WO2016072110A1 - 排ガス処理方法及び脱硝・so3還元装置 - Google Patents

排ガス処理方法及び脱硝・so3還元装置 Download PDF

Info

Publication number
WO2016072110A1
WO2016072110A1 PCT/JP2015/067449 JP2015067449W WO2016072110A1 WO 2016072110 A1 WO2016072110 A1 WO 2016072110A1 JP 2015067449 W JP2015067449 W JP 2015067449W WO 2016072110 A1 WO2016072110 A1 WO 2016072110A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
denitration
reduction
catalyst layer
Prior art date
Application number
PCT/JP2015/067449
Other languages
English (en)
French (fr)
Inventor
耕次 東野
澤田 明宏
圭司 藤川
米村 将直
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP15783949.9A priority Critical patent/EP3045220B1/en
Priority to US14/888,112 priority patent/US20160236145A1/en
Priority to KR1020157031311A priority patent/KR101789902B1/ko
Priority to CN201580000668.9A priority patent/CN105813714B/zh
Priority to ES15783949.9T priority patent/ES2674558T3/es
Publication of WO2016072110A1 publication Critical patent/WO2016072110A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas treatment method and a denitration / SO 3 reduction device, and more particularly to an exhaust gas treatment method and a denitration / SO 3 reduction device for combustion exhaust gas containing sulfur trioxide.
  • the present invention provides an exhaust gas treatment method and a denitration / SO 3 reduction device that lower the processing cost than before, reduce NO x in combustion exhaust gas, and reduce the SO 3 concentration. With the goal.
  • an exhaust gas treatment method adds a compound containing H element and C element as a first additive to combustion exhaust gas containing SO 3 in addition to NO X , and then Ti.
  • a catalyst containing, as a support one or more oxides of an element selected from the group consisting of Si, Zr and Ce and / or a mixed oxide and / or composite oxide of two or more elements selected from the group SO 3 is reduced to SO 2 .
  • the first additive includes olefinic hydrocarbons having 2 to 5 carbon atoms (unsaturated hydrocarbons), paraffinic hydrocarbons having 2 to 5 carbon atoms (saturated hydrocarbons), alcohols, aldehydes, and aromatic compounds It is suitable that it is 1 or more types chosen from the group which consists of. Further, the olefinic hydrocarbon having 2 to 5 carbon atoms (unsaturated hydrocarbon) is at least one selected from the group consisting of C 2 H 4 , C 3 H 6 , C 4 H 8 and C 5 H 10 . Those are preferred. The C 4 H 8 and C 5 H 10 may be any one of geometric isomers or racemates.
  • the carrier is preferably one or more mixed oxides and / or complex oxides selected from the group consisting of TiO 2 —SiO 2 , TiO 2 —ZrO 2 and TiO 2 —CeO 2 .
  • mixed oxide and / or composite oxide with TiO 2 can be used, and the reduction performance of SO 3 to SO 2 can be drastically improved with a solid acid amount of a predetermined value or more. .
  • the catalyst may be V 2 O 5 , WO 3 , MoO 3 , Mn 2 O 3 , MnO 2 with one or more selected from the group consisting of the oxide, the mixed oxide and the composite oxide as a support.
  • NiO and Co 3 O 4 can be used as a catalyst carrying one or more metal oxides selected from the group consisting of NiO and Co 3 O 4 .
  • the catalyst includes at least one selected from the group consisting of Ag, Ag 2 O, and AgO, with one or more selected from the group consisting of the oxide, the mixed oxide, and the composite oxide as a support.
  • a supported catalyst can also be used.
  • the catalyst includes a metallosilicate complex oxide in which at least a part of Al and / or Si in the zeolite crystal structure is substituted with one or more selected from the group consisting of Ti, V, Mn, Fe and C Firm. Can be coated or impregnated.
  • the first additive can be added simultaneously by some modification of the ammonia supply line equipment incidental to existing denitration apparatus, it is possible to contribute to a reduction in SO 3 in the combustion exhaust gas .
  • the treatment for reducing SO 3 to SO 2 is preferably performed within a temperature range of 250 ° C. to 450 ° C. Further, the treatment for reducing SO 3 to SO 2 is more preferably performed within a temperature range of 300 ° C. or more and 400 ° C. or less.
  • the present invention is a denitration / SO 3 reduction device in another aspect.
  • a denitration / SO 3 reduction device according to the present invention is provided near a first injection device for adding a first additive to combustion exhaust gas containing SO 3 in addition to NO X , and the first injection device.
  • the catalyst is one or more oxides of elements selected from the group consisting of Ti, Si, Zr and Ce and / or two or more mixed oxides of elements selected from the group and / or A composite oxide is used as a support.
  • the catalyst layer is a first catalyst layer that reduces the SO 3 concentration disposed downstream of the first injection device, and denitration disposed downstream of the second injection device.
  • the first catalyst layer can be arranged in the upstream or downstream of the second catalyst layer.
  • an exhaust gas treatment method and a denitration / SO 3 reduction device that lower the processing cost than before, denitrate NO x in combustion exhaust gas, and lower the SO 3 concentration.
  • FIG. 1 is a schematic diagram for explaining a first embodiment of a denitration / SO 3 reduction apparatus according to the present invention.
  • FIG. 2 is a schematic diagram for explaining a second embodiment of the denitration / SO 3 reduction device according to the present invention.
  • FIG. 3 is a schematic view for explaining a third embodiment of the denitration / SO 3 reduction device according to the present invention.
  • FIG. 4 is a graph showing changes in the SO 3 concentration in the combustion exhaust gas for Example 1 according to the present invention.
  • FIG. 5 is a graph showing changes in SO 3 concentration in the combustion exhaust gas in Example 2 according to the present invention.
  • FIG. 6 is a graph showing the SO 3 reduction rate and the denitration rate in the combustion exhaust gas for Example 2 according to the present invention.
  • FIG. 1 is a schematic diagram for explaining a first embodiment of a denitration / SO 3 reduction apparatus according to the present invention.
  • FIG. 2 is a schematic diagram for explaining a second embodiment of the denitration / SO 3 reduction device according
  • FIG. 7 is a graph showing the SO 3 reduction rate and the denitration rate by the catalyst for Example 3 according to the present invention.
  • FIG. 8 is a graph showing the relationship between the amount of solid acid and the SO 3 reduction rate for Example 3 according to the present invention.
  • FIG. 9 is a graph showing the SO 3 reduction rate and the denitration rate by the catalyst for Example 4 according to the present invention.
  • FIG. 10 is a graph showing the SO 3 reduction rate by the catalyst for Example 5 according to the present invention.
  • FIG. 11 is a graph showing the denitration rate by a catalyst in Example 5 according to the present invention.
  • combustion exhaust gas an exhaust gas in an oxidizing atmosphere in which petroleum or coal-derived fuel is burned by a boiler.
  • combustion exhaust gas an exhaust gas in an oxidizing atmosphere in which petroleum or coal-derived fuel is burned by a boiler.
  • the flow direction of the combustion exhaust gas is expressed as a front flow or a back flow.
  • FIG. 1 shows a first embodiment in which a denitration / SO 3 reduction device according to the present invention is arranged in the downstream of a boiler.
  • a denitration / SO 3 reduction device 5 shown in FIG. 1 is provided downstream of a flue gas flue 2 of a boiler that generates combustion exhaust gas in a furnace 1.
  • the boiler burns fuel supplied from the outside in the furnace 1 and discharges the combustion exhaust gas generated by the combustion into the exhaust gas flue 2. Against the flue gas flowing through the exhaust gas flue 2, performed by denitration ⁇ SO 3 reduction device 5 provided on the downstream of the flue 2, reduction of the denitration and SO 3 of the NO X at the same time.
  • the main processing for reducing SO 3 to SO 2 is also referred to as SO 3 reduction processing.
  • the ECO 3 provided in the exhaust gas flue 2 through which the combustion exhaust gas circulates exchanges heat between the boiler feed water and the combustion exhaust gas that circulates in the inside. That is, the combustion efficiency of a boiler is improved by raising the feed water temperature to a boiler using the residual heat of combustion exhaust gas.
  • One end of the ECO bypass 4 communicates with the upstream of the ECO 3 and the other end communicates with the downstream of the ECO 3.
  • the combustion exhaust gas before being supplied to the ECO 3 bypasses the ECO 3 and is denitrated and SO 3 reducing device 5. Supplied to the inlet side.
  • the ECO bypass 4 controls the temperature of the combustion exhaust gas supplied to the denitration / SO 3 reduction device 5 within a predetermined temperature range suitable for the denitration / reduction reaction.
  • the denitration / SO 3 reduction device 5 is provided in the exhaust gas flue 2 and includes at least a first injection device 6, a second injection device 7, and a catalyst layer 8.
  • the denitration / SO 3 reduction device 5 adds the first additive and the second additive to the combustion exhaust gas, and allows the combustion exhaust gas to which the additive is added to pass through the catalyst layer 8.
  • the denitration / SO 3 reduction device 5 performs SO 3 reduction treatment using the catalyst layer 8, the first injection device 6, and the second injection device 7. Further, the denitration / SO 3 reduction device 5 is preferably configured to simultaneously add the first additive and the second additive.
  • the first injection device 6 is arranged upstream of the denitration / SO 3 reduction device 5 and downstream of the ECO bypass 4 and adds the first additive to the combustion exhaust gas containing SO 3 in addition to NO X. . That is, the first injection device 6 cooperates with the catalyst layer 8 to reduce SO 3 in the combustion exhaust gas.
  • the first additive injected from the first injection device 6 is an SO 3 reducing agent mainly for reducing SO 3 to SO 2 , and is a carbon element having SO 3 reducing ability in an oxygen atmosphere. Hydrocarbons composed of (C) and / or elemental hydrogen (H) can be used.
  • the first additive is an olefinic hydrocarbon (unsaturated hydrocarbon) represented by the general formula: C n H 2n (n is an integer of 2 to 5), the general formula: C m H 2m + 2 (M is an integer of 2 to 5) paraffinic hydrocarbons (saturated hydrocarbons), alcohols such as methanol (CH 3 OH), ethanol (C 2 H 5 OH), acetaldehyde (CH 3 CHO), propion
  • aldehydes such as aldehyde (C 2 H 5 CHO)
  • aromatic compounds such as toluene (C 6 H 5 CH 3 ) and ethylbenzene (C 6 H 5 C 2 H 5 ) It is an agent.
  • the olefinic hydrocarbon having 2 to 5 carbon atoms is preferably at least one selected from the group consisting of C 2 H 4 , C 3 H 6 , C 4 H 8 and C 5 H 10.
  • One or more selected from the group consisting of C 3 H 6 , C 4 H 8 and C 5 H 10 having 3 or more carbon atoms is more preferred.
  • the C 4 H 8 and C 5 H 10 may be any one of geometric isomers or racemates.
  • Examples of the unsaturated hydrocarbon having 4 or more carbon atoms include 2-butene (2-C 4 H 8 ) such as 1-butene (1-C 4 H 8 ), cis-2-butene, and trans-2-butene.
  • 2-pentene (2-C 5 H 10 ) such as isobutene (iso-C 4 H 8 ), 1-pentene (1-C 5 H 10 ), cis-2-pentene, trans-2-pentene, etc. .
  • 2-pentene (2-C 5 H 10 ) such as isobutene (iso-C 4 H 8 ), 1-pentene (1-C 5 H 10 ), cis-2-pentene, trans-2-pentene, etc.
  • it can greatly contribute to the reduction of SO 3 under an excess atmosphere of oxygen, and the SO 3 concentration in the combustion exhaust gas can be lowered.
  • the amount of the first additive added is preferably 0.1 to 2.0 in terms of the molar ratio of C 3 H 6 / SO 3 . If it is less than 0.1, the oxidation of SO 2 becomes dominant and SO 3 may increase. If it exceeds 2.0, excessive C 3 H 6 may be discharged in a large amount without being reacted. is there. Within the above range, it is possible to improve the SO 3 removal performance in the combustion exhaust gas. Note that there is an effect of removing SO 3 even outside the specified range.
  • the second injection device 7 is arranged close to the first injection device 6 and adds NH 3 as a second additive to the combustion exhaust gas. Second injection device 7 is disposed on the upstream and Wake of ECO bypass 4 denitration ⁇ SO 3 reduction device 5 injects the second additive to denitration the NO X in the flue gas. Second injection device 7 denitrating NO X in cooperation with the catalyst layer 8.
  • the catalyst layer 8 is made of a catalyst for denitrating combustion exhaust gas.
  • the shape of the catalyst arranged in the catalyst layer 8 is preferably a honeycomb shape in order to function efficiently as a denitration catalyst and to reduce pressure loss in the combustion exhaust gas treatment.
  • the honeycomb structure is not limited to a rectangular cross section, and may have a cross section such as a circle, an ellipse, a triangle, a pentagon, and a hexagon.
  • the catalyst arranged in the catalyst layer 8 is a catalyst supporting an active component using an oxide, a mixed oxide and / or a composite oxide as a carrier.
  • the carrier includes one or more oxides of elements selected from the group consisting of titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) and / or from the group. Two or more mixed oxides and / or complex oxides of the selected elements may be mentioned. That is, the carrier includes at least the following forms.
  • the composite oxide can be prepared by mixing an alkoxide compound, chloride, sulfate or acetate, further mixing with water, stirring in an aqueous solution or sol state, and hydrolyzing. Further, the composite oxide may be prepared by a known coprecipitation method other than the sol-gel method described above.
  • the active ingredients include vanadia (V 2 O 5 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), manganese oxide (Mn 2 O 3 ), manganese dioxide (MnO 2 ), nickel oxide (NiO) and oxidation.
  • the active ingredient may be one or more selected from the group consisting of silver (Ag), silver oxide (Ag 2 O), and silver monoxide (AgO).
  • the active metal supported on the catalyst serves as an active point, and NO X such as NO and NO 2 can be efficiently denitrated in the presence of oxygen, and the SO 3 in the combustion exhaust gas can be removed in an excess atmosphere of oxygen. Allows reduction.
  • the active ingredient preferably contains tungsten oxide (WO 3 ).
  • At least a part of aluminum element (Al) and / or silicon element (Si) in the zeolite crystal structure is composed of titanium element (Ti), vanadium element (V), manganese element (Mn), iron.
  • Ti titanium element
  • V vanadium element
  • Mn manganese element
  • What coated or impregnated the metallosilicate system complex oxide substituted by 1 or more sorts chosen from the group which consists of an element (Fe) and cobalt element (C Cincinnati) can also be used.
  • Such a metallosilicate is prepared, for example, by mixing water glass as a silicon source and at least part of the silicon element with a metal element source to be substituted and a structure indicator, and charging the mixture in an autoclave. It can be prepared by using.
  • exhaust gas treatment method The first embodiment of the exhaust gas treatment method according to the present invention will be described by describing the operation mode of the denitration / SO 3 reduction device according to the first embodiment.
  • the exhaust gas treatment method of the present embodiment performs at least SO 3 reduction treatment.
  • the SO 3 reduction treatment is preferably performed within a temperature range of 250 ° C. or higher and 450 ° C. or lower, and more preferably performed within a temperature range of 300 ° C. or higher and 400 ° C. or lower. If it is lower than 300 ° C., the denitration treatment may be insufficient, and if it exceeds 400 ° C., the reduction of SO 3 may be insufficient due to self-decomposition of the first additive.
  • the SO 3 concentration during the treatment of combustion exhaust gas can be reduced, and the material cost of the catalyst can be suppressed without using an expensive catalyst.
  • the denitration / SO 3 reduction device 15 according to the present embodiment is the first embodiment in that the catalyst layer is divided into first and second catalyst layers, and the first injection device is disposed between them. This is different from the denitration / SO 3 reduction device 5.
  • the denitration / SO 3 reduction device 15 shown in FIG. 2 is provided in the exhaust gas flue 2 and adds a first additive 16 for adding the first additive to the combustion exhaust gas, and a second additive to the combustion exhaust gas.
  • a second injection device 17 that performs the denitration of the combustion exhaust gas.
  • the catalyst layer includes a first catalyst layer 18 that reduces the SO 3 concentration, and a second catalyst layer 19 that is disposed upstream of the first catalyst layer 18 and performs denitration.
  • the denitration / SO 3 reduction device 15 adds the second additive from the second injection device 17 to the combustion exhaust gas flowing from the exhaust gas flue 2, and then passes the second catalyst layer 19.
  • the denitration / SO 3 reduction device 15 adds the first additive from the first injection device 16 to the combustion exhaust gas that has passed through the second catalyst layer 19, and then passes the first catalyst layer 18. .
  • the first injection device 16 is disposed upstream of the first catalyst layer 18 and downstream of the second catalyst layer 19 in the exhaust gas flue 2.
  • the first catalyst layer 18 is disposed downstream of the second catalyst layer 19. Further, the first injection unit 16, to the flue gas, injecting a first additive for reducing the SO 3 concentration.
  • the second injection device 17 is arranged upstream of the second catalyst layer 19 in the exhaust gas flue 2.
  • the second injection unit 17 injects against flue gas, a second additive for denitrating NO X.
  • the denitration apparatus provided in the existing plant is employable, for example.
  • the same ones as in the first embodiment can be applied.
  • the second additive injected from the second injection device 17 and the catalyst provided in the second catalyst layer 19 are the same as those in the first embodiment, and a known denitration catalyst (for example, V 2). O 5 -TiO 2 ) can also be applied.
  • exhaust gas treatment method The second embodiment of the exhaust gas treatment method according to the present invention will be described by describing the operation mode of the denitration / SO 3 reduction device according to the second embodiment.
  • the exhaust gas treatment method of the present embodiment performs at least SO 3 reduction treatment.
  • NH 3 as the second additive is added to the combustion exhaust gas from the second injection device 17 as a pretreatment for the combustion exhaust gas containing at least NO X and SO 3, and then The denitration catalyst is brought into contact with the combustion exhaust gas at the second catalyst layer 19 provided in the flow. Thereafter, the workup, the SO 3 additive than the first injection device 16 is added to the flue gas, it causes in a first catalyst layer 18 provided on the subsequent flow into contact with the combustion exhaust gas to the catalyst for SO 3.
  • the same temperature range as in the first embodiment can be adopted as the processing temperature for the SO 3 reduction treatment.
  • the denitration / SO 3 reduction device and the exhaust gas treatment method according to the second embodiment it becomes possible to treat SO 3 more efficiently on the downstream side of the existing denitration device, as well as denitration / SO 3. Catalyst exchange corresponding to the reduction of the respective catalytic functions of reduction is facilitated.
  • the denitration / SO 3 reduction device 25 according to the present embodiment is the second in that the first injection device and the first catalyst layer are arranged upstream of the second injection device and the second catalyst layer. This is different from the denitration / SO 3 reduction device 15 of the embodiment.
  • a denitration / SO 3 reduction device 25 shown in FIG. 3 is provided in the exhaust gas flue 2, and includes a first injection device 26, a second injection device 27, a first catalyst layer 28, and a second catalyst layer. 29 at least.
  • the denitration / SO 3 reduction device 25 adds the second additive from the first injection device 26 to the combustion exhaust gas flowing in from the exhaust gas flue 2 and then passes the first catalyst layer 28. Further, the denitration / SO 3 reduction device 25 adds the second additive from the second injection device 27 to the combustion exhaust gas that has passed through the first catalyst layer 28, and then allows the second catalyst layer 29 to pass through. .
  • the first injection device 26 is disposed upstream of the first catalyst layer 28 and upstream of the second catalyst layer 29 in the exhaust gas flue 2.
  • the first catalyst layer 28 is disposed upstream of the second catalyst layer 29.
  • the first injection device 26 injects a first additive for reducing the SO 3 concentration into the combustion exhaust gas.
  • the second injection device 27 is disposed upstream of the second catalyst layer 29 in the exhaust gas flue 2.
  • the second injection unit 27 injects against flue gas, a second additive for denitrating NO X. Note that a denitration device provided in an existing plant can be applied to the second injection device 27 and the second catalyst layer 29 as in the second embodiment.
  • the same ones as in the first and second embodiments can be applied.
  • the second additive injected from the second injection device 27 and the catalyst provided in the second catalyst layer 29 are also known denitration catalysts (for example, V 2) in addition to those similar to the first embodiment. O 5 -TiO 2 ) can also be applied.
  • exhaust gas treatment method the third embodiment of the exhaust gas treatment method according to the present invention will be described by explaining the operation mode of the denitration / SO 3 reduction device according to the third embodiment.
  • the exhaust gas treatment method of the present embodiment performs at least SO 3 reduction treatment.
  • an additive for SO 3 was added to the combustion exhaust gas from the first injection device 26 and provided downstream.
  • the SO 3 catalyst is brought into contact with the combustion exhaust gas.
  • NH 3 is added as a second additive from the second injection device 27 to the combustion exhaust gas, and the denitration catalyst is brought into contact with the combustion exhaust gas in the second catalyst layer 29 provided downstream.
  • the same temperature range as in the first and second embodiments can be adopted as the treatment temperature for the SO 3 reduction treatment.
  • the denitration / SO 3 reduction device and the exhaust gas treatment method according to the third embodiment it becomes possible to treat SO 3 more efficiently on the downstream side of the existing denitration device, as well as denitration / SO 3. Catalyst exchange corresponding to the reduction of the catalytic function of each reduction is facilitated.
  • Example 1 By changing the catalyst, the effect of reducing SO 3 to SO 2 by the first additive (SO 3 reducing agent) was examined.
  • Catalyst A containing Ru (ruthenium) that also functions as a catalyst for reducing SO 3 to SO 2 was prepared.
  • Ru ruthenium
  • an anatase-type titania powder containing 10 wt% tungsten oxide (WO 3 ) per 100 wt% titania (TiO 2 ) with an aqueous ruthenium chloride (RuCl 3 ) solution 100 wt% anatase titania powder Per 1 wt% of Ru was supported on the powder, evaporated and dried. Thereafter, calcination was carried out at 500 ° C. for 5 hours, and the obtained powder was used as catalyst A.
  • Catalyst B was prepared as a typical catalyst having a denitration function with ammonia.
  • Ti (O—iC 3 H 7 ) 4 that is a Ti alkoxide and Si (OCH 3 ) 3 that is a Si alkoxide are mixed at a weight ratio of 95: 5 (as TiO 2 and SiO 2 , respectively), and 80 ° C.
  • the sol produced by stirring and aging was filtered, and the resulting gelled product was washed, dried, and then heated and fired at 500 ° C. for 5 hours to obtain powdered TiO 2. give -SiO 2 composite oxide (TiO 2 -SiO 2 powder).
  • a representative catalyst C having a denitration function with ammonia was prepared.
  • Ti (O—iC 3 H 7 ) 4 that is a Ti alkoxide and Zr (Oi—C 4 H 9 ) 4 that is a Zr alkoxide are mixed at a wt% ratio of 95: 5 (as TiO 2 and ZrO 2 , respectively).
  • it is hydrolyzed by adding to water at 80 ° C., and then the sol formed by stirring and aging is filtered, and the resulting gelled product is washed, dried, heated and fired at 500 ° C. for 5 hours, A TiO 2 —ZrO 2 composite oxide (TiO 2 —ZrO 2 powder) was obtained.
  • ammonium paratungstate the ((NH 4) 10 H 10 W 12 O 46 ⁇ 6H 2 O) was impregnated with 10 wt% aqueous methylamine solution, composite oxide per 100 wt%, the WO 3 8 wt% was supported, evaporated to dryness, and then fired at 500 ° C. for 5 hours.
  • the obtained powder was designated as Catalyst C.
  • Catalyst D with only titania (TiO 2 ) was prepared.
  • Anatase-type titania powder in the same amount as catalyst A was calcined at 500 ° C. for 5 hours to prepare powdered catalyst D.
  • Test Examples 1 to 5 80 wt% of water was added to 20 wt% of each of the catalysts A to D, and wet ball milling was performed to obtain a wash coat slurry. Subsequently, a cordierite monolith substrate (7.4 mm pitch, wall thickness 0.6 mm) was dip-coated on the slurry, dried at 120 ° C., and then fired at 500 ° C. The coating amount was 100 g per 1 m 2 of the substrate surface area. Test Example 1 was conducted when Catalyst A was used and ammonia (NH 3 ) was used as the SO 3 reducing agent.
  • NH 3 ammonia
  • Test Example 2 was performed using Catalyst A and propylene (C 3 H 6 ) as the SO 3 reducing agent.
  • Test Example 3 was performed using Catalyst B and C 3 H 6 as the SO 3 reducing agent.
  • Test Example 4 was conducted using Catalyst C and C 3 H 6 as the SO 3 reducing agent.
  • Test Example 5 was conducted using Catalyst D and C 3 H 6 as the SO 3 reducing agent.
  • FIG. 4 shows the change in SO 3 concentration (ppm) relative to 0.03 to 0.08 m 2 ⁇ h / Nm 3 in Test Examples 1 to 5.
  • the SO 3 concentration with respect to the catalyst layer inlet hardly changed.
  • the SO 3 concentration at the catalyst layer inlet decreased from about 100 ppm to about 40 ppm at 0.06 m 2 ⁇ h / Nm 3 .
  • the SO 3 concentration at the catalyst layer inlet decreased from about 100 ppm to about 20 ppm at 0.08 m 2 ⁇ h / Nm 3 .
  • the SO 3 concentration at the catalyst layer inlet decreased from about 100 ppm to about 20 ppm at 0.08 m 2 ⁇ h / Nm 3 . Also in Test Example 5, the SO 3 concentration at the catalyst layer inlet decreased from about 100 ppm to about 25 ppm at 0.08 m 2 ⁇ h / Nm 3 .
  • Test Example 1 using Ru-containing catalyst A and NH 3 as the SO 3 reducing agent, it was found that the SO 3 concentration with respect to the catalyst layer inlet hardly changed.
  • Test Example 2 using Ru-containing catalyst A and C 3 H 6 as the SO 3 reducing agent, it was found that the SO 3 concentration in the combustion exhaust gas decreased.
  • Test Example 3 using the expensive catalyst B containing no Ru, it was found that the use of C 3 H 6 as the SO 3 reducing agent significantly reduces the SO 3 concentration in the combustion exhaust gas.
  • Test Example 4 using the catalyst C it was found that if C 3 H 6 was used as the SO 3 reducing agent, the SO 3 concentration in the combustion exhaust gas was significantly reduced.
  • Example 2 Hydrocarbons having different compositions were used as the first additive (SO 3 reducing agent), and the reduction effect of SO 3 on SO 2 due to the composition of the hydrocarbon compound was examined.
  • Example 10 (Preparation of Test Examples 6 to 10) Catalyst B was coated on a cordierite monolith substrate in the same manner as in Example 1. The coating amount was 100 g per 1 m 2 of the substrate surface area.
  • the case where C 3 H 6 is used as the SO 3 reducing agent is set as Test Example 6, the case where propane (C 3 H 8 ) is used is set as Test Example 7, and the case where methanol (CH 3 OH) is used is set as Test Example 8. And Example 9 was used when ethanol (C 2 H 5 OH) was used.
  • the test example 10 was a case where ammonia (NH 3 ) was used as the SO 3 reducing agent.
  • FIG. 5 shows the change in the SO 3 concentration (ppm) in the combustion exhaust gas with respect to 0.04 to 0.08 m 2 ⁇ h / Nm 3 in Test Examples 6 to 10.
  • the concentration of SO 3 in the combustion exhaust gas with respect to the catalyst layer inlet decreased.
  • Test Example 10 a decrease in SO 3 concentration in the combustion exhaust gas with respect to the catalyst layer inlet was not confirmed.
  • Test Examples 5 and 6 using C 3 H 6 and C 3 H 8 as SO 3 reducing agents are more combustible than Test Examples 8 and 9 using CH 3 OH and C 2 H 5 OH as SO 3 reducing agents.
  • the SO 3 concentration in the exhaust gas decreased.
  • Test Example 6 using C 3 H 6 as the SO 3 reducing agent showed the most remarkable effect of reducing the SO 3 concentration.
  • Catalyst E was coated on a cordierite monolith substrate in the same manner as in Example 1.
  • the case of using methanol (CH 3 OH) as the SO 3 reducing agent is set as Test Example 11
  • the case of using ethanol (C 2 H 5 OH) is set as Test Example 12
  • propane (C 3 H 8 ) is used.
  • the case of using was designated as Test Example 13.
  • FIG. 6 shows the reduction rate (%) and the denitration rate (%) of SO 3 with respect to 0.080 m 2 ⁇ h / Nm 3 in Test Examples 11 to 18.
  • the SO 3 reduction rate of Test Example 11 using alcohols was 5.0%
  • the SO 3 reduction rate of Test Example 12 was 6.0%
  • the SO 3 reduction rate of Test Example 13 using saturated hydrocarbon or unsaturated hydrocarbon is 10.0%
  • the SO 3 reduction rate of Test Example 14 is 20.0%, which is a high value. showed that.
  • the SO 3 reduction rate of Test Example 15 using an unsaturated hydrocarbon having 3 or more carbon atoms is 58.0%
  • the SO 3 reduction rate of Test Example 16 is 50.2%
  • the SO 3 reduction rate was 54.2%
  • the SO 3 reduction rate of Test Example 18 was 63.5%, indicating a very high value.
  • test Example 11 using alcohols was 92.6%, and the denitration rate in Test Example 12 was 93.2%.
  • the denitration rate of Test Example 13 using saturated hydrocarbons or unsaturated hydrocarbons was 94.1%, and the denitration rate of Test Example 14 was 94.0%, indicating a high value.
  • Test Example 15 using unsaturated hydrocarbons having 3 or more carbon atoms is 95.1%, Test Example 16 is 92.1%, Test Example 17 is 92.3%, Test Example 18 was 91.8%, showing a sufficiently high value.
  • Example 3 Further, a catalyst having another composition was prepared, and the reduction effect of SO 3 to SO 2 and the denitration effect by the catalyst composition were examined.
  • catalyst G A zirconia (ZrO 2 ) only catalyst was prepared.
  • Zirconium oxychloride (ZrOCl 2 ) powder was calcined at 500 ° C. for 5 hours, and the obtained powder was used as catalyst G.
  • catalyst H A catalyst containing only cerium oxide (Ce 2 O 3 ) was prepared. Cerium nitrate (Ce (NO 3 ) 2 ) powder was calcined at 500 ° C. for 5 hours, and the obtained powder was used as catalyst H.
  • Test Examples 19 to 24 Catalyst D, TiO 2 -SiO 2 powder B, TiO 2 -ZrO 2 powder C, F, for each 20 wt% of G and H, respectively, the water 80 wt% was added, subjected to wet ball milling, the washcoat Then, a ceramic base material mainly composed of kaolinite was coated, and Test Examples 19 to 24 were made.
  • the composition of each test example is shown in Table 1. In the table, the average value obtained by measuring two samples using the value obtained by dividing the carrying amount obtained from the weight difference before and after the coating by the surface area of the substrate was used as the average value of the coating amount.
  • FIG. 7 shows the reduction rate (%) and denitration rate (%) of SO 3 with respect to 0.080 m 2 ⁇ h / Nm 3 in Test Examples 19 to 24.
  • the SO 3 reduction rate of Test Example 19 using a single-component oxide is 16.5%
  • the SO 3 reduction rate of Test Example 23 is 23.1%
  • the Test Example The SO 3 reduction rate of 24 was 11.1%.
  • the SO 3 reduction rate of Test Example 20 using the composite oxide containing TiO 2 was 52.2%
  • the SO 3 reduction rate of Test Example 21 was 47.3%
  • the SO 3 reduction rate of Test Example 22 was 3 The reduction rate was 46.6%.
  • the NOx removal rate of Test Example 19 using a single component oxide is 32.8%
  • the NOx removal rate of Test Example 23 is 6.7%
  • the NOx removal rate of Test Example 24 is 19.1%. Met.
  • the NOx removal rate of Test Examples 20 to 22 using a composite oxide containing TiO 2 is 60.4%
  • the NOx removal rate of Test Example 21 is 39.3%
  • the NOx removal rate of Test Example 22 is It was 42.3%.
  • Test examples 20 to 22 using TiO 2 -SiO 2 powder, TiO 2 -ZrO 2 powder or TiO 2 -Ce 2 O 3 powder are test examples using TiO 2 powder, ZrO 2 powder or Ce 2 O 3 powder.
  • the reduction rate of SO 3 was higher than 19 and 23-24.
  • Test Examples 19 and 23 to 24 using a single component oxide the reduction rate of Test Example 19 using TiO 2 powder is high, and the reduction rate of Test Example 23 using ZrO 2 powder is the highest. It was.
  • Test Example 19 using TiO 2 —SiO 2 powder showed the most remarkable SO 3 reduction rate. From these results, it was found that the reduction rate of SO 3 was high by using a composite oxide, particularly a composite oxide containing TiO 2 . The above results were presumed to be due to the increase in the amount of solid acid due to the composite oxide.
  • Test Examples 19 to 24 were measured by the pyridine temperature-programmed adsorption desorption method. More specifically, 25 mg of each test example of the same amount of quartz powder was added and fixed to a quartz glass tube with kao wool. The quartz glass tube was installed in an electric furnace provided for FID gas chromatography, and then treated in a helium (He) stream at a temperature of 450 ° C. for 30 minutes. Thereafter, while maintaining the electric furnace at 150 ° C., 0.5 ⁇ l of pyridine was injected about 4 to 6 times until pulse saturation, and the pyridine was adsorbed to each test example.
  • He helium
  • the temperature of the electric furnace was increased at a rate of 30 ° C./min, the separated pyridine was measured by FID gas chromatography, and the solid acid amount of each test example was obtained from the peak value of the obtained TPD spectrum.
  • FIG. 8 shows the relationship between the amount of solid acid ( ⁇ mol / g ⁇ cat) measured in each of Test Examples 19 to 24 and the SO 3 reduction rate (%).
  • the catalyst with a larger amount of solid acid showed a higher SO 3 reduction rate.
  • the amount of solid acid was 200 ⁇ mol / g ⁇ cat or more and 300 ⁇ mol / g ⁇ cat or less. From these results, it was found that the higher the amount of solid acid, the more effective the reduction of SO 3 .
  • Example 4 Furthermore, a catalyst having another composition was prepared, and the reduction effect of SO 3 to SO 2 by the active metal and the denitration effect were examined.
  • Test Example 25 was carried out by adding 80 wt% of water to 20 wt% of catalyst H, performing wet ball milling to obtain a slurry for wash coating, and coating a ceramic substrate containing kaolinite as a main component. Further, a predetermined amount of each sulfate or nitrate solution used as a raw material for V 2 O 5 , MoO 3 , Ag, WO 3 , Mn 2 O 3 , NiO and Co 3 O 4 is added to the catalyst H, After impregnating and supporting, the ceramic substrate was coated in the same manner as in Test Example 25 to obtain Test Examples 26 to 32. The coating amount of each test example was measured in the same manner as in Example 3, and was about 100 g / m 2 . Table 2 shows the composition of each test example.
  • FIG. 9 shows the reduction rate (%) and the denitration rate (%) of SO 3 in the combustion exhaust gas with respect to 0.1 m 2 ⁇ h / Nm 3 in Test Examples 24 to 32.
  • the SO 3 reduction rate of Test Example 25 was 52.2%.
  • SO 3 reduction of the test example 26 is 11.4%
  • SO 3 reduction of the test example 27 is 44.5%
  • SO 3 reduction of the test Example 28 was 45.8% .
  • SO 3 reduction of the test example 29 is 56.0% SO 3 reduction of the test example 30 is 48.3% SO 3 reduction of the test example 31 is 41.8%
  • the SO 3 reduction rate of Test Example 32 was 39.7%.
  • the denitration rate of Test Example 25 was 60.4%.
  • the NOx removal rate of Test Example 26 is 94.4%
  • the NOx removal rate of Test Example 27 is 82.4%
  • the NOx removal rate of Test Example 28 is 55.5%
  • the NOx removal rate of Test Example 29 is The denitration rate in Test Example 30 was 50.9%
  • the denitration rate in Test Example 31 was 46.2%
  • the denitration rate in Test Example 32 was 44.3%. .
  • any test example carrying V 2 O 5 , MoO 3 , Ag, WO 3 , Mn 2 O 3 , MnO 2 , NiO or Co 3 O 4 uses C 3 H 6 as the SO 3 reducing agent.
  • SO 3 has a reduction effect and a denitration effect.
  • Test Examples 27 to 32 carrying MoO 3 , Ag, WO 3 , Mn 2 O 3 , MnO 2 , NiO or Co 3 O 4 a high SO 3 reduction effect was observed.
  • the reduction effect and the denitration effect were recognized especially in Test Example 29 carrying WO 3 . From this, it was found that the catalyst containing WO 3 is effective.
  • Example 5 Furthermore, a catalyst having another composition was newly prepared, and both the reducing ability and denitration ability of SO 3 were evaluated.
  • Test Example 35 The catalyst J was coated with a metallosilicate at 25 g / m 2 to obtain Test Example 35 using the catalyst K.
  • Test Example 36 was carried out using the catalyst B. 100 wt% of the composite oxide per, V 2 O 5 of 0.7 wt%, except that was 9 wt% carrying WO 3, in the same manner as the preparation of the catalyst B, carrying the V 2 O 5 -WO 3 to TiO 2 Prepared Catalyst L was used as Test Example 37. Table 3 shows the composition of each test example.
  • FIG. 10 shows the reduction rate (%) of SO 3 in the combustion exhaust gas with respect to 0.1 (1 / AV: m 2 ⁇ h / Nm 3 ) in Test Examples 33 to 37.
  • the SO 3 reduction rate of Test Example 33 was 33.3%.
  • SO 3 reduction of the test example 34 is 58.4% SO 3 reduction of the test example 35 is 75.6% SO 3 reduction of the test example 36 is 68.6%
  • the SO 3 reduction rate of Test Example 37 was 79.9%.
  • FIG. 11 shows the denitration rate (%) in the combustion exhaust gas with respect to 0.10 (1 / AV: m 2 ⁇ h / Nm 3 ) in Test Examples 33 to 37.
  • the NOx removal rate of Test Example 33 is 95.3%
  • the NOx removal rate of Test Example 34 is 95.1%
  • the NOx removal rate of Test Example 35 is 91.1%.
  • the NOx removal rate of Example 36 was 91.4%
  • the NOx removal rate of Test Example 37 was 91.8%.
  • Test Examples 34 to 37 showed higher reduction performance of SO 3 to SO 2 as expected than Test Example 33.
  • the exhaust gas treatment method and the denitration / SO 3 reduction device According to the exhaust gas treatment method and the denitration / SO 3 reduction device according to the present invention, it is possible to lower the treatment cost than before, denitrate NO X in the combustion exhaust gas, and simultaneously reduce the SO 3 concentration. can do.
  • Furnace 2 Flue gas flue 3: ECO 4: ECO bypass 5, 15, 25: Denitration / SO 3 reduction device 6, 16, 26: First injection device 7, 17, 27: Second injection device 8: Catalyst layer 18, 28: First catalyst Layers 19, 29: second catalyst layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、従来よりも処理コストを低下させ、燃焼排ガス中のSOの濃度を効率的に低減させるとともに、NOを低減する排ガス処理方法及び脱硝・SO還元装置を提供する。本発明に係る排ガス処理方法は、NOに加え、SOを含有する酸化雰囲気下での燃焼排ガスに、第一の添加剤としてH元素及びC元素を含む化合物を添加した後、Ti、Si、Zr及びCeからなる群より選ばれる元素の1種以上の酸化物及び/又は前記群より選ばれる元素の2種以上の混合酸化物及び/又は複合酸化物を担体として含む触媒に接触させSOをSOに還元処理する。

Description

排ガス処理方法及び脱硝・SO3還元装置
 本発明は、排ガス処理方法及び脱硝・SO還元装置に関し、特に、三酸化硫黄を含む燃焼排ガスに対する排ガス処理方法及び脱硝・SO還元装置に関する。
 従来より、大気汚染防止の観点から、各種燃焼炉から発生する燃焼排ガスを処理する排ガス処理方法及び装置が強く要望されている。このような燃焼排ガスは、窒素酸化物(NO)と多量の硫黄酸化物(SO)とを含有している。NOの処理にあたっては、脱硝触媒に接触させて窒素(N)と水(HO)に分解する方法が適用されている。SOの中でも三酸化硫黄(SO)は腐食性を有しており、空気予熱器、電気集塵器等の排ガス処理設備内での灰詰り、露点腐食等が生じて、排ガス処理の長期的な連続運転を阻害する要因となっている。
 このようなSOの処理方法としては、燃焼排ガスにアンモニア(NH)を添加した後、チタニア(TiO)にルテニウム(Ru)を担持させてなる触媒に接触させることにより、NOを低減するとともに、燃焼排ガス中のSOの生成を抑制する方法が知られている(例えば、特許文献1)。しかしながら、特許文献1に示した例でも、燃焼排ガスの脱硝処理で、アンモニアが脱硝反応で消費されると下記式(1)の酸化反応が優勢に進行するため、SOの濃度が増加する。また、還元剤に一酸化炭素(CO)や炭化水素で燃焼排ガス中のSOを還元する方法が知られているが、触媒に高価なイリジウム(Ir)を使用している(例えば、特許文献2)。
Figure JPOXMLDOC01-appb-C000001
特許第3495591号 特許第3495527号
 前記事情に対して、本発明は、従来よりも処理コストを低下させ、燃焼排ガス中のNOを低減するとともに、SO濃度を低減させる排ガス処理方法及び脱硝・SO還元装置を提供することを目的とする。
 前記目的を達成するため、本発明に係る排ガス処理方法は、NOに加え、SOを含有する燃焼排ガスに、第一の添加剤としてH元素及びC元素を含む化合物を添加した後、Ti、Si、Zr及びCeからなる群より選ばれる元素の1種以上の酸化物及び/又は前記群より選ばれる元素の2種以上の混合酸化物及び/又は複合酸化物を担体として含む触媒に接触させSOをSOに還元処理する。
 このような形態では、燃焼排ガス中のNOを脱硝するとともに、SOの酸化を防止して、燃焼排ガス処理中のSO濃度の低減を可能とすることができ、且つ、Ru等を含有する高価な触媒を用いずに、触媒の材料コストを抑えることができる。なお、本明細書及び特許請求の範囲において、「及び/又は」は、JIS Z8301でも規定されるように、並列した二つの語句の両者を併合したもの及び何れか一方ずつの三通りを示すのに用いる。
 前記第一の添加剤は、炭素数2~5のオレフィン系炭化水素(不飽和炭化水素)、炭素数2~5のパラフィン系炭化水素(飽和炭化水素)、アルコール類、アルデヒド類及び芳香族化合物からなる群より選ばれる1種以上であることが好適である。さらに、前記炭素数2~5のオレフィン系炭化水素(不飽和炭化水素)は、C、C、C及びC10からなる群より選ばれる1種以上のものが好適である。また、前記C及びC10は、何れか一の幾何異性体又はラセミ体とすることができる。
 このような添加剤であれば、第一の添加剤としてNHを用いた場合よりも、SOの酸化を抑制して、燃焼排ガス処理中のSO濃度の低下を可能とすることができる。
 前記担体は、TiO-SiO、TiO-ZrO及びTiO-CeOからなる群より選択された1種以上の混合酸化物及び/又は複合酸化物であることが好ましい。
 このような担体であれば、TiOとの混合酸化物及び/又は複合酸化物とし、所定値以上の固体酸量をもって、SOをSOへの還元性能を飛躍的に向上させることができる。
 また、前記触媒は、前記酸化物、前記混合酸化物及び前記複合酸化物からなる群より選ばれる1種以上を担体として、V、WO、MoO、Mn、MnO、NiO及びCoからなる群より選択される1種以上の金属酸化物を担持してなる触媒とすることができる。また、前記触媒は、前記酸化物、前記混合酸化物及び前記複合酸化物からなる群より選ばれる1種以上を担体として、Ag、AgO及びAgOからなる群より選択される1種以上を担持してなる触媒とすることもできる。
 さらに、前記触媒には、ゼオライト結晶構造中のAl及び/又はSiの少なくとも一部を、Ti、V、Mn、Fe及びCоからなる群より選ばれる1種以上で置換したメタロシリケート系複合酸化物をコート又は含浸することができる。
 このような触媒であれば、前記第一添加剤を用いることにより、燃焼排ガス中のSOを高い還元率で還元できるとともに、NH共存中でもSO還元反応を阻害することはない。
 前記SOをSOに還元する処理の際に、第二の添加剤としてNHを前記第一の添加剤と同時に添加してSOの低減及び脱硝を同時に行うことが好適である。
 このような形態であれば、第一の添加剤を既設脱硝装置に付帯するアンモニア供給ライン設備の一部改造によって同時に添加することができ、燃焼排ガス中のSOの低減に寄与させることができる。
 前記SOをSOに還元する処理は、250℃以上450℃以下の温度範囲内で行われることが好ましい。また、前記SOをSOに還元する処理は、300℃以上400℃以下の温度範囲内で行われることがより好ましい。
 このような温度範囲であれば、既設の脱硝装置を用い、且つ、脱硝触媒として高活性を示す脱硝処理条件にて、燃焼排ガス中のSOをSOに還元する処理を行うことができる。
 また、本発明は、別の側面で脱硝・SO還元装置である。本発明に係る脱硝・SO還元装置は、NOに加え、SOを含有する燃焼排ガスに第一の添加剤を添加する第一の注入装置と、前記第一の注入装置に近設されて、前記燃焼排ガスに第二の添加剤としてNHを添加する第二の注入装置と、前記燃焼排ガスを脱硝する触媒からなる触媒層とを備え、第一の添加剤がH元素及びC元素を含む化合物であり、前記触媒がTi、Si、Zr及びCeからなる群より選ばれる元素の1種以上の酸化物及び/又は前記群より選ばれる元素の2種以上の混合酸化物及び/又は複合酸化物を担体としてなる。
 前記触媒層は、別の形態で、前記第一の注入装置の後流に配置されたSO濃度を低減させる第一の触媒層と、前記第二の注入装置の後流に配置された脱硝を行う第二の触媒層とからなり、前記第一の触媒層は、前記第二の触媒層の前流又は後流に配置することができる。
 本発明によれば、従来よりも処理コストを低下させ、燃焼排ガス中のNOを脱硝するとともに、SO濃度を低下させる排ガス処理方法及び脱硝・SO還元装置が提供される。
図1は、本発明に係る脱硝・SO還元装置について、第一実施の形態を説明するための概略図である。 図2は、本発明に係る脱硝・SO還元装置について、第二実施の形態を説明するための概略図である。 図3は、本発明に係る脱硝・SO還元装置について、第三実施の形態を説明するための概略図である。 図4は、本発明に係る実施例1について、燃焼排ガス中のSO濃度の変化を示すグラフである。 図5は、本発明に係る実施例2について、燃焼排ガス中のSO濃度の変化を示すグラフである。 図6は、本発明に係る実施例2について、燃焼排ガス中のSO還元率及び脱硝率を示すグラフである。 図7は、本発明に係る実施例3について、触媒によるSO還元率及び脱硝率を示すグラフである。 図8は、本発明に係る実施例3について、固体酸量とSO還元率との関係を示すグラフである。 図9は、本発明に係る実施例4について、触媒によるSO還元率及び脱硝率を示すグラフである。 図10は、本発明に係る実施例5について、触媒によるSO還元率を示すグラフである。 図11は、本発明に係る実施例5について、触媒による脱硝率を示すグラフである。
 以下、本発明に係る脱硝・SO還元装置及び排ガス処理方法について、添付図面に示した実施の形態を参照しながら説明する。なお、本明細書中では、石油又は石炭由来の燃料をボイラにより燃焼した、酸化雰囲気下にある排ガスを、「燃焼排ガス」と呼称する。また、燃焼排ガスの流通方向を基準として、前流、後流のように表現している。  
[脱硝・SO還元装置](第一実施の形態)
 図1は、本発明に係る脱硝・SO還元装置をボイラの後流に配置した、第一実施の形態を示す。図1に示す脱硝・SO還元装置5は、火炉1にて燃焼排ガスを発生させるボイラの排ガス煙道2の後流に設けられている。
 ボイラは、外部より供給した燃料を火炉1にて燃焼し、燃焼により発生した燃焼排ガスを排ガス煙道2に排出する。排ガス煙道2を流通する燃焼排ガスに対して、その煙道2の後流に設けた脱硝・SO還元装置5により、NOの脱硝処理とSOの還元処理を同時に行う。なお、本明細書及び請求項の記載において、SOをSOに還元する本処理をSO還元処理ともいう。
 燃焼排ガスが流通する排ガス煙道2に設けたECO3は、その内部を流通するボイラ給水と燃焼排ガスとを熱交換する。すなわち、燃焼排ガスの余熱を利用してボイラへの給水温度を高めることにより、ボイラの燃焼効率を向上させる。ECOバイパス4は、その一端がECO3の前流に、その他端がECO3の後流に連通しており、ECO3に供給される前の燃焼排ガスを、ECO3を迂回して脱硝・SO還元装置5の入口側に供給する。また、ECOバイパス4は、脱硝・SO還元装置5に供給する燃焼排ガスの温度を脱硝・還元反応に適した所定の温度範囲内に制御する。
 脱硝・SO還元装置5は、排ガス煙道2に設けられ、第一の注入装置6と、第二の注入装置7と、触媒層8と、を少なくとも備える。脱硝・SO還元装置5は、燃焼排ガスに対して、第一の添加剤と第二の添加剤とを添加し、前記添加剤を添加した燃焼排ガスを触媒層8に通過させる。脱硝・SO還元装置5は、触媒層8、第一の注入装置6及び第二の注入装置7により、SO還元処理を行う。また、脱硝・SO還元装置5は、第一の添加剤と第二の添加剤とを同時に添加するように構成されることが好ましい。
 第一の注入装置6は、脱硝・SO還元装置5の前流且つECOバイパス4の後流に配置され、NOに加え、SOを含有する燃焼排ガスに第一の添加剤を添加する。すなわち、第一の注入装置6は、触媒層8と共働して燃焼排ガス中のSOを低減する。
 第一の注入装置6から注入する第一の添加剤は、主にSOをSOに還元するためのSO還元剤であり、酸素雰囲気下にてSOの還元能力を有した炭素元素(C)及び/又は水素元素(H)からなる炭化水素を用いることができる。より具体的には、第一の添加剤は、一般式:C2n(nは2~5の整数)で示されるオレフィン系炭化水素(不飽和炭化水素)、一般式:C2m+2(mは2~5の整数)で示されるパラフィン系炭化水素(飽和炭化水素)、メタノール(CHOH)、エタノール(COH)等のアルコール類、アセトアルデヒド(CHCHO)、プロピオンアルデヒド(CCHO)等のアルデヒド類、トルエン(CCH)及びエチルベンゼン(C)等の芳香族化合物からなる群より選ばれる1種以上の添加剤である。
 前記炭素数2~5のオレフィン系炭化水素(不飽和炭化水素)としては、C、C、C及びC10からなる群より選ばれる1種以上が好ましく、炭素数3以上であるC、C及びC10からなる群より選ばれる1種以上がより好ましい。また、前記C及びC10は、何れか一の幾何異性体又はラセミ体とすることができる。炭素数4以上の不飽和炭化水素としては、例えば、1-ブテン(1-C)、cis-2-ブテン、trans-2-ブテン等の2-ブテン(2-C)、イソブテン(iso-C)、1-ペンテン(1-C10)、cis-2-ペンテン、trans-2-ペンテン等の2-ペンテン(2-C10)が挙げられる。この場合、下記式(2)~(8)に示すように、酸素の過剰雰囲気下にてSOの還元に大きく寄与し、燃焼排ガス中のSO濃度の低下を可能とすることができる。
Figure JPOXMLDOC01-appb-C000002
 第一の添加剤としてCを用いた場合、第一の添加剤の添加量は、C/SOのモル比で0.1以上2.0以下とすることが好ましい。0.1未満であると、SOの酸化が優勢となって、SOが増加する虞があり、2.0を超えると過剰のCが未反応のまま大量に排出する虞がある。前記範囲内であれば、燃焼排ガス中のSO除去性能を向上させることができる。なお、指定した範囲外でもSOの除去効果がある。
 第二の注入装置7は、第一の注入装置6に近設して配置され、燃焼排ガスに第二の添加剤としてNHを添加する。第二の注入装置7は、脱硝・SO還元装置5の前流且つECOバイパス4の後流に配置され、NOを脱硝するための第二の添加剤を燃焼排ガスに注入する。第二の注入装置7は、触媒層8と共働してNOを脱硝する。
 触媒層8は、燃焼排ガスを脱硝する触媒からなる。触媒層8に配置する触媒の形状は、脱硝触媒としても効率よく機能し、燃焼排ガス処理にて圧力損失を少なくするために、ハニカム形状とするのが好ましい。なお、ハニカム構造は、断面が矩形のものに限定されず、例えば、円状、楕円状、三角形、五角形、六角形等の断面を有していてもよい。
 触媒層8に配置する前記触媒は、酸化物、混合酸化物及び/又は複合酸化物を担体として、活性成分を担持した触媒である。より具体的には、前記担体としては、チタン(Ti)、珪素(Si)、ジルコニウム(Zr)及びセリウム(Ce)からなる群より選ばれる元素の1種以上の酸化物及び/又は前記群より選ばれる元素の2種以上の混合酸化物及び/又は複合酸化物が挙げられる。すなわち、前記担体は、以下の形態を少なくとも含む。
 ・チタニア(TiO)、シリカ(SiO)、ジルコニア(ZrO)、酸化セリウム(Ce)の何れか1種の酸化物
 ・チタン(Ti)、珪素(Si)、ジルコニウム(Zr)又はセリウム(Ce)のうちの2種、3種又は4種の元素からなる混合酸化物若しくは複合酸化物
 ・2つ、3つ又は4つの前記酸化物からなる混合物
 ・1つの前記混合物と1つの前記混合物酸化物又は複合酸化物との混合物
 これらのうち、前記担体は、TiO-SiO、TiO-ZrO及びTiO-CeOの群より選択された混合酸化物又は複合酸化物が好ましく、前記群より選択された複合酸化物であることがより好ましい。
 なお、前記複合酸化物は、アルコキシド化合物、塩化物、硫酸塩又は酢酸塩を混合した後、さらに水と混合して水溶液又はゾルの状態でかきまぜ、加水分解することにより調製することができる。また、前記複合酸化物は、上記したゾルゲル法以外に、公知の共沈法により調製してもよい。
 前記活性成分は、バナジア(V)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化マンガン(Mn)、二酸化マンガン(MnO)、酸化ニッケル(NiO)及び酸化コバルト(Co)からなる群より選択される1種以上の金属酸化物である。また、前記活性成分は、銀(Ag)、酸化銀(AgO)及び一酸化銀(AgO)からなる群より選択される1種以上とすることもできる。この場合、前記触媒に担持された活性金属が活性点として働き、NO、NO等のNOを酸素の存在下において効率よく脱硝できるとともに、酸素の過剰雰囲気下において燃焼排ガス中のSOの還元を可能とする。これらのうち、前記活性成分は、酸化タングステン(WO)が含まれることが好ましい。
 また、前記触媒としては、ゼオライト結晶構造中のアルミニウム元素(Al)及び/又は珪素元素(Si)の少なくとも一部を、チタン元素(Ti)、バナジウム元素(V)、マンガン元素(Mn)、鉄元素(Fe)及びコバルト元素(Cо)からなる群より選ばれる1種以上で置換したメタロシリケート系複合酸化物をコート若しくは含浸したものを用いることもできる。このようなメタロシリケートは、例えば、珪素源となる水ガラスと珪素元素の少なくとも一部を、置換する金属元素源及び構造指示剤を混合してオートクレーブに仕込み、高温高圧下で水熱合成法を用いることによって調製できる。
[排ガス処理方法] 
 以上の第一実施の形態に係る脱硝・SO還元装置の作動形態を説明することにより、本発明に係る排ガス処理方法の第一実施の形態について、説明する。本実施の形態の排ガス処理方法は、SO還元処理を少なくとも行う。
 SO還元処理では、NOに加え、SOを含有する燃焼排ガスに対して、その前流にて、SOを還元するための第一の添加剤とNOを還元するための第二の添加剤であるNHとを、第一の注入装置6及び第二の注入装置7から注入する。その後流にて、前記添加剤を添加した燃焼排ガスを、脱硝触媒からなる触媒層8に通過させることにより、NOの脱硝とSOの還元処理と同時に実施する。この際、第一の添加剤と第二の添加剤とは同時に燃焼排ガスに添加することが好ましい。
 SO還元処理は、250℃以上450℃以下の温度範囲内で行うことが好ましく、300℃以上400℃以下の温度範囲内で行うことがより好ましい。300℃未満であると、脱硝処理が不十分となる虞があり、400℃を超えると第一の添加剤の自己分解によって、SOの還元が不十分となる虞がある。
 本実施の形態によれば、ボイラの燃焼により発生したSO及び/又はNOを含有する燃焼排ガスに対して、燃焼排ガス中のNOを脱硝するとともに、SOの酸化を防止して、燃焼排ガス処理中のSO濃度の低減を可能とすることができ、且つ、高価な触媒を用いずに、触媒の材料コストを抑えることができる。また、既設の脱硝装置の前流にて、SOを還元するための第一の添加剤を注入する第一の注入装置を追設するだけでよい。このため、処理コストを抑えたSO還元処理を実施することができる。
[脱硝・SO還元装置](第二実施の形態)
 次に、本発明に係る脱硝・SO還元装置の第二実施の形態について、図2を参照にして詳細に説明する。なお、本実施の形態では、脱硝・SO還元装置の第一実施の形態と同じ構成は、同一の符号を付して説明を省略する。本実施の形態に係る脱硝・SO還元装置15は、触媒層を第一及び第二の触媒層に区分けし、それらの間に第一の注入装置を配置した点で、第一実施の形態の脱硝・SO還元装置5と相違している。
 図2に示す脱硝・SO還元装置15は、排ガス煙道2に設けられ、燃焼排ガスに第一の添加剤を添加する第一の注入装置16と、燃焼排ガスに第二の添加剤を添加する第二の注入装置17と、燃焼排ガスを脱硝する触媒からなる触媒層とを少なくとも備える。前記触媒層は、SO濃度を低減させる第一の触媒層18と、第一の触媒層18の前流に配置され、脱硝を行う第二の触媒層19とからなる。脱硝・SO還元装置15は、排ガス煙道2から流入した燃焼排ガスに対し、第二の注入装置17より第二の添加剤を添加した後、第二の触媒層19を通過させる。また、脱硝・SO還元装置15は、第二の触媒層19を通過した燃焼排ガスに、第一の注入装置16より第一の添加剤を添加した後、第一の触媒層18を通過させる。
 第一の注入装置16は、排ガス煙道2にて、第一の触媒層18の前流、且つ、第二の触媒層19の後流に配置する。第一の触媒層18は、第二の触媒層19の後流に配置する。また、第一の注入装置16は、燃焼排ガスに対して、SO濃度を低減するための第一の添加剤を注入する。
 第二の注入装置17は、排ガス煙道2にて、第二の触媒層19の前流に配置する。また、第二の注入装置17は、燃焼排ガスに対して、NOを脱硝するための第二の添加剤を注入する。なお、第二の注入装置17及び第二の触媒層19については、例えば、既設のプラントに設けた脱硝装置を採用することができる。
 第一の注入装置16から注入する第一の添加剤及び第一の触媒層18に設けられる触媒は、第一実施の形態と同様のものを適用することができる。また、第二の注入装置17から注入する第二の添加剤及び第二の触媒層19に設けられる触媒は、第一実施の形態と同様のもの以外に、公知の脱硝触媒(例えば、V‐TiO)も適用することができる。
[排ガス処理方法] 
 以上の第二実施の形態に係る脱硝・SO還元装置の作動形態を説明することにより、本発明に係る排ガス処理方法の第二実施の形態について、説明する。本実施の形態の排ガス処理方法は、SO還元処理を少なくとも実施する。
 SO還元処理では、少なくともNOとSOとを含有する燃焼排ガスに対して、前処理として、第二の注入装置17より第二の添加剤であるNHを燃焼排ガスに添加し、その後流に設けた第二の触媒層19にて脱硝触媒を燃焼排ガスに接触させる。その後、後処理として、第一の注入装置16よりSO用添加剤を燃焼排ガスに添加し、その後流に設けた第一の触媒層18にてSO用触媒に燃焼排ガスに接触させる。
 SO還元処理の処理温度は、第一実施の形態と同様の温度範囲を採用することができる。
 第二実施の形態に係る脱硝・SO還元装置及び排ガス処理方法によれば、既存の脱硝装置の後流側でSOをより効率的に処理することが可能になる他、脱硝・SO還元のそれぞれの触媒機能の低下に応じた触媒交換が容易となる。
[脱硝・SO還元装置](第三実施の形態)
 次に、本発明に係る脱硝・SO還元装置の第三実施の形態について、図3を参照にして詳細に説明する。本実施の形態では、脱硝・SO還元装置の第一及び二実施の形態と同じ構成は、同一の符号を付して説明を省略する。本実施の形態に係る脱硝・SO還元装置25は、第一の注入装置及び第一の触媒層を、第二の注入装置及び第二の触媒層の前流に配置した点で、第二実施の形態の脱硝・SO還元装置15と相違している。
 図3に示す脱硝・SO還元装置25は、排ガス煙道2に設けられ、第一の注入装置26と、第二の注入装置27と、第一の触媒層28と、第二の触媒層29とを少なくとも備える。脱硝・SO還元装置25は、排ガス煙道2から流入した燃焼排ガスに対し、第一の注入装置26より第二の添加剤を添加した後、第一の触媒層28を通過させる。また、脱硝・SO還元装置25は、第一の触媒層28を通過した燃焼排ガスに、第二の注入装置27より第二の添加剤を添加した後、第二の触媒層29を通過させる。
 第一の注入装置26は、排ガス煙道2にて、第一の触媒層28の前流、且つ、第二の触媒層29の前流に配置する。第一の触媒層28は、第二の触媒層29の前流に配置する。第一の注入装置26は、燃焼排ガスに対して、SO濃度を低減するための第一の添加剤を注入する。第二の注入装置27は、排ガス煙道2にて、第二の触媒層29の前流に配置する。また、第二の注入装置27は、燃焼排ガスに対して、NOを脱硝するための第二の添加剤を注入する。なお、第二の注入装置27及び第二の触媒層29についても、第二実施の形態と同様に、既設のプラントに設けた脱硝装置を適用することができる。 
 第一の注入装置26から注入する第一の添加剤及び第一の触媒層28に設けられる触媒は、第一及び第二実施の形態と同様のものを適用できる。また、第二の注入装置27から注入する第二の添加剤及び第二の触媒層29に設けられる触媒も、第一実施の形態と同様のもの以外に、公知の脱硝触媒(例えば、V‐TiO)も適用することができる。
[排ガス処理方法] 
 続いて、以上の第三実施の形態に係る脱硝・SO還元装置の作動形態を説明することにより、本発明に係る排ガス処理方法の第三実施の形態について、説明する。本実施の形態の排ガス処理方法は、SO還元処理を少なくとも実施する。
 SO還元処理では、少なくともNOとSOとを含有する燃焼排ガスに対して、前処理として、第一の注入装置26よりSO用添加剤を燃焼排ガスに添加し、その後流に設けた第一の触媒層28にてSO用触媒に燃焼排ガスに接触させる。その後、後処理として、第二の注入装置27より第二の添加剤としてNHを燃焼排ガスに添加し、その後流に設けた第二の触媒層29にて脱硝触媒に燃焼排ガスに接触させる。
 SO還元処理の処理温度は、第一及び第二実施の形態と同様の温度範囲を採用することができる。
 第三実施の形態に係る脱硝・SO還元装置及び排ガス処理方法によれば、既存の脱硝装置の後流側でSOをより効率的に処理することが可能になる他、脱硝・SO還元のそれぞれ触媒機能の低下に応じた触媒交換が容易となる。
 以下、実施例によって本発明を具体的に説明することにより、本発明の効果を明らかにする。本発明に係る排ガス処理方法及び脱硝・SO還元装置は、本例によって制限されない。
[実施例1]
 触媒を変えて、第一の添加剤(SO還元剤)によるSOのSOへの還元効果を検討した。
(触媒Aの調製)
 SOをSOに還元する触媒としても機能するRu(ルテニウム)を含む触媒Aを調製した。100wt%のチタニア(TiO)当たり、10wt%の酸化タングステン(WO)を含有したアナターゼ型チタニア粉末に対して、塩化ルテニウム(RuCl)水溶液を含浸することにより、100wt%のアナターゼ型チタニア粉末当たり、1wt%のRuを前記粉末に担持させ、蒸発、乾燥した。その後、500℃、5時間焼成を行って、得られた粉末を触媒Aとした。
(触媒Bの調製)
 アンモニアによる脱硝機能を有する代表的な触媒として触媒Bを調製した。TiアルコキシドであるTi(O-iCとSiアルコキシドであるSi(OCHとを95:5(それぞれ、TiO、SiOとして)のwt%比で混合し、80℃の水に添加して加水分解した後、攪拌して熟成させて生成したゾルを濾過し、得られたゲル化物を洗浄、乾燥後、500℃で5時間加熱焼成して、粉末状のTiO‐SiO複合酸化物(TiO‐SiO粉末)を得た。前記複合酸化物に対して、メタバナジン酸アンモニウム(NHVO)とパラタングステン酸アンモニウム((NH10101246・6HO)を10wt%のメチルアミン水溶液を用いて含浸させ、100wt%の複合酸化物当たり、Vを0.6wt%、WOを8wt%担持させ、蒸発乾固後、500℃で5時間加熱焼成を行なった。得られた粉末を触媒Bとした。
(触媒Cの調製)
 アンモニアによる脱硝機能を有する代表的な触媒Cを調製した。TiアルコキシドであるTi(O-iCとZrアルコキシドであるZr(Oi-Cとを95:5(それぞれ、TiO、ZrOとして)のwt%比で混合し、80℃の水に添加して加水分解した後、攪拌して熟成させて生成したゾルを濾過し、得られたゲル化物を洗浄、乾燥後、500℃で5時間加熱焼成して、粉末状のTiO‐ZrO複合酸化物(TiO‐ZrO粉末)を得た。前記複合酸化物に対して、パラタングステン酸アンモニウム((NH10101246・6HO)を10wt%メチルアミン水溶液で含浸させ、100wt%の複合酸化物当たり、WOを8wt%担持させ、蒸発乾固後、500℃で5時間加熱焼成を行なった。得られた粉末を触媒Cとした。
(触媒Dの調製)
 チタニア(TiO)のみの触媒Dを調製した。触媒Aと同量のアナターゼ型チタニア粉末を500℃、5時間焼成を行って、粉末状の触媒Dを調製した。
(試験例1~5の調製)
 触媒A~Dの各20wt%に対して、それぞれ水80wt%を加え、湿式ボールミル粉砕を行い、ウォッシュコート用スラリとした。続いて、コージェライト製モノリス基材(7.4mmピッチ、壁厚0.6mm)を上記スラリに浸漬コートし、120℃で乾燥後、500℃で焼成した。コート量は、基材の表面積1m当たり100gとした。触媒Aを用い、SO還元剤としてアンモニア(NH)を用いた場合を試験例1とした。一方、触媒Aを用い、SO還元剤としてプロピレン(C)を用いた場合を試験例2とした。触媒Bを用い、SO還元剤としてCを用いた場合を試験例3とした。触媒Cを用い、SO還元剤としてCを用いた場合を試験例4とした。また、触媒Dを用い、SO還元剤としてCを用いた場合を試験例5とした。
(SO除去試験I)
 実機を想定したベンチスケールにて、燃焼排ガスに対して、SO還元剤を添加し、脱硝・SO還元装置内に設置した各試験例の触媒層を通過させることにより、触媒層通過前後の0.03~0.08(1/AV(m・h/Nm))に対する燃焼排ガス中のSO濃度(ppm)の変化を検討した。試験結果及び試験条件を図4に示す。なお、SO濃度は、サンプリング後、沈殿滴定法により分析した。また、図中、AVは面積速度(ガス量/触媒での全接触面積)を示し、1/AVはガス量に対する触媒の全接触面積を意味する。1/AVの単位は、m・h/Nmと示される。
 図4は、試験例1~5における0.03~0.08m・h/Nmに対するSO濃度(ppm)の変化を示している。図4に示すように、試験例1は、触媒層入口に対するSO濃度は殆ど変化しなかった。試験例2は、触媒層入口のSO濃度が100ppm程度から0.06m・h/Nmでは40ppm程度まで低下した。一方、試験例3は、触媒層入口のSO濃度が100ppm程度から0.08m・h/Nmでは20ppm程度まで低下した。試験例4は、触媒層入口のSO濃度が100ppm程度から0.08m・h/Nmでは20ppm程度まで低下した。また、試験例5も、触媒層入口のSO濃度が100ppm程度から0.08m・h/Nmでは25ppm程度まで低下した。
 Ru含有の触媒Aと、SO還元剤としてNHとを用いた試験例1では、触媒層入口に対するSO濃度は殆ど変化しないことがわかった。Ru含有の触媒Aと、SO還元剤としてCを用いた試験例2では、燃焼排ガス中のSO濃度が低下することがわかった。また、高価なRuを含まない触媒Bを用いた試験例3では、SO還元剤としてCを用いれば、燃焼排ガス中のSO濃度が著しく低下することがわかった。さらに、触媒Cを用いた試験例4では、SO還元剤としてCを用いれば、燃焼排ガス中のSO濃度が著しく低下することがわかった。さらにまた、触媒Dを用いた試験例5でも、SO還元剤としてCを用いれば、燃焼排ガス中のSO濃度が著しく低下することがわかった。これらのことから、SO還元剤としてCを用いれば、燃焼排ガス中のSO濃度低下を可能とすることがわかった。
 Ru含有の触媒Aを用いずとも、例えば、Cのような水素元素(H)と炭素元素(C)とからなる炭化水素を用いれば、通常の脱硝触媒を用いた場合でも、SO還元剤としてNHを用いた場合と比べて、触媒層入口に対する燃焼排ガス中のSO濃度を低下させることがわかった。また、下記1~4に示す触媒表面上の素反応モデルから、これらの結果は、触媒上での炭化水素分解物とSOとの反応によるスルホン化が重要であるものと推測した。
 1.炭化水素の吸着反応
  炭化水素(C)+表面→Cy-表面
 2.炭化水素の分解反応(水素引き抜き)
  Cy-表面→Cy-1(表面配位)+H-表面
 3.SO3(g)との反応(スルホン酸化)
  Cy-1(表面配位)+SO3(g)→SO+Cy-1-SO3---
表面
 4.SO分解
  Cy-1-SO3---表面→SO+CO+CO
[実施例2]
 組成の異なる炭化水素を第一の添加剤(SO還元剤)として用い、炭化水素化合物の組成によるSOのSOへの還元効果を検討した。
(試験例6~10の調製)
 触媒Bを、実施例1と同様にして、コージェライト製モノリス基材上にコートした。コート量は、基材の表面積1m当たり100gとした。SO還元剤としてCを用いた場合を試験例6とし、プロパン(C)を用いた場合を試験例7とし、メタノール(CHOH)を用いた場合を試験例8とし、エタノール(COH)を用いた場合を試験例9とした。また、他の試験例と比較するために、SO還元剤としてアンモニア(NH)を用いた場合を試験例10とした。
(SO除去試験II)
 実施例1と同様に、燃焼排ガスに対して、SO還元剤を添加し、前期脱硝・SO還元装置内に設置したSO触媒を用いた触媒層を通過させることにより、触媒層通過前後の0.04~0.08m・h/Nmに対する燃焼排ガス中のSO濃度の変化を検討した。触媒層通過前後のSO濃度の変化を検討した。なお、試験条件は、実施例1と同条件とした。試験結果及び試験条件を図5に示す。
 図5は、試験例6~10における0.04~0.08m・h/Nmに対する燃焼排ガス中のSO濃度(ppm)の変化を示している。図5に示すように、試験例6~9は、触媒層入口に対する燃焼排ガス中のSO濃度が低下した。これに対して、試験例10は、触媒層入口に対する燃焼排ガス中のSO濃度の低下が確認されなかった。C及びCをSO還元剤として用いた試験例5及び6は、CHOH及びCOHをSO還元剤として用いた試験例8及び9よりも、燃焼排ガス中のSO濃度が低下した。さらに、CをSO還元剤として用いた試験例6は、最も顕著なSO濃度の低下効果を示した。
 続いて、さらに、組成の異なる炭化水素を第一の添加剤(SO還元剤)として用い、炭化水素化合物の組成によるSOのSOへの還元効果及び脱硝効果を検討した。
(触媒Eの調製)
 TiO、SiOとしてのwt%比を88:12とし、100wt%の複合酸化物当たり、Vを0.3wt%、WOを9wt%としたこと以外、触媒Bと同様にして、触媒Eを調製した。
(試験例11~18の調製)
 触媒Eを、実施例1と同様に、コージェライト製モノリス基材上にコートした。これに、SO還元剤としてメタノール(CHOH)を用いた場合を試験例11とし、エタノール(COH)を用いた場合を試験例12とし、プロパン(C)を用いた場合を試験例13とした。また、SO還元剤としてエチレン(C)を用いた場合を試験例14とし、プロピレン(C)を用いた場合を試験例15とし、1-ブテン(1-C)を用いた場合を実施例16とし、2-ブテン(2-C)を用いた場合を試験例17とし、イソブテン(iso-C)を用いた場合を試験例18とした。
(SO除去試験III)
 試験例11~18を用いて、実施例1と同様に、燃焼排ガスに対してSO還元剤を添加し、脱硝・SO還元装置内に設置したSO触媒を用いた触媒層を通過させることにより、触媒層通過前後のSO濃度及び脱硝率の変化を検討した。なお、SO還元率及び脱硝率は以下のようにして求めた。試験結果及び試験条件を図6に示す。
 SO還元率(%)=(1-触媒層出口SO濃度/触媒層入口SO濃度)×100
 脱硝率(%)=(1-触媒層出口NO濃度/触媒層入口NO濃度)×100
 図6は、試験例11~18における0.080m・h/Nmに対するSOの還元率(%)及び脱硝率(%)を示している。図6に示すように、アルコール類を用いた試験例11のSO還元率は5.0%であり、試験例12のSO還元率は6.0%であった。これに対して、飽和炭化水素又は不飽和炭化水素を用いた試験例13のSO還元率は10.0%であり、試験例14のSO還元率は20.0%であり、高い値を示した。さらに、炭素数3以上の不飽和炭化水素を用いた試験例15のSO還元率は58.0%であり、試験例16のSO還元率は50.2%であり、試験例17のSO還元率は54.2%であり、試験例18のSO還元率は63.5%であり、非常に高い値を示した。
 また、アルコール類を用いた試験例11の脱硝率は92.6%であり、試験例12の脱硝率は93.2%であった。また、飽和炭化水素又は不飽和炭化水素を用いた試験例13の脱硝率は94.1%であり、試験例14の脱硝率は94.0%であり、高い値を示した。さらに、炭素数3以上の不飽和炭化水素を用いた試験例15は95.1%であり、試験例16は92.1%であり、試験例17は92.3%であり、試験例18は91.8%であり、十分に高い値を示した。
 実施例1及び2の結果より、H元素とC元素とからなる炭化水素をSO還元剤として用いれば、触媒層入口に対する燃焼排ガス中のSO濃度が低下することがわかった。また、CHOH及びCOH等のアルコール類を用いた場合と比べ、SO還元剤として飽和炭化水素又は不飽和炭化水素であるC、C、C又はCを用いれば、燃焼排ガス中のSO濃度がより低下することがわかった。さらに、これらのうち、SO還元剤として不飽和炭化水素であるC、C又はCを用いれば、燃焼排ガス中のSO濃度が効果的に低下させることがわかった。特に、SO還元剤として炭素数3以上の不飽和炭化水素を用いれば、燃焼排ガス中のSO濃度が著しく低下させることがわかった。炭素数3以上の不飽和炭化水素は分解活性が高く、その中間体がSOとの反応性が高いと推定される。
[実施例3]
 さらに別の組成の触媒を調製し、触媒組成によるSOのSOへの還元効果及び脱硝効果を検討した。
(触媒Fの調製)
 TiアルコキシドであるTi(O-iCとCeアルコキシドであるCe(OCHとを、88:12(それぞれ、TiO、Ceとして)のwt%比で混合し、80℃の水に添加して加水分解した後、攪拌して熟成させて生成したゾルを濾過し、得られたゲル化物を洗浄、乾燥後、500℃で5時間加熱焼成して、TiO‐Ce複合酸化物(TiO‐Ce粉末)を得た。得られた粉末を触媒Fとした。
(触媒Gの調製)
 ジルコニア(ZrO)のみの触媒を調製した。オキシ塩化ジルコニウム(ZrOCl)粉末を500℃、5時間で焼成し、得られた粉末を触媒Gとした。
(触媒Hの調製)
 酸化セリウム(Ce)のみの触媒を調製した。硝酸セリウム(Ce(NO)粉末を500℃、5時間で焼成し、得られた粉末を触媒Hとした。
(試験例19~24の準備)
 触媒D、BのTiO‐SiO粉末、CのTiO‐ZrO粉末、F、G及びHの各20wt%に対して、それぞれ、水80wt%を加え、湿式ボールミル粉砕を行い、ウォッシュコート用スラリとした後、カオリナイトを主成分としたセラミクス基材にコートし、試験例19~24とした。各試験例の組成を表1に示す。なお、表中、コート量平均値は、コート前後の重量差より得られた担持量を基材表面積で除した値を用いて2サンプル測定した平均値を用いた。
Figure JPOXMLDOC01-appb-T000003
(SO除去試験VI)
 各試験例に対して、SO還元剤としてプロピレン(C)を用いた場合のSOの還元能力を検討した。実施例2と同様にして、燃焼排ガスに対して、SO還元剤を添加し、脱硝・SO還元装置内に設置したSO触媒を用いた触媒層を通過させることにより、触媒層通過前後のSO濃度の変化を検討した。試験結果及び試験条件を図7に示す。
 図7は、試験例19~24における0.080m・h/Nmに対するSOの還元率(%)及び脱硝率(%)を示している。図7に示すように、単一成分の酸化物を用いた試験例19のSO還元率は16.5%であり、試験例23のSO還元率は23.1%であり、試験例24のSO還元率は11.1%であった。一方、TiOを含有する複合酸化物を用いた試験例20のSO還元率は52.2%であり、試験例21のSO還元率は47.3%であり、試験例22のSO還元率は46.6%であった。
 また、単一成分の酸化物を用いた試験例19の脱硝率は32.8%であり、試験例23の脱硝率は6.7%であり、試験例24の脱硝率は19.1%であった。一方、TiOを含有する複合酸化物を用いた試験例20~22の脱硝率は60.4%であり、試験例21の脱硝率は39.3%であり、試験例22の脱硝率は42.3%であった。
 結果より、試験例19~24の何れも、触媒層入口に対する燃焼排ガス中のSO濃度が低下した。TiO‐SiO粉末、TiO‐ZrO粉末又はTiO‐Ce粉末を用いた試験例20~22は、TiO粉末、ZrO粉末又はCe粉末を用いた試験例19及び23~24よりもSOの還元率が高かった。また、単一成分の酸化物を用いた試験例19及び23~24では、TiO粉末を用いた試験例19の還元率が高く、ZrO粉末を用いた試験例23の還元率が最も高かった。また、複合酸化物を用いた試験例20~22のうち、TiO‐SiO粉末を用いた試験例19が、最も顕著なSOの還元率を示した。これらの結果より、複合酸化物、特にTiOを含有する複合酸化物を用いることで、SOの還元率が高いことがわかった。上記の結果は、複合酸化物となることで固体酸量が増加したことが要因であると推測した。
(固体酸量の算出)
 続いて、固体酸量とSO還元率との関連性を検討した。試験例19~24の固体酸量は、ピリジン昇温吸着離脱法により測定した。より具体的には、各試験例25mgの同量の石英粉末を加えて、石英ガラス管にカオウールで固定した。石英ガラス管をFIDガスクロマトグラフィーに設けられた電気炉に設置した後、ヘリウム(He)気流中にて温度450℃、30分の条件下で処理した。その後、電気炉を150℃に保ちピリジンを0.5μlずつ、パルス的に飽和になるまで4回~6回程度注入し、前記ピリジンを各試験例に吸着させた。続いて、電気炉を30℃/分の速度で昇温し、離脱したピリジンをFIDガスクロマトグラフィーで測定し、得られたTPDスペクトルのピーク値から各試験例の固体酸量を求めた。
 図8に、各試験例19~24にて測定した固体酸量(μmol/g・cata)とSO還元率(%)との関係を示す。図8に示すように、固体酸量の大きい触媒ほど、高いSOの還元率を示した。特に、固体酸量が200μmol/g・cata以上300μmol/g・cata以下の試験例で、高いSOの還元率を示した。これらの結果より、SOの還元には固体酸量が高いほど効果的であることが分かった。
[実施例4]
 さらに別の組成の触媒を調製し、活性金属によるSOのSOへの還元効果と脱硝効果とを検討した。
(触媒Hの調製)
 TiアルコキシドであるTi(O-iCとSiアルコキシドであるSi(OCHとを95:5(それぞれ、TiO、SiOとして)のwt%比で混合し、80℃の水に添加して加水分解した後、攪拌して熟成させて生成したゾルを濾過し、得られたゲル化物を洗浄、乾燥後、500℃で5時間加熱焼成して、TiO‐SiO複合酸化物(TiO‐SiO粉末)を得た。得られた粉末を触媒Hとした。
(試験例25~32の調製)
 20wt%の触媒Hに対して、水80wt%を加え、湿式ボールミル粉砕を行い、ウォッシュコート用スラリとした後、カオリナイトを主成分としたセラミクス基材にコートして、試験例25とした。また、触媒Hに、それぞれ、V、MoO、Ag、WO、Mn、NiO及びCoの原料として用いた各硫酸塩もしくは硝酸塩溶液を所定量添加して、含浸担持させた後、試験例25と同様にしてセラミクス基材にコートし、試験例26~32とした。各試験例のコート量は、実施例3と同様にして測定し、100g/m程度とした。各試験例の組成を表2に示す。
Figure JPOXMLDOC01-appb-T000004
(SO除去試験V)
 各試験例に、SO還元剤として、プロピレン(C)を用いた場合のSOの還元能力を検討した。実施例2と同様にして、燃焼排ガスに対してSO還元剤を添加し、脱硝・SO還元装置内に設置したSO触媒を用いた触媒層を通過させることにより、触媒層通過前後のSO濃度の変化を検討した。試験結果及び試験条件を図9に示す。
 図9に、試験例24~32における0.1m・h/Nmに対する燃焼排ガス中のSOの還元率(%)及び脱硝率(%)を示す。図9に示すように、試験例25のSO還元率は、52.2%であった。一方、試験例26のSO還元率は11.4%であり、試験例27のSO還元率は44.5%であり、試験例28のSO還元率は45.8%であった。また、試験例29のSO還元率は56.0%であり、試験例30のSO還元率は48.3%であり、試験例31のSO還元率は41.8%であり、試験例32のSO還元率は39.7%であった。
 また、試験例25の脱硝率は、60.4%であった。一方、試験例26の脱硝率は94.4%であり、試験例27の脱硝率は82.4%であり、試験例28の脱硝率は55.5%であり、試験例29の脱硝率は73.4%であり、試験例30の脱硝率は50.9%であり、試験例31の脱硝率は46.2%であり、試験例32の脱硝率は44.3%であった。
 結果より、V、MoO、Ag、WO、Mn、MnO、NiO又はCoを担持した何れの試験例も、SO還元剤としてCを用いれば、SOの還元効果及び脱硝効果があることを確認した。また、MoO、Ag、WO、Mn、MnO、NiO又はCoを担持した試験例27~32にて、高いSOの還元効果が認められた。これらのうち、特に、WOを担持した試験例29にて還元効果と脱硝効果が認められた。このことから、WOを含ませた触媒が効果的であることがわかった。
[実施例5]
 さらに別の組成の触媒を新たに準備し、SOの還元能力と脱硝能力との両方を評価した。
(試験例33~37の準備)
 100wt%の複合酸化物当たり、メタバナジン酸アンモニウムを用いてVを0.3wt%、パラタングステン酸アンモニウムを用いてWOを9wt%を溶液にして同時担持させたこと以外、触媒Bの調製と同様にして、TiOにV‐WOを担持させた触媒Iを準備し、試験例33とした。100wt%の複合酸化物当たり、Vを0.3wt%、WOを9wt%担持させたこと以外、触媒Bの調製と同様に、TiO‐SiO複合酸化物にV‐WOを担持させた触媒Jを、試験例34とした。触媒Jに25g/mでメタロシリケートをコートして触媒Kを用いた試験例35とした。触媒Bを用いて試験例36とした。100wt%の複合酸化物当たり、Vを0.7wt%、WOを9wt%担持させたこと以外、触媒Bの調製と同様にして、TiOにV‐WOを担持させた触媒Lを準備し、試験例37とした。各試験例の組成を表3に示す。
Figure JPOXMLDOC01-appb-T000005
(SO除去試験VI)
 各試験例に、SO還元剤として、プロピレン(C)を用いた場合のSOの還元能力を検討した。実施例2と同様にして、燃焼排ガスに対して、SO還元剤を添加し、脱硝・SO還元装置内に設置したSO触媒を用いた触媒層を通過させることにより、触媒層通過前後のSO濃度の変化と脱硝率を検討した。試験結果及び試験条件を図10及び図11に示す。
 図10に、試験例33~37における0.1(1/AV:m・h/Nm)に対する燃焼排ガス中のSOの還元率(%)を示す。図10に示すように、試験例33のSO還元率は、33.3%であった。一方、試験例34のSO還元率は58.4%であり、試験例35のSO還元率は75.6%であり、試験例36のSO還元率は68.6%であり、試験例37のSO還元率は79.9%であった。
 図11に、試験例33~37における0.10(1/AV:m・h/Nm)に対する燃焼排ガス中の脱硝率(%)を示す。図11に示すように、試験例33の脱硝率は95.3%であり、試験例34の脱硝率は95.1%であり、試験例35の脱硝率は91.1%であり、試験例36の脱硝率は91.4%であり、試験例37の脱硝率は91.8%であった。
 結果より、いずれの試験例も高いSOの還元能力と脱硝能力とを両立できることがわかった。また、試験例34~37は、試験例33と比較して、見込み通りに高いSOのSOへの還元性能を示した。
 本発明に係る排ガス処理方法及び脱硝・SO還元装置によれば、従来よりも処理コストを低下させて、燃焼排ガス中のNOを脱硝するとともに、SO濃度を同時に低下させることを可能とすることができる。
 1:火炉
 2:排ガス煙道
 3:ECO
 4:ECOバイパス
 5、15、25:脱硝・SO還元装置
 6、16、26:第一の注入装置
 7、17、27:第二の注入装置
 8:触媒層
 18、28:第一の触媒層
 19、29:第二の触媒層

Claims (14)

  1.  NOに加え、SOを含有する燃焼排ガスに、第一の添加剤として炭素数3~5のオレフィン系炭化水素(不飽和炭化水素)を添加した後、Ti、Si、Zr及びCeからなる群より選ばれる元素の1種以上の酸化物及び/又は前記群より選ばれる元素の2種以上の混合酸化物及び/又は複合酸化物を担体として含み、貴金属を含まない触媒に接触させSOをSOに還元処理することを特徴とする排ガス処理方法。
  2.  前記炭素数3~5のオレフィン系炭化水素(不飽和炭化水素)が、C、C及びC10からなる群より選ばれる1種以上のものである請求項1に記載の排ガス処理方法。
  3.  前記C及びC10が、何れか一の幾何異性体又はラセミ体である請求項2に記載の排ガス処理方法。
  4.  前記担体が、TiO-SiO、TiO-ZrO及びTiO-CeOからなる群より選択された1種以上の混合酸化物及び/又は複合酸化物からなる請求項1~3の何れか一項に記載の排ガス処理方法。
  5.  前記触媒が、前記複合酸化物を担体として、V、WO、MoO、Mn、MnO、NiO及びCoからなる群より選択される1種以上の金属酸化物を担持してなる触媒である請求項1~4の何れか一項に記載の排ガス処理方法。
  6.  前記触媒に、ゼオライト結晶構造中のAl及び/又はSiの少なくとも一部を、Ti、V、Mn、Fe及びCоからなる群より選ばれる1種以上で置換したメタロシリケート系複合酸化物をコートした請求項5に記載の排ガス処理方法。
  7.  前記SOをSOに還元する処理が、250℃以上450℃以下の温度範囲内で行われる請求項1~6の何れか一項に記載の排ガス処理方法。
  8.  前記SOをSOに還元する処理が、300℃以上400℃以下の温度範囲内で行われる請求項7に記載の排ガス処理方法。
  9.  NOに加え、SOを含有する燃焼排ガスに第一の添加剤を添加する第一の注入装置と、
     前記燃焼排ガスが通過する触媒からなる触媒層と
    を備え、
     第一の添加剤が炭素数3~5のオレフィン系炭化水素(不飽和炭化水素)であり、前記触媒が、貴金属を含まず、且つTi、Si、Zr及びCeからなる群より選ばれる元素の1種以上の酸化物及び/又は前記群より選ばれる元素の2種以上の混合酸化物及び/又は複合酸化物を担体としてなり、SOをSOに還元処理することを特徴とするSO還元装置。
  10.  前記炭素数3~5のオレフィン系炭化水素(不飽和炭化水素)が、C、C及びC10からなる群より選ばれる1種以上のものである請求項9に記載のSO還元装置。
  11.  前記C及びC10が、何れか一の幾何異性体又はラセミ体である請求項10に記載のSO還元装置。
  12.  前記担体が、TiO-SiO、TiO-ZrO及びTiO-CeOからなる群より選択された1種以上の混合酸化物及び/又は複合酸化物からなる請求項9~11の何れか一項に記載のSO還元装置。
  13.  前記触媒が、前記複合酸化物を担体として、V、WO、MoO、Mn、MnO、NiO及びCoからなる群より選択される1種以上の金属酸化物を担持してなる触媒である請求項9~12の何れか一項に記載のSO還元装置。
  14.  前記触媒層が、前記第一の注入装置の後流に配置されたSO濃度を低減させる第一の触媒層と、前記第一の注入装置に近設されて、前記燃焼排ガスに第二の添加剤としてNHを添加する第二の注入装置の後流に配置された脱硝を行う第二の触媒層とからなり、
     前記第一の触媒層を前記第二の触媒層の前流又は後流に配置した請求項9~13の何れか一項に記載のSO還元装置。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2015/067449 2014-11-07 2015-06-17 排ガス処理方法及び脱硝・so3還元装置 WO2016072110A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15783949.9A EP3045220B1 (en) 2014-11-07 2015-06-17 Exhaust gas treatment method and denitrification/so3 reduction apparatus
US14/888,112 US20160236145A1 (en) 2014-11-07 2015-06-17 Flue gas treatment method and denitration/so3 reduction apparatus
KR1020157031311A KR101789902B1 (ko) 2014-11-07 2015-06-17 배기 가스 처리 방법 및 탈질·so3 환원 장치
CN201580000668.9A CN105813714B (zh) 2014-11-07 2015-06-17 烟道气处理方法和脱硝/so3还原设备
ES15783949.9T ES2674558T3 (es) 2014-11-07 2015-06-17 Método de tratamiento de gases de escape y aparato de desnitrificación/reducción de SO3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014227577A JP5748894B1 (ja) 2014-11-07 2014-11-07 排ガス処理方法及び脱硝・so3還元装置
JP2014-227577 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072110A1 true WO2016072110A1 (ja) 2016-05-12

Family

ID=53718500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067449 WO2016072110A1 (ja) 2014-11-07 2015-06-17 排ガス処理方法及び脱硝・so3還元装置

Country Status (8)

Country Link
US (1) US20160236145A1 (ja)
EP (1) EP3045220B1 (ja)
JP (1) JP5748894B1 (ja)
KR (1) KR101789902B1 (ja)
CN (1) CN105813714B (ja)
ES (1) ES2674558T3 (ja)
TW (1) TWI599397B (ja)
WO (1) WO2016072110A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508760A (ja) * 2017-12-18 2021-03-11 ビーエーエスエフ キューテック インコーポレーテッドBASF Qtech Inc. 触媒コーティング、作製方法、およびその使用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748895B1 (ja) * 2014-11-07 2015-07-15 三菱日立パワーシステムズ株式会社 排ガス処理システム及び処理方法
JP6535555B2 (ja) * 2015-09-14 2019-06-26 三菱日立パワーシステムズ株式会社 ボイラ
CN105214720B (zh) * 2015-10-14 2017-11-10 无锡威孚环保催化剂有限公司 用于机动车尾气nox消除的分子筛催化剂的制备方法
CN106040247A (zh) * 2016-05-30 2016-10-26 中船重工海博威(江苏)科技发展有限公司 一种用于氨选择性催化氧化的催化剂及其制备方法
CN106179397B (zh) * 2016-06-27 2019-04-30 翁夏翔 一种钯钌型汽油车用催化剂及其制备方法
US11300029B2 (en) * 2016-12-20 2022-04-12 Umicore Ag & Co, Kg SCR catalyst device containing vanadium oxide and molecular sieve containing iron
CN107308783B (zh) * 2017-08-31 2021-02-26 山东瑞嘉通风环保科技有限公司 一种烟气湿法同时脱硫脱硝工艺
TWI731290B (zh) * 2019-01-14 2021-06-21 富利康科技股份有限公司 應用陶纖濾管之低溫觸媒脫硝除塵的方法及設備
CN109985619A (zh) * 2019-04-15 2019-07-09 湖北省轻工业科学研究设计院 一种高效烟气处理scr脱硝催化剂及其制备方法
CN111167274B (zh) * 2020-01-19 2021-11-12 中南大学 一种从冶炼烟气中脱除三氧化硫的方法及其脱除装置
CN112495157A (zh) * 2020-09-30 2021-03-16 山东大学 一种协同脱除三氧化硫及氯化氢的装置及工艺
CN112426861A (zh) * 2020-11-11 2021-03-02 福建三宝钢铁有限公司 一种高效脱硫脱硝系统及方法
CN113070072B (zh) * 2021-03-30 2023-10-27 西安建筑科技大学 一种用于脱硫脱硝催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133269A (ja) * 1973-04-26 1974-12-20
JPH05220348A (ja) * 1991-09-27 1993-08-31 Huels Ag 廃ガスから窒素酸化物を除去する方法
JPH07227523A (ja) * 1993-12-24 1995-08-29 Sakai Chem Ind Co Ltd 窒素酸化物接触還元方法
JPH0884912A (ja) * 1994-09-16 1996-04-02 Sakai Chem Ind Co Ltd 高効率窒素酸化物還元方法
JPH10128064A (ja) * 1996-10-28 1998-05-19 Mitsubishi Heavy Ind Ltd 三酸化硫黄還元処理方法
JPH10225620A (ja) * 1997-02-17 1998-08-25 Mitsubishi Heavy Ind Ltd 三酸化硫黄還元処理方法
JP3495591B2 (ja) 1998-03-20 2004-02-09 三菱重工業株式会社 排ガス中の窒素酸化物及びso3の還元処理方法
JP2005118687A (ja) * 2003-10-17 2005-05-12 Mitsubishi Heavy Ind Ltd So3の還元処理が可能な排ガス処理用触媒、その製造方法、及び該排ガス処理用触媒を用いた排ガス処理方法
JP2005279372A (ja) * 2004-03-29 2005-10-13 Osaka Gas Co Ltd 脱硝触媒およびそれを用いた脱硝方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
DE2811788A1 (de) * 1977-03-23 1978-09-28 Johnson Matthey Co Ltd Katalysator fuer die verwendung in einem sauerstoff und schwefeldioxid enthaltenden gasstrom
JPS6090043A (ja) * 1983-10-21 1985-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd 窒素酸化物浄化用触媒
US5260043A (en) * 1991-08-01 1993-11-09 Air Products And Chemicals, Inc. Catalytic reduction of NOx and carbon monoxide using methane in the presence of oxygen
JPH09201531A (ja) * 1996-01-29 1997-08-05 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及び排ガス浄化方法
CN1108849C (zh) * 1999-06-23 2003-05-21 中国石油化工集团公司 一种氮氧化物的脱除方法
JP2004255342A (ja) * 2003-02-27 2004-09-16 Mitsubishi Heavy Ind Ltd 排ガス処理システムおよび排ガス処理方法
RU2362613C2 (ru) * 2003-04-17 2009-07-27 Джонсон Мэттей Паблик Лимитед Компани Выхлопная система для двигателей внутреннего сгорания, двигатель внутреннего сгорания и транспортное средство на его основе
JP2005028210A (ja) * 2003-07-07 2005-02-03 Mitsubishi Heavy Ind Ltd 排ガス処理システム
JP4813830B2 (ja) * 2004-10-14 2011-11-09 三菱重工業株式会社 排ガス処理触媒、排ガス処理方法および排ガス処理装置
US7491676B2 (en) * 2004-10-19 2009-02-17 Millennium Inorganic Chemicals High activity titania supported metal oxide DeNOx catalysts
WO2012132683A1 (ja) * 2011-03-29 2012-10-04 三菱重工業株式会社 砒素化合物の除去方法、脱硝触媒の再生方法、並びに、脱硝触媒
JP2014525833A (ja) * 2011-08-03 2014-10-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 押出成形ハニカム触媒
US8844269B2 (en) * 2012-03-16 2014-09-30 Cummins Inc. Aftertreatment system and method for pre-decomposed reductant solution
JP2014126298A (ja) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd 排ガス中のso3含有量計測装置、重質燃料焚ボイラシステム及びその運転方法
BR112015022048B1 (pt) * 2013-03-14 2022-03-03 Basf Corporation Sistema de tratamento de gás de escape de motor de mistura pobre e método de remoção de óxidos de nitrogênio
JP5748895B1 (ja) * 2014-11-07 2015-07-15 三菱日立パワーシステムズ株式会社 排ガス処理システム及び処理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133269A (ja) * 1973-04-26 1974-12-20
JPH05220348A (ja) * 1991-09-27 1993-08-31 Huels Ag 廃ガスから窒素酸化物を除去する方法
JPH07227523A (ja) * 1993-12-24 1995-08-29 Sakai Chem Ind Co Ltd 窒素酸化物接触還元方法
JPH0884912A (ja) * 1994-09-16 1996-04-02 Sakai Chem Ind Co Ltd 高効率窒素酸化物還元方法
JPH10128064A (ja) * 1996-10-28 1998-05-19 Mitsubishi Heavy Ind Ltd 三酸化硫黄還元処理方法
JP3495527B2 (ja) 1996-10-28 2004-02-09 三菱重工業株式会社 三酸化硫黄還元処理方法
JPH10225620A (ja) * 1997-02-17 1998-08-25 Mitsubishi Heavy Ind Ltd 三酸化硫黄還元処理方法
JP3495591B2 (ja) 1998-03-20 2004-02-09 三菱重工業株式会社 排ガス中の窒素酸化物及びso3の還元処理方法
JP2005118687A (ja) * 2003-10-17 2005-05-12 Mitsubishi Heavy Ind Ltd So3の還元処理が可能な排ガス処理用触媒、その製造方法、及び該排ガス処理用触媒を用いた排ガス処理方法
JP2005279372A (ja) * 2004-03-29 2005-10-13 Osaka Gas Co Ltd 脱硝触媒およびそれを用いた脱硝方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045220A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508760A (ja) * 2017-12-18 2021-03-11 ビーエーエスエフ キューテック インコーポレーテッドBASF Qtech Inc. 触媒コーティング、作製方法、およびその使用

Also Published As

Publication number Publication date
ES2674558T3 (es) 2018-07-02
CN105813714A (zh) 2016-07-27
JP5748894B1 (ja) 2015-07-15
EP3045220B1 (en) 2018-05-09
KR101789902B1 (ko) 2017-10-25
JP2016087576A (ja) 2016-05-23
EP3045220A1 (en) 2016-07-20
TW201630651A (zh) 2016-09-01
EP3045220A4 (en) 2016-10-05
US20160236145A1 (en) 2016-08-18
KR20160068695A (ko) 2016-06-15
TWI599397B (zh) 2017-09-21
CN105813714B (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
JP5748894B1 (ja) 排ガス処理方法及び脱硝・so3還元装置
JP7206045B2 (ja) 排気システム用の亜酸化窒素除去触媒
JP6325024B2 (ja) 銅chaゼオライト触媒
US8193114B2 (en) Catalysts for dual oxidation of ammonia and carbon monoxide with low to no NOx formation
CN107949436B (zh) 集成的scr和氨氧化催化剂体系
JP5761917B2 (ja) 選択的アンモニア酸化用の二官能性触媒
JP7472014B2 (ja) リーン/リッチシステムのための自動車排気からのn2o除去
JP2017538573A (ja) 排気システム用の一酸化二窒素除去触媒
JP7114219B2 (ja) No酸化用触媒材料
WO2016072109A1 (ja) 排ガス処理システム及び処理方法
JP2008002451A (ja) ディーゼルエンジン用排気ガス浄化装置およびディーゼルエンジンの排気ガスの浄化方法
US8178064B2 (en) Treatment of power utilities exhaust
JP2023543697A (ja) Scr触媒組成物及び該触媒組成物を含むscr触媒物品
JPH0538420A (ja) 窒素酸化物の除去処理方法
JP2022527615A (ja) 選択的アンモニア酸化触媒
JPH11342337A (ja) 窒素酸化物の分解除去用触媒b及び窒素酸化物の分解除去方法
EP3096873A1 (en) Non noble metal based diesel oxidation catalyst
JPH0647255A (ja) 窒素酸化物の除去方法
JP2506588B2 (ja) 窒素酸化物の除去方法
WO2023020579A1 (en) Metal oxide catalyst for selective catalytic reduction
JP4058503B2 (ja) 排ガス浄化用触媒層、排ガス浄化用触媒被覆構造体およびこれを使用した排ガス浄化方法
CN115707513A (zh) 用于选择性催化还原的金属氧化物催化剂
JP4881226B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP2009056410A (ja) 船舶用排ガス処理触媒及び排ガス処理方法
JPH06198132A (ja) 窒素酸化物含有排ガスの浄化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157031311

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015783949

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14888112

Country of ref document: US

Ref document number: 2015783949

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE