WO2016072192A1 - 電池セル、およびレドックスフロー電池 - Google Patents
電池セル、およびレドックスフロー電池 Download PDFInfo
- Publication number
- WO2016072192A1 WO2016072192A1 PCT/JP2015/078209 JP2015078209W WO2016072192A1 WO 2016072192 A1 WO2016072192 A1 WO 2016072192A1 JP 2015078209 W JP2015078209 W JP 2015078209W WO 2016072192 A1 WO2016072192 A1 WO 2016072192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bipolar plate
- cell
- frame
- battery
- electrolyte
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 claims description 41
- 230000002093 peripheral effect Effects 0.000 claims description 37
- 230000007246 mechanism Effects 0.000 claims description 14
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000008151 electrolyte solution Substances 0.000 abstract description 11
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 3
- 239000004709 Chlorinated polyethylene Substances 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2459—Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a battery cell used for an electrolyte circulation type battery and a redox flow battery using the battery cell.
- An electrolyte circulation type battery typically a redox flow battery (RF battery).
- An RF battery is a battery that charges and discharges using a difference in redox potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte (see, for example, Patent Document 1).
- the RF battery ⁇ includes a battery cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions.
- a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte solution tank 106 for storing a positive electrode electrolyte is connected via conduits 108 and 110.
- the conduit 108 is provided with a pump 112, and these members 106, 108, 110, 112 constitute a positive electrode circulation mechanism 100P that circulates the positive electrode electrolyte.
- a negative electrode electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte solution tank 107 that stores a negative electrode electrolyte is connected via conduits 109 and 111.
- the conduit 109 is provided with a pump 113, and these members 107, 109, 111, 113 constitute a negative electrode circulation mechanism 100N for circulating the negative electrode electrolyte.
- the electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.
- the battery cell 100 is usually formed inside a structure called a battery cell stack 200 as shown in FIG.
- the battery cell stack 200 is configured by sandwiching a laminated structure called a sub-stack 200 s from both sides by two end plates 210 and 220, and tightening by a tightening mechanism 230 (in the illustrated configuration, a plurality of stacks).
- Substack 200s is used).
- the substack 200 s is formed by stacking cell units including the cell frame 120, the positive electrode 104, the diaphragm 101, the negative electrode 105, and the cell frame 120, and supplying and discharging the stack. It has a structure sandwiched between plates 190 and 190 (see the lower diagram in FIG. 10).
- the cell frame 120 provided in the cell unit includes a frame 122 having a through window and a bipolar plate 121 that closes the through window, and is arranged so that the positive electrode 104 is in contact with one surface side of the bipolar plate 121.
- the negative electrode 105 is disposed on the other surface side of the bipolar plate 121 so as to be in contact therewith. In this configuration, one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
- Distribution of the electrolyte solution to the battery cell 100 via the supply / discharge plates 190, 190 in the sub stack 200 s is performed by the supply manifolds 123, 124 formed in the frame body 122 and the discharge manifolds 125, 126. .
- the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through an inlet slit formed on one side (the front side of the paper) of the frame 122, and the outlet slit formed at the top of the frame 122 Then, the liquid is discharged to the drainage manifold 125.
- the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through an inlet slit (shown by a dotted line) formed on the other surface side (back side of the paper surface) of the frame body 122. Is discharged to the drainage manifold 126 through an outlet slit (shown by a dotted line) formed in the upper portion of the liquid.
- An annular sealing member 127 such as an O-ring or a flat packing is disposed between the cell frames 120, and leakage of the electrolyte from the sub stack 200s is suppressed.
- the input / output of electric power between the battery cell 100 provided in the sub stack 200s and the external device is performed by a current collecting structure using a current collecting plate made of a conductive material.
- a pair of current collecting plates is provided for each sub-stack 200s, and each current collecting plate is electrically connected to the bipolar plate 121 of the cell frame 120 positioned at both ends in the stacking direction among the stacked cell frames 120. Has been.
- the demand for redox flow batteries is expected to increase as a means for storing new energy, and battery cells having excellent battery performance are required. For example, if the internal resistance of the battery cell can be reduced, further improvement in the battery performance of the battery cell is expected.
- the present invention has been made in view of the above circumstances, and one of its purposes is to provide a battery cell having excellent battery performance.
- a battery cell includes a frame having a through window and a manifold that is a flow path for an electrolyte solution, a cell frame including a bipolar plate that closes the through window, and one surface of the bipolar plate. And a negative electrode electrode disposed on the other surface side of the bipolar plate.
- the battery cell is used for an electrolyte flow type battery.
- the battery cell includes a thickness of a portion of the frame where the manifold is formed, a thickness of a portion of the bipolar plate that blocks the through window, a thickness of a portion of the positive electrode facing the bipolar plate, and
- a redox flow battery includes a cell stack in which a plurality of the battery cells are stacked, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and a negative electrode electrolyte in the cell stack.
- a negative electrode circulation mechanism includes a cell stack in which a plurality of the battery cells are stacked, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and a negative electrode electrolyte in the cell stack.
- the battery cell and redox flow battery have low internal resistance and excellent battery performance.
- FIG. 2 is a schematic configuration diagram of a cell frame included in the battery cell of Embodiment 1.
- FIG. FIG. 2 is a sectional view taken along the line II-II in FIG.
- FIG. 5 is a schematic configuration diagram of a cell frame and a bipolar plate provided in a battery cell of Embodiment 2. It is a schematic block diagram of the cell frame which combined the frame and bipolar plate of FIG. FIG. 5 is a VV cross-sectional view of FIG. 4.
- FIG. 5 is a schematic configuration diagram of a cell frame and a bipolar plate included in a battery cell of Embodiment 3. It is a schematic block diagram of the cell frame which combined the frame and bipolar plate of FIG.
- FIG. 8 is a sectional view taken along line VIII-VIII in FIG. It is an operation
- the present inventors paid attention to the electric resistance of the electrode in the process of examining the battery cell having excellent battery performance. This is because it has been found that the electrode disposed in the battery cell tends to increase the internal resistance of the battery cell as its thickness increases. Therefore, the present inventors have examined combinations of the thicknesses of the constituent elements of the battery cell including the electrode, and completed the battery cells listed below.
- the battery cell according to the embodiment is arranged on one side of the bipolar plate, a cell frame including a frame having a through window and a manifold that is a flow path for an electrolyte, and a bipolar plate that closes the through window. And a negative electrode electrode disposed on the other surface side of the bipolar plate.
- the battery cell is used for an electrolyte flow type battery.
- the battery cell includes a thickness of a portion of the frame where the manifold is formed, a thickness of a portion of the bipolar plate that blocks the through window, a thickness of a portion of the positive electrode facing the bipolar plate, and
- the battery cell is excellent in battery performance. This is because the increase in the internal resistance of the battery cell due to the electrode thickness is suppressed because the electrode thicknesses Pt and Nt are as thin as 1.5 mm or less.
- the thickness of the bipolar plate is generally about 0.6 mm to 1 mm, and the thickness of the electrodes arranged on both sides of the thin bipolar plate is about 2 mm to 3 mm. The thicknesses of these bipolar plates and electrodes have been determined for the purpose of lowering the electrical resistance of the bipolar plates and suppressing the pressure loss of the electrolyte solution passed through the electrodes.
- the electrolyte supplied from the manifold of the frame body to the bipolar plate can be quickly dispersed over the entire surface of the bipolar plate.
- the electrolyte is sufficiently supplied to the entire surface of the electrode disposed on the surface of the bipolar plate, so that the battery performance of the battery cell is improved.
- the thinner the electrode the higher the flow resistance of the electrolyte in the plane direction of the bipolar plate, and the more difficult it is to disperse the electrolyte over the entire surface of the bipolar plate. It is preferable.
- the frame body includes an inner peripheral edge concave portion formed by making a peripheral edge portion surrounding the through-window over the entire circumference thinner than other portions of the frame body,
- the bipolar plate may be a part having a predetermined width over the entire outer periphery of the bipolar plate, and may include an outer peripheral engagement portion that engages with the inner peripheral recess.
- the bipolar plate can be disposed in the through window of the frame body and the position of the bipolar plate with respect to the frame body can be determined only by fitting the bipolar plate into the position of the inner peripheral recess of the frame body. Therefore, the productivity of the battery cell can be improved.
- Examples of the battery cell according to the embodiment include a form in which the outer peripheral edge engaging portion is formed thinner than the other portions of the bipolar plate.
- the outer peripheral edge engaging portion that engages with the inner peripheral edge concave portion of the bipolar plate is a thin portion formed thinner than other portions of the bipolar plate, thereby stabilizing the fitting state of the bipolar plate with respect to the frame body. be able to.
- a redox flow battery includes a cell stack formed by stacking a plurality of battery cells according to the above embodiment, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and the cell stack.
- the above redox flow battery is excellent in battery performance. This is because the battery performance of the battery cell provided in the redox flow battery is higher than before.
- the RF battery according to this embodiment includes a battery cell 100, a positive electrode circulation mechanism 100P, and a negative electrode circulation mechanism 100N, similarly to the conventional RF battery ⁇ described with reference to FIG.
- the battery cell 100 in this embodiment is used in the form of a battery cell stack 200 shown in FIG.
- the battery cell stack 200 has a configuration in which a plurality of cell units including the diaphragm 101, the electrodes 104 and 105, and the pair of cell frames 120 and 120 are stacked.
- the main difference between the RF battery of this embodiment and the conventional one is in the thickness of the cell frame and electrode of the cell unit.
- the cell frame 1 and the electrodes 104 and 105 of this embodiment will be described with reference to FIGS.
- symbol as FIG. 10 is attached
- the cell frame 1 includes a frame body 12 and a bipolar plate 11.
- the frame 12 includes a through window 22w that penetrates in the thickness direction, and the bipolar plate 11 is disposed so as to fill the through window 22w.
- the outer peripheral edge of the bipolar plate 11 is embedded in the inner peripheral edge portion of the through window 22 w of the frame 12.
- the frame body 12 is a member that supports a bipolar plate 11 described later. Similar to the conventional configuration, the frame 12 includes liquid supply manifolds 123 and 124, drainage manifolds 125 and 126, inlet slits 123s and 124s, and outlet slits 125s and 126s.
- An entrance slit 123s and an exit slit 125s indicated by solid lines are provided on the front side of the paper surface, and an entrance slit 124s and an exit slit 126s indicated by dotted lines are provided on the back side of the paper surface.
- Each of the slits 123s to 126s extends from the manifolds 123 to 126 toward the center line of the frame body 12, and is connected to the through window 22w (the inlet slit 124s and the outlet slit 126s are partially omitted).
- the outer peripheries of the manifolds 123 to 126 and the slits 123s to 126s are surrounded by a seal member 127 such as an O-ring so that the electrolyte does not leak from the inside to the outside of the seal member 127.
- the O-ring is compressed when a plurality of cell frames 1 are stacked and tightened, and functions as a seal.
- the seal member 127 may be doubled. Further, although not shown, a seal member may be provided so as to surround the outer periphery of the manifold.
- the frame body 12 of this example is formed by bonding two frame-shaped plate materials having a symmetrical cross-sectional shape.
- the penetrating window side (the lower side in the drawing) of the frame-shaped plate material is formed thin, and when the two frame-shaped plate materials are bonded together, the outer edge portion of the bipolar plate 11 is accommodated between the thin-walled portions of both frame-shaped plate materials. A space is formed.
- the material of the frame 12 is preferably excellent in insulating properties, and more preferably has acid resistance.
- a material of the frame 12 for example, vinyl chloride, chlorinated polyethylene, chlorinated paraffin, or the like can be used.
- the bipolar plate 11 is a member that has one surface in contact with the positive electrode 104 and the other surface in contact with the negative electrode 105.
- the bipolar plate 11 of this example is a plate material having a substantially uniform thickness.
- the bipolar plate 11 disposed at the end is brought into contact / conduction with the current collector plate.
- a comb-teeth shape that disperses the electrolyte supplied through the entrance slits 123 s and 124 s over the entire surface of the bipolar plate 11.
- Distribution grooves 11g and 11g are formed. Both the flow grooves 11g, 11g are arranged so that their comb teeth mesh with each other. In the drawing, only the flow grooves 11g and 11g on the right side of the bipolar plate 11 are shown, but actually, a pair of flow grooves is also formed on the left side of the bipolar plate 11.
- the distribution groove on the left side is arranged such that the distribution grooves 11g and 11g shown in the figure are moved symmetrically with respect to the center line of the bipolar plate 11.
- the comb-shaped flow grooves 11g and 11g can quickly disperse the electrolyte supplied from the inlet slit 123s (124s) to the bipolar plate 11 over the entire surface of the bipolar plate 11. Therefore, the electrolyte can be spread over the entire surface of the positive electrode 104 and the negative electrode 105 disposed on one side and the other side of the bipolar plate 11 shown in FIG. Battery performance will not be reduced.
- the shape of the flow groove 11g is not limited to the comb shape shown in the figure, and any shape may be used as long as the electrolyte solution can be dispersed on the entire surface of the bipolar plate 11.
- the shape of the flow channel can be formed in a tree shape.
- the outer edge portion of the bipolar plate 11 is sandwiched between two frame-shaped plate members constituting the frame body 12 as shown in FIG.
- the bipolar plate 11 is integrally fixed to the frame body 12 by this sandwiching.
- a groove is formed in the outer edge portion of the bipolar plate 11, and an O-ring 21o is disposed in the groove.
- the material of the bipolar plate 11 is preferably excellent in conductivity, and more preferably has acid resistance and flexibility.
- it can be made of a conductive material containing a carbon material, specifically, a conductive plastic made of graphite and a chlorinated organic compound.
- a conductive plastic in which a part of the graphite is replaced with at least one of carbon black and diamond-like carbon may be used.
- the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
- Each of the positive electrode 104 and the negative electrode 105 is disposed on one surface side (the right side on the paper surface) and the other surface side (the left side on the paper surface) as shown in the partial cross-sectional view of FIG.
- Both electrodes 104 and 105 are porous bodies having deformability, and are compressed between the cell frames 1 to be laminated. In the drawing, it is depicted that there is a gap between the electrodes 104 and 105 and the adjacent member. However, the gap is not actually formed because of the deformability of the electrodes 104 and 105.
- the material of the electrodes 104 and 105 is preferably excellent in conductivity, and more preferably has acid resistance.
- the electrodes 104 and 105 can be made of a woven fabric or a nonwoven fabric made of carbon fiber.
- carbon paper or the like can be used as the electrodes 104 and 105.
- the thickness Ft of the frame body 12 is 4 mm or more. As shown in FIG. 1, the frame body 12 is provided with manifolds 123 to 126, slits 123s to 126s, and the like. Therefore, it is necessary to give the frame body 12 a certain thickness to maintain the strength of the frame body 12. Because there is. If Ft becomes too thick, the thickness of the portion that does not contribute to charge / discharge becomes too thick, and the charge / discharge capacity per volume of the battery cell decreases, so the upper limit of Ft is 8 mm. Considering the balance between strength and charge / discharge capacity, a preferable Ft is 4 mm or more and 6 mm or less.
- the thickness Bt of the bipolar plate 21 is Ft ⁇ 3.0 mm or more. Since Ft ⁇ Bt + Pt + Nt, the thickness Pt of the positive electrode 104 and the thickness Nt of the negative electrode 105 become smaller as Bt increases. Bt may be Ft ⁇ 1.0 mm or more. If Bt becomes too thick, the electrodes 104 and 105 become too thin. Therefore, the upper limit of Bt is preferably set to Ft ⁇ 0.5 mm.
- the thickness Pt of the positive electrode 104 and the thickness Nt of the negative electrode 105 are 1.5 mm or less. By making both the electrodes 104 and 105 thin, an increase in the internal resistance of the battery cell can be effectively suppressed. Since the effect tends to be promoted by making the electrodes 104 and 105 thinner, Pt and Nt are preferably 1.0 mm or less, more preferably 0.60 mm or less, and 0 More preferably, it is 30 mm or less. On the other hand, the lower limit value of Pt and Nt is preferably 0.25 mm from the viewpoint of handling properties of the electrodes 104 and 105. Note that Pt and Bt need not have the same value.
- the battery performance of a battery cell can be improved rather than before. This is because the increase in the internal resistance of the battery cell due to the electrodes 104 and 105 can be suppressed because the electrodes 104 and 105 included in the battery cell are thin.
- FIGS. 3 is a schematic diagram of the frame body 22 and the bipolar plate 21 constituting the cell frame 2
- FIG. 4 is a schematic diagram of the cell frame 2 with the bipolar plate 21 attached to the frame body 22
- FIG. 5 is a VV cross section of FIG. FIG. In these drawings, illustration of the flow grooves formed on the surface of the bipolar plate 21 is omitted.
- the difference between the cell frame 2 and the first embodiment is that the peripheral edge of the through window 22w of the frame 22 and the outer peripheral edge of the bipolar plate 21 are engaged, that is, the bipolar plate 21 is fitted into the frame 22. It is in the point of adopting a fitting structure. Accordingly, in the following description, the fitting structure and the configuration related thereto will be mainly described. Needless to say, the thickness Ft of the frame 22, the thickness Bt of the bipolar plate 21, the thickness Pt of the positive electrode 104, and the thickness of the negative electrode Nt are described in the embodiment even when the fitting structure is adopted. Is selected so as to satisfy the above-described value, and an increase in the internal resistance of the battery cell is suppressed.
- the fitting structure is adjusted so that when the cell frame 2 is viewed from the front, the outer peripheral edge portion of the bipolar plate 21 arranged so as to close the through window 22w of the frame body 22 overlaps the frame body 22 over the entire circumference.
- the frame 22 is configured by denting a portion overlapping with the bipolar plate 21.
- the peripheral edge surrounding the through window 22w of the frame body 22 over the entire circumference is thinner than the other parts of the frame body 22, and the thinned portion is the inner part for fitting the bipolar plate 21 therein.
- a peripheral recess 22c is formed.
- the inner peripheral edge recess 22 c in this example is formed only on one surface side of the frame body 22. That is, the surface on the back side of the inner peripheral edge recess 22c is connected flatly to the portion outside the surface (see FIG. 5).
- the inner peripheral recess 22c and the outer peripheral engagement portion which is a part having a predetermined width over the entire outer periphery of the bipolar plate 21 are framed. Engage in the thickness direction of the body 22 (see also FIG. 5). As a result, the penetrating window 22w of the frame body 22 is closed with the bipolar plate 21.
- the frame body 22 and the bipolar plate 21 are arranged so that the electrolyte does not flow between the one surface side and the other surface side of the bipolar plate 21. It is necessary to seal between.
- an annular groove is formed in a portion of the bipolar plate 21 that overlaps with the inner peripheral recess 22c, and an O-ring 21o is disposed in the groove, thereby forming a seal structure.
- the O-ring 21o is compressed when a plurality of cell frames 2 are stacked and tightened, and functions as a seal.
- a seal structure may be formed by flat packing, heat sealing, or applying an adhesive to the inner peripheral recess 22 c and bonding the inner peripheral recess 22 c and the bipolar plate 21.
- the bipolar plate 21 can be disposed in the through window 22 w of the frame 22 simply by fitting the bipolar plate 21 into the inner peripheral recess 22 c of the frame 22. it can. Further, the bipolar plate 21 can be positioned with respect to the frame body 22 by fitting the bipolar plate 21 into the inner peripheral recess 22c. Therefore, the productivity of the cell frame 2 can be improved.
- the outer dimension of the inner peripheral edge recess 22c is slightly larger (for example, about 1 mm to 1.5 mm) than the outer dimension of the bipolar plate 21 to facilitate fitting of the bipolar plate 21 into the frame body 22.
- an electrolyte leakage channel 9 is formed between the frame 22 and the bipolar plate 21 and extends from the inlet slit 123s to the outlet slit 125s.
- the leak channel 9 is a gap between the members, and its channel resistance is very small. Therefore, the electrolyte introduced into the bipolar plate 21 from the inlet slit 123 s easily flows into the leak channel 9. Since the electrolyte flowing into the leak channel 9 is discharged to the outlet slit 125s with almost no contact with the positive electrode disposed on the bipolar plate 21, the more electrolyte flowing through the leak channel 9, the more the battery cell. Charge / discharge efficiency decreases. Therefore, it is preferable to provide a dividing structure (not shown) that divides the leak channel 9 described below.
- the leak flow path 9 includes a first lateral path 9d connected to the inlet slit 123s on the lower side of the cell frame 2, and a second lateral path connected to the outlet slit 125s on the upper side of the cell frame 2. 9u and two vertical paths 9sr and 9sl that connect both horizontal paths 9d and 9u.
- the dividing structure for dividing the leak flow path 9 is roughly divided into the following three configurations. (1) A configuration in which the leakage channel 9 is divided by sandwiching the dividing member in the leakage channel 9. (2) A configuration in which a part of the bipolar plate 21 protrudes toward the frame body 22 so that the leak channel 9 is divided by the protruding portion. (3) A configuration in which a part of the frame body 22 projects toward the bipolar plate 21 so that the leak channel 9 is divided by the projecting portion.
- the dividing member is preferably made of an elastic material having deformability that can be press-fitted into the leak channel 9.
- a long rubber material or the like can be used as the dividing member.
- the position where the dividing member is arranged in the leak channel 9 is not particularly limited.
- the dividing member may be fitted in a portion closer to the lower side of each of the vertical paths 9sr and 9sl (closer to the first horizontal path 9d). .
- the electrolyte introduced into the first lateral path 9d quickly spreads into the first lateral path 9d and is uniformly dispersed in the width direction of the bipolar plate 21 (left and right direction in the drawing).
- the electrolytic solution flowing in the longitudinal path 9sr (9sl) hits the dividing member and flows in the center direction (electrode side) of the bipolar plate 21.
- the electrolytic solution comes into contact with the electrodes arranged on the surface of the bipolar plate 21 and contributes to charging / discharging.
- a cell frame 3 having a fitting structure slightly different from that in the second embodiment will be described with reference to FIGS.
- the main difference between the cell frame 3 of the third embodiment and the second embodiment is that a portion of the bipolar plate 31 that engages with the inner peripheral edge recess 32c of the frame body 32 is set to be larger than the other portions of the bipolar plate 31. This is because it is formed thin, and a part of the leak channel 9 is meandered.
- the difference from the second embodiment will be mainly described.
- the thickness Ft of the frame 32, the thickness Bt of the bipolar plate 31, the thickness Pt of the positive electrode 104, and the thickness of the negative electrode Nt are the values described in the embodiment. It selects so that it may satisfy
- FIG. 6 is a schematic view of the frame 32 and the bipolar plate 31 of the third embodiment.
- the frame body 32 and the bipolar plate 31 have a configuration for meandering the leak channel 9.
- the frame body 32 of the present embodiment includes a first convex portion 32x that protrudes toward the inner peripheral concave portion 32c.
- the frame body 32 includes a second convex portion 32y that protrudes from the inner peripheral edge concave portion 32c toward the through window 22w.
- the bipolar plate 31 of the present embodiment includes a first recess 31x formed by cutting out a portion corresponding to the first protrusion 32x of the frame 32 as a configuration for meandering the leak flow path 9.
- the outer peripheral edge engaging portion that engages with the inner peripheral edge recess 32 c of the frame body 32 (the portion on the outer side than the portion indicated by the dotted line) is the other side of the bipolar plate 31.
- the thin portion 31c is formed thinner than the portion.
- the front surface of the thin portion 31c is flush with the other portions, and therefore the back surface of the thin portion 31c is lower than the other portions.
- a portion of the thin portion 31 c corresponding to the second convex portion 32 y of the frame body 32 includes a second concave portion 31 y formed by spreading toward the center line side of the bipolar plate 31.
- the portion other than the thin portion 31 c of the bipolar plate 31 fits into the through window of the frame body 32, and the bipolar plate 31 with respect to the frame body 32 is fitted.
- the engaged state is more stable than in the second embodiment.
- the battery cell of the present invention can be suitably used for construction of a fluid flow storage battery such as an RF battery.
- the RF battery of the present invention is a storage battery for the purpose of stabilizing fluctuations in power generation output, storing power when surplus generated power, load leveling, etc. for power generation of new energy such as solar power generation and wind power generation.
- it can be used as a large-capacity storage battery that is attached to a general power plant for the purpose of measures against voltage sag, power failure, and load leveling.
- Redox flow battery 1, 2, 3 Cell frame 11, 21, 31 Bipolar plate 11g Flow groove 31c Thin portion (outer peripheral edge engaging portion) 21o O-ring 31x First concave portion 31y Second concave portion 12, 22, 32 Frame body 32c Inner peripheral concave portion 22w Through window 22x, 32x 1st convex part 32y 2nd convex part 9 Leakage flow path 9d 1st horizontal direction path 9u 2nd horizontal direction path 9sr, 9sl Vertical direction path 100 Battery cell 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 100P For positive electrode Circulation mechanism 100N Negative electrode circulation mechanism 104 Positive electrode 105 Negative electrode 106 Positive electrolyte tank 107 Negative electrolyte tank 108, 109, 110, 111 Conduit 112, 113 Pump 120 Cell frame 121 Bipolar plate 122 Frame 123, 124 Supply Manifold for liquid 125,126 Manifold for drainage 123s 124s entrance slit 125s, 126s exit
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
Ft≧4mm
Bt≧Ft-3.0mm
Pt≦1.5mm
Nt≦1.5mm
最初に本発明の実施形態の内容を列記して説明する。
Ft≧4mm
Bt≧Ft-3.0mm
Pt≦1.5mm
Nt≦1.5mm
以下、実施形態に係るレドックスフロー電池(RF電池)の実施形態を説明する。なお、本発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
本実施形態に係るRF電池は、図9を用いて説明した従来型のRF電池αと同様に、電池セル100と、正極用循環機構100Pと、負極用循環機構100Nと、を備える。本実施形態における電池セル100は、図10に示す電池用セルスタック200の形態で用いられている。電池用セルスタック200は既に述べたように、隔膜101、電極104,105、および一対のセルフレーム120,120を備えるセルユニットを複数積層した構成を備える。本実施形態のRF電池における従来との主な相違点は、セルユニットのセルフレームおよび電極の厚さにある。以下、図1,2に基づいて本実施形態のセルフレーム1および電極104,105を説明する。なお、セルフレーム1における従来と同様の構成については、図10と同一の符号を付す。
図1に示すように、セルフレーム1は、枠体12と双極板11とを備える。枠体12はその厚さ方向に貫通する貫通窓22wを備えており、その貫通窓22wを埋めるように双極板11が配置される。双極板11の外周縁は、枠体12の貫通窓22wの内周縁部分に埋め込まれている。
図1に示すように、枠体12は、後述する双極板11を支持する部材である。この枠体12は、従来の構成と同様に、給液用マニホールド123,124と、排液用マニホールド125,126と、入口スリット123s,124sと、出口スリット125s,126sと、を備える。実線で示される入口スリット123sと出口スリット125sは紙面手前側に設けられ、点線で示される入口スリット124sと出口スリット126sは紙面奥側に設けられている。各スリット123s~126sはそれぞれ、マニホールド123~126から枠体12の中心線に向かって伸び、貫通窓22wに繋がっている(入口スリット124sと出口スリット126sは一部図示を省略する)。マニホールド123~126とスリット123s~126sの外周は、Oリングなどのシール部材127で囲まれており、シール部材127の内側から外側に電解液が漏れないようになっている。Oリングは、複数のセルフレーム1を積層して締め付けた際に圧縮され、シールとして機能する。シール部材127は二重になっていても良い。また、図示していないが、マニホールドの外周を取り囲むようにシール部材が設けられていても良い。
双極板11は、図2の断面図に示すように、その一面側が正極電極104に接触し、他面側が負極電極105に接触する部材である。本例の双極板11は、ほぼ一様な厚さを有する板材である。積層される双極板11のうち、端部に配置される双極板11は、集電板に接触・導通される。
正極電極104および負極電極105はそれぞれ、図2の部分断面図に示すように、双極板11の一面側(紙面右側)と他面側(紙面左側)に配置される。両電極104,105は、変形性を有する多孔体であって、積層されるセルフレーム1の間で圧縮される。図中では電極104,105と隣接する部材との間に隙間があるように描かれているが、実際には電極104,105の変形性の故に当該隙間は形成されない。
枠体12におけるマニホールド(図中点線で示す)が形成される部分の厚さ、双極板11における貫通窓を塞ぐ部分の厚さ、正極電極104における双極板11に対向する部分の厚さ、および負極電極105における双極板11に対向する部分の厚さをそれぞれ、Ft、Bt、Pt、およびNtとしたとき、以下の式を満たすように、セルフレーム1と電極104,105を作製する。
Ft≧4mm
Bt≧Ft-3.0mm
Pt≦1.5mm
Nt≦1.5mm
以上説明した構成によれば、電池セルの電池性能を従来よりも向上させることができる。それは、電池セルに備わる電極104,105の厚さが薄いため、電極104,105に起因する電池セルの内部抵抗の上昇を抑制できるからである。
実施形態2では、実施形態1とは異なる構成のセルフレーム2を備える形態を図3~図5に基づいて説明する。図3はセルフレーム2を構成する枠体22と双極板21の概略図、図4は枠体22に双極板21を取り付けたセルフレーム2の概略図、図5は図4のV-V断面図である。これらの図では、双極板21の表面に形成される流通溝の図示を省略している。
嵌込構造は、セルフレーム2を正面視したときに、枠体22の貫通窓22wを塞ぐように配置した双極板21の外周縁部分が全周にわたって枠体22に重複するように寸法を調整すると共に、枠体22における双極板21と重複する部分を凹ませることで構成される。本例においては、枠体22の貫通窓22wを全周にわたって取り囲む周縁部が枠体22の他の部分よりも薄くなっており、その薄くなった部分が、双極板21を嵌め込むための内周縁凹部22cを形成している。本例における内周縁凹部22cは、枠体22の一面側にのみ形成されている。つまり、内周縁凹部22cの裏側の面は、その面よりも外側の部分に平坦に繋がっている(図5を参照)。
リーク流路9は、図4に示すように、セルフレーム2の下方側で入口スリット123sに繋がる第一横方向経路9dと、セルフレーム2の上方側で出口スリット125sに繋がる第二横方向経路9uと、両横方向経路9d,9uを繋ぐ二本の縦方向経路9sr,9slと、で構成されている。このリーク流路9を分断する分断構造には、大きく分けて次の三つの構成が存在する。
(1)分断部材をリーク流路9に挟み込むことでリーク流路9を分断する構成。
(2)双極板21の一部が枠体22側に突出することでその突出した部分によってリーク流路9を分断する構成。
(3)枠体22の一部が双極板21側に突出することでその突出した部分によってリーク流路9を分断する構成。
実施形態3では、実施形態2とは若干異なる嵌込構造を備えるセルフレーム3を図6~8に基づいて説明する。実施形態3のセルフレーム3における実施形態2との主な相違点は、双極板31における枠体32の内周縁凹部32cに係合する所定幅の部分を、双極板31のその他の部分よりも薄く形成したこと、およびリーク流路9の一部を蛇行させたことにある。以下、実施形態2との相違点を中心に説明する。言うまでもないが、本実施形態においても、枠体32の厚さFt、双極板31の厚さBt、正極電極104の厚さPt、および負極電極Ntの厚さは、実施形態で説明した値を満たすように選択し、電池セルの内部抵抗の上昇を抑制する。
1,2,3 セルフレーム
11,21,31 双極板
11g 流通溝 31c 薄肉部(外周縁係合部) 21o Oリング
31x 第一凹部 31y 第二凹部
12,22,32 枠体
32c 内周縁凹部 22w 貫通窓
22x,32x 第一凸部 32y 第二凸部
9 リーク流路
9d 第一横方向経路 9u 第二横方向経路
9sr,9sl 縦方向経路
100 電池セル 101 隔膜 102 正極セル 103 負極セル
100P 正極用循環機構 100N 負極用循環機構
104 正極電極 105 負極電極 106 正極電解液用タンク
107 負極電解液用タンク 108,109,110,111 導管
112,113 ポンプ
120 セルフレーム 121 双極板 122 枠体
123,124 給液用マニホールド
125,126 排液用マニホールド
123s,124s 入口スリット 125s,126s 出口スリット
127 シール部材
190 給排板 210,220 エンドプレート
200 電池用セルスタック 200s サブスタック
230 締付機構
Claims (5)
- 貫通窓と電解液の流通路であるマニホールドとを有する枠体、および前記貫通窓を塞ぐ双極板を備えるセルフレームと、
前記双極板の一面側に配置される正極電極と、
前記双極板の他面側に配置される負極電極と、
を備え、電解液流通型電池に用いられる電池セルであって、
前記枠体における前記マニホールドが形成される部分の厚さ、前記双極板における前記貫通窓を塞ぐ部分の厚さ、前記正極電極における前記双極板に対向する部分の厚さ、および前記負極電極における前記双極板に対向する部分の厚さをそれぞれ、Ft、Bt、Pt、およびNtとしたとき、
Ft≧4mm、
Bt≧Ft-3.0mm、
Pt≦1.5mm、
およびNt≦1.5mm
を満たす電池セル。 - 前記双極板の一面側と他面側とにそれぞれ、電解液の流路となる流通溝が形成されている請求項1に記載の電池セル。
- 前記枠体は、前記貫通窓を全周にわたって取り囲む周縁部が前記枠体の他の部分よりも薄くなることで形成される内周縁凹部を備え、
前記双極板は、その外周縁全周にわたる所定幅の部分であって、前記内周縁凹部と係合する外周縁係合部を備える請求項1または請求項2に記載の電池セル。 - 前記外周縁係合部が、前記双極板のその他の部分よりも薄く形成されている請求項3に記載の電池セル。
- 請求項1~請求項4のいずれか1項に記載の電池セルを複数積層してなるセルスタックと、
前記セルスタックに正極用電解液を循環させる正極用循環機構と、
前記セルスタックに負極用電解液を循環させる負極用循環機構と、
を備えるレドックスフロー電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/501,502 US10230123B2 (en) | 2014-11-06 | 2015-10-05 | Battery cell and redox flow battery |
CN201580042279.2A CN106575785B (zh) | 2014-11-06 | 2015-10-05 | 电池电芯和氧化还原液流电池 |
EP15857588.6A EP3217461B1 (en) | 2014-11-06 | 2015-10-05 | Battery cell and redox flow battery |
AU2015344623A AU2015344623B2 (en) | 2014-11-06 | 2015-10-05 | Battery cell and redox flow battery |
KR1020177002842A KR102382373B1 (ko) | 2014-11-06 | 2015-10-05 | 전지 셀 및 레독스 플로우 전지 |
JP2016557500A JP6099005B2 (ja) | 2014-11-06 | 2015-10-05 | 電池セル、およびレドックスフロー電池 |
US16/250,682 US10790530B2 (en) | 2014-11-06 | 2019-01-17 | Cell frame and redox flow battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014226269 | 2014-11-06 | ||
JP2014-226269 | 2014-11-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/501,502 A-371-Of-International US10230123B2 (en) | 2014-11-06 | 2015-10-05 | Battery cell and redox flow battery |
US16/250,682 Continuation US10790530B2 (en) | 2014-11-06 | 2019-01-17 | Cell frame and redox flow battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072192A1 true WO2016072192A1 (ja) | 2016-05-12 |
Family
ID=55908920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078209 WO2016072192A1 (ja) | 2014-11-06 | 2015-10-05 | 電池セル、およびレドックスフロー電池 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10230123B2 (ja) |
EP (1) | EP3217461B1 (ja) |
JP (1) | JP6099005B2 (ja) |
KR (1) | KR102382373B1 (ja) |
CN (1) | CN106575785B (ja) |
AU (1) | AU2015344623B2 (ja) |
TW (1) | TWI654792B (ja) |
WO (1) | WO2016072192A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101856432B1 (ko) | 2017-01-18 | 2018-05-09 | 스미토모덴키고교가부시키가이샤 | 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지 |
CN108075152A (zh) * | 2016-11-16 | 2018-05-25 | 住友电气工业株式会社 | 单元框架、单元堆和氧化还原液流电池 |
CN108475798A (zh) * | 2016-12-08 | 2018-08-31 | 住友电气工业株式会社 | 框架本体、单元框架、单元堆和氧化还原液流电池 |
WO2019167143A1 (ja) * | 2018-02-27 | 2019-09-06 | 住友電気工業株式会社 | 枠体、セルフレーム、セルスタック、及びレドックスフロー電池 |
EP3553863A4 (en) * | 2016-12-08 | 2020-01-08 | Sumitomo Electric Industries, Ltd. | REDOX BATTERY |
WO2020012617A1 (ja) * | 2018-07-12 | 2020-01-16 | 住友電気工業株式会社 | 電池セル、セルスタック、及びレドックスフロー電池 |
WO2020138049A1 (ja) * | 2018-12-27 | 2020-07-02 | 昭和電工株式会社 | 集電板ユニットおよびレドックスフロー電池 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3593394A4 (en) * | 2017-04-28 | 2021-02-17 | ESS Tech, Inc. | METHODS AND SYSTEMS FOR BALANCING ELECTROLYTES FOR A REDOX FLOW BATTERY SYSTEM |
EP3751656A4 (en) * | 2018-02-05 | 2021-03-03 | Sumitomo Electric Industries, Ltd. | BIPOLAR PLATE, CELL FRAME, BATTERY CELL, CELL STACKING AND REDOX FLOW BATTERY |
US11527770B2 (en) * | 2018-02-27 | 2022-12-13 | Sumitomo Electric Industries, Ltd. | Cell stack and redox flow battery |
CN111193044B (zh) * | 2019-10-31 | 2021-05-18 | 清华大学 | 一种被动式液体燃料电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290876A (ja) * | 1985-10-16 | 1987-04-25 | Sumitomo Electric Ind Ltd | 電解液循環型2次電池のセル構造 |
JP2001155758A (ja) * | 1999-11-25 | 2001-06-08 | Sumitomo Electric Ind Ltd | レドックスフロー2次電池のセルスタック |
JP2008537290A (ja) * | 2005-04-16 | 2008-09-11 | リーフュエル・テクノロジー・リミテッド | 電気化学セルスタック |
JP2012216510A (ja) * | 2011-03-31 | 2012-11-08 | Sumitomo Electric Ind Ltd | 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0913836D0 (en) * | 2009-08-07 | 2009-09-16 | Afc Energy Plc | Fuel cell |
US8808888B2 (en) * | 2010-08-25 | 2014-08-19 | Applied Materials, Inc. | Flow battery systems |
AT510723B1 (de) * | 2010-12-21 | 2012-06-15 | Cellstrom Gmbh | Rahmen einer zelle einer redox-durchflussbatterie |
US8679697B1 (en) * | 2012-08-30 | 2014-03-25 | GM Global Technology Operations LLC | Compressible fuel cell subgasket with integrated seal |
JP5971618B2 (ja) | 2013-01-21 | 2016-08-17 | 住友電気工業株式会社 | レドックスフロー電池用セルスタック、及びレドックスフロー電池用セルスタックの製造方法 |
-
2015
- 2015-10-05 CN CN201580042279.2A patent/CN106575785B/zh active Active
- 2015-10-05 KR KR1020177002842A patent/KR102382373B1/ko active IP Right Grant
- 2015-10-05 JP JP2016557500A patent/JP6099005B2/ja active Active
- 2015-10-05 US US15/501,502 patent/US10230123B2/en active Active
- 2015-10-05 EP EP15857588.6A patent/EP3217461B1/en active Active
- 2015-10-05 AU AU2015344623A patent/AU2015344623B2/en active Active
- 2015-10-05 WO PCT/JP2015/078209 patent/WO2016072192A1/ja active Application Filing
- 2015-10-20 TW TW104134366A patent/TWI654792B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290876A (ja) * | 1985-10-16 | 1987-04-25 | Sumitomo Electric Ind Ltd | 電解液循環型2次電池のセル構造 |
JP2001155758A (ja) * | 1999-11-25 | 2001-06-08 | Sumitomo Electric Ind Ltd | レドックスフロー2次電池のセルスタック |
JP2008537290A (ja) * | 2005-04-16 | 2008-09-11 | リーフュエル・テクノロジー・リミテッド | 電気化学セルスタック |
JP2012216510A (ja) * | 2011-03-31 | 2012-11-08 | Sumitomo Electric Ind Ltd | 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3544103A4 (en) * | 2016-11-16 | 2019-12-18 | Sumitomo Electric Industries, Ltd. | CELL FRAME, CELL STACK AND REDOX FLOW BATTERY |
CN108075152A (zh) * | 2016-11-16 | 2018-05-25 | 住友电气工业株式会社 | 单元框架、单元堆和氧化还原液流电池 |
US10615432B2 (en) | 2016-11-16 | 2020-04-07 | Sumitomo Electric Industries, Ltd. | Cell frame, cell stack, and redox flow battery |
EP3553858A4 (en) * | 2016-12-08 | 2020-01-08 | Sumitomo Electric Industries, Ltd. | FRAME BODY, CELL FRAME, CELL STACK AND REDOX FLOW BATTERY |
CN108475798A (zh) * | 2016-12-08 | 2018-08-31 | 住友电气工业株式会社 | 框架本体、单元框架、单元堆和氧化还原液流电池 |
AU2016432004B2 (en) * | 2016-12-08 | 2022-07-14 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
AU2016432005B2 (en) * | 2016-12-08 | 2022-07-07 | Sumitomo Electric Industries, Ltd. | Frame body, cell frame, cell stack, and redox flow battery |
EP3553863A4 (en) * | 2016-12-08 | 2020-01-08 | Sumitomo Electric Industries, Ltd. | REDOX BATTERY |
CN108475798B (zh) * | 2016-12-08 | 2020-12-04 | 住友电气工业株式会社 | 框架本体、单元框架、单元堆和氧化还原液流电池 |
US10680254B2 (en) | 2016-12-08 | 2020-06-09 | Sumitomo Electric Industries, Ltd. | Redox flow battery |
WO2018134928A1 (ja) * | 2017-01-18 | 2018-07-26 | 住友電気工業株式会社 | 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 |
CN108336377B (zh) * | 2017-01-18 | 2020-12-01 | 住友电气工业株式会社 | 双极板、电池单元框架、电池单元堆和氧化还原液流电池 |
KR101856432B1 (ko) | 2017-01-18 | 2018-05-09 | 스미토모덴키고교가부시키가이샤 | 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지 |
CN108336377A (zh) * | 2017-01-18 | 2018-07-27 | 住友电气工业株式会社 | 双极板、电池单元框架、电池单元堆和氧化还原液流电池 |
WO2019167143A1 (ja) * | 2018-02-27 | 2019-09-06 | 住友電気工業株式会社 | 枠体、セルフレーム、セルスタック、及びレドックスフロー電池 |
WO2020012617A1 (ja) * | 2018-07-12 | 2020-01-16 | 住友電気工業株式会社 | 電池セル、セルスタック、及びレドックスフロー電池 |
WO2020138049A1 (ja) * | 2018-12-27 | 2020-07-02 | 昭和電工株式会社 | 集電板ユニットおよびレドックスフロー電池 |
Also Published As
Publication number | Publication date |
---|---|
TW201628246A (zh) | 2016-08-01 |
JP6099005B2 (ja) | 2017-03-22 |
US20170237104A1 (en) | 2017-08-17 |
CN106575785A (zh) | 2017-04-19 |
TWI654792B (zh) | 2019-03-21 |
AU2015344623A1 (en) | 2017-02-09 |
US10230123B2 (en) | 2019-03-12 |
EP3217461A4 (en) | 2017-09-13 |
EP3217461A1 (en) | 2017-09-13 |
JPWO2016072192A1 (ja) | 2017-04-27 |
EP3217461B1 (en) | 2019-11-20 |
KR20170083526A (ko) | 2017-07-18 |
AU2015344623B2 (en) | 2020-06-18 |
CN106575785B (zh) | 2019-06-14 |
KR102382373B1 (ko) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6099005B2 (ja) | 電池セル、およびレドックスフロー電池 | |
JP6607357B2 (ja) | 電池セル、およびレドックスフロー電池 | |
US10593964B2 (en) | Bipolar plate, cell frame, cell stack and redox-flow battery | |
CN108183252B (zh) | 氧化还原液流电池 | |
JP2019029106A (ja) | セルフレーム、セルスタック、およびレドックスフロー電池 | |
WO2018134928A1 (ja) | 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 | |
US11769886B2 (en) | Battery cell, cell stack, and redox flow battery | |
WO2020158623A1 (ja) | 電池セル、セルスタック、及びレドックスフロー電池 | |
US10790530B2 (en) | Cell frame and redox flow battery | |
US11811105B2 (en) | Battery cell, cell stack, and redox flow battery | |
JP2020129502A (ja) | 電池セル、セルスタック、及びレドックスフロー電池 | |
JP2020129501A (ja) | 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857588 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016557500 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015857588 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015857588 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177002842 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015344623 Country of ref document: AU Date of ref document: 20151005 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |