WO2018134928A1 - 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 - Google Patents

双極板、セルフレーム、セルスタック、及びレドックスフロー電池 Download PDF

Info

Publication number
WO2018134928A1
WO2018134928A1 PCT/JP2017/001615 JP2017001615W WO2018134928A1 WO 2018134928 A1 WO2018134928 A1 WO 2018134928A1 JP 2017001615 W JP2017001615 W JP 2017001615W WO 2018134928 A1 WO2018134928 A1 WO 2018134928A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar plate
cell
frame
outer peripheral
redox flow
Prior art date
Application number
PCT/JP2017/001615
Other languages
English (en)
French (fr)
Inventor
山口 英之
本井 見二
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP17794206.7A priority Critical patent/EP3573161B1/en
Priority to AU2017261462A priority patent/AU2017261462B2/en
Priority to JP2017544043A priority patent/JP6765642B2/ja
Priority to US15/574,898 priority patent/US20190221863A1/en
Priority to PCT/JP2017/001615 priority patent/WO2018134928A1/ja
Priority to KR1020177033085A priority patent/KR101856432B1/ko
Priority to DE202017106988.5U priority patent/DE202017106988U1/de
Priority to CN201810035542.0A priority patent/CN108336377B/zh
Priority to CN201820059501.0U priority patent/CN207834459U/zh
Publication of WO2018134928A1 publication Critical patent/WO2018134928A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a bipolar plate, a cell frame, a cell stack, and a redox flow battery.
  • Patent Documents 1 and 2 describe a cell stack formed by laminating a plurality of cell frames, positive electrodes, diaphragms, and negative electrodes, and a redox flow battery using the cell stack.
  • the cell frame includes a bipolar plate disposed between the positive electrode and the negative electrode, and a frame provided on the outer periphery of the bipolar plate.
  • positive and negative electrodes are arranged between bipolar plates of adjacent cell frames with a diaphragm interposed therebetween, thereby forming one cell.
  • a redox flow battery performs charge and discharge by circulating and circulating an electrolytic solution in a cell in which electrodes are arranged.
  • the bipolar plate of the present disclosure is A bipolar plate on which electrodes of a redox flow battery are arranged, When the cross section perpendicular to the plane of the bipolar plate is viewed, the radius of curvature of the corner at the outer peripheral edge is 0.1 mm or greater and 4.0 mm or less.
  • the cell frame of the present disclosure includes the bipolar plate of the present disclosure and a frame body provided on the outer periphery of the bipolar plate.
  • the cell stack of the present disclosure includes the cell frame of the present disclosure.
  • the redox flow battery of the present disclosure includes the cell stack of the present disclosure.
  • FIG. 6 is a schematic partial cross-sectional view of a bipolar plate taken along line VI-VI in FIG. 5.
  • FIG. 5 is a schematic partial cross-sectional view of a cell frame cut along a line VII-VII in FIG. 4.
  • redox flow batteries have attracted attention as one of storage batteries that stabilize the output of renewable energy such as sunlight and wind power, and further improvements in reliability and performance of redox flow batteries are required.
  • a cell frame provided with a frame around a bipolar plate is used.
  • the cell frame is configured, for example, by disposing a bipolar plate in an opening formed inside the frame, and a recess is formed inside the frame provided with the bipolar plate.
  • the shape of the opening (concave portion) is usually a shape corresponding to a bipolar plate.
  • An electrode is accommodated in the recess, and a cell is constituted by a space surrounded by the recess and the diaphragm.
  • the cell plate When the cell plate is configured by arranging a bipolar plate in the opening of the frame, the outer peripheral surface of the outer peripheral edge of the bipolar plate is arranged in contact with (in close proximity to) the inner peripheral surface of the frame.
  • the bipolar plate When the electrolyte is circulated during the operation of the redox flow battery, the bipolar plate may vibrate, and frictional heat may be generated at the contact surface between the bipolar plate and the frame body due to friction caused by the vibration.
  • problems such as the tearing of the diaphragm may occur due to the influence of frictional heat on the contact surface between the bipolar plate and the frame.
  • the outer peripheral surface of the bipolar plate is not in contact with the inner peripheral surface of the frame, so that it is between the outer peripheral surface of the bipolar plate and the inner peripheral surface of the frame. It is conceivable to provide a gap. However, when a gap is provided between the outer peripheral surface of the bipolar plate and the inner peripheral surface of the frame, a part of the electrolyte flows into the gap, and a leak channel for the electrolyte is formed. Since the electrolyte flowing into the leak channel hardly contacts the electrode, it does not contribute to the battery reaction.
  • the gap formed between the outer peripheral surface of the bipolar plate and the inner peripheral surface of the frame is increased, the flow rate of the electrolyte flowing through the leak passage increases, and the discharge capacity of the redox flow battery decreases. There is a risk of battery performance degradation. Further, when the circulation of the electrolyte solution is stopped during standby of the redox flow battery, the charged electrolyte solution stays in the leak flow path, and the electrolyte solution generates heat by self-discharge. As the flow rate of the electrolytic solution flowing through the leak channel increases, the amount of heat generated by the electrolytic solution due to self-discharge increases, and there is a possibility that a problem such as the tearing of the diaphragm occurs due to the influence of the heat.
  • the bipolar plate according to the embodiment is A bipolar plate on which electrodes of a redox flow battery are arranged, A bipolar plate, wherein a radius of curvature of a corner portion at an outer peripheral edge portion is 0.1 mm or greater and 4.0 mm or less when a cross section perpendicular to the plane of the bipolar plate is viewed.
  • the curvature radius (angle R) of the corner portion at the outer peripheral edge when the bipolar plate is viewed in a cross section perpendicular to the plane (vertical cross section) is 0.1 mm or more, so that the cell frame Is configured, the area of the outer peripheral surface of the bipolar plate contacting the inner peripheral surface of the frame is reduced, and the contact area between the outer peripheral surface of the bipolar plate and the inner peripheral surface of the frame is reduced. Therefore, generation of frictional heat at the contact surface between the outer peripheral surface of the bipolar plate and the inner peripheral surface of the frame due to the vibration of the bipolar plate can be reduced, and damage to the diaphragm caused by the heat can be suppressed.
  • the corners in the vertical cross section of the outer peripheral edge of the bipolar plate are rounded, so that there is a gap between the corners and the inner peripheral surface of the frame.
  • the angle R of the outer peripheral edge when the bipolar plate is viewed in cross section is 4.0 mm or less, the gap formed between the outer peripheral surface of the bipolar plate and the inner peripheral surface of the frame can be reduced, and the leakage flow Expansion of the road can be suppressed. Therefore, the flow rate of the electrolyte flowing through the leak channel is small, and the reduction in the discharge capacity of the redox flow battery can be suppressed.
  • the bipolar plate can improve the reliability and performance of the redox flow battery.
  • a cell frame according to the embodiment includes the bipolar plate according to the above (1) and a frame provided on an outer periphery of the bipolar plate.
  • the bipolar plate according to the above-described embodiment since the bipolar plate according to the above-described embodiment is provided, the reliability and performance of the redox flow battery can be improved.
  • a cell stack according to the embodiment includes the cell frame described in (2) above.
  • the reliability and performance of the redox flow battery can be improved.
  • a redox flow battery according to the embodiment includes the cell stack described in (3) above.
  • the reliability is high and the battery performance is excellent.
  • the RF battery 1 shown in FIG. 1 and FIG. 2 uses an electrolytic solution containing, as an active material, a metal ion whose valence changes as a result of oxidation and reduction in the positive electrode electrolyte and the negative electrode electrolyte.
  • the battery performs charging / discharging by utilizing the difference between the redox potential and the redox potential of ions contained in the negative electrode electrolyte.
  • the RF battery 1 as shown in FIG.
  • a case of a vanadium-based RF battery using a vanadium electrolyte solution containing V ions serving as an active material in a positive electrode electrolyte and a negative electrode electrolyte is shown.
  • a solid line arrow in the cell 100 in FIG. 1 indicates a charging reaction, and a broken line arrow indicates a discharging reaction.
  • the RF battery 1 is one of the electrolyte circulation type storage batteries. For example, applications such as load leveling, sag compensation, emergency power supply, etc., and regeneration of solar and wind power, which are being introduced in large quantities. Used for smoothing output of possible energy.
  • the RF battery 1 includes a cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions.
  • a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte solution tank 106 for storing the positive electrode electrolyte is connected via conduits 108 and 110.
  • the conduit 108 is provided with a pump 112 that pumps the positive electrode electrolyte to the positive electrode cell 102, and a positive electrode circulation mechanism 100 ⁇ / b> P that circulates the positive electrode electrolyte is constituted by these members 106, 108, 110, and 112. .
  • the negative electrode cell 103 contains a negative electrode 105 and is connected to a negative electrode electrolyte tank 107 for storing a negative electrode electrolyte via conduits 109 and 111.
  • the conduit 109 is provided with a pump 113 for pumping the negative electrode electrolyte to the negative electrode cell 103, and a negative electrode circulation mechanism 100N for circulating the negative electrode electrolyte is constituted by these members 107, 109, 111, 113. .
  • the electrolytes stored in the tanks 106 and 107 are circulated in the cell 100 (the positive electrode cell 102 and the negative electrode cell 103) by the pumps 112 and 113 at the time of charging and discharging, and at the time of standby without charging and discharging. Pumps 112 and 113 are stopped and not circulated.
  • the cell 100 is usually formed inside a structure called a cell stack 2 shown in FIGS.
  • the cell stack 2 is configured by sandwiching a laminate called a sub stack 200 (see FIG. 3) from two sides with two end plates 220 and fastening the end plates 220 on both sides with a fastening mechanism 230 (see FIG. 3 includes a plurality of sub-stacks 200).
  • the sub stack 200 is formed by stacking a plurality of cell frames 3, positive electrodes 104, diaphragms 101, and negative electrodes 105, and supply / discharge plates 210 (see the lower figure in FIG. 3, omitted in FIG. 2) at both ends of the laminated body. It is an arranged configuration.
  • the cell frame 3 includes a bipolar plate 31 disposed between the positive electrode 104 and the negative electrode 105, and a frame body 32 provided on the outer periphery of the bipolar plate 31.
  • the positive electrode 104 is disposed on one surface side of the bipolar plate 31 and the negative electrode 105 is disposed on the other surface side of the bipolar plate 31.
  • the sub stack 200 (cell stack 2), one cell 100 is formed between the bipolar plates 31 of the adjacent cell frames 3 respectively.
  • the bipolar plate 31 is made of, for example, plastic carbon, and the frame body 32 is made of, for example, plastic such as vinyl chloride resin (PVC), polypropylene, polyethylene, fluorine resin, or epoxy resin.
  • PVC vinyl chloride resin
  • the bipolar plate 31 can be formed by a known method such as injection molding, press molding, or vacuum molding.
  • the electrolyte solution flows into the cell 100 through supply / discharge plates 210 (see the lower diagram in FIG. 3), and supply manifolds 33, 34 provided through the frame body 32 of the cell frame 3 shown in FIG. This is performed by the drainage manifolds 35 and 36, the liquid supply slits 33s and 34s formed in the frame 32, and the drainage slits 35s and 36s (see also FIG. 4).
  • the positive electrode electrolyte is supplied from the liquid supply manifold 33 provided at the lower part of the frame body 32 on the one surface side (the paper surface side) of the frame body 32.
  • the negative electrode electrolyte is supplied to the negative electrode 105 from a liquid supply manifold 34 provided in the lower part of the frame 32 through a liquid supply slit 34 s formed on the other surface side (back side of the paper) of the frame 32.
  • the liquid is discharged to the drainage manifold 36 through the drainage slit 36s formed in the upper part of the frame 32.
  • a rectifying portion (not shown) may be formed along the edge at the lower edge and the upper edge inside the frame 32 on which the bipolar plate 31 is provided.
  • the rectifying unit diffuses each electrolytic solution supplied from the liquid supply slits 33 s and 34 s along the lower edge portion of each electrode, or discharges each electrolytic solution discharged from the upper edge portion of each electrode to the drain slits 35 s, It has a function to aggregate to 36s.
  • the electrolytic solution is supplied from the lower side of the bipolar plate 31 and is discharged from the upper side of the bipolar plate 31, and electrolysis is performed from the lower edge portion of the bipolar plate 31 toward the upper edge portion. Liquid flows.
  • the arrow on the left side of the drawing indicates the overall flow direction of the electrolyte in the bipolar plate 31.
  • a plurality of grooves may be formed on the surface of the bipolar plate 31 in contact with each electrode along the flow direction of the electrolytic solution. Thereby, the distribution
  • the cross-sectional shape of the groove (the cross-sectional shape orthogonal to the flow direction of the electrolyte) is not particularly limited, and examples thereof include a rectangular shape, a triangular shape (V shape), a trapezoidal shape, a semicircular shape, and a semielliptical shape. It is done.
  • annular seal member 37 (see FIGS. 2 and 3) such as an O-ring and a flat packing is disposed between the frame bodies 32 of each cell frame 3 in order to suppress leakage of the electrolyte from the cell 100.
  • a seal groove 38 (see FIG. 4) for arranging the seal member 37 is formed in the frame body 32.
  • One of the features of the bipolar plate 31 according to the embodiment is that when the cross section (vertical cross section) perpendicular to the plane of the bipolar plate 31 is viewed, the radius of curvature (corner R) of the corner portion at the outer peripheral edge portion is zero. It is in the point which is 1 mm or more and 4.0 mm or less.
  • the configuration of the bipolar plate 31 and the cell frame 3 according to the embodiment will be described in detail with reference mainly to FIGS.
  • the bipolar plate 31 has a rectangular planar shape (a shape when viewed in plan). As shown in FIG. 6, the bipolar plate 31 has rounded corners 40 in a vertical cross section (a cross section cut along the thickness direction of the bipolar plate 31) of the outer peripheral edge portion 31 p of the bipolar plate 31.
  • the radius of curvature (corner R) of the corner 40 at the outer peripheral edge 31p when viewed in cross section is 0.1 mm or greater and 4.0 mm or less.
  • the corners 41 and 42 on both the one surface side and the other surface side of the outer peripheral edge portion 31p are rounded, and each corner R is 0.1 mm or greater and 4.0 mm or less.
  • the length in the vertical direction is 200 mm or more and 2000 mm or less
  • the length in the width direction is 200 mm or more and 2000 mm or less
  • the thickness is It is 3.0 mm or more and 10.0 mm or less.
  • the cell frame 3 is configured by providing a frame 32 on the outer periphery of the bipolar plate 31.
  • the frame 32 has an opening 50 formed therein, and the bipolar plate 31 is disposed in the opening 50.
  • the frame body 32 has a rectangular frame shape, and the opening 50 is formed in a shape corresponding to the outer shape of the bipolar plate 31. That is, the shape of the opening 50 is substantially the same shape (similar shape) as the planar shape of the bipolar plate 31.
  • a stepped portion 51 in contact with the outer peripheral edge 31p of the bipolar plate 31 is formed on the inner peripheral edge of the frame 32, and the outer peripheral edge 31p of the bipolar plate 31 is disposed on the stepped portion 51 as shown in FIG.
  • the bipolar plate 31 is supported by the frame body 32.
  • a groove is formed in the outer peripheral edge portion 31p of the bipolar plate 31 along a circumferential direction on a surface in contact with the stepped portion 51, and a seal member 52 is disposed in the groove.
  • the seal member 52 can suppress the electrolyte solution from moving between the one surface side and the other surface side of the bipolar plate 31.
  • the cell plate 3 When the cell plate 3 is configured by arranging the bipolar plate 31 in the opening 50 of the frame 32, the surface of the bipolar plate 31 and the inner peripheral surface of the frame 32 are placed inside the frame 32 as shown in FIG. 4. A recess 55 is formed. As shown in FIG. 7, the recesses 55 are respectively formed on both sides of the bipolar plate 31, and the positive electrode 104 and the negative electrode 105 are accommodated in the respective recesses 55. Each of the electrodes 104 and 105 is formed in substantially the same size as each of the recesses 55. In the case of the cell frame 3 shown in FIG.
  • the shape of the concave portion 55 provided on one surface side is substantially the same as the planar shape of the bipolar plate 31, and the positive electrode 104 accommodated in the concave portion 55 (see FIG. 7). ) Is substantially the same as the planar shape of the bipolar plate 31.
  • the electrodes 104 and 105 are arranged on the cell frame 3, and the cell frame 3 is laminated via the diaphragm 101, whereby the cell stack 2 (see FIG. 3) is configured.
  • the outer peripheral surface 31o of the bipolar plate 31 (outer peripheral edge portion 31p) and the inner peripheral surface 32i of the frame body 32 are opposed to each other (close proximity). ).
  • the corners 41 and 42 do not contact the inner peripheral surface 32i of the frame body 32, and a gap 45 is formed between the inner peripheral surface 32i of the frame body 32. Is done.
  • the gap 45 increases as the angle R of the outer peripheral edge 31p increases.
  • the gap 45 formed along the side edge of the bipolar plate 31 can serve as a leakage flow path for the electrolyte.
  • the ratio of the length of the straight portion to the thickness of the bipolar plate is, for example, 0.99 or less. Further, it may be 0.9 or less.
  • the bipolar plate 31 according to the embodiment has the following operational effects.
  • the corner 40 in the vertical cross section of the outer peripheral edge 31p of the bipolar plate 31 is formed in a round shape, and the angle R of the outer peripheral edge 31p when viewed in cross section in the vertical cross section is 0.1 mm or more.
  • the contact area between the outer peripheral surface 31o of the bipolar plate 31 and the inner peripheral surface 32i of the frame 32 can be reduced. Therefore, generation of frictional heat at the contact surface between the outer peripheral surface 31o of the bipolar plate 31 and the inner peripheral surface 32i of the frame body 32 due to vibration of the bipolar plate 31 can be reduced, and damage to the diaphragm 101 due to the heat can be suppressed. .
  • the angle R is 0.2 mm or more, for example. It is preferable to do.
  • the ratio of the angle R to the thickness of the bipolar plate 31 is, for example, 0.01 or more, and more preferably 0.1 or more.
  • the angle R of the outer peripheral edge portion 31p is 4.0 mm or less, the gap 45 formed between the outer peripheral surface 31o of the bipolar plate 31 and the inner peripheral surface 32i of the frame body 32 can be reduced, and the leak flow Expansion of the road can be suppressed. Therefore, the flow rate of the electrolyte flowing through the leak channel is small, and the decrease in the discharge capacity of the RF battery can be suppressed. In addition, since the flow rate of the electrolyte flowing through the leak channel is small, the amount of heat generated by self-discharge of the electrolyte that stays in the leak channel when the electrolyte flow is stopped is small, and the diaphragm is damaged due to the heat. Can be suppressed.
  • the smaller the gap 45 due to the corner R of the outer peripheral edge 31p the smaller the flow rate of the electrolyte flowing through the leak channel, so the corner R is preferably set to 0.5 mm or less, for example.
  • the size of the corner R may be different between the corner 41 on the one surface side and the corner 42 on the other surface side.
  • the angle R on the other surface side is made larger than the angle R on the one surface side.
  • the other surface side of the outer peripheral edge portion 31 p is in surface contact with the stepped portion 51 of the frame body 32. Heat can be generated.
  • the angle R on the other surface side larger than the angle R on the one surface side, the contact area between the outer peripheral edge portion 31p and the stepped portion 51 can be reduced, and the frictional heat between the outer peripheral edge portion 31p and the stepped portion 51 can be reduced. Generation is easy to reduce.
  • a bipolar plate having a rectangular planar shape was prepared.
  • the size (outside dimension) of the bipolar plate is 200 mm long ⁇ 200 mm wide ⁇ 10.0 mm thick.
  • Table 1 a plurality of bipolar plates (see FIG. 6) having different curvature radii (corner R) at the corners at the outer peripheral edge when the bipolar plate is viewed in cross section perpendicular to the plane are prepared.
  • a cell frame (see FIG. 4) was prepared using each bipolar plate, and a plurality of RF batteries (test bodies A to F) were assembled using the cell frame. And about each test body, reliability and battery performance were evaluated.
  • the battery performance was evaluated based on the current efficiency when the charge / discharge test was performed on each of the specimens A to F.
  • the results are shown in Table 1. The lower the current efficiency, the lower the discharge capacity.
  • the discharge capacities of the other specimens C, D, and E were respectively 1.0%, 1.5%, and 3.0% lower than the discharge capacity of the specimen B.
  • the corner radius R of the outer peripheral edge increases, the cell resistance increases and thereby the discharge capacity also decreases. Therefore, the discharge capacity tends to decrease more than the rate of decrease in current efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

レドックスフロー電池の電極が配置される双極板であって、前記双極板の平面に対して垂直な断面を見たときに、外周縁部における角部の曲率半径が0.1mm以上4.0mm以下である双極板。

Description

双極板、セルフレーム、セルスタック、及びレドックスフロー電池
 本発明は、双極板、セルフレーム、セルスタック、及びレドックスフロー電池に関する。
 特許文献1~2には、セルフレーム、正極電極、隔膜、負極電極をそれぞれ複数積層してなるセルスタック、及びそのセルスタックを用いたレドックスフロー電池が記載されている。セルフレームは、正極電極と負極電極との間に配置される双極板と、双極板の外周に設けられる枠体とを備える。セルスタックでは、隣接するセルフレームの双極板の間に、隔膜を挟んで正負の電極が配置され、1つのセルが形成される。レドックスフロー電池は、電極が配置されたセル内に電解液を循環流通させて充放電を行う。
特開2002-246061号公報 特開2005-228622号公報
 本開示の双極板は、
 レドックスフロー電池の電極が配置される双極板であって、
  前記双極板の平面に対して垂直な断面を見たときに、外周縁部における角部の曲率半径が0.1mm以上4.0mm以下である。
 本開示のセルフレームは、本開示の双極板と、前記双極板の外周に設けられる枠体とを備える。
 本開示のセルスタックは、本開示のセルフレームを備える。
 本開示のレドックスフロー電池は、本開示のセルスタックを備える。
実施形態に係るレドックスフロー電池の動作原理図である。 実施形態に係るレドックスフロー電池の概略構成図である。 実施形態に係るセルスタックの概略構成図である。 実施形態に係るセルフレームを一面側から見た概略平面図である。 実施形態に係るセルフレームを構成する双極板及び枠体の概略平面図である。 図5のVI-VI線で切断した双極板の概略部分断面図である。 図4のVII-VII線で切断したセルフレームの概略部分断面図である。
 [本開示が解決しようとする課題]
 近年、太陽光や風力などの再生可能エネルギーの出力を安定化させる蓄電池の1つとして、レドックスフロー電池が注目されており、更なるレドックスフロー電池の信頼性及び性能の向上が求められている。
 一般に、レドックスフロー電池では、双極板の周囲に枠体が設けられたセルフレームが使用されている。セルフレームは、例えば、枠体の内側に形成された開口部に双極板を配置することで構成されており、双極板が設けられる枠体の内側に凹部が形成される。開口部(凹部)の形状は通常、双極板に対応した形状になっている。この凹部に電極が収納され、凹部と隔膜とで囲まれる空間によってセルが構成される。そして、セル内に電解液を流通させるときは、双極板(電極)の一方の縁部からそれに対向する他方の縁部に向かってセル内を電解液が流れるようになっている。
 枠体の開口部に双極板を配置してセルフレームを構成した場合、双極板の外周縁部の外周面が枠体の内周面に接触(近接)された状態で配置される。レドックスフロー電池の運転時に電解液を流通させた際、双極板が振動することがあり、その振動による摩擦によって双極板と枠体との接触面で摩擦熱が発生する場合がある。そして、双極板と枠体との接触面での摩擦熱の影響を受けて、隔膜が破れるなどの不具合が起こり得る。よって、信頼性の観点から、双極板の振動による双極板の外周面と枠体の内周面との接触面での摩擦熱の発生を低減して、隔膜の損傷を抑制することが望まれる。
 そこで、双極板の振動による摩擦熱の発生を低減するため、双極板の外周面が枠体の内周面に接触しないように、双極板の外周面と枠体の内周面との間に隙間を設けることが考えられる。しかし、双極板の外周面と枠体の内周面との間に隙間を設けた場合、この隙間に一部の電解液が流れ込み、電解液のリーク流路が形成される。このリーク流路に流れ込んだ電解液は電極に殆ど接触しないため、電池反応に寄与しない。そのため、双極板の外周面と枠体の内周面との間に形成される隙間を大きくすると、リーク流路を流れる電解液の流量が多くなり、レドックスフロー電池の放電容量が低下するなど、電池性能の低下を招く虞がある。また、レドックスフロー電池の待機時に電解液の流通を停止したとき、充電された電解液がリーク流路に滞留し、自己放電することによって電解液が発熱する。リーク流路を流れる電解液の流量が多いほど、自己放電による電解液の発熱量が大きくなり、その熱の影響を受けて隔膜が破れるなどの不具合が起こる可能性がある。
 そこで、本開示は、レドックスフロー電池の信頼性及び性能の向上を図ることができる双極板、セルフレーム、及びセルスタックを提供することを目的の一つとする。また、本開示は、信頼性が高く、電池性能に優れるレドックスフロー電池を提供することを目的の一つとする。
 [本開示の効果]
 本開示によれば、レドックスフロー電池の信頼性及び性能の向上を図ることができる双極板、セルフレーム、及びセルスタックを提供できる。また、本開示によれば、信頼性が高く、電池性能に優れるレドックスフロー電池を提供できる。
 [本願発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
 (1)実施形態に係る双極板は、
 レドックスフロー電池の電極が配置される双極板であって、
 前記双極板の平面に対して垂直な断面を見たときに、外周縁部における角部の曲率半径が0.1mm以上4.0mm以下である双極板。
 上記双極板によれば、双極板を平面に垂直な断面(垂直断面)で断面視したときの外周縁部における角部の曲率半径(角R)が0.1mm以上であることで、セルフレームを構成したときに、枠体の内周面に接触する双極板の外周面の面積が小さくなり、双極板の外周面と枠体の内周面との接触面積が小さくなる。そのため、双極板の振動による双極板の外周面と枠体の内周面との接触面での摩擦熱の発生を低減でき、その熱に起因する隔膜の損傷を抑制できる。
 上記双極板では、双極板の外周縁部の垂直断面における角部が丸く形成されていることで、角部の箇所で枠体の内周面との間に隙間ができる。双極板を断面視したときの外周縁部の角Rが4.0mm以下であることで、双極板の外周面と枠体の内周面との間に形成される隙間を小さくでき、リーク流路の拡大を抑制できる。そのため、リーク流路を流れる電解液の流量が少なく、レドックスフロー電池の放電容量の低下を抑制できる。加えて、リーク流路を流れる電解液の流量が少ないため、電解液の流通を停止した際にリーク流路に滞留する電解液の自己放電による発熱量が小さく、その熱に起因する隔膜の損傷を抑制できる。したがって、上記双極板は、レドックスフロー電池の信頼性及び性能の向上を図ることができる。
 (2)実施形態に係るセルフレームは、上記(1)に記載の双極板と、前記双極板の外周に設けられる枠体とを備える。
 上記セルフレームによれば、上記した実施形態に係る双極板を備えることから、レドックスフロー電池の信頼性及び性能の向上を図ることができる。
 (3)実施形態に係るセルスタックは、上記(2)に記載のセルフレームを備える。
 上記セルスタックによれば、上記した実施形態に係るセルフレームを備えることから、レドックスフロー電池の信頼性及び性能の向上を図ることができる。
 (4)実施形態に係るレドックスフロー電池は、上記(3)に記載のセルスタックを備える。
 上記レドックスフロー電池によれば、上記したセルスタックを備えることから、信頼性が高く、電池性能に優れる。
 [本願発明の実施形態の詳細]
 本願発明の実施形態に係る双極板、セルフレーム、セルスタック、及びレドックスフロー電池の具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一又は相当部分を示す。なお、本願発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 《RF電池》
 図1~図3を主に参照して、実施形態に係るレドックスフロー電池(以下、RF電池)、セルスタック、及びセルフレームの一例を説明する。図1、図2に示すRF電池1は、正極電解液及び負極電解液に酸化還元により価数が変化する金属イオンを活物質として含有する電解液を使用し、正極電解液に含まれるイオンの酸化還元電位と、負極電解液に含まれるイオンの酸化還元電位との差を利用して充放電を行う電池である。ここでは、RF電池1の一例として、図1に示すように、正極電解液及び負極電解液に活物質となるVイオンを含有するバナジウム電解液を使用したバナジウム系RF電池の場合を示す。図1中のセル100内の実線矢印は充電反応を、破線矢印は放電反応をそれぞれ示している。RF電池1は、電解液循環型の蓄電池の1つであって、例えば、負荷平準化用途、瞬低補償や非常用電源などの用途、大量導入が進められている太陽光や風力などの再生可能エネルギーの出力平滑化用途などに利用される。
 RF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離されたセル100を備える。正極セル102には正極電極104が内蔵され、かつ正極電解液を貯留する正極電解液用タンク106が導管108、110を介して接続されている。導管108には、正極電解液を正極セル102に圧送するポンプ112が設けられており、これらの部材106、108、110、112によって正極電解液を循環させる正極用循環機構100Pが構成されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極電解液を貯留する負極電解液用タンク107が導管109、111を介して接続されている。導管109には、負極電解液を負極セル103に圧送するポンプ113が設けられており、これらの部材107、109、111、113によって負極電解液を循環させる負極用循環機構100Nが構成されている。各タンク106、107に貯留される各電解液は、充放電を行う運転時には、ポンプ112、113によりセル100(正極セル102及び負極セル103)内に循環され、充放電を行わない待機時には、ポンプ112、113が停止され、循環されない。
 《セルスタック》
 セル100は通常、図2、図3に示すセルスタック2と呼ばれる構造体の内部に形成される。セルスタック2は、サブスタック200(図3参照)と呼ばれる積層体をその両側から2枚のエンドプレート220で挟み込み、両側のエンドプレート220を締付機構230で締め付けることで構成されている(図3に例示する構成では、複数のサブスタック200を備える)。サブスタック200は、セルフレーム3、正極電極104、隔膜101、及び負極電極105を複数積層してなり、その積層体の両端に給排板210(図3の下図参照、図2では省略)が配置された構成である。
 《セルフレーム》
 セルフレーム3は、図2、図3に示すように、正極電極104と負極電極105との間に配置される双極板31と、双極板31の外周に設けられる枠体32とを備える。双極板31の一面側には、正極電極104が接触するように配置され、双極板31の他面側には、負極電極105が接触するように配置される。サブスタック200(セルスタック2)では、隣接する各セルフレーム3の双極板31の間にそれぞれ1つのセル100が形成されることになる。
 双極板31は、例えば、プラスチックカーボンなどで形成され、枠体32は、例えば、塩化ビニル樹脂(PVC)、ポリプロピレン、ポリエチレン、フッ素樹脂、エポキシ樹脂などのプラスチックで形成されている。双極板31は、例えば、射出成型、プレス成型、真空成型などの公知の方法によって成形することができる。
 セル100への電解液の流通は、給排板210(図3の下図参照)を介して、図3に示すセルフレーム3の枠体32に貫通して設けられた給液マニホールド33、34及び排液マニホールド35、36と、枠体32に形成された給液スリット33s、34s及び排液スリット35s、36sにより行われる(図4も併せて参照)。この例に示すセルフレーム3(枠体32)の場合、正極電解液は、枠体32の下部に設けられた給液マニホールド33から枠体32の一面側(紙面表側)に形成された給液スリット33sを介して正極電極104に供給され、枠体32の上部に形成された排液スリット35sを介して排液マニホールド35に排出される。同様に、負極電解液は、枠体32の下部に設けられた給液マニホールド34から枠体32の他面側(紙面裏側)に形成された給液スリット34sを介して負極電極105に供給され、枠体32の上部に形成された排液スリット36sを介して排液マニホールド36に排出される。双極板31が設けられる枠体32の内側の下縁部及び上縁部には、縁部に沿って整流部(図示せず)が形成されていてもよい。整流部は、給液スリット33s、34sから供給される各電解液を各電極の下縁部に沿って拡散させたり、各電極の上縁部から排出される各電解液を排液スリット35s、36sへ集約する機能を有する。
 この例では、双極板31の下側から電解液が供給され、双極板31の上側から電解液が排出されるようになっており、双極板31の下縁部から上縁部に向かって電解液が流れる。図4中、紙面左側の矢印は、双極板31における電解液の全体的な電解液の流通方向を示す。双極板31の各電極と接する表面には、電解液の流通方向に沿って複数の溝部(図示せず)が形成されていてもよい。これにより、電解液の流通抵抗を小さくでき、電解液の圧力損失を低減できる。溝部の断面形状(電解液の流通方向に直交する断面の形状)は、特に限定されず、例えば、矩形状、三角形状(V字状)、台形状、半円形状や半楕円形状などが挙げられる。
 その他、各セルフレーム3の枠体32の間には、セル100からの電解液の漏洩を抑制するため、Oリングや平パッキンなどの環状のシール部材37(図2、図3参照)が配置されている。枠体32には、シール部材37を配置するためのシール溝38(図4参照)が形成されている。
 実施形態に係る双極板31の特徴の1つは、双極板31の平面に対して垂直な断面(垂直断面)を見たときに、外周縁部における角部の曲率半径(角R)が0.1mm以上4.0mm以下である点にある。以下、図4~図7を主に参照して、実施形態に係る双極板31、及びセルフレーム3の構成の一例を詳しく説明する。
 《双極板》
 双極板31は、図5に示すように、平面形状(平面視したときの形状)が矩形状である。双極板31は、図6に示すように、双極板31の外周縁部31pの垂直断面(双極板31の厚さ方向に沿って切断した断面)における角部40が丸く形成されており、垂直断面で断面視したときの外周縁部31pにおける角部40の曲率半径(角R)が0.1mm以上4.0mm以下である。この例では、外周縁部31pの一面側と他面側の両方の角部41、42が丸く形成され、それぞれの角Rが0.1mm以上4.0mm以下になっている。双極板31のサイズは、例えば、縦方向(図5の紙面上下方向)の長さが200mm以上2000mm以下、幅方向(図5の紙面左右方向)の長さが200mm以上2000mm以下、厚さが3.0mm以上10.0mm以下である。
 図4に示すように、双極板31の外周に枠体32が設けられることで、セルフレーム3が構成される。枠体32は、図5に示すように、その内側に開口部50が形成されており、開口部50に双極板31が配置される。この例では、枠体32が矩形枠状であり、開口部50は双極板31の外形に対応した形状に形成されている。つまり、開口部50の形状が双極板31の平面形状と実質的に同じ形状(相似形状)である。枠体32の内周縁部には、双極板31の外周縁部31pと接する段差部51が形成されており、図7に示すように、双極板31の外周縁部31pが段差部51に配置されることによって、双極板31が枠体32に支持される。双極板31の外周縁部31pには、段差部51と接する面に周方向に沿って溝が形成され、その溝にシール部材52が配置されている。このシール部材52によって、双極板31の一面側と他面側との間で電解液が移動することを抑制できる。
 枠体32の開口部50に双極板31を配置してセルフレーム3を構成した場合、図4に示すように、双極板31の表面及び枠体32の内周面により枠体32の内側に凹部55が形成される。凹部55は、図7に示すように、双極板31の両側にそれぞれ形成され、各凹部55に正極電極104及び負極電極105がそれぞれ収納される。各電極104、105は、各凹部55と略同じサイズに形成されている。図4に示すセルフレーム3の場合、一面側に設けられた凹部55の形状が双極板31の平面形状と実質的に同じ形状であり、この凹部55に収納される正極電極104(図7参照)の形状が双極板31の平面形状と実質的に同じ形状である。セルフレーム3に各電極104、105を配置し、セルフレーム3を隔膜101を介して積層することで、セルスタック2(図3参照)が構成される。
 セルフレーム3(図4参照)を構成したとき、図7に示すように、双極板31(外周縁部31p)の外周面31oと枠体32の内周面32iとが対向して接触(近接)した状態となる。外周縁部31pの外周面31oのうち、角部41、42の箇所は、枠体の32の内周面32iに接触せず、枠体32の内周面32iとの間に隙間45が形成される。外周縁部31pの角Rが大きくなるほど、隙間45が大きくなる。双極板31の側縁部に沿って形成された隙間45は、電解液のリーク流路となり得る。外周面31oのうち、角部41、42を除く直線部(角Rの曲面を除く平面部)の長さが短いほど、枠体の32の内周面32iに接触する面積が小さくなる。双極板31の振動による摩擦熱の発生を低減する観点から、双極板の厚さに対する上記直線部の長さの比(直線部の長さ/双極板の厚さ)は、例えば0.99以下、更に0.9以下とすることが挙げられる。
 {作用効果}
 実施形態に係る双極板31は、次の作用効果を奏する。
 双極板31の外周縁部31pの垂直断面における角部40が丸く形成され、垂直断面で断面視したときの外周縁部31pの角Rが0.1mm以上であることで、セルフレーム3を構成したときに、双極板31の外周面31oと枠体32の内周面32iとの接触面積を小さくできる。そのため、双極板31の振動による双極板31の外周面31oと枠体32の内周面32iとの接触面での摩擦熱の発生を低減でき、その熱に起因する隔膜101の損傷を抑制できる。双極板31の外周面31oと枠体32の内周面32iとの接触面積が小さいほど、双極板31の振動による摩擦熱の発生を低減できるので、上記角Rは、例えば0.2mm以上とすることが好ましい。双極板31の厚さに対する上記角Rの比(角R/双極板の厚さ)は、例えば0.01以上、更に0.1以上とすることが挙げられる。
 また、外周縁部31pの角Rが4.0mm以下であることで、双極板31の外周面31oと枠体32の内周面32iとの間に形成される隙間45を小さくでき、リーク流路の拡大を抑制できる。そのため、リーク流路を流れる電解液の流量が少なく、RF電池の放電容量の低下を抑制できる。加えて、リーク流路を流れる電解液の流量が少ないため、電解液の流通を停止した際にリーク流路に滞留する電解液の自己放電による発熱量が小さく、その熱に起因する隔膜の損傷を抑制できる。外周縁部31pの角Rによる隙間45が小さいほど、リーク流路に流れる電解液の流量を少なくできるので、上記角Rは、例えば0.5mm以下とすることが好ましい。
 [変形例]
 実施形態に係る双極板31(図6、図7参照)において、一面側の角部41と他面側の角部42とで角Rの大きさを異ならせてもよい。例えば、他面側の角Rを一面側の角Rより大きくすることが挙げられる。本例の場合、図7に示すように、外周縁部31pの他面側が枠体32の段差部51に面接触するため、双極板31の振動による摩擦によって外周縁部31pの他面側でも熱が発生し得る。他面側の角Rを一面側の角Rより大きくすることで、外周縁部31pと段差部51との接触面積を小さくでき、外周縁部31pと段差部51との間での摩擦熱の発生を低減し易い。
 [試験例1]
 平面形状が矩形状の双極板を用意した。双極板のサイズ(外形寸法)は、縦200mm×幅200mm×厚さ10.0mmである。ここでは、表1に示すように、双極板を平面に垂直な断面で断面視したときの外周縁部における角部の曲率半径(角R)が異なる複数の双極板(図6参照)を用意した。各双極板を用いてセルフレーム(図4参照)を作製し、これを用いて複数のRF電池(試験体A~F)を組み立てた。そして、各試験体について、信頼性及び電池性能を評価した。
 信頼性の評価は、各試験体A~Fに対して充放電試験を行った後、RF電池を解体して隔膜を取り出し、隔膜の損傷の程度を確認した。充放電試験の条件は、放電終了電圧:1V、充電終了電圧:1.6V、電流:120mA/cm、300サイクルとした。そして、損傷がない場合を「A」、損傷の程度が小さく、使用上問題がない場合を「B」、破れている場合を「C」として評価した。その結果を表1に示す。
 電池性能の評価は、各試験体A~Fに対して上記充放電試験を行ったときの電流効率で評価した。電流効率は、充放電試験に基づいて充放電曲線を作成し、その充放電曲線から3サイクル目の電流効率(電流効率(%)=(放電時間/充電時間)×100)を求めた。その結果を表1に示す。電流効率が低いほど、放電容量が低くなる。
Figure JPOXMLDOC01-appb-T000001
 表1より、双極板を垂直断面で断面視したときの外周縁部の角Rが0.1mm以上0.4mm以下であれば、隔膜の損傷を抑制でき、特に0.2mm以上である場合、隔膜の損傷を効果的に抑制できることが分かる。また、各試験体の電流効率を比較したところ、試験体Fの電流効率は試験体Bの電流効率よりも低く、電流効率に基づいて放電容量を計算すると、試験体Fの放電容量は試験体Bの放電容量よりも35%程度低くなっていた。また、他の試験体C、D、Eの放電容量はそれぞれ、試験体Bの放電容量よりも1.0%、1.5%、3.0%程度低かった。外周縁部の角Rが大きくなるほど、セル抵抗が増加し、これにより放電容量も低下するため、電流効率の低下割合以上に放電容量が低下する傾向がある。
 試験例1の結果から、双極板における外周縁部の角Rが0.1mm以上0.4mm以下であることで、隔膜に破れなどの不具合が起こり難く、RF電池の放電容量の低下を抑制できることが確認できた。また、RF電池の放電容量の低下を抑制する観点から、外周縁部の角Rは0.5mm以下とすることが好ましいと考えられる。
 1 レドックスフロー電池(RF電池)
 2 セルスタック
 3 セルフレーム
 31 双極板
 31p 外周縁部
 31o 外周面
 32 枠体
 32i 内周面
 33、34 給液マニホールド
 35、36 排液マニホールド
 33s、34s 給液スリット
 35s、36s 排液スリット
 37 シール部材
 38 シール溝
 40、41、42 角部
 45 隙間(リーク流路)
 50 開口部
 51 段差部
 52 シール部材
 55 凹部
 100 セル
 101 隔膜
 102 正極セル
 103 負極セル
 100P 正極用循環機構
 100N 負極用循環機構
 104 正極電極
 105 負極電極
 106 正極電解液用タンク
 107 負極電解液用タンク
 108、109、110、111 導管
 112、113 ポンプ
 200 サブスタック
 210 給排板
 220 エンドプレート
 230 締付機構

Claims (4)

  1.  レドックスフロー電池の電極が配置される双極板であって、
     前記双極板の平面に対して垂直な断面を見たときに、外周縁部における角部の曲率半径が0.1mm以上4.0mm以下である双極板。
  2.  請求項1に記載の双極板と、前記双極板の外周に設けられる枠体とを備えるセルフレーム。
  3.  請求項2に記載のセルフレームを備えるセルスタック。
  4.  請求項3に記載のセルスタックを備えるレドックスフロー電池。
PCT/JP2017/001615 2017-01-18 2017-01-18 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 WO2018134928A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP17794206.7A EP3573161B1 (en) 2017-01-18 2017-01-18 Bipolar plate, cell frame, cell stack, and redox flow cell
AU2017261462A AU2017261462B2 (en) 2017-01-18 2017-01-18 Bipolar plate, cell frame, cell stack, and redox flow battery
JP2017544043A JP6765642B2 (ja) 2017-01-18 2017-01-18 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
US15/574,898 US20190221863A1 (en) 2017-01-18 2017-01-18 Bipolar plate, cell frame, cell stack, and redox flow battery
PCT/JP2017/001615 WO2018134928A1 (ja) 2017-01-18 2017-01-18 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
KR1020177033085A KR101856432B1 (ko) 2017-01-18 2017-01-18 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
DE202017106988.5U DE202017106988U1 (de) 2017-01-18 2017-11-17 Bipolarplatte, Zellrahmen, Zellenstapel und Redox-Fluss-Batterie
CN201810035542.0A CN108336377B (zh) 2017-01-18 2018-01-15 双极板、电池单元框架、电池单元堆和氧化还原液流电池
CN201820059501.0U CN207834459U (zh) 2017-01-18 2018-01-15 双极板、电池单元框架、电池单元堆和氧化还原液流电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001615 WO2018134928A1 (ja) 2017-01-18 2017-01-18 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2018134928A1 true WO2018134928A1 (ja) 2018-07-26

Family

ID=60676553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001615 WO2018134928A1 (ja) 2017-01-18 2017-01-18 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Country Status (8)

Country Link
US (1) US20190221863A1 (ja)
EP (1) EP3573161B1 (ja)
JP (1) JP6765642B2 (ja)
KR (1) KR101856432B1 (ja)
CN (2) CN108336377B (ja)
AU (1) AU2017261462B2 (ja)
DE (1) DE202017106988U1 (ja)
WO (1) WO2018134928A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856432B1 (ko) * 2017-01-18 2018-05-09 스미토모덴키고교가부시키가이샤 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
CN110323466A (zh) * 2019-07-09 2019-10-11 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种新型燃料电池石墨双极板结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246061A (ja) 2001-02-15 2002-08-30 Sumitomo Electric Ind Ltd レドックスフロー2次電池用セルフレーム構造およびその製造方法
JP2005228622A (ja) 2004-02-13 2005-08-25 Sumitomo Electric Ind Ltd レドックスフロー電池セル
JP2005347106A (ja) * 2004-06-03 2005-12-15 Sumitomo Electric Ind Ltd レドックスフロー電池セル
JP2012216510A (ja) * 2011-03-31 2012-11-08 Sumitomo Electric Ind Ltd 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
WO2016072192A1 (ja) * 2014-11-06 2016-05-12 住友電気工業株式会社 電池セル、およびレドックスフロー電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367658A (ja) * 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム及びレドックスフロー電池
KR100649204B1 (ko) * 2004-09-24 2006-11-24 삼성에스디아이 주식회사 연료 전지 시스템, 스택 및 세퍼레이터
US8785023B2 (en) * 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
AU2015381015B2 (en) * 2015-04-14 2017-04-20 Sumitomo Electric Industries, Ltd. Frame body, cell frame for redox flow battery, and redox flow battery
DE212015000124U1 (de) * 2015-08-21 2016-12-07 Sumitomo Electric Industries, Ltd. Rahmenkörper, Zellenrahmen für eine Redox-Flussbatterie, und Redox-Flussbatterie
KR101856432B1 (ko) * 2017-01-18 2018-05-09 스미토모덴키고교가부시키가이샤 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246061A (ja) 2001-02-15 2002-08-30 Sumitomo Electric Ind Ltd レドックスフロー2次電池用セルフレーム構造およびその製造方法
JP2005228622A (ja) 2004-02-13 2005-08-25 Sumitomo Electric Ind Ltd レドックスフロー電池セル
JP2005347106A (ja) * 2004-06-03 2005-12-15 Sumitomo Electric Ind Ltd レドックスフロー電池セル
JP2012216510A (ja) * 2011-03-31 2012-11-08 Sumitomo Electric Ind Ltd 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
WO2016072192A1 (ja) * 2014-11-06 2016-05-12 住友電気工業株式会社 電池セル、およびレドックスフロー電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573161A4

Also Published As

Publication number Publication date
AU2017261462A1 (en) 2018-08-02
CN108336377A (zh) 2018-07-27
CN108336377B (zh) 2020-12-01
EP3573161B1 (en) 2021-04-21
KR101856432B1 (ko) 2018-05-09
DE202017106988U1 (de) 2017-11-30
JPWO2018134928A1 (ja) 2019-11-07
AU2017261462B2 (en) 2022-10-13
US20190221863A1 (en) 2019-07-18
EP3573161A4 (en) 2020-08-19
JP6765642B2 (ja) 2020-10-07
EP3573161A1 (en) 2019-11-27
CN207834459U (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
KR102511250B1 (ko) 레독스 플로우 전지용 셀 프레임, 레독스 플로우 전지용 셀 스택 및 레독스 플로우 전지
WO2017033237A1 (ja) 枠体、レドックスフロー電池用セルフレーム及びレドックスフロー電池
WO2016072192A1 (ja) 電池セル、およびレドックスフロー電池
JP6730693B2 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP6836723B2 (ja) セルフレーム、セルスタック、およびレドックスフロー電池
JP2017041418A (ja) 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
US10680254B2 (en) Redox flow battery
JP2017010791A (ja) セルフレーム、セルスタック、及びレドックスフロー電池
WO2018134928A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP7435479B2 (ja) 電池セル、セルスタック、及びレドックスフロー電池
US10199664B2 (en) Frame body, cell frame, cell stack, and redox flow battery
TW202036971A (zh) 電池單元、單元堆及氧化還原電池
WO2018134927A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
TW202046546A (zh) 電池單元、單元堆及氧化還原電池
JP2020129502A (ja) 電池セル、セルスタック、及びレドックスフロー電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017544043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020177033085

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017261462

Country of ref document: AU

Date of ref document: 20170118

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17794206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE