WO2016072326A1 - Élément électroluminescent à semi-conducteur - Google Patents

Élément électroluminescent à semi-conducteur Download PDF

Info

Publication number
WO2016072326A1
WO2016072326A1 PCT/JP2015/080347 JP2015080347W WO2016072326A1 WO 2016072326 A1 WO2016072326 A1 WO 2016072326A1 JP 2015080347 W JP2015080347 W JP 2015080347W WO 2016072326 A1 WO2016072326 A1 WO 2016072326A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
region
electrode
light
type semiconductor
Prior art date
Application number
PCT/JP2015/080347
Other languages
English (en)
Japanese (ja)
Inventor
紗織 南部
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016072326A1 publication Critical patent/WO2016072326A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Definitions

  • a low-temperature buffer layer made of GaN is formed on the surface of the growth substrate, and an underlayer made of GaN is further formed thereon.
  • An example of a specific procedure is as follows.
  • the furnace pressure of the MOCVD apparatus is set to 100 kPa, and the furnace temperature is set to 830 ° C. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as a carrier gas in the processing furnace, TMG having a flow rate of 10 ⁇ mol / min, trimethylindium (TMI) having a flow rate of 12 ⁇ mol / min, and A step of supplying ammonia at a flow rate of 300,000 ⁇ mol / min into the processing furnace for 48 seconds is performed.
  • the supply of TMA is stopped, the flow rate of Cp 2 Mg is changed to 0.2 ⁇ mol / min, and the source gas is supplied for 20 seconds, whereby the thickness is about 5 nm and the p-type impurity concentration is 1 ⁇ .
  • a p-type contact layer of about 10 20 / cm 3 may be formed.
  • the p-type semiconductor layer 31 includes this p-type contact layer.
  • FIG. 6A is a graph comparing the light extraction efficiency of the element of Reference Example 1 (see FIG. 4A) and the element of Reference Example 2 (see FIG. 4B), and FIG. 6B shows the element of Example 1 (see FIG. 1).
  • 4 is a graph comparing the light extraction efficiency of the device of Example 2 (see FIG. 2).
  • the element of Reference Example 2 in which the uneven shape 38 is provided on the upper surface of the n-type semiconductor layer 35 in the first region 41 has Reference Example 1 in which the upper surface of the n-type semiconductor layer 35 does not have unevenness. It is confirmed that the light extraction efficiency is improved as compared with the above element.
  • the graph of FIG. 6A the element of Reference Example 2 in which the uneven shape 38 is provided on the upper surface of the n-type semiconductor layer 35 in the first region 41 has Reference Example 1 in which the upper surface of the n-type semiconductor layer 35 does not have unevenness. It is confirmed that the light extraction efficiency is improved as compared with the above element.
  • FIG. 6C is a graph comparing the light extraction efficiency of the element of Reference Example 2 (see FIG. 4B) and the element of Reference Example 3 (see FIG. 4C), and FIG. 6D is the element of Example 2 (see FIG. 2). It is the graph which contrasted the light extraction efficiency of the element (refer FIG. 3) of Example 3.
  • FIG. According to the graph of FIG. 6C, the element of Reference Example 3 in which the uneven shape 39 is provided on the upper surface of the n-type semiconductor layer 35 in the second region 42 in addition to the uneven shape 38 is the n-type semiconductor in the first region 41.
  • the light extraction efficiency is lower than that of the element of Reference Example 2 in which the uneven shape 38 is provided on the upper surface of the layer 35 and the uneven shape 39 is not provided on the upper surface of the n-type semiconductor layer 35 in the second region 42.
  • the third embodiment is more than the second embodiment.
  • the light extraction efficiency is greatly improved.
  • the insulating layer 22 can also function as an etching stopper layer at the time of element isolation according to step S7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

L'invention a pour but de fabriquer un élément électroluminescent à semi-conducteur dans lequel le flux lumineux est amélioré encore davantage par comparaison avec des éléments électroluminescents à semi-conducteur classiques. Pour atteindre ce but, l'invention porte sur un élément électroluminescent à semi-conducteur qui possède : une couche semi-conductrice comprenant une couche semi-conductrice du type n, une couche semi-conductrice du type p et une couche active disposée entre la couche semi-conductrice du type n et la couche semi-conductrice du type p ; une première électrode formée de manière à être contact avec une première surface de la couche semi-conductrice ; une seconde électrode formée de manière à être en contact avec une seconde surface, située à l'opposé de la première surface, de la couche semi-conductrice. La couche semi-conductrice présente, du côté de la première surface, une première région et une seconde région située à une hauteur supérieure à celle de la première région. La première électrode est formée dans la seconde région de la couche semi-conductrice et comporte un matériau présentant une forte réflectivité de la lumière émise par la couche active.
PCT/JP2015/080347 2014-11-05 2015-10-28 Élément électroluminescent à semi-conducteur WO2016072326A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014225367A JP2016092235A (ja) 2014-11-05 2014-11-05 半導体発光素子
JP2014-225367 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016072326A1 true WO2016072326A1 (fr) 2016-05-12

Family

ID=55909052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080347 WO2016072326A1 (fr) 2014-11-05 2015-10-28 Élément électroluminescent à semi-conducteur

Country Status (3)

Country Link
JP (1) JP2016092235A (fr)
TW (1) TW201631796A (fr)
WO (1) WO2016072326A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894307B2 (en) 2018-04-05 2024-02-06 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device package
KR102471684B1 (ko) * 2018-04-05 2022-11-28 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 패키지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103689A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置
JP2010153792A (ja) * 2008-11-20 2010-07-08 Stanley Electric Co Ltd 光半導体装置の製造方法
JP2010541218A (ja) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ミラー層を有する薄膜ledおよびその製造方法
JP2011228696A (ja) * 2010-04-15 2011-11-10 Lg Innotek Co Ltd 発光素子、発光素子パッケージ
JP2012033695A (ja) * 2010-07-30 2012-02-16 Stanley Electric Co Ltd 半導体発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103689A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置
JP2010541218A (ja) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ミラー層を有する薄膜ledおよびその製造方法
JP2010153792A (ja) * 2008-11-20 2010-07-08 Stanley Electric Co Ltd 光半導体装置の製造方法
JP2011228696A (ja) * 2010-04-15 2011-11-10 Lg Innotek Co Ltd 発光素子、発光素子パッケージ
JP2012033695A (ja) * 2010-07-30 2012-02-16 Stanley Electric Co Ltd 半導体発光装置

Also Published As

Publication number Publication date
TW201631796A (zh) 2016-09-01
JP2016092235A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
JP2006135311A (ja) 窒化物半導体を用いた発光ダイオード
US9437778B2 (en) Semiconductor light-emitting element and method for producing the same
WO2015141517A1 (fr) Élément électroluminescent à semi-conducteurs et procédé de fabrication associé
US11114588B2 (en) Semiconductor light emitting element
WO2016072326A1 (fr) Élément électroluminescent à semi-conducteur
JP2015191976A (ja) 半導体発光素子及びその製造方法
JP5880633B2 (ja) 半導体発光素子
JP5818031B2 (ja) Led素子
JP5974980B2 (ja) 窒化物半導体発光素子
JP2017069282A (ja) 半導体発光素子及びその製造方法
JP6153351B2 (ja) 半導体発光装置
WO2016158093A1 (fr) Élément électroluminescent à semi-conducteur au nitrure
KR20160117178A (ko) 반도체 발광 소자
JP6690139B2 (ja) 半導体発光素子及びその製造方法
JP6025058B2 (ja) 窒化物半導体発光素子
WO2015029727A1 (fr) Élément électroluminescent à semi-conducteur
JP2017005156A (ja) 半導体発光素子及びその製造方法
WO2015151542A1 (fr) Élément électroluminescent à semi-conducteurs et dispositif électroluminescent
JP2016195168A (ja) 半導体発光素子及びその製造方法
JP6468459B2 (ja) 半導体発光素子
JP2017139298A (ja) 半導体発光素子及びその製造方法
JP5725069B2 (ja) 窒化物半導体発光素子
JP2015050381A (ja) 半導体発光素子及びその製造方法
JP5880880B2 (ja) 窒化物発光素子
JP2016192527A (ja) 半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856389

Country of ref document: EP

Kind code of ref document: A1