WO2016074423A1 - 镁合金及其制备方法和应用 - Google Patents

镁合金及其制备方法和应用 Download PDF

Info

Publication number
WO2016074423A1
WO2016074423A1 PCT/CN2015/076105 CN2015076105W WO2016074423A1 WO 2016074423 A1 WO2016074423 A1 WO 2016074423A1 CN 2015076105 W CN2015076105 W CN 2015076105W WO 2016074423 A1 WO2016074423 A1 WO 2016074423A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
alloy
weight
magnesium
thermal conductivity
Prior art date
Application number
PCT/CN2015/076105
Other languages
English (en)
French (fr)
Inventor
张法亮
任又平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP15859380.6A priority Critical patent/EP3219818B1/en
Priority to US15/525,474 priority patent/US10519530B2/en
Publication of WO2016074423A1 publication Critical patent/WO2016074423A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to the field of material technology, and in particular to a magnesium alloy and a preparation method and application thereof.
  • magnesium alloys have a series of advantages such as higher specific strength and specific stiffness, better shock absorption performance and stronger radiation resistance. With the development of electronic products in the direction of thinning and multi-functionality, high-strength and high-thermal conductivity magnesium alloys have become important candidate structural materials.
  • Die-casting alloys are commonly used structural parts because of the often complex and precise structural components required.
  • the commonly used die-casting magnesium alloy belongs to AZ91 series alloy, which has good casting performance and mechanical strength. The strength of the aging treated material can even exceed that of ZL104 aluminum alloy, so it is widely used.
  • the thermal conductivity of the AZ91 series alloy is only 70 W/(m ⁇ K), which is much lower than the thermal conductivity of 100 W/(m ⁇ K) or more of the cast aluminum alloy. Therefore, the existing low thermal conductivity magnesium alloy as a component of electronic products greatly affects the heat dissipation requirements of electronic products.
  • the magnesium alloy has good corrosion resistance to meet the processing and use requirements of the device.
  • the object of the present invention is to overcome the technical problem of low thermal conductivity of the existing magnesium alloy material, and to provide a magnesium alloy and a preparation method and application thereof, which have high mechanical properties, corrosion resistance or high thermal conductivity.
  • the invention provides a magnesium alloy.
  • the magnesium alloy contains: based on the total weight of the magnesium alloy:
  • R is at least one selected from the group consisting of Al and Zn.
  • the invention provides a magnesium alloy.
  • the magnesium alloy contains: based on the total weight of the magnesium alloy:
  • R is at least one selected from the group consisting of Al and Zn.
  • the method comprises: melting a raw material of the magnesium alloy in a predetermined ratio to obtain an alloy liquid; and molding the alloy liquid to obtain the magnesium alloy.
  • the invention provides the use of a magnesium alloy as a thermally conductive structural material in accordance with an embodiment of the invention.
  • the invention provides a thermally conductive structural member. According to an embodiment of the invention, it comprises the magnesium alloy previously described.
  • the magnesium alloy provided by the invention exhibits good comprehensive mechanical properties, not only has high strength and hardness, but also has high elongation, and can be processed into structural members having various shapes and thicknesses. More importantly, the magnesium alloy provided by the invention has good thermal conductivity, and the thermal conductivity is generally 100 W/(m ⁇ K) or more, and even 120 W/(m ⁇ K) or more. At the same time, the magnesium alloy provided by the invention also has good corrosion resistance and can meet the requirements of various use environments.
  • the magnesium alloy provided by the present invention is suitable as a structural material having high thermal conductivity requirements, particularly as a structural member of an electronic product.
  • the present invention provides a magnesium alloy comprising: based on the total weight of the magnesium alloy, the magnesium alloy comprises:
  • a magnesium alloy according to an embodiment of the present invention based on the total amount of the magnesium alloy, contains the following elements in terms of weight percent:
  • the magnesium alloy according to an embodiment of the present invention contains a rare earth element.
  • the inventors have found that the rare earth element can increase the interval of the crystallization temperature of the alloy in the magnesium alloy, thereby significantly improving the casting properties of the magnesium alloy, and at the same time, the rare earth element has a large solid solubility in the magnesium alloy, and after smelting The temperature is lowered to precipitate the strengthening phase. Therefore, the addition of rare earth elements can improve the yield strength and casting characteristics of magnesium alloys, and an appropriate amount of rare earth elements can also improve the corrosion resistance of magnesium alloys.
  • the rare earth element is contained in an amount of not less than 0.8% by weight, based on the total weight of the magnesium alloy, preferably not less than 1.1% by weight.
  • the inventors also found during the experiment that the addition of excess rare earth elements greatly reduced the thermal conductivity of the magnesium alloy and deteriorated the corrosion resistance of the magnesium alloy.
  • the content of the rare earth element is not more than 1.4% by weight based on the total weight of the magnesium alloy.
  • the rare earth element may be one or a combination of two or more of Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the inventors of the present invention found during the research that when the rare earth element is one or a combination of two or more of La, Ce, Pr, Nd, and Y, the presence of an appropriate amount of rare earth elements can obtain better casting properties and The solid solution strengthening property makes the magnesium alloy have higher strength and has no obvious adverse effect on the thermal conductivity of the magnesium alloy.
  • the rare earth element is at least one selected from the group consisting of Ce and Nd from the viewpoint of further improving the corrosion resistance of the magnesium alloy.
  • the magnesium alloy according to an embodiment of the present invention preferably uses at least one rare earth element selected from the group consisting of Nd and Ce in combination with Y, so that a good balance between mechanical properties, thermal conductivity, and corrosion resistance can be obtained.
  • the magnesium alloy according to an embodiment of the present invention contains at least one of an Al element and a Zn element.
  • the inventors have found that the Al element and the Zn element can improve the casting properties and mechanical properties of the magnesium alloy.
  • one element selected from Al and Zn or a combination of two is denoted as R.
  • the content of R is 0.01% by weight or more, preferably 0.1% by weight or more, based on the total weight% by weight of the magnesium alloy.
  • the content of R is not more than 0.2% by weight from the viewpoint of further improving the thermal conductivity and corrosion resistance of the magnesium alloy.
  • the magnesium alloy according to an embodiment of the present invention contains a Mn element.
  • the inventors have found that an appropriate amount of Mn element can improve the corrosion resistance of the magnesium alloy, and the Mn element can precipitate with a high melting point precipitate of the impurity element Fe in the magnesium alloy, thereby purifying the melt of the magnesium alloy.
  • the introduction of an appropriate amount of Mn can also improve the casting properties of the alloy.
  • the content of the Mn element is 0.8% by weight or more, preferably 0.9% by weight or more, based on the total weight of the magnesium alloy.
  • the content of the Mn element is not more than 1.5% by weight, preferably not more than 1.2% by weight, based on the total weight of the magnesium alloy.
  • a magnesium alloy according to an embodiment of the present invention in which the contents of Fe, Cu, Ni, Co, Sn, and Ca are each not more than 0.01% by weight based on the total weight of the magnesium alloy.
  • the magnesium alloy according to an embodiment of the present invention allows a small amount of other metal elements such as Be, Zr, Li, Na, K, Sr, One or a combination of two or more of Ba, Ga, In, Ge, Sb, Bi, V, Nb, Cr, Mo, W, Re, Tc, Ru, Pd, Pt, Ag, and Au.
  • the total amount of the above other metal elements is generally not more than 0.2% by weight, preferably not more than 0.1% by weight, based on the total weight of the magnesium alloy.
  • Fe, Cu, Ni, Co, Sn, and Ca and the other metal elements may be derived from impurities in the alloy raw material at the time of alloy preparation, or may be derived from a raw material added as a constituent element of the alloy when the alloy is prepared.
  • the invention also provides an aluminum alloy.
  • the magnesium alloy contains: based on the total weight of the magnesium alloy:
  • R is at least one selected from the group consisting of Al and Zn.
  • the magnesium alloy contains the following elements in terms of weight percent based on the total amount of the magnesium alloy:
  • R is Al and/or Zn.
  • the magnesium alloy may contain a combination of one or more of the other metal elements described above, or may not contain the other metal elements described above. Additional technical features and advantages of the magnesium alloy provided by the first aspect of the present invention are applicable to the magnesium alloy, and will not be further described herein.
  • the present invention also provides a method of preparing the magnesium alloy described above.
  • the method includes: melting a raw material of the magnesium alloy in a predetermined ratio to obtain an alloy liquid; and subjecting the alloy liquid to a molding process to obtain the magnesium alloy.
  • the magnesium alloy raw material may be smelted, and the molten alloy solution may be cast and cooled to obtain a magnesium alloy, wherein the predetermined ratio of the magnesium alloy raw material is such that the obtained magnesium alloy is the magnesium provided by the present invention. alloy.
  • Methods of selecting the composition of the alloy starting material to obtain an alloy having the desired composition are well known to those skilled in the art and will not be described in detail herein.
  • the smelting can generally be carried out at a temperature of from 700 to 750 ° C, and the smelting time can generally be from 20 to 60 minutes.
  • the melt protection may be carried out by using a covering agent during melting, or the melt protection may be performed by using nitrogen gas and sulfur hexafluoride gas, and inert gas protection may be employed.
  • the covering agent may be a conventional selection in the field of magnesium alloy smelting, and may be, for example, one or a combination of two or more of MgCl 2 , KCl, NaCl, and CaF 2 .
  • argon blowing is performed during the smelting process.
  • the argon gas is preferably a high purity argon gas having a purity of 99.99% or more.
  • the prepared magnesium alloy is preferably subjected to aging treatment from the viewpoint of further increasing the strength of the finally prepared magnesium alloy, and the aging treatment is carried out at a temperature of 120 to 350 °C.
  • the duration of the aging treatment is based on the ability to eliminate internal stress in the magnesium alloy and increase the strength of the magnesium alloy. Generally, the duration of the aging treatment can be at least 0.5 hours and can last for hours, days, or even years. After the aging treatment is completed, it can be naturally cooled.
  • the magnesium alloy provided by the invention not only has good comprehensive mechanical properties, but also has a yield strength of 80 MPa or more, generally between 90 and 145 MPa, an elongation of more than 4%, generally between 5 and 12%, and excellent Thermal conductivity, thermal conductivity can reach 100W / (m ⁇ K), generally between 105-135W / (m ⁇ K). At the same time, the magnesium alloy of the present invention also has good corrosion resistance.
  • the magnesium alloy according to an embodiment of the present invention is particularly suitable as a thermally conductive structural material for preparing a thermally conductive structural member such as a structural member of various electronic products.
  • the present invention also provides the use of the above-described magnesium alloy as a thermally conductive structural material, and a thermally conductive structural member comprising the magnesium alloy described above.
  • the prepared magnesium alloy was subjected to a hardness test test, a thermal conductivity test test, a tensile property test test, and a corrosion resistance test test using the following methods, respectively.
  • Hardness test A magnesium alloy with a diameter of 12.7 mm and a thickness of 3 mm is rounded using a Vickers hardness tester. The sheet was tested for 3 times or more under the pressing force of 3 kg and the holding time was 15 s. The average value of the obtained data was the hardness of the measured magnesium alloy, and the unit was HV.
  • V (m 1 -m 2 )/(t ⁇ s)
  • m 1 is the mass of the magnesium alloy sample before immersion, in mg
  • m 2 is the mass of the magnesium alloy sample after being immersed and washed with distilled water and dried to a constant weight at 120 ° C, in mg;
  • t is the soaking time, in days
  • s is the surface area of the magnesium alloy sample, in cm 2 ;
  • V is the corrosion rate in mg/(cm 2 ⁇ d).
  • the alloy raw material is prepared according to the composition of the magnesium alloy as Mg balance Al 0.1 Mn 1 La 0.8 (subscript indicates the weight percentage of each element based on the total weight of the magnesium alloy).
  • the prepared alloy raw material is placed in a smelting furnace and smelted at a temperature of 720 ° C for 30 min. During the smelting process, 99.99% of high-purity argon gas is introduced, and the obtained melt is injected into a metal mold, and cooled to obtain a magnesium alloy casting. .
  • the obtained magnesium alloy casting was aged at 200 ° C for 5 hours. After the aging treatment is completed, it is naturally cooled to room temperature.
  • a magnesium alloy was prepared in the same manner as in Example 1, except that the magnesium alloy composition was prepared according to Table 1. Alloy raw materials. Among them, the magnesium alloy casting prepared in Example 12 was subjected to aging treatment at 120 ° C for 24 hours, and the magnesium alloy casting prepared in Example 21 was subjected to aging treatment at 350 ° C for 4 hours.
  • the hardness, thermal conductivity, yield strength, elongation and corrosion rate of the prepared magnesium alloy are listed in Table 1.
  • a magnesium alloy was prepared in the same manner as in Example 1, except that the alloy raw material was prepared in accordance with the magnesium alloy composition given in Table 1.
  • the hardness, thermal conductivity, yield strength, elongation and corrosion rate of the prepared magnesium alloy are listed in Table 1.
  • a magnesium alloy was prepared in the same manner as in Example 2 except that the prepared magnesium alloy casting was not subjected to aging treatment.
  • the hardness, thermal conductivity, yield strength, elongation and corrosion rate of the prepared magnesium alloy are listed in Table 1.
  • the data of Table 1 demonstrates that the magnesium alloy according to the present invention exhibits good overall mechanical properties, not only having higher strength and hardness, but also having higher elongation. More importantly, the magnesium alloy according to the present invention exhibits excellent thermal conductivity and a thermal conductivity of 100 W/(m ⁇ K) or more. At the same time, the magnesium alloy according to the present invention also has good corrosion resistance.
  • Examples 14 and 3 and Comparative Examples 1 and 2 confirmed that the introduction of an appropriate amount of rare earth elements in the magnesium alloy can have a higher mechanical strength and a better resistance while making the magnesium alloy have better thermal conductivity. Corrosion performance. However, when the content of the rare earth element in the magnesium alloy is too low, the mechanical strength of the aluminum alloy is not high, and the corrosion resistance is not good; when the content of the rare earth element in the magnesium alloy is too high, the thermal conductivity and corrosion resistance of the magnesium alloy are deteriorated.
  • Example 14 and Comparative Example 3 it can be seen from the results of Example 14 and Comparative Example 3 that the aluminum content in the magnesium alloy is too high, which is unfavorable for the thermal conductivity of the magnesium alloy and accelerates the corrosion of the magnesium alloy. It should be noted that although magnesium alloy has good thermal conductivity in the absence of aluminum in the magnesium alloy, when there is no aluminum in the magnesium alloy, the casting property of the alloy is poor, and the cast product is prone to cold separation and flow pattern, and The alloy melt is easy to burn.
  • Comparing Example 20 with Comparative Example 4 it can be seen that when the manganese content in the magnesium alloy is too high, the thermal conductivity of the magnesium alloy is lowered, and the corrosion resistance is also deteriorated. Comparing Example 18 with Comparative Example 6, it can be seen that the magnesium alloy has poor corrosion resistance when the manganese content in the magnesium alloy is too low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

镁合金及其制备方法和应用,该镁合金含有:0.8-1.4重量%的稀土元素,0.01-0.2重量%的R,0.8-1.5重量%的Mn,0-0.01重量%的Fe,0-0.01重量%的Cu,0-0.01重量%的Ni,0-0.01重量%的Co,0-0.01重量%的Sn,0-0.01重量%的Ca以及96.84-98.39重量%的Mg,其中,R为选自Al和Zn中的至少一种。

Description

镁合金及其制备方法和应用 技术领域
本发明涉及材料技术领域,具体地,涉及镁合金及其制备方法和应用。
背景技术
金属镁在所有的工程金属中最显著的特点就是质量轻,它的密度只有1.78g/cm3,约为钢的2/9,铝的2/3,是迄今具有工程应用价值的最轻金属材料。而且,镁合金具有较高的比强度和比刚度、更好的减震性能以及更强的抗辐射能力等一系列优点。随着电子产品向轻薄化和多功能化方向发展,高强度高导热的镁合金成为重要的候选结构材料。
电子产品由于通常需要复杂精密的结构件,因此压铸合金成为常用的结构件。目前常用的压铸镁合金属于AZ91系列合金,该类合金具有良好的铸造性能及机械强度,经时效处理后的材料的强度甚至可以超过ZL104铝合金,因此得到广泛应用。但是,AZ91系列合金的导热系数只有70W/(m·K),远低于铸造铝合金所具有的100W/(m·K)以上的导热系数。因此,将现有低导热系数的镁合金作为电子产品的零部件极大地影响了电子产品对散热的要求。
另外,作为电子产品的结构件,还需要镁合金具有较好的耐腐蚀性能,以满足器件加工以及使用要求。
然而,目前的镁合金仍有待改进。
发明内容
本发明的目的在于克服现有的镁合金材料导热系数低的技术问题,提供一种镁合金及其制备方法和应用,该镁合金具有较高的机械性能、耐腐蚀性能或高的导热系数。
根据本发明的第一个方面,本发明提供了一种镁合金。根据本发明的实施例,基于该镁合金的总重量,该镁合金含有:
Figure PCTCN2015076105-appb-000001
Figure PCTCN2015076105-appb-000002
其中,R为选自Al和Zn中的至少一种。
根据本发明的第二个方面,本发明提供了一种镁合金。根据本发明的实施例,基于该镁合金的总重量,该镁合金含有:
Figure PCTCN2015076105-appb-000003
其中,R为选自Al和Zn中的至少一种。
根据本发明的第三个方面,本发明提供了一种制备前面所述的镁合金的方法。根据本发明的实施例,该方法包括:将所述镁合金的原料按照预定比例进行熔炼,以便获得合金液;将所述合金液进行成型处理,以便获得所述镁合金。
根据本发明的第四个方面,本发明提供了根据本发明实施例的镁合金作为导热结构材料的应用。
根据本发明的第五个方面,本发明提供了一种导热结构件。根据本发明的实施例,其包含前面所述的镁合金。
本发明提供的镁合金显示出良好的综合机械性能,不仅具有较高的强度和硬度,而且具有较高的延伸率,能够加工成具有各种形状和厚薄的结构元件。更重要的是,本发明提供的镁合金具有良好的导热性能,导热系数一般为100W/(m·K)以上,甚至能够达到120W/(m·K)以上。同时,本发明提供的镁合金还具有较好的耐腐蚀性能,能满足多种使用环境的要求。
本发明提供的镁合金适于作为对导热性能要求较高的结构材料,特别是作为电子产品的结构件。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本发明提供了一种镁合金,基于该镁合金的总重量,该镁合金含有:
Figure PCTCN2015076105-appb-000004
换句话说,根据本发明实施例的镁合金,以该镁合金的总量为基准,以重量百分比计,该镁合金含有以下元素:
Figure PCTCN2015076105-appb-000005
根据本发明实施例的镁合金含有稀土元素。发明人发现,稀土元素可以增大镁合金中的合金结晶温度的间隔,因此可以显著改善镁合金的铸造性能,同时,稀土元素在镁合金中具有较大的固溶度,而且随着熔炼后温度的降低,可以析出强化相。因此,稀土元素的加入可以提高镁合金的屈服强度和铸造特性,适量的稀土元素还可以改善镁合金的耐腐蚀性能。在本发明的一些实施例中,基于镁合金的总重量,稀土元素的含量为不低于0.8重量%,优选为不低于1.1重量%。然而,发明人在实验过程中还发现,过量稀土元素的加入会大幅降低镁合金的导热系数,并使镁合金的耐腐蚀性能变劣。在本发明的另一些实施例中,基于镁合金的总重量,稀土元素的含量为不高于1.4重量%。所述稀土元素可以为Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种或两种以上的组合。本发明的发明人在研究过程中发现,所述稀土元素为La、Ce、Pr、Nd和Y中的一种或两种以上的组合时,适量稀土元素的存在能获得更好的铸造性能和固溶强化性能,使得镁合金具有更高的强度,同时对镁合金的导热性能没有明显不利影响。从进一步提高镁合金的耐腐蚀性能的角度出发,所述稀土元素为选自Ce和Nd中的至少一种。根据本发明实施例的镁合金,优选将选自Nd和Ce中的至少一种稀土元素与Y组合使用,这样能够在机械性能、导热性能和耐腐蚀性之间获得良好的平衡。
根据本发明实施例的镁合金含有Al元素和Zn元素中的至少一种。发明人发现,Al元素和Zn元素可以改善镁合金的铸造性能和机械性能。本文中,将选自Al和Zn的一种元素或者两种的组合的记为R。本发明中,基于镁合金的总重量%重量,R的含量为0.01重量%以上,优选为0.1重量%以上。在使镁合金具有较高的机械性能的前提下,从进一步提高镁合金的导热性能和耐腐蚀性能的角度出发,R的含量为不高于0.2重量%。
根据本发明实施例的镁合金含有Mn元素。发明人发现,适量的Mn元素可以提高镁合金的耐腐蚀性能,并且Mn元素可以与镁合金中的杂质元素Fe形成高熔点的沉淀而析出,从而净化镁合金的熔体。同时,适量Mn元素的引入还可以改善合金的铸造性能。本发明的一些实施例中,基于镁合金的总重量,Mn元素的含量为0.8重量%以上,优选为0.9重量%以上。但是,镁合金中Mn元素含量过高时,镁合金的导热性能下降,同时耐腐蚀性能变差。在本发明另一些实施例中,基于镁合金的总重量,Mn元素的含量为不高于1.5重量%,优选为不高于1.2重量%。
Fe、Cu、Ni、Co、Sn和Ca对镁合金的耐腐蚀性能具有不利影响,在含量过高时,还对镁合金的导热性能具有不利影响。根据本发明实施例的镁合金,以镁合金的总重量,所述镁合金中,Fe、Cu、Ni、Co、Sn和Ca的含量各自为不高于0.01重量%。
根据本发明实施例的镁合金允许存在少量其它金属元素,如Be、Zr、Li、Na、K、Sr、 Ba、Ga、In、Ge、Sb、Bi、V、Nb、Cr、Mo、W、Re、Tc、Ru、Pd、Pt、Ag和Au中的一种或者两种以上的组合。基于镁合金的总重量,上述其它金属元素的总量一般不高于0.2重量%,优选不高于0.1重量%。
Fe、Cu、Ni、Co、Sn和Ca以及所述其它金属元素可以来源于制备合金时合金原料中的杂质,也可以来源于制备合金时作为合金的一种组成元素而添加的原料。
本发明还提供了一种铝合金。根据本发明的实施例,基于该镁合金的总重量,该镁合金含有:
Figure PCTCN2015076105-appb-000006
其中,R为选自Al和Zn中的至少一种。
换句话说,在本发明的一个优选实例中,以该镁合金的总量为基准,以重量百分比计,该镁合金含有以下元素:
Figure PCTCN2015076105-appb-000007
R为Al和/或Zn。
根据本发明的实施例,所述镁合金可以含有上述其它金属元素中的一种或多种的组合,也可以不含有上述其它金属元素。本发明第一方面所提供的镁合金的附加技术特征和优点均适用于该镁合金,在此不再一一赘述。
本发明还提供了制备前面所述的镁合金的方法。根据本发明的实施例,该方法包括:将所述镁合金的原料按照预定比例进行熔炼,以便获得合金液;以及将所述合金液进行成型处理,以便获得所述镁合金。具体地,可以将镁合金原料进行熔炼,并将熔炼得到的合金液进行浇铸,冷却后得到镁合金,其中,所述预定比例的镁合金原料的组成使得得到的镁合金为本发明提供的镁合金。选择合金原料的组成从而得到具有预期组成的合金的方法是本领域技术人员所公知的,本文不再详述。
根据本发明的实施例,所述熔炼一般可以在700-750℃的温度下进行,熔炼的时间一般可以为20-60分钟。为了避免镁合金熔体在熔炼过程中与空气接触而氧化,在熔炼时,可以采用覆盖剂进行熔体保护,也可以采用氮气和六氟化硫气体进行熔体保护,还可以采用惰性气体保护。所述覆盖剂可以为镁合金冶炼领域的常规选择,例如可以为MgCl2、KCl、NaCl和CaF2中的一种或两种以上的组合。从进一步提高制备的镁合金的成分均匀性的角度出发,在熔炼过程中,进行吹氩搅拌。所述氩气优选为纯度为99.99%以上的高纯氩气。
根据本发明的实施例,从进一步提高最终制备的镁合金的强度的角度出发,优选将制备的镁合金进行时效处理,所述时效处理在120-350℃的温度下进行。所述时效处理的持续时间以能够消除镁合金中的内应力,提高镁合金的强度为准。一般地,所述时效处理的持续时间可以为至少0.5小时,可以持续数小时、数天、甚至数年。所述时效处理完成后,可以自然冷却。
本发明提供的镁合金不仅具有良好的综合机械性能,屈服强度能够达到80MPa以上,一般在90-145MPa之间,延伸率能够达到4%以上,一般在5-12%之间;而且具有优异的导热性能,导热系数能够达到100W/(m·K),一般在105-135W/(m·K)之间。同时,本发明的镁合金还具有较好的耐腐蚀性能。
根据本发明实施例的镁合金特别适于作为导热结构材料,用于制备导热结构件,如各种电子产品的结构件。由此,本发明还提供了前面所述的镁合金在作为导热结构材料的应用,以及一种包含前面所述的镁合金的导热结构件。
以下结合实施例详细说明本发明,但并不因此限制本发明的范围。
以下实施例和对比例中,分别采用以下方法对制备的镁合金进行硬度测试试验、导热系数测试试验、拉伸性能测试试验和耐腐蚀性能测试试验。
(1)硬度测试试验:采用维式硬度计,将直径为12.7mm且厚度为3mm的镁合金圆 片在压入力为3kg,保压时间为15s下,测试3次以上,取得到的数据的平均值为所测镁合金的硬度,单位为HV。
(2)导热系数测试试验:根据ASTM E 1461-07的测试方法,采用激光闪射法对直径为12.7mm且厚度为3mm的镁合金圆片进行导热系数的测试。
(3)拉伸性能测试试验:根据ISO 6892-1的测试方法,将冶炼完的镁合金熔体采用压力铸造设备注入到模具腔体中,得到壁厚为3mm的拉伸铸件,采用万能力学试验机进行拉伸测试,得到屈服强度和延伸率,其中,屈服强度为产生0.2%残余变形的屈服极限,延伸率为断裂延伸率。
(4)耐腐蚀性能测试:将得到的镁合金铸造成100mm×100mm×1.5mm的薄片,将其浸泡到5重量%NaCl水溶液中,浸泡48小时(即,2天),采用失重法计算腐蚀速率,计算方法如下:
V=(m1-m2)/(t×s)
其中,m1为浸泡前镁合金样品的质量,以mg计;
m2为浸泡后经蒸馏水清洗并在120℃烘干至恒重后的镁合金样品的质量,以mg计;
t为浸泡时间,以天计;
s为镁合金样品的表面积,以cm2计;
V为腐蚀速率,以mg/(cm2·d)计。
下面详细描述本发明的具体实施例。
实施例1
按照镁合金组成为Mg余量Al0.1Mn1La0.8(下标表示基于镁合金的总重量,各元素的重量百分比)配制合金原料。将配制好的合金原料置于熔炼炉中并于720℃的温度下熔炼30min,熔炼过程中通入99.99%的高纯氩气,将得到的熔体注入金属模具中,冷却后得到镁合金铸件。
将所得到的镁合金铸件在200℃进行时效处理5小时。时效处理完成后,自然冷却至室温。
分别测定制备得到的镁合金的硬度、导热系数、屈服强度、延伸率及腐蚀速率,结果在表1中列出。
实施例2-23
采用与实施例1相同的方法制备镁合金,不同的是,按照表1给出的镁合金组成配制 合金原料。其中,实施例12制备的镁合金铸件在120℃进行24小时的时效处理,实施例21制备的镁合金铸件在350℃进行4小时的时效处理。
制备获得的镁合金的硬度、导热系数、屈服强度、延伸率和腐蚀速率在表1中列出。
对比例1-7
采用与实施例1相同的方法制备镁合金,不同的是,按照表1给出的镁合金组成配制合金原料。
制备获得的镁合金的硬度、导热系数、屈服强度、延伸率和腐蚀速率在表1中列出。
实施例24
采用与实施例2相同的方法制备镁合金,不同的是,制备的镁合金铸件不进行时效处理。制备获得的镁合金的硬度、导热系数、屈服强度、延伸率和腐蚀速率在表1中列出。
表1
Figure PCTCN2015076105-appb-000008
Figure PCTCN2015076105-appb-000009
表1的数据证实,根据本发明的镁合金显示出良好的综合机械性能,不仅具有较高的强度和硬度,而且具有较高的延伸率。更重要的是,根据本发明的镁合金显示出优异的导热性能,导热系数达到100W/(m·K)以上。同时,根据本发明的镁合金还具有良好的耐腐蚀性能。
实施例14和3以及对比例1和2的结果证实,在镁合金中引入适量稀土元素可以在使镁合金具有较好的导热性能的同时,具有较高的机械强度,并具有较好的耐腐蚀性能。但是,镁合金中稀土元素含量过低时,铝合金的机械强度不高,耐腐蚀性能不好;镁合金中稀土元素含量过高时,镁合金的导热性能和耐腐蚀性能变差。
从实施例14与对比例3的结果可以看出,镁合金中铝含量过高,对镁合金的导热性能不利,同时会加速镁合金的腐蚀。需要说明的是,尽管镁合金中不存在铝时,镁合金也具有较好的导热性能,但是在镁合金中没有铝时,合金的铸造性能差,铸造产品易于出现冷隔和流纹,并且合金熔体易于燃烧。
将实施例20与对比例4进行比较可以看出,镁合金中锰含量过高时,镁合金的导热性能下降,同时耐腐蚀性能也变差。将实施例18与对比例6进行比较可以看出,在镁合金中锰含量过低时,镁合金的耐腐蚀性能不好。
将实施例15与对比例7进行比较可以看出,镁合金中锌含量过高,导致镁合金的导热性能降低,同时耐腐蚀性能也变差。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种镁合金,其特征在于,基于所述镁合金的总重量,所述镁合金含有以下元素:
    Figure PCTCN2015076105-appb-100001
    其中,R为选自Al和Zn中的至少一种。
  2. 一种镁合金,其特征在于,基于所述镁合金的总重量,所述镁合金含有以下元素:
    Figure PCTCN2015076105-appb-100002
    余量的镁,
    其中,R为选自Al和Zn中的至少一种。
  3. 根据权利要求1或2所述的镁合金,其特征在于,基于所述镁合金的总重量,所述镁合金中稀土元素的含量为1.1-1.4重量%。
  4. 根据权利要求1-3中任意一项所述的镁合金,其特征在于,所述稀土元素为La、Ce、Pr、Nd和Y中的一种或两种以上的组合。
  5. 根据权利要求1-4中任意一项所述的镁合金,其中,所述稀土元素为Ce和Nd中的至少一种。
  6. 根据权利要求1-5中任意一项所述的镁合金,其特征在于,基于所述镁合金的总重量,所述镁合金中R的含量为0.1-0.2重量%。
  7. 根据权利要求1-6中任意一项所述的镁合金,其特征在于,基于所述镁合金的总重量,所述镁合金中Mn元素的含量为0.9-1.2重量%。
  8. 一种制备权利要求1-7中任一项所述的镁合金的方法,其特征在于,包括:
    将所述镁合金的原料按照预定比例进行熔炼,以便获得合金液;
    将所述合金液进行成型处理,以便获得所述镁合金。
  9. 根据权利要求8所述的方法,其特征在于,进一步包括:
    将得到的镁合金进行时效处理。
  10. 根据权利要求9所述的方法,其特征在于,所述时效处理是在120-350℃的温度下进行的。
  11. 根据权利要求9或10所述的方法,其特征在于,,所述时效处理的持续时间为至少0.5小时。
  12. 权利要求1-7中任意一项所述的镁合金作为导热结构材料的应用。
  13. 一种导热结构件,其特征在于,包含权利要求1~7任一项所述的镁合金。
PCT/CN2015/076105 2014-11-13 2015-04-08 镁合金及其制备方法和应用 WO2016074423A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15859380.6A EP3219818B1 (en) 2014-11-13 2015-04-08 Magnesium alloy and preparation method and use thereof
US15/525,474 US10519530B2 (en) 2014-11-13 2015-04-08 Magnesium alloy and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410639862.9 2014-11-13
CN201410639862.9A CN105525172A (zh) 2014-11-13 2014-11-13 一种镁合金及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016074423A1 true WO2016074423A1 (zh) 2016-05-19

Family

ID=55767691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076105 WO2016074423A1 (zh) 2014-11-13 2015-04-08 镁合金及其制备方法和应用

Country Status (4)

Country Link
US (1) US10519530B2 (zh)
EP (1) EP3219818B1 (zh)
CN (1) CN105525172A (zh)
WO (1) WO2016074423A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799154A (zh) * 2022-05-09 2022-07-29 贵州航天风华精密设备有限公司 一种增材制造用镁高熵合金粉末及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170133510A (ko) * 2015-04-08 2017-12-05 바오샨 아이론 앤 스틸 유한공사 성형 가능한 마그네슘계 가공용 합금
CN111101039A (zh) * 2018-10-26 2020-05-05 宝山钢铁股份有限公司 一种高强耐蚀镁合金材料及其制造方法
CN109338187B (zh) * 2018-11-19 2021-01-29 河北工业大学 一种低成本可高速挤压的高强韧变形镁合金及其制备方法
CN112593102B (zh) * 2020-11-20 2021-10-01 湖南稀土金属材料研究院 镁镍中间合金及其制备方法
CN113005378B (zh) * 2021-03-03 2021-11-19 赣南师范大学 一种含Ag的Mg-Sm系稀土镁合金热处理工艺
CN114231810A (zh) * 2021-12-13 2022-03-25 上海航天精密机械研究所 用于促进镁合金扩散均匀和消除铸造缺陷的热等静压工艺
CN115198153B (zh) * 2022-06-13 2023-06-27 湖南大学 一种高塑性高导热铸造镁合金及其制备方法
CN116043081A (zh) * 2023-02-20 2023-05-02 长沙理工大学 一种交通运输装备用高抗冲击镁合金及其制备方法和应用
CN116770140B (zh) * 2023-04-28 2024-09-27 中国地质大学(武汉) 镁合金涂层材料、钢制饰品表面涂层及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039604B1 (zh) * 1964-09-05 1975-12-18
JP2010537052A (ja) * 2007-08-31 2010-12-02 カースト シーアールシー リミテッド マグネシウムをベースとする合金、およびその製造方法
CN102317486A (zh) * 2008-01-09 2012-01-11 铸造Crc有限公司 镁基合金

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB513627A (en) * 1938-01-14 1939-10-18 Ig Farbenindustrie Ag Improvements in and relating to magnesium alloys
US7666351B2 (en) 2004-06-30 2010-02-23 Sumitomo Electric Industries, Ltd. Method of producing a magnesium-alloy material
JP2008536005A (ja) * 2005-03-08 2008-09-04 ペ,ドン−ヒョン ミッシュメタルが添加されたマグネシウム合金、ミッシュメタルが添加されたマグネシウム合金加工材の製造方法及びこれによって製造されるマグネシウム合金加工材
US7682470B2 (en) * 2005-04-04 2010-03-23 Cast Centre Pty Ltd Magnesium alloy
JP2008000192A (ja) 2006-06-20 2008-01-10 Brother Ind Ltd 半回転釜及びミシン
CN101158002B (zh) 2007-11-06 2011-01-12 中国科学院长春应用化学研究所 含铈、镧的ae系耐热压铸镁合金
CN100569977C (zh) 2008-02-19 2009-12-16 重庆大学 含铈的镁-锌-锰系镁合金
CN101440450A (zh) 2008-07-18 2009-05-27 中国科学院长春应用化学研究所 一种含镧ae系耐热压铸镁合金的制备方法
JP5540780B2 (ja) 2009-05-29 2014-07-02 住友電気工業株式会社 マグネシウム合金の線状体及びボルト、ナット並びにワッシャー
CN101643873A (zh) * 2009-09-01 2010-02-10 李扬德 一种耐腐蚀高强度稀土镁合金及其制造工艺
JP5674136B2 (ja) 2011-01-14 2015-02-25 三井金属ダイカスト株式会社 ダイカスト鋳造用高熱伝導性マグネシウム合金
ES2423354T3 (es) 2011-02-01 2013-09-19 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Aleación de magnesio que contiene metales de tierras raras
US9703335B2 (en) * 2013-01-14 2017-07-11 Dell Products L.P. Information handling system chassis with anisotropic conductance
CN103643096A (zh) * 2013-12-13 2014-03-19 内蒙古科技大学 一种双相组织的高性能镁合金板材制备方法
CN105543604B (zh) * 2014-11-13 2017-07-04 比亚迪股份有限公司 一种镁合金及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039604B1 (zh) * 1964-09-05 1975-12-18
JP2010537052A (ja) * 2007-08-31 2010-12-02 カースト シーアールシー リミテッド マグネシウムをベースとする合金、およびその製造方法
CN102317486A (zh) * 2008-01-09 2012-01-11 铸造Crc有限公司 镁基合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799154A (zh) * 2022-05-09 2022-07-29 贵州航天风华精密设备有限公司 一种增材制造用镁高熵合金粉末及其制备方法
CN114799154B (zh) * 2022-05-09 2023-12-22 贵州航天风华精密设备有限公司 一种增材制造用镁高熵合金粉末及其制备方法

Also Published As

Publication number Publication date
EP3219818A4 (en) 2018-05-23
EP3219818B1 (en) 2019-06-26
US20170327931A1 (en) 2017-11-16
EP3219818A1 (en) 2017-09-20
US10519530B2 (en) 2019-12-31
CN105525172A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2016074423A1 (zh) 镁合金及其制备方法和应用
EP3650561B1 (en) Plastic wrought magnesium alloy and preparation method thereof
WO2018103632A1 (en) Mg-gd-y-zn-zr alloy with high strength and toughness, corrosion resistance and anti-flammability and process for preparing the same
WO2016015488A1 (zh) 铝合金及其制备方法和应用
CN111187950B (zh) 6系铝合金及其制备方法,移动终端
KR101258470B1 (ko) 고강도 고연성 난연성 마그네슘 합금
WO2018095186A1 (zh) 导热铝合金及其应用
WO2016015588A1 (zh) 一种合金及其制备方法
WO2016000575A1 (en) Magnesium alloy, prepairing method and use thereof
WO2016074424A1 (zh) 镁合金及其制备方法和应用
JP6229130B2 (ja) 鋳造用アルミニウム合金及びそれを用いた鋳物
US20180010218A1 (en) Magnesium-lithium alloy, rolled stock made of magnesium-lithium alloy, and processed product including magnesium-lithium alloy as material
JP2007056365A (ja) 銅−亜鉛−錫合金及びその製造方法
WO2015135253A1 (zh) 铝硅系合金及其生产方法
CN107447144A (zh) 一种耐热稀土铝合金及其制备方法
CN110819863B (zh) 一种低稀土高导热镁合金及其制备方法
EP2692883B1 (en) Mg-al-ca-based master alloy for mg alloys, and a production method therefor
Zhang et al. Microstructure and mechanical properties of Mg–3.0 Y–2.5 Nd–1.0 Gd–xZn–0.5 Zr alloys produced by metallic and sand mold casting
JP6590814B2 (ja) 高性能耐クリープ性マグネシウム合金
KR102374306B1 (ko) 알루미늄 합금으로 형성된 방열핀의 제조방법
CN109207824A (zh) 一种镁合金及其制备方法和手机
CN115491558A (zh) 一种压铸镁合金及其制备方法和应用
TWI427158B (zh) 鎂合金及其製備方法
JP2014074202A (ja) 高強度高靱性銅合金鍛造材
CN115961192A (zh) 锶锆钛铒铈五元复合微合金化的800MPa强度级高性能铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015859380

Country of ref document: EP