粘合区可采用UV胶形成;具体地,可首先在BP基板(TFT基板)上涂布UV胶,涂布UV胶的工艺可以采用印刷、Spin(旋转涂布)、Slit(狭缝式涂布)、Spin&Slit(先采用狭缝式方式涂胶,后采用旋转方式将胶涂布均匀、平坦化)工艺等,而后将上述涂布有UV胶的基板进行预烘烤,挥发部分溶剂形成上述的粘合区;
S22:在所述粘合区上采用拉模工艺形成碳纳米管薄膜,具体地,在预烘烤后的基板上,在形成有UV胶的区域上覆盖碳纳米管,碳纳米管覆盖结构可采用拉膜的方式形成,具体的,碳纳米管覆盖结构可通过如图3a-3g所示的沿不同拉膜方向拉膜而形成,其中在图3a-3g中,标记于碳纳米管层2上的黑线表示拉模方向,例如,对于图3a中的方式,其拉模方向为BP基板1的短边方向,对于图3b中的方式,其拉模方向为BP基板1的长边方向;
S23:拉模工艺后对粘合区进行固化处理,将形成有碳纳米管薄膜的UV胶区域进行UV固化;
S24:去除所述粘合区之外的碳纳米管,将UV胶区域之外的碳纳米管进行清理,具体可采用清洗或气吹等方式;
S25:对所述粘合区进行烘烤坚膜处理。
其中,在上述的散热结构的制作方法中,UV胶用于形成粘合区,然而,本领域技术人员可以理解,粘合区的形成也可采用热固化树脂等其它材料。此外,若在步骤S21中采用热固化树脂形成粘合区,则在步骤S23中采用热固化工艺进行固化处理。
对于有机电致发光器件(OLED),上述的散热结构可制作在BP基板或者盖板上,优选地,可制作在BP基板。此外,为了在不影响封装效果的前提下使散热的效果更加显著,在上述封装的过程中,可使封装胶的图案形状与散热结构的图案形状相 同,并使两者正对设置。
参见图4,图4是采用上述方法一和石墨烯材料制作散热结构的流程图,包括:
S31:在第一基板和第二基板中任一个基板的封装区域中形成粘合区;例如,对于有机电致发光器件(OLED),第一基板可以为盖板,第二基板为BP基板(TFT基板),可在BP基板的封装区域上涂布热固化树脂,涂布热固化树脂的工艺可以采用印刷、Spin、Slit、Spin&Slit工艺等,
S32:在该任一个基板上形成石墨烯薄膜,其中将石墨烯薄膜通过粘合区贴附至BP基板,并将贴附后的BP基板进行热固化处理;
S33:在所述石墨烯薄膜上形成光刻胶层,例如,可在石墨烯薄膜表面涂布UV胶,并将UV胶进行预烘处理形成光刻胶层;
S34:对所述光刻胶层进行曝光、显影,形成图案化的光刻胶层,而后对BP基板进行后烘坚膜处理;
S35:刻蚀掉暴露出的石墨烯,之后剥离剩余的光刻胶,从而形成所述的散热结构;具体地,参见图5,可采用刻蚀工艺对石墨烯薄膜进行刻蚀,而后将UV胶剥离并进行清洗,从而在BP基板1上形成散热结构3。
对于上述方法二,例如,可通过直接将预先设定图案及规格的石墨烯薄膜贴附于BP基板上的工艺来完成,即预先获取图案化的石墨烯层,而后将该图案化的石墨烯层直接贴附至粘合区即可。
优选地,为了防止上述的散热结构对封装效果的影响,上述散热结构中还形成有垂直通孔,其中,该通孔可在制作与封装区域形状相匹配的纳米碳层的步骤中一起形成,也可在制作与封装区域形状相匹配的纳米碳层之后,再在纳米碳层上形成通孔。例如,可以采用激光灰化工艺或光刻工艺在与封装区域形状相匹配的纳米碳层上再次形成相应的通孔图案。通过上述通孔,可增强散热结构的两侧部分之间的粘结性,降低散热结构对后续封装的效果的影响。
在本发明实施方式提供的封装方法中,通过在封装区域上制作散热结构,当进行激光照射使封装胶熔融时,通过该散热结构能够使热量快速散去,有效抑制由于激光照射而造成的基板温度的快速上升,减小对驱动背板造成的损伤,同时也不会因为散热结构的引入而产生LSD(Laser Sealing Damage,激光封装损坏)不良,进而提 高产品的封装良率。此外,采用纳米碳材料,具有成本低,工艺简单的优点,且由于纳米碳结构具有大的热传导系数,散热性能好,能够进一步地提高散热效果。
此外,参见图6,本发明实施方式还提供了一种封装结构,该封装结构包括第一基板4、第二基板7以及位于封装区域8以将所述第一基板4与所述第二基板7密封的封装胶结构5,其中,所述封装区域8还设有位于所述第一基板4与所述第二基板7之间的散热结构6。例如,对于有机电致发光器件(OLED),第一基板可以为盖板,第二基板为BP基板(TFT基板)。优选地,为了防止散热结构对封装效果的影响,所述散热结构上还形成有垂直通孔。
其中,所述封装胶结构5可以为玻璃(Frit)材料,优选地,所述散热结构为纳米碳材料,例如,可以为碳纳米管材料、石墨烯材料等。其中,封装胶结构5的形状如图7所示,为了在不影响封装效果的前提下使散热的效果更加显著,可以使散热结构6的图案形状与封装胶结构5的图案形状相同,即形成如图8所示的形状。
优选地,本发明实施方式中的散热结构不但包括纳米碳层,还包括通过对纳米碳层进行金属化合物粒子掺杂形成的掺杂层,例如如图9所示,该封装结构包括第一基板4、第二基板7以及位于封装区域8以将所述第一基板4与所述第二基板7密封的封装胶结构5,其中,所述封装区域8还设有位于所述第一基板4与所述第二基板7之间的散热结构6,其中散热结构6包括第一纳米碳层61、第二纳米碳层62以及设置在第一纳米碳层61和第二纳米碳层62之间的掺杂层63,通过在散热结构中增加掺杂层63,可以显著的提高散热结构的散热效果。
其中,上述金属化合物粒子的粒径可以为10nm~50nm,例如,可以为20nm、30nm、40nm,金属化合物粒子的材料可以为氯化铝、碘化锌等材料。
此外,本发明还提供了一种显示装置,包括上述的封装结构。本发明实施方式提供的显示装置可以是笔记本电脑显示屏、液晶显示器、液晶电视、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (15)

  1. 一种封装方法,包括:
    在第一基板的封装区域上形成封装胶的图案,在第一基板和第二基板中任一个基板的封装区域上形成散热结构;
    将所述第一基板与所述第二基板贴合,并使所述第一基板的封装区域与所述第二基板的封装区域对位;
    对所述封装胶的图案进行激光照射,将封装胶熔融烧结,以在所述第一基板与所述第二基板之间形成封装胶结构。
  2. 根据权利要求1所述的封装方法,其中,在第一基板和第二基板中任一个基板的封装区域上形成散热结构包括:
    在所述任一个基板的封装区域中形成纳米碳层。
  3. 根据权利要求2所述的封装方法,其中,在第一基板和第二基板中任一个基板的封装区域上形成散热结构还包括:
    对所述纳米碳层进行金属化合物粒子掺杂形成掺杂层。
  4. 根据权利要求3所述的封装方法,其中,所述金属化合物粒子的粒径为10nm~50nm。
  5. 根据权利要求3所述的封装方法,其中,所述金属化合物粒子的材料为氯化铝或碘化锌。
  6. 根据权利要求3所述的封装方法,其中,所述纳米碳层为多层,所述掺杂层形成在所述多层纳米碳层之间。
  7. 根据权利要求2所述的封装方法,其中,在所述任一个基板的封装区域中形成纳米碳层包括:
    在所述任一个基板的封装区域中形成粘合区;
    在所述粘合区上采用拉模工艺形成碳纳米管薄膜;
    对所述粘合区进行固化处理;
    去除所述粘合区之外的碳纳米管;
    对所述粘合区进行烘烤坚膜处理。
  8. 根据权利要求2所述的封装方法,其中,在所述任一个基板的封装区域中形成纳米碳层包括:
    在所述任一个基板的封装区域中形成粘合区:
    在所述任一个基板上形成石墨烯薄膜,其中将石墨烯薄膜通过粘合区贴附至所述任一基板上;
    在所述石墨烯薄膜上形成光刻胶层;
    对所述光刻胶层进行曝光、显影,形成图案化的光刻胶层;
    刻蚀掉暴露出的石墨烯,之后剥离剩余的光刻胶。
  9. 根据权利要求1-8任一所述的封装方法,其中,所述散热结构上还形成有垂直通孔。
  10. 一种封装结构,包括第一基板、第二基板以及位于封装区域以将所述第一基板与所述第二基板密封的封装胶结构,其中,所述封装区域还设有位于所述第一基板与所述第二基板之间的散热结构。
  11. 根据权利要求10所述的封装结构,其中,所述散热结构包括形成在所述封装区域上的纳米碳层。
  12. 根据权利要求11所述的封装结构,其中,所述散热结构还包括通过对所述纳米碳层进行金属化合物粒子掺杂形成的掺杂层。
  13. 根据权利要求12所述的封装结构,其中,所述纳米碳层为多层,所述掺杂层形成在所述多层纳米碳层之间。
  14. 根据权利要求10-13任一所述的封装结构,其中,所述散热结构上还形成有垂直的通孔。
  15. 一种显示装置,包括如权利要求11-14中任一项所述的封装结构。
PCT/CN2015/077671 2014-11-12 2015-04-28 封装方法、封装结构及显示装置 WO2016074445A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,643 US9680134B2 (en) 2014-11-12 2015-04-28 Packaging method, packaging structure and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410645978.3A CN104409663B (zh) 2014-11-12 2014-11-12 封装方法、封装结构及显示装置
CN201410645978.3 2014-11-12

Publications (1)

Publication Number Publication Date
WO2016074445A1 true WO2016074445A1 (zh) 2016-05-19

Family

ID=52647275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077671 WO2016074445A1 (zh) 2014-11-12 2015-04-28 封装方法、封装结构及显示装置

Country Status (3)

Country Link
US (1) US9680134B2 (zh)
CN (1) CN104409663B (zh)
WO (1) WO2016074445A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409663B (zh) 2014-11-12 2017-01-18 京东方科技集团股份有限公司 封装方法、封装结构及显示装置
CN105161515B (zh) * 2015-08-11 2018-03-23 京东方科技集团股份有限公司 有机发光二极管显示面板及其封装方法、显示装置
CN105895825A (zh) * 2016-06-15 2016-08-24 上海天马有机发光显示技术有限公司 一种封装结构、封装方法及电子器件
CN106206988B (zh) * 2016-08-26 2019-03-15 昆山国显光电有限公司 封装结构及其制备方法、以及应用
CN106206474B (zh) * 2016-08-31 2019-12-13 昆山国显光电有限公司 一种提高Frit封装机械强度的封装结构及其封装方法
CN108962935B (zh) * 2017-11-30 2021-01-26 广东聚华印刷显示技术有限公司 柔性显示器件及其制备方法
CN108511620B (zh) * 2018-03-02 2020-09-08 江苏壹光科技有限公司 一种激光封装oled照明面板及封装方法
CN108428806B (zh) * 2018-05-14 2020-02-14 昆山国显光电有限公司 显示屏及其制造方法、显示装置
CN111864117A (zh) * 2020-07-30 2020-10-30 福建华佳彩有限公司 一种显示面板封装结构及其封装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106156A (zh) * 2006-07-12 2008-01-16 三星电子株式会社 有机发光二极管显示器及其制造方法
JP2009038019A (ja) * 2007-07-09 2009-02-19 Dainippon Printing Co Ltd ガスバリア性シート、ガスバリア性シートの製造方法、封止体、及び有機elディスプレイ
CN101711438A (zh) * 2007-02-23 2010-05-19 康宁股份有限公司 改进熔结密封的玻璃封装体的方法和装置
US20110241541A1 (en) * 2010-03-31 2011-10-06 Au Optronics Corporation Display Panel Package Structure and Fabricating Method Thereof
CN103367623A (zh) * 2013-07-18 2013-10-23 深圳市华星光电技术有限公司 发光器件及其制作方法
CN104409663A (zh) * 2014-11-12 2015-03-11 京东方科技集团股份有限公司 封装方法、封装结构及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits
KR100714000B1 (ko) * 2006-07-25 2007-05-04 삼성에스디아이 주식회사 유기전계발광 표시장치 및 그 제조방법
TWI394732B (zh) 2008-02-28 2013-05-01 Corning Inc 密封玻璃包封之方法
KR101518735B1 (ko) * 2009-02-19 2015-05-18 삼성전자주식회사 탄소나노튜브를 채용한 가열 부재 및 이를 채용한 정착장치
KR20110110595A (ko) * 2010-04-01 2011-10-07 삼성모바일디스플레이주식회사 평판 표시 장치 및 그 평판 표시 장치용 봉지기판
CN102754524B (zh) * 2010-07-23 2015-09-02 株式会社日本有机雷特显示器 显示面板及其制造方法
WO2012067432A2 (ko) * 2010-11-17 2012-05-24 (주)엘지하우시스 방열과 발열 기능을 가지는 전지 조립체
KR102038844B1 (ko) * 2011-06-16 2019-10-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 밀봉체의 제작 방법 및 밀봉체, 그리고 발광 장치의 제작 방법 및 발광 장치
JP5816029B2 (ja) * 2011-08-24 2015-11-17 株式会社半導体エネルギー研究所 発光装置
US9441416B2 (en) * 2012-09-27 2016-09-13 Guardian Industries Corp. Low temperature hermetic sealing via laser
KR102160829B1 (ko) * 2012-11-02 2020-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 밀봉체 및 밀봉체의 제작 방법
TWI636875B (zh) * 2013-02-04 2018-10-01 半導體能源研究所股份有限公司 玻璃層的形成方法及密封結構的製造方法
US9178032B2 (en) * 2013-02-15 2015-11-03 Electronics And Telecommunications Research Institute Gas sensor and manufacturing method thereof
JP5701920B2 (ja) * 2013-03-19 2015-04-15 株式会社東芝 半導体装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106156A (zh) * 2006-07-12 2008-01-16 三星电子株式会社 有机发光二极管显示器及其制造方法
CN101711438A (zh) * 2007-02-23 2010-05-19 康宁股份有限公司 改进熔结密封的玻璃封装体的方法和装置
JP2009038019A (ja) * 2007-07-09 2009-02-19 Dainippon Printing Co Ltd ガスバリア性シート、ガスバリア性シートの製造方法、封止体、及び有機elディスプレイ
US20110241541A1 (en) * 2010-03-31 2011-10-06 Au Optronics Corporation Display Panel Package Structure and Fabricating Method Thereof
CN103367623A (zh) * 2013-07-18 2013-10-23 深圳市华星光电技术有限公司 发光器件及其制作方法
CN104409663A (zh) * 2014-11-12 2015-03-11 京东方科技集团股份有限公司 封装方法、封装结构及显示装置

Also Published As

Publication number Publication date
US20160351844A1 (en) 2016-12-01
CN104409663A (zh) 2015-03-11
US9680134B2 (en) 2017-06-13
CN104409663B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2016074445A1 (zh) 封装方法、封装结构及显示装置
US9666831B2 (en) Organic light emitting display device
US9508933B2 (en) Organic light-emitting diode (OLED) device, manufacturing method thereof and display device
US10064252B2 (en) Organic EL display unit, method of manufacturing the same, and electronic apparatus
US9991475B2 (en) Display backplane, manufacturing method thereof and display device
WO2016176886A1 (zh) 柔性oled及其制作方法
WO2016206236A1 (zh) 低温多晶硅背板及其制造方法和发光器件
WO2020124892A1 (zh) 一种柔性显示面板及其制作方法
WO2016033888A1 (zh) 封装方法、显示面板及其制作方法、显示装置
WO2016019635A1 (zh) Oled显示器件及其制作方法、显示装置
WO2016015417A1 (zh) 柔性显示基板及其制备方法与显示装置
WO2016115806A1 (zh) 显示面板及其制作方法和显示装置
US9412797B2 (en) Array substrate with color film
TWI524998B (zh) 基板之黏結及分離的方法
WO2019184591A1 (zh) 用于显示面板的散热装置及其制造方法、显示装置
WO2022077771A1 (zh) 显示面板及其制作方法
KR102378362B1 (ko) 디스플레이 장치
WO2016112597A1 (zh) 封装方法、显示面板及显示装置
WO2015039493A1 (zh) 电致发光装置及其制备方法
US8568182B2 (en) Display
JP2015158672A (ja) アクティブマトリクス有機発光ダイオードパネル及びその実装方法
US20150009628A1 (en) Display apparatus
TWI629781B (zh) 製造有機發光二極體顯示器之方法以及製造觸控面板之方法
JP2008181828A (ja) 有機el素子、有機el素子の製造方法
WO2018209751A1 (zh) Tft基板的制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785643

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15858415

Country of ref document: EP

Kind code of ref document: A1