WO2016068109A1 - スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法 - Google Patents

スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法 Download PDF

Info

Publication number
WO2016068109A1
WO2016068109A1 PCT/JP2015/080184 JP2015080184W WO2016068109A1 WO 2016068109 A1 WO2016068109 A1 WO 2016068109A1 JP 2015080184 W JP2015080184 W JP 2015080184W WO 2016068109 A1 WO2016068109 A1 WO 2016068109A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
multilayer film
stretched multilayer
resin layer
skin
Prior art date
Application number
PCT/JP2015/080184
Other languages
English (en)
French (fr)
Inventor
翔太 南部
寿徳 飛田
忠良 伊藤
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55857446&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016068109(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to AU2015337955A priority Critical patent/AU2015337955B2/en
Priority to US15/522,043 priority patent/US20170355500A1/en
Priority to EP15855724.9A priority patent/EP3214015B1/en
Publication of WO2016068109A1 publication Critical patent/WO2016068109A1/ja
Priority to US16/185,766 priority patent/US20190077562A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/002Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • B65D75/305Skin packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention relates to a heat-shrinkable stretched multilayer film for skin packs, a skin pack package using the same, and a method for producing a heat-shrinkable stretched multilayer film for skin packs.
  • a packaging form having a good appearance has been preferred in the field of food packaging.
  • One of such packaging forms is a skin pack.
  • Skin pack is a method for tightly packaging a transparent packaging film along the shape of the package, and since the skin pack package has no wrinkles, for example, food such as bacon, sausage, ham, meat, cheese, etc. It is widely used for packaging.
  • the basic technique of the skin pack is to place an article to be packaged on a bottom material (for example, a flat base sheet such as paperboard or a plastic sheet, or a molded body obtained by forming a flat base sheet into a predetermined shape)
  • a bottom material for example, a flat base sheet such as paperboard or a plastic sheet, or a molded body obtained by forming a flat base sheet into a predetermined shape
  • a heat-softened plastic film hereinafter referred to as skin film
  • skin film heat-softened plastic film
  • the heating vacuum packaging method As a type of skin pack, the heating vacuum packaging method has been known.
  • a skin film is preliminarily drawn with a vacuum mold while the inside of a chamber equipped with a concave hot plate having vacuum holes is evacuated, while the recess formed by the drawing Place the item to be packaged on the bottom material that can be matched with the part, and keep the heat-softened state without cooling the draw-skinned skin film, and then combine the peripheral part of the recess with the bottom material for packaging.
  • the skin film By covering the object and returning the atmospheric pressure in the chamber to normal pressure, the skin film is brought into close contact with the shape of the packaged object, and at the same time, the skin film and the bottom material around the packaged object are heat sealed.
  • a laminated film made of a soft polyvinyl chloride resin (PVC) / polyvinylidene chloride resin (PVDC) / ethylene-vinyl acetate copolymer (EVA) Japanese Examined Patent Publication 56.
  • PVC polyvinyl chloride resin
  • PVDC polyvinylidene chloride resin
  • EVA ethylene-vinyl acetate copolymer
  • Patent Document 1 Japanese Patent Laid-Open No.
  • Patent Document 4 9-216319 (Patent Document 4)), and ionomer (Io) / EVA / polyamide (PA) / ethylene-vinyl alcohol copolymer (EVOH) ) / PA / EVA / High-density polyethylene (HDPE) laminated film and polyester
  • Various multilayer films such as Ren (PE) / EVA / PA / EVOH / PA / EVA / HDPE a multilayer film (WO 2011/138320 (Patent Document 5)) is known.
  • the conventional multilayer film for skin packs is excellent in skin pack moldability, in a skin-packed package, the fit of the multilayer film to the package is not always sufficient, especially in the corner portion of the package. The fit was not enough.
  • the present invention has been made in view of the above-described problems of the prior art, and has a high formability and high fit to a package, and in particular, a multilayer film for skin packs excellent in the fit of a corner portion of the package and It aims at providing the manufacturing method.
  • a heat-shrinkable stretched multilayer film in which a cross-linked resin layer, a gas barrier resin layer, and a heat-sealable resin layer are sequentially arranged from the outside is a skin. It was found useful as a multilayer film for packs, and the present invention was completed.
  • a cross-linked resin layer, a gas barrier resin layer, and a heat-sealable resin layer are sequentially arranged from the outside, and the longitudinal direction (MD) and lateral direction at 120 ° C.
  • the dry heat shrinkage in the direction (TD) is 10 to 55%, respectively, and the tensile elongation at break in the machine direction at 120 ° C. is 190% or more.
  • the elongation recovery rate in the longitudinal direction and the transverse direction at 120 ° C. is 90 to 100%, respectively.
  • the gas barrier resin layer is preferably a layer made of vinylidene chloride resin
  • the crosslinked resin layer is preferably a layer made of olefin resin.
  • the skin pack package of the present invention includes a bottom material, a package to be packaged disposed on the bottom material, and a heat shrinkability for the skin pack of the present invention disposed in close contact with the package. And a stretched multilayer film.
  • the stretched multilayer film in which the cross-linked resin layer, the gas barrier resin layer, and the heat sealable resin layer are sequentially arranged from the outside has a temperature of 70.
  • the present invention it is possible to obtain a multilayer film for a skin pack having high moldability and good fit to a package, and particularly excellent fit at the corner portion of the package.
  • the heat shrinkable stretched multilayer film for skin pack of the present invention (hereinafter also simply referred to as “multilayer film for skin pack of the present invention”) has a crosslinked resin layer, a gas barrier resin layer, and a heat sealable resin layer in order from the outside. It is arranged, and if necessary, an intermediate layer may be provided between the cross-linked resin layer and the gas barrier resin layer and / or between the gas barrier resin layer and the heat sealable resin layer. Good. In addition, an adhesive layer may be disposed between the respective layers.
  • a polyolefin polymerized using a single site catalyst or a metallocene catalyst for example, linear low density polyethylene ( SSC-LLDPE), linear very low density polyethylene (SSC-VLDPE), conventional polyolefins (eg, linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE or ULDPE)), ethylene- ⁇ olefin co Polymer, ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid ester copolymer (EAA), ethylene-methacrylic acid ester copolymer (EMA), ethylene-methacrylic acid-acrylic acid ester copolymer, etc.
  • SSC linear low density polyethylene
  • SSC-VLDPE linear very low density polyethylene
  • conventional polyolefins eg, linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE or ULDPE
  • EVA ethylene-vinyl acetate copolymer
  • EAA
  • the above-mentioned ethylene- ⁇ olefin examples of the copolymer include a copolymer of ethylene and a small amount of an ⁇ -olefin having 4 to 18 carbon atoms (for example, 1-butene, 1-pentene, 4-methylpentene, 1-octene).
  • ethylene-acrylic acid ester copolymer examples include ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, etc., and ethylene-methacrylic acid ester copolymer Examples thereof include ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, etc.
  • the vinyl acetate content in the ethylene-vinyl acetate copolymer is as follows.
  • the acrylate content of the ethylene-acrylate copolymer is 5-30% by mass, and the acrylate content of the ethylene-acrylate copolymer is The methacrylic acid ester content of the ethylene-methacrylic acid ester copolymer is preferably 5 to 30% by mass, and such polyolefin resins may be used alone or in combination of two or more. Of these polyolefin resins, LLDPE, VLDPE or ULDPE, and ethylene-vinyl acetate copolymers are preferred from the viewpoint of stretchability.
  • gas barrier resin layer examples of the gas barrier resin constituting the gas barrier resin layer according to the present invention include vinylidene chloride resin (PVDC), ethylene-vinyl alcohol copolymer (EVOH), and polyamide resin. Of these gas barrier resins, PVDC is particularly preferable from the viewpoint that the humidity dependency of the oxygen gas barrier property is small.
  • the PVDC is a copolymer of 65 to 95% by weight of vinylidene chloride and 5 to 35% by weight of at least one unsaturated monomer copolymerizable with the vinylidene chloride.
  • unsaturated monomer copolymerizable with vinylidene chloride include vinyl chloride, acrylonitrile, acrylic acid ester and the like.
  • a polyolefin resin such as EVA (which may be a recycled product of a multilayer film), a plasticizer, a stabilizer, and the like may be added to the PVDC as necessary.
  • heat sealable resin layer examples of the heat-sealable resin constituting the heat-sealable resin layer according to the present invention include ionomer resins in addition to the olefinic resins exemplified as the crosslinkable resin. Of such heat-sealable resins, ionomer resins or ethylene-vinyl acetate copolymers (EVA) are preferable from the viewpoint of sealing properties.
  • ionomer resins or ethylene-vinyl acetate copolymers (EVA) are preferable from the viewpoint of sealing properties.
  • an ethylene-unsaturated carboxylic acid copolymer or an ethylene-ethylenically unsaturated carboxylic acid-ethylenically unsaturated carboxylic acid terpolymer (preferably an ethylene-ethylenically unsaturated copolymer) is used as a base polymer.
  • Carboxylic acid-ethylenically unsaturated carboxylic acid ester terpolymer and a resin obtained by neutralizing a carboxyl group in the copolymer with a cation.
  • the unsaturated carboxylic acid methacrylic acid and acrylic acid are preferable, and as the unsaturated carboxylic acid ester, methacrylic acid or an alkyl ester having 1 to 6 carbon atoms of acrylic acid is preferable. Further, as the terpolymer, ethylene-methacrylic acid (or acrylic acid) -methacrylic acid alkyl ester (or acrylic acid alkyl ester) such as ethylene-methacrylic acid-acrylic acid isobutyl ester is preferable.
  • Examples of the cation include Na + , K + , Li + , Cs + , Ag + , Hg + , Cu + , Mg 2+ , Zn 2+ , Be 2+ , Ca 2+ , Ba 2+ , Cu 2+ , Cd 2+ , and Hg 2+. , Sn 2+ , Pb 2+ , Fe 2+ , Co 2+ , Ni 2+ , Al 3+ , Sc 3+ , Fe 3+ , Y 3+ , organic amines, and the like. Of these cations, Na + , K + , Ca 2+ and Zn 2+ are preferable.
  • Examples of the resin constituting the intermediate layer according to the present invention include the olefin resins exemplified as the crosslinkable resin.
  • olefin resins ethylene-vinyl acetate copolymer (EVA) is preferable from the viewpoint of stretchability and flexibility of the film.
  • an intermediate layer disposed between the crosslinked resin layer and the gas barrier resin layer, and between the gas barrier resin layer and the heat sealable resin layer. It is preferable that at least one of the disposed intermediate layers is crosslinked, and it is more preferable that at least the intermediate layer disposed between the crosslinked resin layer and the gas barrier resin layer is crosslinked. It is particularly preferred that both are cross-linked. This tends to improve stretchability, heat resistance, and mechanical strength.
  • an adhesive layer may be disposed between the respective layers. By debonding each layer via an adhesive layer, delamination can be suppressed.
  • the resin constituting the adhesive layer according to the present invention include EVA, EAA, EMA, EAA or EMA unsaturated carboxylic acid-modified product or metal-modified product, acid-modified VLDPE, acid-modified LLDPE, and the like.
  • the vinyl acetate content of the EVA is preferably 8 to 28% by mass
  • the acrylic acid ester content of the EAA is preferably 8 to 28% by mass
  • the methacrylic acid ester content of the EMA is preferably 8 to 28% by mass.
  • ⁇ Heat-shrinkable stretched multilayer film for skin pack> a cross-linked resin layer, a gas barrier resin layer, and a heat-sealable resin layer are arranged in order from the outside, and if necessary, the cross-linked resin layer and the gas barrier resin layer And / or an intermediate layer between the gas barrier resin layer and the heat sealable resin layer.
  • the dry heat shrinkage (high temperature dry heat shrinkage) in the machine direction (MD) and the transverse direction (TD) at 120 ° C. is 10 to 55%, respectively.
  • the high-temperature dry heat shrinkage ratio is less than the lower limit, the fit of the multilayer film to the package, particularly the fit of the corner portion of the package, decreases, and when the upper limit is exceeded, the skin pack moldability decreases.
  • the high temperature dry heat shrinkage is preferably 10 to 35%, more preferably 10 to 30%.
  • the tensile breaking elongation (high temperature tensile breaking elongation) in the machine direction (MD) at 120 ° C. is 190% or more. If the high temperature tensile elongation at break is less than the lower limit, the skin pack moldability is lowered. Further, from the viewpoint of improving skin pack moldability, the high temperature tensile elongation at break is preferably 195% or more, more preferably 250% or more, and particularly preferably 300% or more. The upper limit of the high temperature tensile elongation at break is not particularly limited, but is preferably 500% or less.
  • the elongation recovery rate (high temperature elongation recovery rate) in the machine direction (MD) and the transverse direction (TD) at 120 ° C. is 90 to 100%, respectively.
  • the high-temperature elongation recovery rate is less than the lower limit, the fit to the package, particularly the fit of the corner portion of the package, tends to decrease.
  • the tensile elongation at break in the machine direction (MD) and the transverse direction (TD) at 23 ° C. is 240% or more, respectively. It is more preferably 245% or more, particularly preferably 350% or more, and most preferably 450% or more.
  • the upper limit of the tensile elongation at break is not particularly limited, but is preferably 600% or less.
  • the 2.5% seamant modulus in the machine direction (MD) and the transverse direction (TD) is preferably 75 to 130 MPa, respectively.
  • the thickness of the multilayer film for skin pack of the present invention is usually 50 to 200 ⁇ m.
  • the thickness of the crosslinked resin layer is preferably 1 to 10%, and the thickness of the gas barrier resin layer is preferably 1 to 20% with respect to the total thickness of the multilayer film for skin pack of the present invention.
  • the thickness of the heat-sealable resin layer is preferably 10 to 30%.
  • the thickness of the intermediate layer is preferably 10 to 50%, and in particular, the thickness of the intermediate layer disposed between the crosslinked resin layer and the gas barrier resin layer is preferably 30 to 50%.
  • the thickness of the intermediate layer disposed between the gas barrier resin layer and the heat sealable resin layer is preferably 10 to 30%.
  • the thickness of the adhesive layer is preferably 1 to 5%.
  • the layer structure of the multilayer film for skin pack of the present invention include the following.
  • the left layer is the outermost layer, and the right layer is the innermost layer.
  • Olefin resin layer / adhesive layer / PVDC layer / adhesive layer / olefin resin layer (4) Olefin resin layer / adhesive layer / PVDC layer / adhesive layer / olefin resin layer / ionomer layer.
  • the multilayer film for skin pack of the present invention is produced by subjecting a stretched multilayer film in which a cross-linked resin layer, a gas barrier resin layer, and a heat-sealable resin layer are arranged in order from the outside to a relaxation treatment under predetermined conditions. Can do.
  • the stretched multilayer film used in the present invention can be produced by a known method.
  • a cross-linked resin layer, a gas barrier resin layer, a heat-sealable resin layer, and if necessary, each resin constituting the intermediate layer and the adhesive layer may be formed into a predetermined layer using an extruder corresponding to the number of layers.
  • Extruded into a cylindrical shape from an annular die so as to have a structure the obtained cylindrical body is biaxially stretched by an inflation method, or is extruded into a planar shape using a T-die, and the resulting flat multilayer film is obtained
  • a stretched multilayer film imparted with heat shrinkability can be obtained by uniaxially or biaxially stretching by a tenter method.
  • the stretching ratio is usually 2.0 to 5.0 times in the machine direction (MD) and 2.0 to 5.0 times in the transverse direction (TD).
  • MD machine direction
  • TD transverse direction
  • the draw ratio is less than the lower limit, the bubble shoulder at the time of stretching becomes unstable and the film formation tends to become unstable.
  • the upper limit is exceeded, the film is formed by whitening or breaking of the film due to overstretching. Tend to decrease.
  • the crosslinkable resin constituting the crosslinked resin layer and the intermediate layer are crosslinked,
  • the stretchability, heat resistance, and mechanical strength tend to improve.
  • radiation to be irradiated include ⁇ rays, ⁇ rays, electron beams, ⁇ rays, X rays and the like.
  • electron beams and ⁇ rays are preferable, and electron beams are more preferable.
  • the acceleration voltage is preferably 150 to 500 kV, and the irradiation dose is preferably 10 to 200 kiloGray (kGy).
  • the acceleration voltage or irradiation dose is less than the lower limit, the crosslinked resin layer and the intermediate layer tend not to be sufficiently crosslinked, whereas when the upper limit is exceeded, the gas barrier resin is a PVDC layer. Decomposition of PVDC may occur.
  • the stretched multilayer film thus obtained is subjected to relaxation treatment under predetermined conditions.
  • a heat-shrinkable stretched multilayer film having a high temperature dry heat shrinkage ratio in a predetermined range can be obtained.
  • the high-temperature tensile breaking elongation and the high-temperature elongation recovery rate tend to satisfy predetermined conditions.
  • the temperature during the relaxation treatment according to the present invention is 70 to 90 ° C.
  • the temperature during the relaxation treatment is less than the lower limit, the predetermined high-temperature dry heat shrinkage rate and the high temperature tensile elongation at break are not provided, and the skin pack formability is deteriorated.
  • the upper limit is exceeded, heating in the relaxation treatment is performed. Sometimes it becomes unstable and cannot be wound stably.
  • the temperature during the relaxation treatment is preferably 80 to 90 ° C.
  • the relaxation treatment time according to the present invention is preferably passed through the heat treatment tower for 1 to 20 seconds.
  • the relaxation rate according to the present invention is 8 to 45% in each of the vertical direction (MD) and the horizontal direction (TD).
  • the relaxation rate is less than the lower limit, the predetermined high temperature dry heat shrinkage rate and the high temperature tensile elongation at break are not provided, and the skin pack moldability is deteriorated.
  • the upper limit is exceeded, the predetermined high temperature dry heat shrinkage rate is reached. And the high temperature expansion
  • the relaxation rate is preferably 25 to 45%.
  • the skin pack package of the present invention comprises a bottom material, a package to be packaged disposed on the bottom material, and a heat-shrinkable stretch multilayer for the skin pack of the present invention disposed in close contact with the package. And a film. Since the heat-shrinkable stretched multilayer film for skin packs of the present invention is excellent in skin pack moldability and fit to a package, especially the fit of the corner portion of the package, for example, as the package It is most suitable as a multilayer film for skin-packing foods having corner portions such as bacon, sausage, ham, meat and cheese.
  • the general purpose flat bottom film used for the conventional skin pack package (For example, flat form, such as paperboard and a plastic sheet) Base sheet) can be used as the bottom material.
  • molded such a flat bottom material film in the desired shape can also be used as a bottom material.
  • VLDPE Linear very low density polyethylene
  • MFR 190 ° C.
  • MFR 3.3 g / 10 min
  • melting point 117 ° C.
  • Ethylene-vinyl acetate copolymer 18% EVA
  • Polyene N8038F Polyene N8038F
  • EMA Ethylene-methyl acrylate copolymer
  • Tensile rupture strength and tensile rupture elongation A strip-shaped film sample having a width of 10 mm and a length of 100 mm is attached to a Tensilon universal material testing machine ("RTC-1210 type” manufactured by Orientec Co., Ltd.) (distance between chucks: 50 mm). The film was stretched at a temperature of 23 ° C. and a tensile speed of 500 mm / min, and the stress (tensile rupture strength) and elongation (tensile rupture elongation) when the film sample broke were measured under the conditions of 23 ° C. and 50% RH. This measurement was performed for each of the machine direction (MD) and the transverse direction (TD) of the multilayer film. One sample was tested five times, and the average values were taken as the tensile rupture strength and the tensile rupture elongation, and were obtained for each of the longitudinal direction and the transverse direction.
  • RTC-1210 type manufactured by Orientec Co., Ltd.
  • a film sample having a width of 10 mm and a length of 70 mm is mounted on a Tensilon universal material testing machine ("RTC-1210 type” manufactured by Orientec Co., Ltd.) (distance between chucks: 20 mm), and the temperature is set to 120 ° C in advance. Hold in an adjusted thermostat for 30 seconds, then stretch at a temperature of 120 ° C. and a tensile speed of 500 mm / min, and stretch the multilayer film in the machine direction (MD) (tensile elongation at break) when the film sample breaks ) was measured.
  • MD machine direction
  • the maximum load was measured. This measurement was performed on each of the multilayer film from the front side (from the crosslinked resin layer) and the back side (from the seal layer). The test was conducted five times for each sample, and the average value was defined as the puncture strength, which was obtained for each of the front side and the back side.
  • a skin pack package was prepared under the following conditions to evaluate the moldability.
  • a multilayer film slit to a width of 425 mm was used as the lid material (skin pack film), and a general-purpose bottom material film (PE / EVOH / PE, width 425 mm, thickness 350 ⁇ m) was used as the bottom material.
  • PE / EVOH / PE general-purpose bottom material film
  • a skin pack packaging body was prepared under the following conditions, and the fit property was evaluated.
  • the lid material skin pack film
  • the lid material uses a multilayer film cut to a size of 300 mm length and 500 mm width, and the bottom material is a general-purpose bottom material film (PE / EVOH / PE, thickness) cut to the same size as the lid material. 350 ⁇ m) was used.
  • Example 1 Polyvinylidene chloride-vinyl chloride copolymer (PVDC), linear very low density polyethylene (VLDPE), ethylene-vinyl acetate copolymer (18% EVA) with a vinyl acetate content of 18% by mass, vinyl acetate content of 15% by mass 6 types of resin, 6% ethylene-vinyl acetate copolymer (15% EVA), ethylene-methyl acrylate copolymer (EMA), and ionomer resin (ionomer) were separately extruded and melted by 6 extruders.
  • PVDC Polyvinylidene chloride-vinyl chloride copolymer
  • VLDPE linear very low density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • ionomer resin ionomer
  • each resin was introduced into a co-extrusion annular die, and VLDPE (5.5) / 18% EVA (40.6) / EMA (2.7) / PVDC (12.1) / from the outermost layer toward the innermost layer.
  • SMA (2.7) / 15% EVA (18.2) / ionomer (18.2) were melt-bonded in this order and co-extruded as 7 layers in a die to obtain a molten cylindrical body.
  • parenthesis of each said layer is a ratio (unit:%) of the thickness of each layer with respect to the total thickness.
  • the resin temperature of the molten cylindrical body at the die exit portion was 200 ° C. After the obtained molten cylindrical body was cooled by cold water showering at 10 ° C., a flat cylindrical body having a flat width of 196 mm and a thickness of 608 ⁇ m was obtained.
  • the flat cylindrical body was irradiated with an electron beam from the outside of the cylindrical body in an electron beam irradiation apparatus with an acceleration voltage of 275 KeV to give an irradiation dose of 100 kg.
  • it is passed through a 85 ° C hot water bath and simultaneously biaxially stretched 3.40 times in the machine direction (MD) and 3.25 times in the transverse direction (TD) by the inflation method while cooling with an air ring of 11 ° C.
  • a biaxially stretched cylindrical body having a folding width of 637 mm and a thickness of 55 ⁇ m was obtained.
  • the obtained biaxially stretched cylindrical body was introduced into a heat treatment tower having a cylinder length of 2 m and passed for 12 seconds while being heated to 70 ° C. by steam, and 20% in the machine direction (MD) and the transverse direction (TD). ) was subjected to a relaxation treatment of 10% to obtain a heat-shrinkable stretched multilayer cylindrical body having a width of 573 mm and a thickness of 76 ⁇ m. Both ears of this heat-shrinkable stretched multilayer tubular body were cut and a heat-shrinkable stretched multilayer film having a width of 480 mm was wound up. The measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1. In this heat shrinkable stretched multilayer film, the VLDPE layer and the 18% EVA layer are crosslinked.
  • Example 2 A heat-shrinkable stretched multi-layer cylindrical shape having a width of 585 mm and a thickness of 75 ⁇ m in the same manner as in Example 1 except that the temperature during the relaxation treatment was changed to 80 ° C. and the relaxation rate in the transverse direction (TD) was changed to 8%. Got the body. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm. The measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 3 A heat-shrinkable stretched multilayer cylindrical shape having a width of 510 mm and a thickness of 90 ⁇ m in the same manner as in Example 1 except that the relaxation rate in the machine direction (MD) was changed to 24% and the relaxation rate in the transverse direction (TD) was changed to 20%. Got the body. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm. The measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 4 The width at 503 mm was the same as in Example 1 except that the temperature during the relaxation treatment was changed to 80 ° C., the relaxation rate in the vertical direction (MD) was changed to 26%, and the relaxation rate in the horizontal direction (TD) was changed to 21%.
  • a heat-shrinkable stretched multilayer cylindrical body having a thickness of 94 ⁇ m was obtained. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm. The measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 5 The width 446 mm was the same as in Example 1 except that the temperature during the relaxation treatment was changed to 80 ° C., the relaxation rate in the machine direction (MD) was changed to 32%, and the relaxation rate in the transverse direction (TD) was changed to 30%.
  • a heat-shrinkable stretched multilayer cylindrical body having a thickness of 116 ⁇ m was obtained.
  • One end of this heat-shrinkable stretched multilayer tubular body was cut, opened, and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm.
  • Table 1 The measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 6 A width of 370 mm was obtained in the same manner as in Example 1 except that the temperature during relaxation treatment was changed to 80 ° C., the relaxation rate in the vertical direction (MD) was changed to 42%, and the relaxation rate in the horizontal direction (TD) was changed to 40%.
  • a heat-shrinkable stretched multilayer cylindrical body having a thickness of 158 ⁇ m was obtained.
  • one end of this cylindrical body was cut and opened to wind up a heat-shrinkable stretched multilayer film having a width of 480 mm.
  • the measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 7 The width of 390 mm was the same as in Example 1 except that the temperature during the relaxation treatment was changed to 90 ° C., the relaxation rate in the vertical direction (MD) was changed to 36%, and the relaxation rate in the horizontal direction (TD) was changed to 39%.
  • a heat-shrinkable stretched multilayer cylindrical body having a thickness of 140 ⁇ m was obtained.
  • one end of this cylindrical body was cut, opened, and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm.
  • the measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 8 The heat-shrinkable stretched multilayer film obtained in the same manner as in Example 7 was heat treated by passing it through a dry heat oven at 140 ° C. for 3 minutes under tension. It was 147 micrometers when the thickness of the heat-shrinkable multilayer film after this heat processing was measured. The measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 9 The heat-shrinkable stretched multilayer film obtained in the same manner as in Example 7 was heat treated by passing it through a dry heat oven at 140 ° C. for 7 minutes in a tension state. It was 162 micrometers when the thickness of the heat-shrinkable multilayer film after this heat processing was measured.
  • the measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • the measurement results of the physical properties of this heat-shrinkable stretched multilayer film are shown in Table 1.
  • Example 1 In the same manner as in Example 1, biaxial stretching was performed to obtain a biaxially stretched cylindrical body having a folding width of 637 mm and a thickness of 55 ⁇ m. The obtained biaxially stretched cylindrical body was cut off at both ears without being subjected to relaxation treatment, and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm. Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • Example 2 The width was 620 mm in the same manner as in Example 1 except that the temperature during the relaxation treatment was changed to 60 ° C., the relaxation rate in the vertical direction (MD) was changed to 4%, and the relaxation rate in the horizontal direction (TD) was changed to 3%.
  • a heat-shrinkable stretched multilayer tubular body having a thickness of 59 ⁇ m was obtained. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm.
  • Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • Example 3 A heat-shrinkable stretched multi-layer cylindrical shape having a width of 616 mm and a thickness of 61 ⁇ m in the same manner as in Example 1 except that the relaxation rate in the machine direction (MD) was changed to 7% and the relaxation rate in the transverse direction (TD) was changed to 3%. Got the body. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm. Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • Example 4 The width at 594 mm was the same as in Example 1 except that the temperature during the relaxation treatment was changed to 80 ° C., the relaxation rate in the vertical direction (MD) was changed to 12%, and the relaxation rate in the horizontal direction (TD) was changed to 7%.
  • a heat-shrinkable stretched multilayer cylindrical body having a thickness of 67 ⁇ m was obtained. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm.
  • Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • Example 5 A heat-shrinkable stretched multi-layer cylindrical shape having a width of 574 mm and a thickness of 67 ⁇ m in the same manner as in Example 1 except that the temperature during the relaxation treatment was changed to 60 ° C. and the relaxation rate in the machine direction (MD) was changed to 9%. Got the body. Both ears of this cylindrical body were cut in the same manner as in Example 1 and wound up as a heat-shrinkable stretched multilayer film having a width of 480 mm. Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • Example 6 The heat-shrinkable stretched multilayer film obtained in the same manner as in Example 7 was heat treated by passing it through a dry heat oven at 140 ° C. for 10 minutes in a tension state. It was 160 micrometers when the thickness of the heat-shrinkable multilayer film after this heat processing was measured. Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • Comparative Example 7 The heat-shrinkable stretched multilayer film obtained in the same manner as in Comparative Example 6 was heat treated by passing it through a dry heat oven at 120 ° C. again for 1 minute in a tension state. The thickness of the heat-shrinkable multilayer film after this heat treatment was measured and found to be 170 ⁇ m. Table 2 shows the measurement results of the physical properties of this heat-shrinkable stretched multilayer film.
  • VLDPE Linear very low density polyethylene
  • EVA Ethylene-vinyl acetate copolymer
  • Evaflex V430RC Evaflex V430RC manufactured by Mitsui DuPont Polychemical Co., Ltd.
  • ADMER Adhesive polyolefin
  • Linear low density polyethylene (LLDPE) “Evolue SP0540” manufactured by Prime Polymer Co., Ltd.
  • This unstretched multilayer film was crosslinked by electron beam irradiation.
  • Table 2 shows the measurement results of the physical properties of the obtained non-shrinkable unstretched multilayer skin pack film. In this non-shrinkable unstretched multilayer skin pack film, all seven layers are crosslinked.
  • the heat-shrinkable stretch of the present invention having a dry heat shrinkage rate at 120 ° C. of 10 to 55% and a longitudinal tensile breaking elongation at 120 ° C. of 190% or more.
  • the multilayer films (Examples 1 to 9) had a high recovery rate at high temperature and had good skin pack moldability and fit properties, and were confirmed to be suitable for skin pack films.
  • the heat-shrinkable stretched multilayer film for skin packs of the present invention is excellent in the fit of the corner portion of the package, the food having the corner portion such as bacon, sausage, ham, meat, and cheese is skin-packed. It is useful as a multilayer film.

Abstract

 架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されており、120℃における縦方向(MD)及び横方向(TD)の乾熱収縮率がそれぞれ10~55%であり、120℃における縦方向の引張破断伸度が190%以上である、スキンパック用熱収縮性延伸多層フィルム。

Description

スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法
 本発明は、スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法に関する。
 従来から、食品包装の分野においては、外観の良い包装形態が好まれている。このような包装形態のひとつに、スキンパックがある。スキンパックは、透明な包装用フィルムを被包装物の形状に沿って密着包装させる方法であり、スキンパック包装体には皺がないため、例えば、ベーコン、ソーセージ、ハム、食肉、チーズなどの食品類の包装に汎用されている。スキンパックの基本的な技法は、底材(例えば、板紙やプラスチックシートなどの平板状のベースシートや、平板状のベースシートを所定の形状に成形した成形体)上に被包装物を置き、その上から加熱軟化したプラスチックフィルム(以下、スキンフィルムという)をかぶせ、脱気して、スキンフィルムを被包装物の形状に沿って密着させるとともに、周辺部のスキンフィルムと底材とをヒートシールする方法である。
 スキンパックの一種として、従来から、加熱真空包装法が知られている。加熱真空包装法においては、真空孔を有する凹型の熱板を備えたチャンバー内を真空にしながら、真空金型によりスキンフィルムを予備的に絞り成形し、一方、その絞り成形により形成された凹所部分と合わせられる底材上に被包装物を載せ、絞り成形されたスキンフィルムを冷却することなく、加熱軟化した状態を維持したまま、その凹所の周辺部と底材とを合わせて被包装物を覆い、チャンバー内の気圧を常圧に戻すことにより、スキンフィルムを被包装物の形状に沿って密着させ、同時に、被包装物周辺部のスキンフィルムと底材とをヒートシールする。
 また、このようなスキンパックに用いられるスキンフィルムとしては、軟質ポリ塩化ビニル樹脂(PVC)/ポリ塩化ビニリデン樹脂(PVDC)/エチレン-酢酸ビニル共重合体(EVA)からなる積層フィルム(特公昭56-49206号公報(特許文献1))、EVA/PVDC/EVAからなる積層フィルム(特公昭57-23607号公報(特許文献2))、PVC/PVDC/ポリオレフィン樹脂からなる未延伸の共押出積層フィルム(特公平6-2485号公報(特許文献3)、特開平9-216319号公報(特許文献4))、及びアイオノマー(Io)/EVA/ポリアミド(PA)/エチレン-ビニルアルコール共重合体(EVOH)/PA/EVA/高密度ポリエチレン(HDPE)からなる積層フィルムやポリエチレン(PE)/EVA/PA/EVOH/PA/EVA/HDPEからなる積層フィルム(国際公開第2011/138320号(特許文献5))などの種々の多層フィルムが知られている。
特公昭56-49206号公報 特公昭57-23607号公報 特公平6-2485号公報 特開平9-216319号公報 国際公開第2011/138320号
 従来のスキンパック用多層フィルムはスキンパック成形性に優れているものの、スキンパックされた包装体においては、必ずしも被包装物に対する多層フィルムのフィット性が十分ではなく、特に、被包装物のコーナー部分のフィット性が十分ではなかった。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、成形性及び被包装物に対するフィット性が高く、特に被包装物のコーナー部分のフィット性に優れたスキンパック用多層フィルム及びその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されている熱収縮性延伸多層フィルムがスキンパック用多層フィルムとして有用であることを見出し、本発明を完成するに至った。
 すなわち、本発明のスキンパック用熱収縮性延伸多層フィルムは、架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されており、120℃における縦方向(MD)及び横方向(TD)の乾熱収縮率がそれぞれ10~55%であり、120℃における縦方向の引張破断伸度が190%以上である、ものである。
 このようなスキンパック用熱収縮性延伸多層フィルムにおいては、120℃における縦方向及び横方向の伸長回復率がそれぞれ90~100%であることが好ましい。さらに、本発明のスキンパック用熱収縮性延伸多層フィルムにおいて、前記ガスバリア性樹脂層としては塩化ビニリデン系樹脂からなる層が好ましく、また、前記架橋樹脂層としてはオレフィン系樹脂からなる層が好ましい。
 また、本発明のスキンパック包装体は、底材と、該底材上に配置されている被包装物と、該被包装物に密着して配置されている本発明のスキンパック用熱収縮性延伸多層フィルムとを備えているものである。
 さらに、本発明のスキンパック用熱収縮性延伸多層フィルムの製造方法は、架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されている延伸多層フィルムに、温度が70~90℃、縦方向及び横方向の緩和率がそれぞれ8~45%の条件で緩和処理を施して、前記本発明の熱収縮性延伸多層フィルムを得る方法である。
 本発明によれば、成形性及び被包装物に対するフィット性が高く、特に被包装物のコーナー部分のフィット性に優れたスキンパック用多層フィルムを得ることが可能となる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明のスキンパック用熱収縮性延伸多層フィルムについて説明する。本発明のスキンパック用熱収縮性延伸多層フィルム(以下、単に「本発明のスキンパック用多層フィルム」ともいう)は、架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されたものであり、必要に応じて前記架橋樹脂層と前記ガスバリア性樹脂層との間及び/又は前記ガスバリア性樹脂層と前記ヒートシール性樹脂層との間に中間層を備えていてもよい。また、各層間には接着剤層が配置されていてもよい。
 (架橋樹脂層)
 本発明にかかる架橋樹脂層を構成するための架橋性樹脂としては、シングルサイト触媒又はメタロセン触媒(以下、「SSC」と略す)を用いて重合されたポリオレフィン(例えば、直鎖状低密度ポリエチレン(SSC-LLDPE)、直鎖状超低密度ポリエチレン(SSC-VLDPE)、従来のポリオレフィン(たとえば、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPEまたはULDPE))、エチレン-αオレフィン共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸エステル共重合体(EAA)、エチレン-メタクリル酸エステル共重合体(EMA)、エチレン-メタクリル酸-アクリル酸エステル共重合体等のオレフィン系樹脂が挙げられる。前記エチレン-αオレフィン共重合体としては、エチレンと少量の炭素数4~18のαオレフィン(例えば、1-ブテン、1-ペンテン、4-メチルペンテン、1-オクテン)との共重合体が挙げられる。また、前記エチレン-アクリル酸エステル共重合体としては、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体等が挙げられ、エチレン-メタクリル酸エステル共重合体としては、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体等が挙げられる。さらに、エチレン-酢酸ビニル共重合体中の酢酸ビニル含量としては5~30質量%が好ましく、エチレン-アクリル酸エステル共重合体のアクリル酸エステル含量としては5~30質量%が好ましく、エチレン-メタクリル酸エステル共重合体のメタクリル酸エステル含量としては5~30質量%が好ましい。このようなポリオレフィン系樹脂は1種を単独で使用しても2種以上を併用してもよい。これらのポリオレフィン系樹脂のうち、延伸性の観点から、LLDPE、VLDPEまたはULDPE、エチレン-酢酸ビニル共重合体が好ましい。
 (ガスバリア性樹脂層)
 本発明にかかるガスバリア性樹脂層を構成するガスバリア性樹脂としては、塩化ビニリデン系樹脂(PVDC)、エチレン-ビニルアルコール共重合体(EVOH)、ポリアミド系樹脂等が挙げられる。これらのガスバリア性樹脂のうち、酸素ガスバリア性の湿度依存性が少ないという観点から、PVDCが特に好ましい。前記PVDCは、65~95重量%塩化ビニリデンと該塩化ビニリデンと共重合可能な少なくとも1種の不飽和単量体5~35重量%との共重合体である。塩化ビニリデンと共重合可能な不飽和単量体としては、塩化ビニル、アクリロニトリル、アクリル酸エステル等が挙げられる。また、前記PVDCには、必要に応じて、EVAなどのポリオレフィン系樹脂(多層フィルムの再生物であってもよい)、可塑剤、安定剤等を添加してもよい。
 (ヒートシール性樹脂層)
 本発明にかかるヒートシール性樹脂層を構成するヒートシール性樹脂としては、前記架橋性樹脂として例示したオレフィン系樹脂のほか、アイオノマー樹脂が挙げられる。このようなヒートシール性樹脂のうち、シール性の観点から、アイオノマー樹脂若しくはエチレン―酢酸ビニル共重合体(EVA)が好ましい。アイオノマー樹脂としては、ベースポリマーとして、エチレン-不飽和カルボン酸共重合体又はエチレン-エチレン性不飽和カルボン酸-エチレン性不飽和カルボン酸エステル三元共重合体(好ましくは、エチレン-エチレン性不飽和カルボン酸-エチレン性不飽和カルボン酸エステル三元共重合体)を用い、これら共重合体中のカルボキシル基を陽イオンで中和した樹脂が挙げられる。前記不飽和カルボン酸としては、メタクリル酸、アクリル酸が好ましく、不飽和カルボン酸エステルとしては、メタクリル酸又はアクリル酸の炭素数1~6のアルキルエステルが好ましい。また、前記三元共重合体としては、エチレン-メタクリル酸-アクリル酸イソブチルエステル等のエチレン-メタクリル酸(又はアクリル酸)-メタクリル酸アルキルエステル(又はアクリル酸アルキルエステル)が好ましい。
 前記陽イオンとしては、Na、K、Li、Cs、Ag、Hg、Cu、Mg2+、Zn2+、Be2+、Ca2+、Ba2+、Cu2+、Cd2+、Hg2+、Sn2+、Pb2+、Fe2+、Co2+、Ni2+、Al3+、Sc3+、Fe3+、Y3+などの金属イオン、有機アミン等が挙げられる。これらの陽イオンのうち、Na、K、Ca2+、Zn2+が好ましい。
 (中間層)
 本発明にかかる中間層を構成する樹脂としては、前記架橋性樹脂として例示したオレフィン系樹脂が挙げられる。このようなオレフィン系樹脂のうち、フィルムの延伸性及び柔軟性の観点から、エチレン-酢酸ビニル共重合体(EVA)が好ましい。
 また、本発明のスキンパック用多層フィルムにおいては、前記架橋樹脂層と前記ガスバリア性樹脂層との間に配置されている中間層及び前記ガスバリア性樹脂層と前記ヒートシール性樹脂層との間に配置されている中間層のうちの少なくとも一方が架橋されていることが好ましく、少なくとも前記架橋樹脂層と前記ガスバリア性樹脂層との間に配置されている中間層が架橋されていることがより好ましく、両者が架橋されていることが特に好ましい。これにより、延伸性、耐熱性、機械強度が向上する傾向にある。
 (接着剤層)
 本発明のスキンパック用多層フィルムにおいては、各層間に接着剤層が配置されていてもよい。各層を接着剤層を介して接合することによって、層間剥離を抑制することができる。本発明にかかる接着剤層を構成する樹脂としては、EVA、EAA、EMA、EAA又はEMAの不飽和カルボン酸変性物又は金属変性物、酸変性VLDPE、酸変性LLDPE等が挙げられる。前記EVAの酢酸ビニル含量としては8~28質量%が好ましく、前記EAAのアクリル酸エステル含量としては8~28質量%が好ましく、前記EMAのメタクリル酸エステル含量としては8~28質量%が好ましい。
 <スキンパック用熱収縮性延伸多層フィルム>
 本発明のスキンパック用熱収縮性延伸多層フィルムは、架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置され、必要に応じて前記架橋樹脂層と前記ガスバリア性樹脂層との間及び/又は前記ガスバリア性樹脂層と前記ヒートシール性樹脂層との間に中間層を備えるものである。
 本発明のスキンパック用多層フィルムにおいては、120℃における縦方向(MD)及び横方向(TD)の乾熱収縮率(高温乾熱収縮率)がそれぞれ10~55%である。高温乾熱収縮率が前記下限未満になると、被包装物に対する多層フィルムのフィット性、特に、被包装物のコーナー部分のフィット性が低下し、前記上限を超えると、スキンパック成形性が低下する。また、スキンパック成形性が向上するという観点から、高温乾熱収縮率としては10~35%が好ましく、10~30%がより好ましい。
 また、本発明のスキンパック用多層フィルムにおいては、120℃における縦方向(MD)の引張破断伸度(高温引張破断伸度)が190%以上である。高温引張破断伸度が前記下限未満になると、スキンパック成形性が低下する。また、スキンパック成形性が向上するという観点から、高温引張破断伸度としては195%以上が好ましく、250%以上がより好ましく、300%以上が特に好ましい。なお、高温引張破断伸度の上限としては特に制限はないが、500%以下が好ましい。
 さらに、本発明のスキンパック用多層フィルムにおいては、120℃における縦方向(MD)及び横方向(TD)の伸長回復率(高温伸長回復率)がそれぞれ90~100%であることが好ましい。高温伸長回復率が前記下限未満になると、被包装物に対するフィット性、特に被包装物のコーナー部分のフィット性が低下する傾向にある。
 また、本発明のスキンパック用多層フィルムにおいては、スキンパック成形性の観点から、23℃における縦方向(MD)及び横方向(TD)の引張破断伸度がそれぞれ240%以上であることが好ましく、245%以上であることがより好ましく、350%以上であることが特に好ましく、450%以上であることが最も好ましい。なお、前記引張破断伸度の上限としては特に制限はないが、600%以下が好ましい。
 さらに、本発明のスキンパック用多層フィルムにおいては、スキンパック成形性の観点から、縦方向(MD)及び横方向(TD)の2.5%シーカントモジュラスがそれぞれ75~130MPaであることが好ましい。
 本発明のスキンパック用多層フィルムの厚さは、通常50~200μmである。また、本発明のスキンパック用多層フィルムの全厚に対して、前記架橋樹脂層の厚さとしては1~10%が好ましく、前記ガスバリア性樹脂層の厚さとしては1~20%が好ましく、前記ヒートシール性樹脂層の厚さとしては10~30%が好ましい。さらに、前記中間層の厚さとしては10~50%が好ましく、特に、前記架橋樹脂層と前記ガスバリア性樹脂層との間に配置されている中間層の厚さとしては30~50%が好ましく、前記ガスバリア性樹脂層と前記ヒートシール性樹脂層との間に配置されている中間層の厚さとしては10~30%が好ましい。また、前記接着剤層の厚さとしては1~5%が好ましい。多層フィルムの全厚が前記下限未満になると、多層フィルムの機械強度が低下する傾向にあり、他方、前記上限を超えると、スキンパック成形性や被包装物に対するフィット性が低下する傾向にある。
 本発明のスキンパック用多層フィルムの層構造の具体例としては以下のものが挙げられる。なお、左側の層が最外層であり、右側の層が最内層である。
(1)オレフィン系樹脂層/PVDC層/アイオノマー層。
(2)オレフィン系樹脂層/接着剤層/PVDC層/接着剤層/アイオノマー層。
(3)オレフィン系樹脂層/接着剤層/PVDC層/接着剤層/オレフィン系樹脂層。
(4)オレフィン系樹脂層/接着剤層/PVDC層/接着剤層/オレフィン系樹脂層/アイオノマー層。
(5)オレフィン系樹脂層/オレフィン系樹脂層/接着剤層/PVDC層/接着剤層/オレフィン系樹脂層/アイオノマー層。
(6)オレフィン系樹脂層/オレフィン系樹脂層/接着剤層/PVDC層/接着剤層/オレフィン系樹脂層/オレフィン系樹脂層。
 次に、本発明のスキンパック用熱収縮性延伸多層フィルムの製造方法(以下、単に「本発明のスキンパック用多層フィルムの製造方法」ともいう)について説明する。本発明のスキンパック用多層フィルムは、架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されている延伸多層フィルムに所定の条件で緩和処理を施すことによって製造することができる。
 本発明に用いられる延伸多層フィルムは公知の方法により製造することができる。例えば、架橋樹脂層、ガスバリア性樹脂層、ヒートシール性樹脂層、必要に応じて中間層及び接着剤層を構成する各樹脂を、積層数に応じた台数の押出機を用いて、所定の層構造となるように、環状ダイから筒状に押出し、得られた筒状体をインフレーション法により二軸延伸したり、或いは、Tダイを用いて平面状に押出し、得られた平板状多層フィルムをテンター法により一軸又は二軸延伸したりすることによって、熱収縮性が付与された延伸多層フィルムを得ることができる。
 延伸倍率としては、通常、縦方向(MD)が2.0~5.0倍、横方向(TD)が2.0~5.0倍である。延伸倍率が前記下限未満になると、延伸時のバブルショルダーが不安定になり、製膜が不安定になる傾向にあり、他方、前記上限を超えると、過延伸によるフィルムの白化や破断により製膜性が低下する傾向にある。
 また、前記延伸多層フィルムを製造するに際し、延伸前又は延伸後に、公知の方法により多層フィルムに放射線照射することが好ましい。これにより、前記架橋樹脂層を構成する架橋性樹脂及び中間層(特に、前記架橋樹脂層と前記ガスバリア性樹脂層との間に配置されている中間層)を構成するオレフィン系樹脂が架橋され、延伸性、耐熱性、機械強度が向上する傾向にある。照射する放射線としては、α線、β線、電子線、γ線、X線等が挙げられる。これらのうち、照射前後での架橋効果が大きいという観点から、電子線及びγ線が好ましく、電子線がより好ましい。
 放射線の照射条件としては、例えば、電子線照射の場合、加速電圧が150~500kVであることが好ましく、照射線量が10~200キログレイ(kGy)であることが好ましい。加速電圧や照射線量が前記下限未満になると、前記架橋樹脂層及び前記中間層を十分に架橋することができない傾向にあり、他方、前記上限を超えると、前記ガスバリア性樹脂がPVDC層の場合、PVDCの分解が発生する場合がある。
 本発明のスキンパック用多層フィルムの製造方法においては、このようにして得られた延伸多層フィルムに所定の条件で緩和処理を施す。これにより、高温乾熱収縮率が所定の範囲にある熱収縮性延伸多層フィルムを得ることができる。また、このようにして得られた熱収縮性延伸多層フィルムにおいては、高温引張破断伸度及び高温伸長回復率についても所定の条件を満たす傾向にある。
 本発明にかかる緩和処理時の温度は70~90℃である。緩和処理時の温度が前記下限未満になると、所定の高温乾熱収縮率及び高温引張破断伸度が付与されず、スキンパック成形性が低下し、他方、前記上限を超えると、緩和処理における加熱時に不安定となり、安定して巻き取ることができなくなる。また、スキンパック成形性が向上するという観点から、緩和処理時の温度としては80~90℃が好ましい。本発明にかかる緩和処理時間としては、例えば、熱処理塔の高さが2mの場合には、熱処理塔内を1~20秒間で通過させることが好ましい。
 本発明にかかる緩和率は、縦方向(MD)及び横方向(TD)のそれぞれについて8~45%である。緩和率が前記下限未満になると、所定の高温乾熱収縮率及び高温引張破断伸度が付与されず、スキンパック成形性が低下し、他方、前記上限を超えると、所定の高温乾熱収縮率及び高温伸長回復率が付与されず、被包装物に対するフィット性が低下する。また、スキンパック成形性が向上するという観点から、緩和率としては25~45%が好ましい。
 次に、本発明のスキンパック包装体について説明する。本発明のスキンパック包装体は、底材と、この底材上に配置されている被包装物と、この被包装物に密着して配置されている本発明のスキンパック用熱収縮性延伸多層フィルムとを備えている。本発明のスキンパック用熱収縮性延伸多層フィルムは、スキンパック成形性及び被包装物に対するフィット性、特に、被包装物のコーナー部分のフィット性に優れているため、例えば、前記被包装物として、ベーコン、ソーセージ、ハム、食肉、チーズ等のコーナー部分を有する食品をスキンパックするための多層フィルムとして最適である。
 本発明のスキンパック包装体に用いられる底材としては特に制限はなく、例えば、従来のスキンパック包装体に用いられている汎用の平板状底材フィルム(例えば、板紙やプラスチックシートなどの平板状ベースシート)を底材として使用することができる。また、このような平板状底材フィルムを所望の形状に成形した成形体を底材として使用することもできる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例1~7で使用した樹脂を以下に示す。
(1)塩化ビニリデン-塩化ビニル共重合体(PVDC)
(株)クレハ製「塩化ビニリデン-塩化ビニル共重合体」、密度=1.71g/cm、融点=140℃。
(2)線状超低密度ポリエチレン(VLDPE)
(株)プライムポリマー製「モアテック0398CN」、密度=0.907g/cm、MFR(190℃)=3.3g/10min、融点=117℃。
(3)エチレン-酢酸ビニル共重合体(18%EVA)
TPI Polene社製「Polene N8038F」、密度=0.941g/cm、MFR(190℃)=2.8g/10min、融点=85℃、酢酸ビニル含有量=18質量%。
(4)エチレン-酢酸ビニル共重合体(15%EVA)
TPI Polene社製「Polene N8036」、密度=0.937g/cm、MFR(190℃)=2.3g/10min、融点=90℃、酢酸ビニル含有量=15質量%。
(5)エチレン-メチルアクリレート共重合体(EMA)
18%EMA(三井・デュポンポリケミカル(株)製「エルバロイ1218AC」、密度=0.940g/cm、MFR(190℃)=2.0g/10min、融点=94℃、メチルアクリレート含有量=18質量%)と9%EMA(三井・デュポンポリケミカル(株)製「エルバロイ1209AC」、密度=0.927g/cm、MFR(190℃)=2.0g/10min、融点=101℃、メチルアクリレート含有量=9質量%)とを、18%EMA:9%EMA=33質量%:67質量%の割合で混合して使用した。
(6)アイオノマー樹脂(アイオノマー)
三井デュポンポリケミカル(株)製「ハイミランAM79301」、密度=0.94g/cm、MFR(190℃)=2.8g/10min、融点=92℃。
 また、実施例及び比較例で得られた多層フィルムの各物性の測定方法を以下に示す。
 (1)引張破断強度及び引張破断伸度
 幅10mm、長さ100mmの短冊状のフィルム試料をテンシロン万能材料試験機(オリエンテック社製「RTC-1210型」)に装着(チャック間距離50mm)し、温度23℃、引張速度500mm/minで伸張させ、フィルム試料が破断した時の応力(引張破断強度)と伸び(引張破断伸度)を、23℃、50%RHの条件下で測定した。この測定は、多層フィルムの縦方向(MD)及び横方向(TD)のそれぞれについて行なった。1試料について5回試験を行い、その平均値を引張破断強度及び引張破断伸度とし、縦方向及び横方向のそれぞれについて求めた。
 (2)2.5%シーカントモジュラス
 幅20mm、長さ150mmの短冊状のフィルム試料をテンシロン万能材料試験機(オリエンテック社製「RTC-1210型」)に装着(チャック間距離100mm)し、23℃、50%RHの条件下で、引張速度10mm/minで伸張させ、伸度2.5%伸長時の応力を測定し、得られた値を40倍して値を求めた。1試料について5回試験を行い、その平均値を2.5%シーカントモジュラスとし、縦方向及び横方向のそれぞれについて求めた。
 (3)高温乾熱収縮率
 厚み3mmのダンボール紙を網棚の上に敷いておいたギアーオーブン((株)清水理化学機器製作所製)を予め120℃に調整し、その中に得られた多層フィルムの縦方向(MD)及び横方向(TD)に100mmの距離で印をつけたフィルム試料を入れ、3秒以内に扉を閉めた。30秒間ギアーオーブン中に測定用試料を保持した後、取り出して自然冷却したフィルム試料の印をつけた距離を測定し、100mmからの減少値の原長100mmに対する割合を百分率で表示した。1試料について5回試験を行い、その平均値を高温乾熱収縮率とし、縦方向及び横方向のそれぞれについて求めた。
 (4)高温引張破断伸度
 幅10mm、長さ70mmのフィルム試料をテンシロン万能材料試験機(オリエンテック社製「RTC-1210型」)に装着(チャック間距離20mm)し、予め温度120℃に調整しておいた恒温槽内で30秒間保持し、その後温度120℃、引張速度500mm/minで伸張させ、フィルム試料が破断した時の多層フィルムの縦方向(MD)の伸び(引張破断伸度)を測定した。1試料について5回試験を行い、その平均値を高温引張破断伸度とした。
 (5)高温伸長回復率
 幅20mm、長さ150mmのフィルム試料をテンシロン万能材料試験機(オリエンテック社製「RTC-1210型」)に装着(チャック間距離100mm)し、予め温度120℃に調整しておいた恒温槽内で30秒間保持し、その後温度120℃、引張速度500mm/minで測定変位130mm(伸度130%)まで伸張させ、同速度で初期の位置に戻した。荷重がゼロになった時の変位(Xzero)から下記式:
伸長回復率(%)=(130-Xzero)/130×100
により伸長回復率を算出した。1試料について5回試験を行い、その平均値を高温伸長回復率とし、縦方向及び横方向のそれぞれについて求めた。
 (6)突刺し強度
 23℃、50%相対湿度で、リング内径44mmφの中空台にセットしたフィルム試料の中心部において、先端曲率半径1mmの突刺し治具を用いて速度50mm/minで突刺しを行い、最大荷重を測定した。この測定は、多層フィルムの表側から(架橋樹脂層から)と裏側(シール層から)のそれぞれについて行なった。1試料について5回試験を行い、その平均値を突刺し強度とし、表側および裏側のそれぞれについて求めた。
 (7)スキンパックの成形性
 真空スキン包装機(MULTIVAC社製「R575CD」)を使用し、下記の条件でスキンパック包装体を作成して成形性を評価した。ふた材(スキンパックフィルム)には、幅425mmにスリットした多層フィルムを使用し、底材には汎用底材フィルム(PE/EVOH/PE、幅425mm、厚み350μm)を使用した。深さ50mm、縦175mm、横275mmの金型を使用し、必要に応じて50~70℃で予備加熱した後、金型温度150~170℃でゴム製擬似内容物(高さ40mm、縦40mm、横115mm)をスキンパックした。このときの成形性を以下の基準で評価した。
<成形性>
A:予備加熱なしで成形可能。
B:予備加熱すれば成形可能。
C:予備加熱してもフィルムが破断して成形不可能。
 (8)スキンパック包装体のフィット性
 小型真空スキン包装機(大森機械(株)製)使用し、下記条件でスキンパック包装体を作成しフィット性を評価した。ふた材(スキンパックフィルム)には、縦300mm、横500mmのサイズで切り出した多層フィルムを使用し、底材にはふた材と同サイズで切り出した汎用底材フィルム(PE/EVOH/PE、厚み350μm)を使用した。深さ18mm、縦120mm、横245mmの金型を使用し、金型温度110℃で市販の円柱型ハム(厚さ10mm)3枚(約45g)をスキンパックした。得られた包装体のコーナー部分のフィット性を以下の基準で評価した。
<フィット性>
A:フィルムが浮くところなく内容物に密着している。
B:フィルムの一部が内容物から浮いている。
C:内容物の端でフィルムが底材から浮いて皺になっている。
 (実施例1)
 ポリ塩化ビニリデン-塩化ビニル共重合体(PVDC)、線状超低密度ポリエチレン(VLDPE)、酢酸ビニル含量が18質量%のエチレン-酢酸ビニル共重合体(18%EVA)、酢酸ビニル含量が15質量%のエチレン-酢酸ビニル共重合体(15%EVA)、エチレン-メチルアクリレート共重合体(EMA)、及びアイオノマー樹脂(アイオノマー)の6種類の樹脂を6台の押出機で別々に押出し、溶融された各樹脂を共押出環状ダイに導入し、最外層から最内層に向かってVLDPE(5.5)/18%EVA(40.6)/EMA(2.7)/PVDC(12.1)/EMA(2.7)/15%EVA(18.2)/アイオノマー(18.2)の順に溶融接合し、ダイ内で7層として共押出し、溶融筒状体を得た。なお、前記各層の括弧内の数値は、全厚に対する各層の厚みの割合(単位:%)である。また、ダイ出口部での溶融筒状体の樹脂温度は200℃であった。得られた溶融筒状体を10℃の冷水シャワーリングによって冷却した後、扁平幅196mm、厚さ608μmの扁平筒状体を得た。
 この扁平筒状体に、加速電圧275KeVの電子線照射装置中で筒状体の外側から電子線照射して100キログレイの照射線量を与えた。次に、85℃の熱水槽を通過させ、11℃のエアリングで冷却しながらインフレーション法で縦方向(MD)に3.40倍、横方向(TD)に3.25倍の同時二軸延伸を行い、折り幅637mm、厚さ55μmの二軸延伸筒状体を得た。
 次に、得られた二軸延伸筒状体を筒長2mの熱処理塔に導入し、スチームにより70℃に加熱しながら12秒間通過させて、縦方向(MD)に20%、横方向(TD)に10%の緩和処理を施して、幅573mm、厚さ76μmの熱収縮性延伸多層筒状体を得た。この熱収縮性延伸多層筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムを巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。なお、この熱収縮性延伸多層フィルムにおいては、VLDPE層及び18%EVA層が架橋されている。
 (実施例2)
 緩和処理時の温度を80℃に変更し、横方向(TD)の緩和率を8%に変更した以外は実施例1と同様にして、幅585mm、厚さ75μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例3)
 縦方向(MD)の緩和率を24%、横方向(TD)の緩和率を20%に変更した以外は実施例1と同様にして、幅510mm、厚さ90μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例4)
 緩和処理時の温度を80℃に変更し、縦方向(MD)の緩和率を26%、横方向(TD)の緩和率を21%に変更した以外は実施例1と同様にして、幅503mm、厚さ94μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例5)
 緩和処理時の温度を80℃に変更し、縦方向(MD)の緩和率を32%、横方向(TD)の緩和率を30%に変更した以外は実施例1と同様にして、幅446mm、厚さ116μmの熱収縮性延伸多層筒状体を得た。この熱収縮性延伸多層筒状体の片耳を切り、開いて幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例6)
 緩和処理時の温度を80℃に変更し、縦方向(MD)の緩和率を42%、横方向(TD)の緩和率を40%に変更した以外は実施例1と同様にして、幅370mm、厚さ158μmの熱収縮性延伸多層筒状体を得た。実施例5と同様にこの筒状体の片耳を切り、開いて幅480mmの熱収縮性延伸多層フィルムを巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例7)
 緩和処理時の温度を90℃に変更し、縦方向(MD)の緩和率を36%、横方向(TD)の緩和率を39%に変更した以外は実施例1と同様にして、幅390mm、厚さ140μmの熱収縮性延伸多層筒状体を得た。実施例5と同様にこの筒状体の片耳を切り、開いて幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例8)
 実施例7と同様にして得られた熱収縮性延伸多層フィルムに、緊張状態で140℃の乾熱炉に3分間通す熱処理を施した。この熱処理後の熱収縮性多層フィルムの厚みを測定したところ、147μmであった。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (実施例9)
 実施例7と同様にして得られた熱収縮性延伸多層フィルムに、緊張状態で140℃の乾熱炉に7分間通す熱処理を施した。この熱処理後の熱収縮性多層フィルムの厚みを測定したところ162μmであった。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。この熱収縮性延伸多層フィルムの物性の測定結果を表1に示す。
 (比較例1)
 実施例1と同様に同時二軸延伸して折り幅637mm、厚さ55μmの二軸延伸筒状体を得た。得られた二軸延伸筒状体を緩和処理せずに両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例2)
 緩和処理時の温度を60℃に変更し、縦方向(MD)の緩和率を4%、横方向(TD)の緩和率を3%に変更した以外は実施例1と同様にして、幅620mm、厚さ59μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例3)
 縦方向(MD)の緩和率を7%、横方向(TD)の緩和率を3%に変更した以外は実施例1と同様にして、幅616mm、厚さ61μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例4)
 緩和処理時の温度を80℃に変更し、縦方向(MD)の緩和率を12%、横方向(TD)の緩和率を7%に変更した以外は実施例1と同様にして、幅594mm、厚さ67μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例5)
 緩和処理時の温度を60℃に変更し、縦方向(MD)の緩和率を9%に変更した以外は実施例1と同様にして、幅574mm、厚さ67μmの熱収縮性延伸多層筒状体を得た。実施例1と同様にこの筒状体の両耳を切り、幅480mmの熱収縮性延伸多層フィルムとして巻き取った。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例6)
 実施例7と同様にして得られた熱収縮性延伸多層フィルムに、緊張状態で140℃の乾熱炉に10分間通す熱処理を施した。この熱処理後の熱収縮性多層フィルムの厚みを測定したところ160μmであった。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例7)
 比較例6と同様にして得られた熱収縮性延伸多層フィルムに、緊張状態で再度120℃の乾熱炉に1分間通す熱処理を施した。この熱処理後の熱収縮性多層フイルムの厚みを測定したところ170μmであった。この熱収縮性延伸多層フィルムの物性の測定結果を表2に示す。
 (比較例8)
 従来用いられる非収縮性の多層スキンパックフィルムは、以下の5種類の樹脂を用いて作製した。
(1)線状超低密度ポリエチレン(VLDPE)
(株)プライムポリマー製「モアテック0278G」。
(2)エチレン-酢酸ビニル共重合体(19%EVA)
三井・デュポンポリケミカル(株)製「エバフレックスV430RC」。
(3)接着性ポリオレフィン(ADMER)
三井化学(株)製「アドマーAT1707E」。
(4)エチレン-ビニルアルコール共重合体(EVOH)
日本合成化学工業(株)製「ソアノールE3808」、エチレン含量=38モル%。
(5)線状低密度ポリエチレン(LLDPE)
(株)プライムポリマー製「エボリューSP0540」。
 7台の押出機を使用し、上記5種の樹脂材料を別々に溶融混練し、多層フィルムの各層が下記の厚みになるようにドラフト比を設定し、Tダイ共押出により最外層から最内層に向かってLLDPE(15μm)/19%EVA(50μm)/ADMER(3μm)/EVOH(8μm)/ADMER(3μm)/19%EVA(46μm)/VLDPE(16μm)の7層構成の溶融体を作製し、40℃のチルドロール上で急冷し、ドラフトして全厚141μmの未延伸多層フィルムを得た。この未延伸多層フィルムを電子線照射によって架橋した。得られた非収縮性の未延伸多層スキンパックフィルムの物性の測定結果を表2に示す。なお、この非収縮性未延伸多層スキンパックフィルムにおいては、7層すべてが架橋されている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果から明らかなように、120℃における乾熱収縮率が10~55%であり、120℃における縦方向の引張破断伸度が190%以上である本発明の熱収縮性延伸多層フィルム(実施例1~9)は、高温伸長回復率が高く、良好なスキンパック成形性及びフィット性を有しており、スキンパック用フィルムに適していることが確認された。
 一方、表2に示した結果から明らかなように、120℃における乾熱収縮率が55%を超え、120℃における縦方向の引張破断伸度が190%未満である熱収縮性延伸多層フィルム(比較例1~5)は、スキンパック成形性に劣るものであることがわかった。また、120℃における乾熱収縮率が10%未満の熱収縮性延伸多層フィルム(比較例6)及び非収縮性多層フィルム(比較例7~8)は、高温伸長回復率が低く、フィット性に劣るものであることがわかった。
 以上説明したように、本発明によれば、成形性及び被包装物に対するフィット性が高く、特に被包装物のコーナー部分のフィット性に優れた熱収縮性延伸多層フィルムを得ることが可能となる。
 したがって、本発明のスキンパック用熱収縮性延伸多層フィルムは、被包装物のコーナー部分のフィット性に優れているため、ベーコン、ソーセージ、ハム、食肉、チーズ等のコーナー部分を有する食品をスキンパックするための多層フィルムとして有用である。

Claims (6)

  1.  架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されており、120℃における縦方向(MD)及び横方向(TD)の乾熱収縮率がそれぞれ10~55%であり、120℃における縦方向の引張破断伸度が190%以上である、スキンパック用熱収縮性延伸多層フィルム。
  2.  120℃における縦方向及び横方向の伸長回復率がそれぞれ90~100%である、請求項1に記載のスキンパック用熱収縮性延伸多層フィルム。
  3.  前記ガスバリア性樹脂層が塩化ビニリデン系樹脂からなる層である、請求項1又は2に記載のスキンパック用熱収縮性延伸多層フィルム。
  4.  前記架橋樹脂層がオレフィン系樹脂からなる層である、請求項1~3のうちのいずれか一項に記載のスキンパック用熱収縮性延伸多層フィルム。
  5.  底材と、該底材上に配置されている被包装物と、該被包装物に密着して配置されている請求項1~4のうちのいずれか一項に記載の熱収縮性延伸多層フィルムとを備えているスキンパック包装体。
  6.  架橋樹脂層、ガスバリア性樹脂層、及びヒートシール性樹脂層が外側から順に配置されている延伸多層フィルムに、温度が70~90℃、縦方向及び横方向の緩和率がそれぞれ8~45%の条件で緩和処理を施して、請求項1~4に記載の熱収縮性延伸多層フィルムを得るスキンパック用熱収縮性延伸多層フィルムの製造方法。
PCT/JP2015/080184 2014-10-28 2015-10-27 スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法 WO2016068109A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2015337955A AU2015337955B2 (en) 2014-10-28 2015-10-27 Heat shrinkable stretched multilayer film for skin packs, skin pack package using same, and method for producing heat shrinkable stretched multilayer film for skin packs
US15/522,043 US20170355500A1 (en) 2014-10-28 2015-10-27 Heat shrinkable stretched multilayer film for skin packaging, skin pack package using same, and method for producing heat shrinkable stretched multilayer film for skin packaging
EP15855724.9A EP3214015B1 (en) 2014-10-28 2015-10-27 Heat shrinkable stretched multilayer film for skin packs, skin pack package using same, and method for producing heat shrinkable stretched multilayer film for skin packs
US16/185,766 US20190077562A1 (en) 2014-10-28 2018-11-09 Heat shrinkable stretched multilayer film for skin packaging, skin pack package using same, and method for producing heat shrinkable stretched multilayer film for skin packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014219423A JP6436719B2 (ja) 2014-10-28 2014-10-28 スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法
JP2014-219423 2014-10-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/522,043 A-371-Of-International US20170355500A1 (en) 2014-10-28 2015-10-27 Heat shrinkable stretched multilayer film for skin packaging, skin pack package using same, and method for producing heat shrinkable stretched multilayer film for skin packaging
US16/185,766 Continuation US20190077562A1 (en) 2014-10-28 2018-11-09 Heat shrinkable stretched multilayer film for skin packaging, skin pack package using same, and method for producing heat shrinkable stretched multilayer film for skin packaging

Publications (1)

Publication Number Publication Date
WO2016068109A1 true WO2016068109A1 (ja) 2016-05-06

Family

ID=55857446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080184 WO2016068109A1 (ja) 2014-10-28 2015-10-27 スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法

Country Status (5)

Country Link
US (2) US20170355500A1 (ja)
EP (1) EP3214015B1 (ja)
JP (1) JP6436719B2 (ja)
AU (1) AU2015337955B2 (ja)
WO (1) WO2016068109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178406A (ja) * 2020-05-11 2021-11-18 住友ベークライト株式会社 積層フィルム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017180690A1 (en) * 2016-04-13 2017-10-19 Cryovac, Inc. VACUUM SKIN PACKAGE HAVING lMPLOSION-RESISTANT TOP WEB
JP2020063072A (ja) * 2018-10-17 2020-04-23 株式会社クレハ ラップフィルム巻回体
JP2020075391A (ja) * 2018-11-07 2020-05-21 クリロン化成株式会社 スキンパック蓋材用共押出フィルム
JP6863417B2 (ja) * 2019-07-19 2021-04-21 住友ベークライト株式会社 スキンパック包装体
JP2021038013A (ja) * 2019-09-05 2021-03-11 住友ベークライト株式会社 スキンパック用フィルム
WO2021049385A1 (ja) * 2019-09-09 2021-03-18 株式会社フジシールインターナショナル シート材容器
USD962082S1 (en) 2019-10-29 2022-08-30 Kraft Foods Group Brands Llc Package
JP7419776B2 (ja) 2019-12-06 2024-01-23 Toppanホールディングス株式会社 スキンパック包装体
USD979395S1 (en) 2020-11-17 2023-02-28 Kraft Foods Group Brands Llc Package
CN117002863A (zh) * 2022-04-28 2023-11-07 康美包(苏州)有限公司 包装膜及其用途与成捆件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094144A1 (ja) * 2006-02-16 2007-08-23 Kureha Corporation 熱収縮性多層フィルム及びそれを用いた包装材
JP2010167765A (ja) * 2008-12-26 2010-08-05 Kuraray Co Ltd 紙容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495264B2 (ja) 1998-04-24 2010-06-30 株式会社クレハ 熱収縮性多層フィルム
JP2000128112A (ja) * 1998-10-27 2000-05-09 Kureha Chem Ind Co Ltd 軟質多層フィルム
CN1315642C (zh) * 1999-02-12 2007-05-16 株式会社吴羽 包装用复合体
JP2001071435A (ja) * 1999-09-03 2001-03-21 Kureha Chem Ind Co Ltd スキンパック包装用フィルム
JP4931319B2 (ja) 2000-06-22 2012-05-16 株式会社クレハ 低温耐衝撃性ポリアミド系延伸配向多層フィルムおよびその製造方法
JPWO2005102695A1 (ja) * 2004-04-27 2008-03-13 旭化成ライフ&リビング株式会社 熱収縮性フィルム
JP5273934B2 (ja) * 2006-04-05 2013-08-28 株式会社クレハ 深絞り成形用熱収縮性多層フィルム及びその製造方法
US7959995B2 (en) 2006-04-05 2011-06-14 Kureha Corporation Deep drawing heat shrinkable multilayer film and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094144A1 (ja) * 2006-02-16 2007-08-23 Kureha Corporation 熱収縮性多層フィルム及びそれを用いた包装材
JP2010167765A (ja) * 2008-12-26 2010-08-05 Kuraray Co Ltd 紙容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214015A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178406A (ja) * 2020-05-11 2021-11-18 住友ベークライト株式会社 積層フィルム
JP7004023B2 (ja) 2020-05-11 2022-01-21 住友ベークライト株式会社 積層フィルム

Also Published As

Publication number Publication date
AU2015337955A1 (en) 2017-05-11
EP3214015A1 (en) 2017-09-06
US20170355500A1 (en) 2017-12-14
EP3214015B1 (en) 2018-09-26
JP2016084165A (ja) 2016-05-19
JP6436719B2 (ja) 2018-12-12
EP3214015A4 (en) 2017-11-22
US20190077562A1 (en) 2019-03-14
AU2015337955B2 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6436719B2 (ja) スキンパック用熱収縮性延伸多層フィルム、それを用いたスキンパック包装体、及びスキンパック用熱収縮性延伸多層フィルムの製造方法
RU2658045C2 (ru) Многослойные термоусадочные пленки с барьерным слоем из пвдх
CA2659764C (en) Thermoformable packaging material with shrink properties
EP2691233B1 (en) Multilayer heat-shrinkable asymmetrical film
EP3439874B1 (en) Thermoplastic film for vacuum skin packaging, method of packaging and uses thereof
AU2008211213A1 (en) Shrink film containing semi-crystalline polyamide, articles made therefrom, and process for making and using same
CN109195790B (zh) 阻气可热收缩膜
AU2008264215A1 (en) Thermoforming film
AU2008201819A1 (en) Thermoforming films
EP1598177A1 (en) Laminated high oxygen barrier shrinkable film
EP3416824A1 (en) Multilayer barrier film
WO2007094144A1 (ja) 熱収縮性多層フィルム及びそれを用いた包装材
US20090061129A1 (en) Gas-barrier shrink films for use in deep-drawing applications
EP2386411A1 (en) Multilayer barrier film for VSP packaging, method of packaging and packages obtained therewith
JPWO2008038776A1 (ja) 深絞り包装容器、深絞り包装体、及びそれらの製造方法
JP4889075B2 (ja) 深絞り包装用多層フィルムおよびそれからなる深絞り包装用容器
EP2655062A1 (en) Multilayer heat shrinkable films comprising a plurality of microlayers
JP2016179648A (ja) 熱収縮性積層フィルム
WO2018016281A1 (ja) 熱収縮性多層フィルム
NZ616037B2 (en) Multilayer heat-shrinkable asymmetrical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855724

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015855724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15522043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015337955

Country of ref document: AU

Date of ref document: 20151027

Kind code of ref document: A