WO2016068100A1 - ポリアミド組成物およびそれからなる成形品 - Google Patents

ポリアミド組成物およびそれからなる成形品 Download PDF

Info

Publication number
WO2016068100A1
WO2016068100A1 PCT/JP2015/080166 JP2015080166W WO2016068100A1 WO 2016068100 A1 WO2016068100 A1 WO 2016068100A1 JP 2015080166 W JP2015080166 W JP 2015080166W WO 2016068100 A1 WO2016068100 A1 WO 2016068100A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyamide resin
acid
composition
poly
Prior art date
Application number
PCT/JP2015/080166
Other languages
English (en)
French (fr)
Inventor
昭夫 宮本
康治 福井
敦史 山下
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2016556568A priority Critical patent/JP6787133B2/ja
Publication of WO2016068100A1 publication Critical patent/WO2016068100A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyamide composition and a molded product comprising the same.
  • Polyamide resins are used in a wide range of applications because of their excellent properties.
  • Inorganic reinforcing materials particularly polyamide resins containing glass fibers, are greatly improved in rigidity, strength, heat resistance and the like, and are also used in applications that require painting or plating.
  • the appearance of the finished molded product such as surface roughness and mirror surface gloss, is reduced, and the appearance may be further reduced when coating or the like is performed.
  • Japanese Patent Publication No. 61-60861 and Japanese Patent Application Laid-Open No. 2008-95066 propose that a crystalline polyamide resin contains an amorphous resin or a deformed glass fiber as a method for improving the appearance.
  • An object of the present invention is to provide a polyamide resin composition having a smaller surface roughness in a molded body and a molded product comprising the same.
  • a composition (X) comprising an aliphatic polyamide resin (A-1), an aromatic polyamide resin (A-2) and glass fiber (B), which are melt-kneaded, It has been found that a polyamide resin composition to which a polyamide resin (A-3) having a relative viscosity smaller than that of the polyamide resin (A-1) is further added has a smaller surface roughness when formed into a molded product. It was.
  • the first embodiment includes an aliphatic polyamide resin (A-1), an aromatic polyamide resin (A-2), and a glass fiber (B), which are melt-kneaded into the composition (X) and the polyamide
  • a polyamide resin composition further comprising a polyamide resin (A-3) having a relative viscosity lower than that of the resin (A-1).
  • a 2nd aspect is a molded object which consists of said polyamide resin composition.
  • a composition (X) is obtained by melt-kneading the aliphatic polyamide resin (A-1), the aromatic polyamide resin (A-2) and the glass fiber (B), and the composition (X And a polyamide resin (A-3) having a relative viscosity lower than the relative viscosity of the aliphatic polyamide resin (A-1), and a method for producing a polyamide resin composition.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. To do.
  • the polyamide resin composition of the present invention comprises an aliphatic polyamide resin (A-1), an aromatic polyamide resin (A-2), and a glass fiber (B), and a composition (X) obtained by melting and kneading them. Further, a polyamide resin (A-3) having a relative viscosity smaller than that of the polyamide resin (A-1) is further added. A molded product produced using such a polyamide resin composition has a smaller surface roughness and an excellent surface gloss.
  • the aliphatic polyamide (A-1) has an amide bond (—CONH—) in the main chain, and the raw material is an aliphatic polyamide structural unit lactam, aminocarboxylic acid, or aliphatic diamine and aliphatic dicarboxylic acid. It can be obtained by polymerization or copolymerization by a known method such as melt polymerization, solution polymerization or solid phase polymerization.
  • lactam examples include caprolactam, enantolactam, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone and the like
  • aminocarboxylic acid examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11 -Aminoundecanoic acid, 12-aminododecanoic acid and the like. These can use 1 type (s) or 2 or more types.
  • Aliphatic diamines include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1, 8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15 -Pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 1,19-nonadecanediamine, 1,20-eicosanediamine, 2-methyl-1,5- Pentanediamine, 3-methyl-1,5-pentanediamine, 2-methyl-1,8-octane Amine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hex
  • Aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, Examples include pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and eicosanedioic acid. These can use 1 type (s) or 2 or more types.
  • Examples of the aliphatic polyamide (A-1) include polycaproamide (polyamide 6), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyethylene adipamide (polyamide 26), and polytetramethylene succinamide.
  • Polyamide 44 polytetramethylene glutamide (polyamide 45), polytetramethylene adipamide (polyamide 46), polytetramethylene suberamide (polyamide 48), polytetramethylene azelamide (polyamide 49), polytetramethylene Bacamide (polyamide 410), polytetramethylene dodecamide (polyamide 412), polypentamethylene succinamide (polyamide 54), polypentamethylene glutamide (polyamide 55), polypentamethylene adipamide (poly Amide 56), polypentamethylene suberamide (polyamide 58), polypentamethylene azeamide (polyamide 59), polypentamethylene sebamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexamethylene succina Mido (polyamide 64), polyhexamethylene glutamide (polyamide 65), polyhexamethylene adipamide (polyamide 66), polyhexamethylene suber
  • polyamide 6, polyamide 12, polyamide 66, polyamide 6/66 copolymer (a copolymer of polyamide 6 and polyamide 66, hereinafter the copolymer is Similarly described), polyamide 6/69 copolymer, polyamide 6/610 copolymer, polyamide 6/611 copolymer, polyamide 6/612 copolymer, polyamide 6/12 copolymer and polyamide 6/66 / It is preferably at least one selected from the group consisting of 12 copolymers, polyamide 6, polyamide 12, polyamide 66, polyamide 6/66 copolymer, polyamide 6/12 copolymer and polyamide 6/66/12.
  • polyamide 6 More preferably, it is at least one selected from the group consisting of copolymers, such as polyamide 6, polyamide 66 and polymer. More preferably at least one selected from the group consisting of amide 6/66 copolymer, from the viewpoint of moldability, the polyamide 6 is particularly preferred.
  • the production apparatus for the aliphatic polyamide (A-1) includes a batch reaction kettle, a single tank type or multi-tank type continuous reaction apparatus, a tubular continuous reaction apparatus, a uniaxial kneading extruder, a biaxial kneading extruder, etc.
  • a known polyamide production apparatus such as a kneading reaction extruder may be used.
  • As a polymerization method a known method such as melt polymerization, solution polymerization, solid phase polymerization or the like can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure, and pressure operation. These polymerization methods can be used alone or in appropriate combination.
  • the relative viscosity of the aliphatic polyamide (A) measured under the conditions of 96% sulfuric acid, polymer concentration of 1% and 25 ° C. in accordance with JIS K-6920 is desirable to ensure mechanical properties. From the viewpoint of ensuring moldability, it is preferably 1.5 or more and 5.0 or less, more preferably 1.5 or more and 4.5 or less, and 1.5 or more and 3.0 or less. More preferred is 2.0 or more and 3.0 or less.
  • the aliphatic polyamide (A-1) is obtained by subjecting the polyamide raw material to melt polymerization in the presence of amines or carboxylic acids in order to obtain a polyamide having any molecular weight, any terminal amino group concentration, and any carboxy concentration.
  • amines or carboxylic acids can be added at any stage during polymerization, or after polymerization, at any stage during melt-kneading. However, in consideration of surface properties, they should be added at the stage during polymerization. Is preferred.
  • amines examples include monoamines, diamines, triamines, and polyamines.
  • carboxylic acids such as monocarboxylic acids, dicarboxylic acids, and tricarboxylic acids may be added as necessary as long as they do not deviate from the range of the above-mentioned end group concentration conditions. These amines and carboxylic acids may be added simultaneously or separately.
  • 1 type (s) or 2 or more types can be used for the amines and carboxylic acids illustrated below.
  • the monoamine to be added include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine , Tetradecylamine, pentadecylamine, hexadecylamine, octadecylamine, octadecyleneamine, eicosylamine, docosylamine and other aliphatic monoamines; cyclohexylamine, methylcyclohexylamine and other alicyclic monoamines; benzylamine, ⁇ - Aromatic monoamines such as phenylmethylamine; N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N, N
  • diamine to be added examples include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, and 1,7-heptanediamine.
  • 1,8-octanediamine, 1,9-nonanediamine 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15-pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine 2-methyl-1,8-octanediamine, 2,2,4-trimethyl-1,6-hexane Aliphatic diamines such as amine, 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl-1,9-non
  • triamine to be added examples include 1,2,3-triaminopropane, 1,2,3-triamino-2-methylpropane, 1,2,4-triaminobutane, 1,2,3,4- Tetraminobutane, 1,3,5-triaminocyclohexane, 1,2,4-triaminocyclohexane, 1,2,3-triaminocyclohexane, 1,2,4,5-tetraminocyclohexane, 1,3,5- Triaminobenzene, 1,2,4-triaminobenzene, 1,2,3-triaminobenzene, 1,2,4,5-tetraminobenzene, 1,2,4-triaminonaphthalene, 2,5,7 -Triaminonaphthalene, 2,4,6-triaminopyridine, 1,2,7,8-tetraminonaphthalene, and the like include 1,4,5,8-tetraminonaphthalene. These can use 1 type (s) or 2
  • the polyamine to be added may be a compound having a plurality of primary amino groups (—NH 2 ) and / or secondary amino groups (—NH—).
  • —NH 2 primary amino groups
  • —NH— secondary amino groups
  • the amino group with active hydrogen is the reaction point of the polyamine.
  • Polyalkyleneimine is produced by a method in which alkyleneimine such as ethyleneimine or propyleneimine is ionically polymerized, or a method in which alkyloxazoline is polymerized and then the polymer is partially or completely hydrolyzed.
  • alkyleneimine such as ethyleneimine or propyleneimine
  • alkyloxazoline is polymerized and then the polymer is partially or completely hydrolyzed.
  • Examples of the polyalkylene polyamine include diethylenetriamine, triethylenetetramine, pentaethylenehexamine, or a reaction product of ethylenediamine and a polyfunctional compound.
  • Polyvinylamine can be obtained, for example, by polymerizing N-vinylformamide to poly (N-vinylformamide) and then partially or completely hydrolyzing the polymer with an acid such as hydrochloric acid.
  • Polyallylamine is generally obtained by polymerizing a hydrochloride of an allylamine monomer and then removing hydroch
  • polyalkyleneimine examples include one or two alkyleneimines having 2 to 8 carbon atoms such as ethyleneimine, propyleneimine, 1,2-butyleneimine, 2,3-butyleneimine, 1,1-dimethylethyleneimine, etc.
  • alkyleneimines having 2 to 8 carbon atoms such as ethyleneimine, propyleneimine, 1,2-butyleneimine, 2,3-butyleneimine, 1,1-dimethylethyleneimine, etc.
  • Polyalkyleneimine is polymerized from alkyleneimine as a raw material, branched polyalkyleneimine obtained by ring-opening polymerization of alkyleneimine, secondary polyamineimine containing secondary amine and tertiary amine, or alkyloxazoline as a raw material. Either a linear polyalkyleneimine containing only a primary amine and a secondary amine, or a three-dimensionally crosslinked structure may be used.
  • a polyalkyleneimine is usually derived from the reactivity of an active hydrogen atom on a nitrogen atom contained therein, and in addition to a tertiary amino group, a primary amino group having an active hydrogen atom or a secondary amino group (imino Group).
  • the number of nitrogen atoms in the polyalkyleneimine is not particularly limited, but is preferably 4 or more and 3,000, more preferably 8 or more and 1,500 or less, and even more preferably 11 or more and 500 or less. .
  • the number average molecular weight of the polyalkyleneimine is preferably 100 or more and 20,000 or less, more preferably 200 or more and 10,000 or less, and further preferably 500 or more and 8,000 or less.
  • carboxylic acids to be added acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, capric acid, pelargonic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, myristic acid, Aliphatic monocarboxylic acids such as palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, behenic acid, erucic acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid, methylcyclohexanecarboxylic acid; benzoic acid, toluic acid , Aromatic monocarboxylic acids such as ethylbenzoic acid and phenylacetic acid; malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid,
  • the amount of amines and carboxylic acids added is appropriately determined by a known method in consideration of the terminal amino group concentration, terminal carboxyl group concentration, and relative viscosity of the terminal-modified aliphatic polyamide to be produced.
  • aromatic polyamide resin (A-2) examples include polymetaxylylene adipamide (polyamide MXD6), polymetaxylylene veramide (polyamide MXD8), polymetaxylylene azelamide (polyamide MXD9), and polymetaxylylene sebacamide.
  • Polyamide MXD10 polymetaxylylene decanamide (polyamide MXD12), polymetaxylylene terephthalamide (polyamide MXDT), polymetaxylylene isophthalamide (polyamide MXDI), polymetaxylylene hexahydroterephthalamide (polyamide MXDT (H )), Polymetaxylylene naphthalamide (polyamide MXDN), polyparaxylylene adipamide (polyamide PXD6), polyparaxylylene veramide (polyamide PXD8), polyparaxylylene Zeramide (polyamide PXD9), polyparaxylylene sebamide (polyamide PXD10), polyparaxylylene dodecamide (polyamide PXD12), polyparaxylylene terephthalamide (polyamide PXDT), polyparaxylylene isophthalamide (polyamide) PXDI), polyparaxylylene hexahydroter
  • polyamide 6T polyamide 9T
  • polyamide 10T polyamide 11T
  • polyamide 12T polyamide IPD6
  • polyamide 6T / 6I polyamide MXD6
  • the MVR of the aromatic polyamide resin (A-2) is 10 ml / min from the viewpoint of reducing the surface roughness when formed into a molded product. It is preferably 10 minutes or more, more preferably 20 ml / 10 minutes or more, further preferably 50 ml / 10 minutes or more, particularly preferably 90 ml / 10 minutes or more.
  • the glass fiber is not particularly limited, but a glass fiber that is converged with a sizing agent is preferable from the viewpoint of improving the compatibility between the glass fiber and the polyamide resin.
  • the sizing agent preferably contains a urethane type or an acrylic type from the viewpoint of compatibility, and these may be used in combination.
  • the glass fiber is preferably surface-treated with a surface treatment agent from the viewpoint of enhancing dispersibility and adhesion in the polyamide resin.
  • a surface treatment agent examples include silane compounds, chromium compounds, titanium compounds, and the like, and surface treatment agents of silane compounds and / or titanium compounds are preferable.
  • an aminosilane coupling agent excellent in adhesion to the sizing agent is preferable.
  • Surface treatment agents for titanium compounds include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl) titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl titanate, tetra Butyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, isopropyl trioctanoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tri (dioctyl phosphate) titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl dimethacrylisostearoyl titanate Tetra (2,2-diallyloxymethyl-1
  • the glass fiber is a glass fiber having a circular cross section perpendicular to the length direction and / or a glass fiber having a non-circular cross section perpendicular to the length direction.
  • the weight average fiber length of the glass fiber having a circular cross section perpendicular to the length direction is preferably 200 ⁇ m or more and 600 ⁇ m or less, and preferably 200 ⁇ m or more and 550 ⁇ m or less, from the viewpoints of moldability of the composition and dimensional stability of the obtained molded body. More preferably, the thickness is 300 ⁇ m or more and 500 ⁇ m or less.
  • the average fiber length of the glass fiber having a circular cross-section is such that the glass fiber in the molded product obtained by using the polyamide resin composition or the polyamide resin composition is not dissolved, but the resin is dissolved with a solvent such as acid or alkali that dissolves the resin. It can be measured by dissolving, removing, and using image analysis software.
  • the image analysis software is not particularly limited as long as it can measure the fiber length, and can be used.
  • Mr. A Image is an image analysis software manufactured by Asahi Kasei Engineering.
  • the average fiber diameter of the glass fiber having a circular cross section is not particularly limited, but is preferably 5 ⁇ m or more and 25 ⁇ m or less, more preferably 5 ⁇ m or more and 24 ⁇ m or less, and more preferably 6 ⁇ m or more and 23 ⁇ m from the viewpoint of dimensional stability and mechanical properties of the obtained molded body. The following is more preferable.
  • the average fiber diameter of glass fibers can be measured according to JIS R3420.
  • the glass fiber having a circular cross section is preferably surface-treated with a surface treatment agent from the viewpoint of enhancing dispersibility and adhesion in the polyamide resin.
  • a surface treatment agent examples include silane compounds, chromium compounds, titanium compounds, and the like, and surface treatment agents of silane compounds and / or titanium compounds are preferable.
  • the ratio of the major axis to the minor axis in the cross section perpendicular to the length direction is preferably 1.2 or more and 10 or less from the viewpoint of low warpage and mechanical properties. 1.5 or more and 6 or less is more preferable, and 1.7 or more and 4.5 or less is more preferable.
  • the major axis is the distance when the straight line distance between any two points on the cross-sectional graphic becomes the maximum, and the minor axis intersects the cross-sectional graphic among the straight lines orthogonal to the major axis. The distance between the two points is the smallest.
  • the major axis of the non-circular cross-section glass fiber is preferably 2 ⁇ m to 100 ⁇ m, and the minor axis is preferably 1 ⁇ m to 20 ⁇ m.
  • the glass fiber having a non-circular cross section has no particular limitation on the cross-sectional shape as long as it has a predetermined major axis to minor axis ratio, but is usually an eyebrow, oval, semicircular, arc, rectangular, parallel A quadrilateral or a similar shape is used. Practically, eyebrows, ovals, and rectangles are preferable from the viewpoints of fluidity, mechanical properties, and low warpage.
  • the preferred average fiber length in the polyamide resin composition and molded article of non-circular cross-section glass fiber and the measuring method thereof are the same as those for glass fiber of circular cross-section.
  • the glass fiber has a glass fiber having a circular cross section with an average fiber diameter of 5 ⁇ m or more and 25 ⁇ m or less and / or a ratio of the major axis to the minor axis in a cross section perpendicular to the length direction is 1.2.
  • a glass fiber having a non-circular cross-section of 10 or less is preferred.
  • composition (X) is a melt-kneaded product comprising the aliphatic polyamide resin (A-1), the aromatic polyamide resin (A-2) and the glass fiber (B), which are melt-kneaded. From the viewpoint of making the mixing with the polyamide resin (A-3) more uniform, the composition (X) is preferably in the form of powder such as powder or pellets.
  • the method of melt kneading is not particularly limited, and is a normal method, such as a method using a mixer such as a cylindrical mixer, a twin screw extruder, a single screw extruder, a multi screw extruder, a Banbury mixer, a roll mixer. And a method using an extruder such as a kneader, a method of combining a mixer and an extruder, and the like. From the viewpoint of making the mixing of the aliphatic polyamide resin (A-1), the aromatic polyamide resin (A-2) and the glass fiber (B) more uniform, it is preferable to use a twin screw extruder.
  • the content of the aromatic polyamide resin (A-2) with respect to the total in the composition (X) of the aliphatic polyamide resin (A-1) and the aromatic polyamide resin (A-2) Is preferably 5 wt% or more and 30 wt% or less, and more preferably 10 wt% or more and 20 wt% or less.
  • the aliphatic polyamide resin (A-1) is contained in the total amount of the composition (X) in an amount of 20% to 65% by weight, preferably 23% to 50% by weight. More preferably, it is contained in an amount of 25 wt% to 45 wt%.
  • the aromatic polyamide resin (A-2) is preferably contained in the total amount of the composition (X) in an amount of 2% by weight to 20% by weight, preferably 3% by weight to 15% by weight. % Or less is more preferable, and 4% by weight or more and 10% by weight or less is more preferable.
  • the content ratio (A-2 / A-1) (% by weight) of the aromatic polyamide resin (A-2) to the aliphatic polyamide resin (A-1) in the composition (X) is 5 from the viewpoint of surface appearance. % By weight to 30% by weight is preferable, and 10% by weight to 20% by weight is more preferable.
  • the glass fiber (B) is preferably 30% by weight to 70% by weight, more preferably 40% by weight to 70% by weight, and more preferably 45% by weight to 70% by weight in the total amount of the composition (X). % Or less is more preferable.
  • the aliphatic polyamide resin (A-1), the aromatic polyamide resin (A-2) and the glass fiber (B) are 80% by weight or more and 100% by weight or less from the viewpoint of material rigidity. Is preferable, 90% by weight to 100% by weight or less is more preferable, and 95% by weight or more and 100% by weight or less is more preferable.
  • composition (X) various additives, modifiers, reinforcing materials, for example, heat stabilizers, antioxidants, UV absorbers, etc., which are usually blended within a range that does not impair the properties of the composition of the present invention.
  • Composition (X) may contain a thermoplastic resin other than the polyamide resin as long as the properties of the polyamide resin composition are not impaired.
  • thermoplastic resins other than polyamide resin high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene (PP), polybutene (PB), polymethylpentene (TPX), ethylene / propylene copolymer (EPR), ethylene / butene copolymer (EBR), ethylene / vinyl acetate copolymer (EVA), ethylene / acrylic Acid copolymer (EAA), ethylene / methacrylic acid copolymer (EMAA), ethylene / methyl acrylate copolymer (EMA), ethylene / methyl methacrylate copolymer (EMMA), ethylene / ethyl acrylate copolymer Polyolefin resin such as coalescence (EEA); Police Len (PS), syndiotactic polystyrene (SPS), methyl methacrylate / /
  • Examples of the flow improver include dicarboxylic acid and polyhydric alcohol, and polyhydric alcohol is preferable from the viewpoint of reactivity with the polyamide resin.
  • dicarboxylic acids examples include aliphatic dicarboxylic acids and aromatic dicarboxylic acids, and specific examples include oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, terephthalic acid, and the like. .
  • the polyhydric alcohol includes not only the polyhydric alcohol itself but also a partial ester compound of a polyhydric alcohol and a fatty acid and a partial ester compound of an alkylene oxide adduct of a polyhydric alcohol and a fatty acid.
  • At least one selected from the group consisting of pentaerythritol, glycerin, polyglycerin, trimethylolethane, trimethylolpropane, dipentaerythritol, sorbitan and sorbitol is preferable, pentaerythritol, More preferable is at least one selected from the group consisting of polyglycerin, trimethylolethane, trimethylolpropane and dipentaerythritol, and pentaerythritol, polyglycerin, trimethylolethane is preferred from the viewpoints of reducing scattering and dispersibility during kneading and molding. And at least one selected from the group consisting of dipentaerythritol is more preferable.
  • the polyamide resin (A-3) used in the polyamide resin composition may be an aliphatic polyamide resin or an aromatic polyamide resin, but in accordance with JIS K-6920, 96% sulfuric acid, 1% polymer concentration, 25 ° C.
  • the polyamide resin (A-3) has a relative viscosity smaller than that of the aliphatic polyamide resin (A-1) measured under the above conditions. Otherwise, the effect of the polyamide resin composition of the present invention is not exhibited.
  • the difference in relative viscosity between the aliphatic polyamide resin (A-1) and the polyamide resin (A-3) is that the relative viscosity of (A-3) is (from the viewpoint of further reducing the surface roughness when formed into a molded product (
  • the value divided by the relative viscosity of A-1) is preferably from 0.3 to 0.95, more preferably from 0.3 to 0.9, and even more preferably from 0.3 to 0.8. In the case of 0.3 or more, the mechanical properties of the material tend to be further improved. In the case of 0.95 or less, the fluidity is good and the surface appearance tends to be further improved.
  • the form of the polyamide resin (A-3) is not particularly limited. From the viewpoint of more uniform mixing with the composition (X), the polyamide resin (A-3) is preferably in the form of powder such as powder or pellets. .
  • polyamide resin (A-3) an aliphatic polyamide resin is preferable from the viewpoints of moldability, mechanical properties, and heat resistance.
  • the polyamide resin (A-3) is polyamide 6, polyamide 12, polyamide 66, polyamide 6/66 copolymer (copolymer of polyamide 6 and polyamide 66, from the viewpoint of moldability)
  • the copolymer is described in the same manner
  • polyamide 6/69 copolymer polyamide 6/610 copolymer, polyamide 6/611 copolymer, polyamide 6/612 copolymer, polyamide 6/12 copolymer
  • the polyamide resin composition is obtained by adding a polyamide resin (A-3) smaller in relative viscosity than the aliphatic polyamide resin (A-1) to the composition (X).
  • a polyamide resin (A-3) smaller in relative viscosity than the aliphatic polyamide resin (A-1)
  • the production method using a tumbler or a mixer, the method of uniformly dry-blending the pellets so as to have the above mixing ratio, the dry-blended mixture by the melt kneader mentioned in the section of the composition (X)
  • the method of melt-kneading is mentioned.
  • a method of dry blending is preferred. That is, the polyamide resin composition is preferably a dry blend of the composition (X) that is a melt-kneaded product and the polyamide resin (A-3).
  • the polyamide resin composition is obtained by melting and kneading the aliphatic polyamide resin (A-1), the aromatic polyamide resin (A-2) and the glass fiber (B) to obtain the composition (X), And (X) and a polyamide resin (A-3) having a relative viscosity lower than the relative viscosity of the aliphatic polyamide resin (A-1).
  • a composition (X) is obtained by melt-kneading the aromatic polyamide resin (A-1), the aromatic polyamide resin (A-2) and the glass fiber (B), and the composition (X) and the aliphatic polyamide resin. More preferably, it is produced by a production method comprising dry blending a polyamide resin (A-3) having a relative viscosity smaller than that of (A-1).
  • the polyamide resin composition is excellent in surface properties after molding, it can be suitably used for applications such as providing a thin film on the surface. Specific examples include painting and film printing. It is preferably used for painting. That is, the present invention includes an aliphatic polyamide resin (A-1), an aromatic polyamide resin (A-2), and a glass fiber (B), and a composition (X) obtained by melt-kneading them, and the polyamide This includes the use of a polyamide resin composition containing a polyamide resin (A-3) having a relative viscosity smaller than that of the resin (A-1) as a coating application.
  • the polyamide resin composition preferably contains 40% by weight or more and 98% by weight or less of the composition (X) with respect to the total amount of the polyamide resin composition. More preferably, it contains 40% by weight or more and 80% by weight or less, and more preferably contains 40% by weight or more and 70% by weight or less.
  • the polyamide resin composition may contain 2% by weight or more and 60% by weight or less of the polyamide resin (A-3) with respect to the total amount of the polyamide resin composition.
  • it contains 10 to 60% by weight, more preferably 30 to 60% by weight.
  • the content ratio (A-3 / A-1) of the polyamide resin (A-3) to the aliphatic polyamide resin (A-1) is preferably 0.1 or more and 6.0 or less. 6 or more and 5.5 or less are more preferable.
  • the content ratio (A-3 / A-2) of the polyamide resin (A-3) to the aromatic polyamide resin (A-2) is preferably 0.5 or more and 45 or less, and 1.0 or more. 30 or less is more preferable.
  • the content ratio (A-3 / B) of the polyamide resin (A-3) to the glass fiber (B) is preferably 0.05 or more and 2.0 or less, and 0.1 or more and 2.0 or less. Is more preferable.
  • the polyamide resin composition has various additives, modifiers, reinforcing materials such as heat stabilizers, antioxidants, ultraviolet absorbers, weathering agents, fillers, plasticizers, etc., as long as the properties are not impaired.
  • It can contain inorganic compounds other than glass, such as a property improving agent and talc.
  • the additive may be included as pellets in which various additives are previously contained in a thermoplastic resin or the like, so-called master batch. preferable.
  • the molded article is produced using a polyamide resin composition. Molded products made of polyamide resin composition are molded by injection molding, extrusion molding, hollow molding, press molding, roll molding, foam molding, vacuum / pressure molding, stretch molding, etc., but obtain products with good surface appearance From the viewpoint of ease of molding, injection molding is preferred. That is, the present invention includes an aliphatic polyamide resin (A-1), an aromatic polyamide resin (A-2), and a glass fiber (B), and a composition (X) obtained by melt-kneading them, and the polyamide This includes the use in injection molding of a polyamide resin composition comprising a polyamide resin (A-3) having a relative viscosity lower than that of the resin (A-1).
  • a molded product made of a polyamide resin composition is excellent in surface properties and can be suitably used for applications such as applying a thin film to the surface. Specific examples include painting and film printing. It is preferably used for painting.
  • the molded article made of the polyamide resin composition include parts to be painted among injection molded articles. From the viewpoint of design and material rigidity, automobile interior and exterior parts and motorcycles The exterior parts, the frame parts of home appliances, the housings of personal computers and cameras are preferable.
  • the obtained polyamide resin composition was measured at a cylinder temperature of 280 ° C., a mold temperature of 80 ° C., and a resin flow rate in the mold of 200 mm / sec and 50 mm / sec, 125 mm ⁇ 75 mm ⁇ 3 mm. Molded on a flat plate with an injection molding machine. The obtained molded product (flat plate) was used for measurement of surface roughness and gloss gloss.
  • Aliphatic polyamide (A-1) Polyamide 6 (A-1-1) (hereinafter sometimes referred to as A-1-1)
  • A-1-1-1 Aliphatic polyamide
  • A-1-1-1 Polyamide 6
  • A-1-1-1 a polyamide 6 (hereinafter sometimes referred to as A-1-1)
  • a 70 liter autoclave 0.5 kg of water was charged to 20 kg of ⁇ -caprolactam as a polymerization monomer, and the inside of the tank was purged with nitrogen, and then heated to 100 ° C. and stirred for 3 hours so that the pressure in the tank was uniform at 1.0 MPa. did.
  • polymerization was carried out at 260 ° C. for 3 hours to obtain polyamide 6.
  • the relative viscosity of the obtained A-1-1 was 1.95.
  • Polyamide 6 (hereinafter sometimes referred to as A-1-2) (hereinafter sometimes referred to as A-1-2)
  • A-1-2 Polyamide 6
  • a 70 liter autoclave 0.5 kg of water was charged to 20 kg of ⁇ -caprolactam as a polymerization monomer, and the inside of the tank was purged with nitrogen, and then heated to 100 ° C. and stirred for 3 hours so that the pressure in the tank was uniform at 1.0 MPa. did.
  • polymerization was carried out at 260 ° C. for 4 hours to obtain polyamide 6.
  • the obtained A-1-2 had a relative viscosity of 2.20.
  • Polyamide 6 (A-1-3) (hereinafter sometimes referred to as A-1-3)
  • A-1-3 Polyamide 6
  • a 70 liter autoclave 0.5 kg of water was charged to 20 kg of ⁇ -caprolactam as a polymerization monomer, and the inside of the tank was purged with nitrogen, and then heated to 100 ° C. and stirred for 3 hours so that the pressure in the tank was uniform at 1.0 MPa. did.
  • polymerization was carried out at 260 ° C. for 5 hours to obtain polyamide 6.
  • the relative viscosity of A-1-3 obtained was 2.47.
  • Polyamide 6 (A-1-4) (hereinafter sometimes referred to as A-1-4)
  • A-1-4 Polyamide 6
  • a 70 liter autoclave 0.5 kg of water was charged to 20 kg of ⁇ -caprolactam as a polymerization monomer, and the inside of the tank was purged with nitrogen, and then heated to 100 ° C. and stirred for 3 hours so that the pressure in the tank was uniform at 1.0 MPa. did.
  • polymerization was carried out at 260 ° C. for 6 hours to obtain polyamide 6.
  • the relative viscosity of the obtained A-1-4 was 2.64.
  • Polyamide 6 (A-1-5) (hereinafter sometimes referred to as A-1-5)
  • A-1-5 In a 70 liter autoclave, 0.5 kg of water was charged to 20 kg of ⁇ -caprolactam as a polymerization monomer, and the inside of the tank was purged with nitrogen, and then heated to 100 ° C. and stirred for 3 hours so that the pressure in the tank was uniform at 1.0 MPa. did. Next, after releasing the pressure in the tank, polymerization was carried out at 260 ° C. for 8 hours to obtain polyamide 6. The relative viscosity of A-1-5 obtained was 3.35.
  • Aromatic polyamide resin (A-2) Polyamide 6T6I (A-2-1) (hereinafter sometimes referred to as A-2-1)
  • A-2-1 Gvory G16 manufactured by Ms Chemie Japan Co., Ltd. was used.
  • the MVR of A-2-1 was 100 ml / 10 minutes) when measured under the conditions of a temperature of 275 ° C. and a load of 5 kg in accordance with ISO 1133.
  • Polyamide 6T6I (A-2-2) (hereinafter sometimes referred to as A-2-2)
  • G-2-2 Gvory G21 from Ms Chemie Japan Co., Ltd. was used.
  • the MVR of A-2-2 was 20 ml / 10 min) when measured under the conditions of a temperature of 275 ° C. and a load of 5 kg in accordance with ISO 1133.
  • Glass fiber (B) Glass fiber (B-1) (hereinafter sometimes referred to as B-1) As B-1, ECS 03T-249 having a diameter of 13 ⁇ m, which is a glass fiber having a circular cross section perpendicular to the length direction of Nippon Electric Glass Co., Ltd., was used.
  • B-2 Glass fiber (hereinafter sometimes referred to as B-2)
  • ECS 03T-747N having a diameter of 13 ⁇ m, which is a glass fiber having a circular cross section perpendicular to the length direction of Nippon Electric Glass Co., Ltd. was used.
  • Glass fiber (B-3) (hereinafter sometimes referred to as B-3)
  • CGS 3PA-820S which is a glass fiber having a major axis and a minor axis of 28 ⁇ m and 7 ⁇ m in a cross section perpendicular to the length direction of Nitto Boseki Co., Ltd., a ratio thereof of 4.0, and an irregular cross-sectional shape, was used. .
  • Composition (X) Composition (X-1) (hereinafter sometimes referred to as X-1) A-1-3 was 35 wt%, A-2-1 was 5 wt% and B-1 was 60 wt%. Using a twin screw extruder, melt kneaded, and pelletized with X-1 pellets Got.
  • Composition (X-2) (hereinafter sometimes referred to as X-2) A-1-3 was melted and kneaded at a ratio of 25.5 wt%, A-2-2 was 4.5 wt%, and B-2 was 70 wt%. -2 pellets were obtained.
  • Composition (X-3) (hereinafter sometimes referred to as X-3) Using a twin screw extruder at a ratio of 35% by weight of A-1-3, 5% by weight of A-2-1 and 60% by weight of B-3, melt-kneaded, and pellets of X-3 with a pelletizer Got.
  • Composition (X-4) (hereinafter sometimes referred to as X-4) Using a twin screw extruder, A-1-3 was 42% by weight, A-2-1 was 8% by weight, and B-3 was 50% by weight. Got.
  • Composition (X-5) (hereinafter sometimes referred to as X-5)
  • the mixture was melt-kneaded using a twin screw extruder at a ratio of 70% by weight of A-1-4 and 30% by weight of B-1, and pellets of X-5 were obtained with a pelletizer.
  • Composition (X-6) (hereinafter sometimes referred to as X-6)
  • the mixture was melt-kneaded using a twin screw extruder at a ratio of 55% by weight of A-1-4 and 45% by weight of B-1, and pellets of X-6 were obtained with a pelletizer.
  • composition (X-7) (hereinafter sometimes referred to as X-7)
  • the mixture was melt-kneaded using a twin screw extruder at a ratio of 55% by weight of A-1-3 and 45% by weight of B-3, and pellets of X-7 were obtained with a pelletizer.
  • Composition (X-8) (hereinafter sometimes referred to as X-8) Melted and kneaded using a twin screw extruder at a ratio of 35% by weight of A-1-4, 5% by weight of A-2-1 and 60% by weight of B-2, and pellets of X-8 using a pelletizer Got.
  • Composition (X-9) (hereinafter sometimes referred to as X-9) Using a twin screw extruder at a ratio of 40% by weight of A-1-3 and 60% by weight of B-2, the mixture was melt-kneaded, and pellets of X-9 were obtained with a pelletizer.
  • compositions of compositions X-1 to X-9 are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)に、前記脂肪族ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)をさらに加えられてなるポリアミド樹脂組成物が提供される。

Description

ポリアミド組成物およびそれからなる成形品
 本発明は、ポリアミド組成物およびそれからなる成形品に関する。
 ポリアミド樹脂は、優れた特性を有している事から、幅広い用途に使用されている。無機強化材、特にガラス繊維を含有するポリアミド樹脂は剛性、強度、耐熱性等が大幅に向上し、塗装やメッキを必要とさるような用途にも使用されている。しかしながら、ガラス繊維等を含有する事により、できた成形品の表面粗さ、鏡面表面光沢等の外観が低下し、塗装等を行うとより外観が低下する場合がある。
 例えば、特公昭61-60861号公報及び特開2008-95066号公報には、外観を向上させる方法として、結晶性ポリアミド樹脂に非晶性樹脂や異形ガラス繊維を含有させる事が提案されている。
特公昭61-60861号公報 特開2008-95066号公報
 しかしながら、これらの方法で得られる成形体の表面粗さ等の外観よりも、より小さい表面粗さ等を有する向上した外観が求められている。
 本発明の目的は、成形体における表面粗さがより小さくなるポリアミド樹脂組成物とそれからなる成形品を提供することにある。
 脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)に、
 前記ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)をさらに加えたポリアミド樹脂組成物が、成形品にしたときの表面粗さがより小さくなることを見出した。
 即ち、本発明は以下の態様を包含する。
 第一の態様は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)に、前記ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)をさらに加えたポリアミド樹脂組成物である。
 第二の態様は、前記ポリアミド樹脂組成物からなる成形体である。
 第三の態様は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を溶融混練して組成物(X)を得ることと、組成物(X)と前記脂肪族ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)とを混合することと、を含むポリアミド樹脂組成物の製造方法である。
 本発明によれば、成形体における表面粗さがより小さくなるポリアミド樹脂組成物とそれからなる成形品を提供することができる。
 本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本発明のポリアミド樹脂組成物は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)に、前記ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)をさらに加えてなる。係るポリアミド樹脂組成物を用いて作製される成形品は、表面粗さがより小さくなり、優れた表面光沢を有する。
[脂肪族ポリアミド(A-1)]
 脂肪族ポリアミド(A-1)は、主鎖中にアミド結合(-CONH-)を有し、脂肪族ポリアミド構造単位であるラクタム、アミノカルボン酸、又は脂肪族ジアミンと脂肪族ジカルボン酸を原料として、溶融重合、溶液重合、固相重合等の公知の方法で重合、又は共重合することにより得られる。
 ラクタムとしては、カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等が挙げられ、アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。これらは1種又は2種以上を用いることができる。
 脂肪族ジアミンとしては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、1,19-ノナデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等が挙げられる。これらは1種又は2種以上を用いることができる。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等が挙げられる。これらは1種又は2種以上を用いることができる。
 脂肪族ポリアミド(A-1)としては、ポリカプロアミド(ポリアミド6)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンスクシナミド(ポリアミド44)、ポリテトラメチレングルタミド(ポリアミド45)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリテトラメチレンスベラミド(ポリアミド48)、ポリテトラメチレンアゼラミド(ポリアミド49)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンスクシナミド(ポリアミド54)、ポリペンタメチレングルタミド(ポリアミド55)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリペンタメチレンスベラミド(ポリアミド58)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンスクシナミド(ポリアミド64)、ポリヘキサメチレングルタミド(ポリアミド65)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンスベラミド(ポリアミド68)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリヘキサメチレンテトラデカミド(ポリアミド614)、ポリヘキサメチレンヘキサデカミド(ポリアミド616)、ポリヘキサメチレンオクタデカミド(ポリアミド618)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンスベラミド(ポリアミド98)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンスベラミド(ポリアミド108)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンスベラミド(ポリアミド128)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)等の単独重合体及びこれらを形成する原料単量体を数種用いた共重合体等が挙げられる。
 これらの中でも、成形加工性、機械物性及び耐熱性の観点から、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体(ポリアミド6とポリアミド66の共重合体、以下、共重合体は同様に記載)、ポリアミド6/69共重合体、ポリアミド6/610共重合体、ポリアミド6/611共重合体、ポリアミド6/612共重合体、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体よりなる群から選択される一種以上であることが好ましく、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体よりなる群から選択される一種以上であることがより好ましく、ポリアミド6、ポリアミド66及びポリアミド6/66共重合体よりなる群から選択される一種以上であることがさらに好ましく、成形加工性の観点から、ポリアミド6が特に好ましい。
 脂肪族ポリアミド(A-1)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
 また、JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定した脂肪族ポリアミド(A)の相対粘度は、機械的性質を確保することと、望ましい成形加工性を確保する観点から、1.5以上5.0以下であることが好ましく、1.5以上4.5以下であることがより好ましく、1.5以上3.0以下であることがより好ましく、2.0以上3.0以下が更に好ましい。
 脂肪族ポリアミド(A-1)は、任意の分子量、任意の末端アミノ基濃度、任意のカルボキシ濃度のポリアミドを得る為に、前記ポリアミド原料を、アミン類又はカルボン酸類の存在下に、溶融重合、溶液重合、固相重合等の公知の方法で重合、又は共重合することにより製造してもよい。あるいは、重合後、アミン類又はカルボン酸類の存在下に、溶融混練することにより製造される。このように、アミン類又はカルボン酸類は、重合時の任意の段階、あるいは、重合後、溶融混練時の任意の段階において添加できるが、表面性を考慮した場合、重合時の段階で添加することが好ましい。
 上記アミン類としてはモノアミン、ジアミン、トリアミン、ポリアミンが挙げられる。また、アミン類の他に、上記の末端基濃度条件の範囲を外れない限り、必要に応じて、モノカルボン酸、ジカルボン酸、トリカルボン酸等のカルボン酸類を添加しても良い。これら、アミン類、カルボン酸類は、同時に添加しても、別々に添加しても良い。また、下記例示のアミン類、カルボン酸類は、1種又は2種以上を用いることができる。
 添加するモノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オクタデシレンアミン、エイコシルアミン、ドコシルアミン等の脂肪族モノアミン;シクロヘキシルアミン、メチルシクロヘキシルアミン等の脂環式モノアミン;ベンジルアミン、β-フエニルメチルアミン等の芳香族モノアミン;N,N-ジメチルアミン、N,N-ジエチルアミン、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジヘキシルアミン、N,N-ジオクチルアミン等の対称第二アミン;N-メチル-N-エチルアミン、N-メチル-N-ブチルアミン、N-メチル-N-ドデシルアミン、N-メチル-N-オクタデシルアミン、N-エチル-N-ヘキサデシルアミン、N-エチル-N-オクタデシルアミン、N-プロピル-N-ヘキサデシルアミン、N-プロピル-N-ベンジルアミン等の混成第二アミンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するジアミンの具体例としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン;m-キシリレンジアミン、p-キシリレンジアミン等の芳香族ジアミンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するトリアミンの具体例としては、1,2,3-トリアミノプロパン、1,2,3-トリアミノ-2-メチルプロパン、1,2,4-トリアミノブタン、1,2,3,4-テトラミノブタン、1,3,5-トリアミノシクロヘキサン、1,2,4-トリアミノシクロヘキサン、1,2,3-トリアミノシクロヘキサン、1,2,4,5-テトラミノシクロヘキサン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、1,2,3-トリアミノベンゼン、1,2,4,5-テトラミノベンゼン、1,2,4-トリアミノナフタレン、2,5,7-トリアミノナフタレン、2,4,6-トリアミノピリジン、1,2,7,8-テトラミノナフタレン等、1,4,5,8-テトラミノナフタレンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するポリアミンは、一級アミノ基(-NH)及び/又は二級アミノ基(-NH-)を複数有する化合物であればよく、例えば、ポリアルキレンイミン、ポリアルキレンポリアミン、ポリビニルアミン、ポリアリルアミン等が挙げられる。活性水素を備えたアミノ基は、ポリアミンの反応点である。
 ポリアルキレンイミンは、エチレンイミン、プロピレンイミン等のアルキレンイミンをイオン重合させる方法、或いは、アルキルオキサゾリンを重合させた後、該重合体を部分加水分解又は完全加水分解させる方法等で製造される。ポリアルキレンポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミン、或いは、エチレンジアミンと多官能化合物との反応物等が挙げられる。ポリビニルアミンは、例えば、N-ビニルホルムアミドを重合させてポリ(N-ビニルホルムアミド)とした後、該重合体を塩酸等の酸で部分加水分解又は完全加水分解することにより得られる。ポリアリルアミンは、一般に、アリルアミンモノマーの塩酸塩を重合させた後、塩酸を除去することにより得られる。これらは1種又は2種以上を用いることができる。これらの中でも、ポリアルキレンイミンが好ましい。
 ポリアルキレンイミンとしては、エチレンイミン、プロピレンイミン、1,2-ブチレンイミン、2,3-ブチレンイミン、1,1-ジメチルエチレンイミン等の炭素原子数2以上8以下のアルキレンイミンの1種又は2種以上を常法により重合して得られる単独重合体及び共重合体が挙げられる。これらの中でも、ポリエチレンイミンがより好ましい。ポリアルキレンイミンは、アルキレンイミンを原料として、これを開環重合させて得られる1級アミン、2級アミン、及び3級アミンを含む分岐型ポリアルキレンイミン、あるいはアルキルオキサゾリンを原料とし、これを重合させて得られる1級アミンと2級アミンのみを含む直鎖型ポリアルキレンイミン、三次元状に架橋された構造のいずれであってもよい。さらに、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、トリプロピレンテトラミン、ジヘキサメチレントリアミン、アミノプロピルエチレンジアミン、ビスアミノプロピルエチレンジアミン等を含むものであってもよい。ポリアルキレンイミンは、通常、含まれる窒素原子上の活性水素原子の反応性に由来して、第3級アミノ基の他、活性水素原子をもつ第1級アミノ基や第2級アミノ基(イミノ基)を有する。
 ポリアルキレンイミン中の窒素原子数は、特に制限はないが、4以上3,000であることが好ましく、8以上1,500以下であることがより好ましく、11以上500以下であることがさらに好ましい。また、ポリアルキレンイミンの数平均分子量は、100以上20,000以下であることが好ましく、200以上10,000以下であることがより好ましく、500以上8,000以下であることがさらに好ましい。
 一方、添加するカルボン酸類としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ペラルゴン酸、ウンデカン酸、ラウリル酸、トリデカン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸、エルカ酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸、メチルシクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイン酸、エチル安息香酸、フェニル酢酸等の芳香族モノカルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ヘキサデカン二酸、ヘキサデセン二酸、オクタデカン二酸、オクタデセン二酸、エイコサン二酸、エイコセン二酸、ドコサン二酸、ジグリコール酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸等の脂肪族ジカルボン酸;1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、m-キシリレンジカルボン酸、p-キシリレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,2,4-ブタントリカルボン酸、1,3,5-ペンタントリカルボン酸、1,2,6-ヘキサントリカルボン酸、1,3,6-ヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸、トリメシン酸等のトリカルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。
 添加されるアミン類やカルボン酸類の使用量は、製造しようとする末端変性脂肪族ポリアミドの末端アミノ基濃度、末端カルボキシル基濃度、及び相対粘度を考慮して、公知の方法により適宜決められる。
[芳香族ポリアミド樹脂(A-2)]
 芳香族ポリアミド樹脂(A-2)としては、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリメタキシリレンスベラミド(ポリアミドMXD8)、ポリメタキシリレンアゼラミド(ポリアミドMXD9)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカミド(ポリアミドMXD12)、ポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンヘキサヒドロテレフタラミド(ポリアミドMXDT(H))、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリパラキシリレンスベラミド(ポリアミドPXD8)、ポリパラキシリレンアゼラミド(ポリアミドPXD9)、ポリパラキシリレンセバカミド(ポリアミドPXD10)、ポリパラキシリレンドデカミド(ポリアミドPXD12)、ポリパラキシリレンテレフタラミド(ポリアミドPXDT)、ポリパラキシリレンイソフタラミド(ポリアミドPXDI)、ポリパラキシリレンヘキサヒドロテレフタラミド(ポリアミドPXDT(H))、ポリパラキシリレンナフタラミド(ポリアミドPXDN)、ポリパラフェニレンテレフタラミド(PPTA)、ポリパラフェニレンイソフタラミド(PPIA)、ポリメタフェニレンテレフタラミド(PMTA)、ポリメタフェニレンイソフタラミド(PMIA)、ポリ(2,6-ナフタレンジメチレンアジパミド)(ポリアミド2,6-BAN6)、ポリ(2,6-ナフタレンジメチレンスベラミド)(ポリアミド2,6-BAN8)、ポリ(2,6-ナフタレンジメチレンアゼラミド)(ポリアミド2,6-BAN9)、ポリ(2,6-ナフタレンジメチレンセバカミド)(ポリアミド2,6-BAN10)、ポリ(2,6-ナフタレンジメチレンドデカミド)(ポリアミド2,6-BAN12)、ポリ(2,6-ナフタレンジメチレンテレフタラミド)(ポリアミド2,6-BANT)、ポリ(2,6-ナフタレンジメチレンイソフタラミド)(ポリアミド2,6-BANI)、ポリ(2,6-ナフタレンジメチレンヘキサヒドロテレフタラミド)(ポリアミド2,6-BANT(H))、ポリ(2,6-ナフタレンジメチレンナフタラミド)(ポリアミド2,6-BANN)、ポリ(1,3-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,3-BACT)、ポリ(1,3-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,3-BACI)、ポリ(1,3-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,3-BACT(H))、ポリ(1,3-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,3-BACN)、ポリ(1,4-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,4-BACT)、ポリ(1,4-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,4-BACI)、ポリ(1,4-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,4-BACT(H))、ポリ(1,4-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,4-BACN)、ポリ(4,4’-メチレンビスシクロヘキシレンアジパミド)(ポリアミドPACM6)、ポリ(4,4’-メチレンビスシクロヘキシレンスベラミド)(ポリアミドPACM8)、ポリ(4,4’-メチレンビスシクロヘキシレンアゼラミド)(ポリアミドPACM9)、ポリ(4,4’-メチレンビスシクロヘキシレンセバカミド)(ポリアミドPACM10)、ポリ(4,4’-メチレンビスシクロヘキシレンドデカミド)(ポリアミドPACM12)、ポリ(4,4’-メチレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACM14)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACM16)、ポリ(4,4’-メチレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACM18)、ポリ(4,4’-メチレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACMT)、ポリ(4,4’-メチレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACMI)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACMT(H))、ポリ(4,4’-メチレンビスシクロヘキシレンナフタラミド)(ポリアミドPACMN)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アジパミド)(ポリアミドMACM6)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)スベラミド)(ポリアミドMACM8)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アゼラミド)(ポリアミドMACM9)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)セバカミド)(ポリアミドMACM10)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ドデカミド)(ポリアミドMACM12)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テトラデカミド)(ポリアミドMACM14)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサデカミド)(ポリアミドMACM16)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)オクタデカミド)(ポリアミドMACM18)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テレフタラミド)(ポリアミドMACMT)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)イソフタラミド)(ポリアミドMACMI)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサヒドロテレフタラミド)(ポリアミドMACMT(H))、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ナフタラミド)(ポリアミドMACMN)、ポリ(4,4’-プロピレンビスシクロヘキシレンアジパミド)(ポリアミドPACP6)、ポリ(4,4’-プロピレンビスシクロヘキシレンスベラミド)(ポリアミドPACP8)、ポリ(4,4’-プロピレンビスシクロヘキシレンアゼラミド)(ポリアミドPACP9)、ポリ(4,4’-プロピレンビスシクロヘキシレンセバカミド)(ポリアミドPACP10)、ポリ(4,4’-プロピレンビスシクロヘキシレンドデカミド)(ポリアミドPACP12)、ポリ(4,4’-プロピレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACP14)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACP16)、ポリ(4,4’-プロピレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACP18)、ポリ(4,4’-プロピレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACPT)、ポリ(4,4’-プロピレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACPI)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACPT(H))、ポリ(4,4’-プロピレンビスシクロヘキシレンナフタラミド)(ポリアミドPACPN)、ポリイソホロンアジパミド(ポリアミドIPD6)、ポリイソホロンスベラミド(ポリアミドIPD8)、ポリイソホロンアゼラミド(ポリアミドIPD9)、ポリイソホロンセバカミド(ポリアミドIPD10)、ポリイソホロンドデカミド(ポリアミドIPD12)、ポリイソホロンテレフタラミド(ポリアミドIPDT)、ポリイソホロンイソフタラミド(ポリアミドIPDI)、ポリイソホロンヘキサヒドロテレフタラミド(ポリアミドIPDT(H))、ポリイソホロンナフタラミド(ポリアミドIPDN)、ポリテトラメチレンテレフタラミド(ポリアミド4T)、ポリテトラメチレンイソフタラミド(ポリアミド4I)、ポリテトラメチレンヘキサヒドロテレフタラミド(ポリアミド4T(H))、ポリテトラメチレンナフタラミド(ポリアミド4N)、ポリペンタメチレンテレフタラミド(ポリアミド5T)、ポリペンタメチレンイソフタラミド(ポリアミド5I)、ポリペンタメチレンヘキサヒドロテレフタラミド(ポリアミド5T(H))、ポリペンタメチレンナフタラミド(ポリアミド5N)、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリヘキサメチレンヘキサヒドロテレフタラミド(ポリアミド6T(H))、ポリヘキサメチレンナフタラミド(ポリアミド6N)、ポリ(2-メチルペンタメチレンテレフタラミド)(ポリアミドM5T)、ポリ(2-メチルペンタメチレンイソフタラミド)(ポリアミドM5I)、ポリ(2-メチルペンタメチレンヘキサヒドロテレフタラミド)(ポリアミドM5T(H))、ポリ(2-メチルペンタメチレンナフタラミド(ポリアミドM5N)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリノナメチレンイソフタラミド(ポリアミド9I)、ポリノナメチレンヘキサヒドロテレフタラミド(ポリアミド9T(H))、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリ(2-メチルオクタメチレンテレフタラミド)(ポリアミドM8T)、ポリ(2-メチルオクタメチレンイソフタラミド)(ポリアミドM8I)、ポリ(2-メチルオクタメチレンヘキサヒドロテレフタラミド)(ポリアミドM8T(H))、ポリ(2-メチルオクタメチレンナフタラミド)(ポリアミドM8N)、ポリトリメチルヘキサメチレンテレフタラミド(ポリアミドTMHT)、ポリトリメチルヘキサメチレンイソフタラミド(ポリアミドTMHI)、ポリトリメチルヘキサメチレンヘキサヒドロテレフタラミド(ポリアミドTMHT(H))、ポリトリメチルヘキサメチレンナフタラミド(ポリアミドTMHN)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリデカメチレンイソフタラミド(ポリアミド10I)、ポリデカメチレンヘキサヒドロテレフタラミド(ポリアミド10T(H))、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリウンデカメチレンテレフタラミド(ポリアミド11T)、ポリウンデカメチレンイソフタラミド(ポリアミド11I)、ポリウンデカメチレンヘキサヒドロテレフタラミド(ポリアミド11T(H))、ポリウンデカメチレンナフタラミド(ポリアミド11N)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリドデカメチレンイソフタラミド(ポリアミド12I)、ポリドデカメチレンヘキサヒドロテレフタラミド(ポリアミド12T(H))、ポリドデカメチレンナフタラミド(ポリアミド12N)及びこれらポリアミドの原料単量体を数種用いた共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも成形加工性の観点から、ポリアミド6T、ポリアミド9T、ポリアミド10T、ポリアミド11T、ポリアミド12T、ポリアミドIPD6、ポリアミド6T/6I及びポリアミドMXD6よりなる群から選択される一種以上が好ましく、ポリアミド6T/6Iがより好ましい。
 ISO1133に準拠し、275℃の温度、加重5kgの条件で測定した時、芳香族ポリアミド樹脂(A-2)のMVRは、成形品にした時の表面粗さをより小さくする観点から、10ml/10分以上が好ましく、20ml/10分以上がより好ましく、50ml/10分以上がさらに好ましく、90ml/10分以上が特に好ましい。
[ガラス繊維(B)]
 ガラス繊維は、特に限定されないが、ガラス繊維とポリアミド樹脂との相溶性を向上させる点から、収束剤で収束されているものが好ましい。収束剤には、相溶性の点から、ウレタン系又はアクリル系が含まれていることが好ましく、これらを併用しても良い。
 ガラス繊維は、ポリアミド樹脂中への分散性および密着性を高める観点から、表面処理剤により表面処理がされていることが好ましい。表面処理剤としては、例えば、シラン系化合物、クロム系化合物、チタン系化合物等が挙げられ、シラン系化合物及び/又はチタン系化合物の表面処理剤が好ましい。
 シラン系化合物の表面処理剤としては、収束剤との接着に優れたアミノシラン系のカップリング剤が好ましく、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノジチオプロピルトリヒドロキシシラン、γ-(ポリエチレンアミノ)プロピルトリメトキシシラン、N-β-(アミノプロピル)-γ-アミノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)-エチレンジアミン、γ-ジブチルアミノプロピルトリメトキシシラン等が挙げられる。これらは1種又は2種以上を用いることができる。
 チタン系化合物の表面処理剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトライソプロピルチタネート、テトラブチルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルジメタクリルイソステアロイルチタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、イソプロピルトリクミルフェニルチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルイソステアロイルジアクリルチタネート等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)γ-アミノプロピルメチルジメトキシシラン及びγ-アミノプロピルトリエトキシシランよりなる群から選ばれる少なくとも1種が好ましい。
 ガラス繊維は、長さ方向に直角の断面が円形のガラス繊維及び/又は長さ方向に直角の断面が非円形断面のガラス繊維である。長さ方向に直角の断面が円形のガラス繊維の重量平均繊維長は、組成物の成形性や、得られる成形体の寸法安定性等の観点から、200μm以上600μm以下が好ましく、200μm以上550μm以下がよりしく、300μm以上500μm以下がさらに好ましい。
 円形断面のガラス繊維の平均繊維長は、ポリアミド樹脂組成物又はポリアミド樹脂組成物を用いて得られる成形体中のガラス繊維を溶解させず、樹脂を溶解させる酸やアルカリ等の溶媒で、樹脂を溶解させ、取り除き、画像解析ソフトを用いることで、測定することができる。
 画像解析ソフトとしては、繊維長を測定できるものであれば、特に制限は無く、使用できる。一例として、旭化成エンジニアリング社製の画像解析ソフトであるA像君が挙げられる。
 円形断面のガラス繊維の平均繊維径は、特に制限はないが、得られる成形体の寸法安定性及び機械特性の観点から、5μm以上25μm以下が好ましく、5μm以上24μm以下がより好ましく、6μm以上23μm以下がさらに好ましい。
 ガラス繊維の平均繊維径はJIS R3420で測定することができる。
 円形断面のガラス繊維は、ポリアミド樹脂中への分散性および密着性を高める観点から、表面処理剤により表面処理がされていることが好ましい。表面処理剤としては、例えば、シラン系化合物、クロム系化合物、チタン系化合物等が挙げられ、シラン系化合物及び/又はチタン系化合物の表面処理剤が好ましい。
 長さ方向に直角の断面が非円形断面のガラス繊維は、長さ方向に直角の断面における長径と短径の比が、低反り性と力学特性の観点から、1.2以上10以下が好ましく、1.5以上6以下がより好ましく、1.7以上4.5以下がさらに好ましい。ここで、長径とは、断面図形上の任意の2点間の直線距離が最大になったときの、その距離をとり、短径とは、該長径と直交する直線のうち断面図形と交差する2点間の距離が最小のものをとる。
 非円形断面のガラス繊維の長径は、2μm以上100μm以下が好ましく、短径は、1μm以上20μm以下が好ましい。
 非円形断面のガラス繊維は、所定の長径と短径の比を有するものであれば、断面形状に特に制限はないが、通常、まゆ形、長円形、半円形、円弧形、長方形、平行四辺形またはこれらの類似形のものが用いられる。実用上は、流動性、力学特性、低反り性の観点から、まゆ形、長円形、長方形が好ましい。
 非円形断面のガラス繊維のポリアミド樹脂組成物及び成形体中での好ましい平均繊維長とその測定法は、円形断面のガラス繊維と同様である。
 ガラス繊維は、機械特性と成形加工性の観点から、平均繊維径が5μm以上25μm以下の円形断面のガラス繊維及び/又は長さ方向に直角の断面における長径と短径の比が、1.2以上10以下である非円形断面のガラス繊維が好ましい。
[組成物(X)]
 組成物(X)は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる溶融混練物である。ポリアミド樹脂(A-3)との混合をより均一にする観点から、組成物(X)は、パウダー等の粉末やペレットの形状が好ましい。
 溶融混練する方法としては、特に制限はなく、通常の方法である、円筒型混合機等の混合機を用いる方法、二軸押出機、単軸押出機、多軸押出機、バンバリミキサー、ロールミキサー、ニーダー等の押出機を用いる方法、混合機と押出機を組み合わせる方法等を挙げることができる。脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)の混合をより均一にする観点から、二軸押出機を用いるのが好ましい。
 成形加工性の観点から、脂肪族ポリアミド樹脂(A-1)と芳香族ポリアミド樹脂(A-2)の組成物(X)中の総和に対し、芳香族ポリアミド樹脂(A-2)の含有量が、5重量%以上30重量%以下である事が好ましく、10重量%以上20重量%以下がより好ましい。
 成形加工性の観点から、組成物(X)全量中に、脂肪族ポリアミド樹脂(A-1)が、20重量%以上65重量%以下含まれることが好ましく、23重量%以上50重量%以下含まれることがより好ましく、25重量%以上45重量以下含まれることがさらに好ましい。
 組成物(X)全量中に、成形加工性及び良外観性の観点から、芳香族ポリアミド樹脂(A-2)は2重量%以上20重量%以下含まれることが好ましく、3重量%以上15重量%以下含まれることがより好ましく、4重量%以上10重量%以下含まれることがさらに好ましい。
 組成物(X)における脂肪族ポリアミド樹脂(A-1)に対する芳香族ポリアミド樹脂(A-2)の含有比率(A-2/A-1)(重量%)は、表面外観の観点から、5重量%以上30重量%以下が好ましく、10重量%以上20重量%以下がより好ましい。
 組成物(X)全量中に、機械物性の観点から、ガラス繊維(B)は30重量%以上70重量%以下が好ましく、40重量%以上70重量%以下がより好ましく、45重量%以上70重量%以下がさらに好ましい。
 組成物(X)全量中に、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を、材料剛性の観点から、80重量%以上100重量%以下が好ましく、90重量%100重量%以下がより好ましく、95重量%以上100重量%以下がさらに好ましい。
 組成物(X)には、本発明の組成物の特性を損なわない範囲で、通常配合される各種の添加剤、改質剤、強化材、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、耐候剤、フィラー、可塑剤、発泡剤、ブロッキング防止剤、粘着性付与剤、シール性改良剤、防雲剤、離型剤、架橋剤、発泡剤、難燃剤、着色剤(顔料、染料等)、カップリング剤、流動性改良剤、タルク等のガラス以外の無機化合物を含有することができる。
 組成物(X)は、ポリアミド樹脂組成物の特性を損なわない範囲内で、ポリアミド樹脂以外の熱可塑性樹脂を含んでいてもよい。
 ポリアミド樹脂以外の熱可塑性樹脂としては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、ポリブテン(PB)、ポリメチルペンテン(TPX)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸共重合体(EAA)、エチレン/メタクリル酸共重合体(EMAA)、エチレン/アクリル酸メチル共重合体(EMA)、エチレン/メタクリル酸メチル共重合体(EMMA)、エチレン/アクリル酸エチル共重合体(EEA)等のポリオレフィン系樹脂;ポリスチレン(PS)、シンジオタクチックポリスチレン(SPS)、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)、スチレン/ブタジエン共重合体(SBR)、スチレン/イソプレン共重合体(SIR)、スチレン/イソプレン/ブタジエン共重合体(SIBR)、スチレン/ブタジエン/スチレン共重合体(SBS)、スチレン/イソプレン/スチレン共重合体(SIS)、スチレン/エチレン/ブチレン/スチレン共重合体(SEBS)、スチレン/エチレン/プロピレン/スチレン共重合体(SEPS)等のポリスチレン系樹脂;カルボキシル基及びその塩、酸無水物基、エポキシ基等の官能基が含有された上記ポリオレフィン系樹脂及びポリスチレン系樹脂;ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、ポリ(エチレンテレフタレート/エチレンイソフタレート)共重合体(PET/PEI)、ポリトリメチレンテレフタレート(PTT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂;ポリアセタール(POM)、ポリフェニレンエーテル(PPO)等のポリエーテル系樹脂;ポリサルホン(PSU)、ポリエーテルスルホン(PESU)、ポリフェニルサルホン(PPSU)等のポリサルホン系樹脂;ポリフェニレンスルフィド(PPS)、ポリチオエーテルサルホン(PTES)等のポリチオエーテル系樹脂;ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルエーテルケトン(PEEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトンケトン(PEKKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)等のポリケトン系樹脂;ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、アクリロニトリル/ブタジエン共重合体(NBR)等のポリニトリル系樹脂、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂;ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/アクリル酸メチル共重合体等のポリビニル系樹脂;酢酸セルロース、酪酸セルロース等のセルロース系樹脂;ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリテトラフルオロエチレン(PTFE)、ポリクロルフルオロエチレン(PCTFE)、テトラフルオロエチレン/エチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体(THV)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CPT)等のフッ素系樹脂;ポリカーボネート(PC)等のポリカーボネート系樹脂;熱可塑性ポリイミド(TPI)、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド(PAI)、ポリエステルアミドイミド等のポリイミド系樹脂;熱可塑性ポリウレタン系樹脂、ポリアミドエラストマー、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられる。これらは1種又は2種以上を用いることができる。
 流動改良材としては、ジカルボン酸、多価アルコールが挙げられ、多価アルコールがポリアミド樹脂との反応性の観点から好ましい。
 ジカルボン酸としては、脂肪族ジカルボン酸、芳香族ジカルボン酸が挙げられ、具体的には、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、テレフタル酸等が挙げられる。
 多価アルコールは、多価アルコールそのものはもとより、多価アルコールと脂肪酸との部分エステル化合物や多価アルコールのアルキレンオキサイド付加物と脂肪酸との部分エステル化合物も含まれる。具体的には、エチレングリコール、プロピレングリコール、1,3-/1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,2-/1,3-/1,4-/1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ポリグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリ-(トリメチロールプロパン)、トリメチロールブタン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリペンタエリスリトール、1,2,4-ブタントリオール、1,3,5-ペンタントリオール、1,2,6-ヘキサントリオール、1,2,3,4-ブタンテトロール、ソルビタン、イソソルバイド、ソルビトール、アドニトール、アラビトール、キシリトール、マンニトール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、シュクロース、ラフィノース、ゲンチアノース、メレジトース等が挙げられる。
 これらの中でも、流動性向上の観点から、ペンタエリスリトール、グリセリン、ポリグリセリン、トリメチロールエタン、トリメチロールプロパン、ジペンタエリスリトール、ソルビタンおよびソルビトールからなる群より選択される少なくとも1種が好ましく、ペンタエリスリトール、ポリグリセリン、トリメチロールエタン、トリメチロールプロパンおよびジペンタエリスリトールからなる群より選択される少なくとも1種がより好ましく、混練や成形中の飛散低減と分散性の観点からペンタエリスリトール、ポリグリセリン、トリメチロールエタンおよびジペンタエリスリトールからなる群より選択される少なくとも1種がさらに好ましい。
[ポリアミド樹脂(A-3)]
 ポリアミド樹脂組成物に用いるポリアミド樹脂(A-3)は、脂肪族ポリアミド樹脂でも、芳香族ポリアミド樹脂でもかまわないが、JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定したポリアミド樹脂(A-3)の相対粘度が、脂肪族ポリアミド樹脂(A-1)の相対粘度より小さいポリアミド樹脂である。そうでない場合、本発明のポリアミド樹脂組成物の効果を発揮しない。脂肪族ポリアミド樹脂(A-1)とポリアミド樹脂(A-3)の相対粘度の差は、成形品にした時の表面粗さをより小さくする観点から、(A-3)の相対粘度を(A-1)の相対粘度で割った値が0.3から0.95が好ましく、0.3から0.9がより好ましく、0.3から0.8がさらに好ましい。0.3以上の場合、材料の機械的特性がより向上する傾向がある。0.95以下の場合は、流動性が良好になり、表面外観がより向上する傾向にある。
 ポリアミド樹脂(A-3)の形態は特に限定されず、組成物(X)との混合をより均一にする観点から、ポリアミド樹脂(A-3)は、パウダー等の粉末やペレットの形状が好ましい。
 ポリアミド樹脂(A-3)としては、成形加工性、機械物性及び耐熱性の観点から、脂肪族ポリアミド樹脂が好ましい。
 ポリアミド樹脂(A-3)は、脂肪族ポリアミド樹脂の中でも、成形加工性の観点から、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体(ポリアミド6とポリアミド66の共重合体、以下、共重合体は同様に記載)、ポリアミド6/69共重合体、ポリアミド6/610共重合体、ポリアミド6/611共重合体、ポリアミド6/612共重合体、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体よりなる群から選択される一種以上であることが好ましく、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体よりなる群から選択される一種以上であることがより好ましく、ポリアミド6、ポリアミド66及びポリアミド6/66共重合体よりなる群から選択される一種以上であることがさらに好ましく、成形加工性の観点から、ポリアミド6及び/又はポリアミド66が特に好ましい。
[ポリアミド樹脂組成物]
 ポリアミド樹脂組成物は、組成物(X)に、脂肪族ポリアミド樹脂(A-1)の相対粘度より小さいポリアミド樹脂(A-3)を加えてなる。その製造方法としては、タンブラーやミキサーを用いて、ペレット同士を前記の混合割合になるように均一にドライブレンドする方法、ドライブレンドした混合物を組成物(X)の項で挙げた溶融混練機で溶融混練する方法が挙げられる。本発明の効果をより発揮する観点から、ドライブレンドする方法する方法が好ましい。すなわち、ポリアミド樹脂組成物は、溶融混練物である組成物(X)とポリアミド樹脂(A-3)とのドライブレンド物であることが好ましい。
 すなわち、ポリアミド樹脂組成物は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を溶融混練して組成物(X)を得ることと、組成物(X)と前記脂肪族ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)とを混合することと、を含む製造方法で製造されることが好ましく、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を溶融混練して組成物(X)を得ることと、組成物(X)と前記脂肪族ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)とをドライブレンドすることと、を含む製造方法で製造されることがより好ましい。
 ポリアミド樹脂組成物は、成形後の表面性に優れる事から、表面に薄膜を付与するような用途に好適に使用できる。具体的には、塗装やフィルム印刷などが挙げられる。塗装用に用いられることが好ましい。すなわち、本発明は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)と、前記ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)とを含むポリアミド樹脂組成物の塗装用途としての使用を包含する。
 成形品にした時の表面粗さをより小さくする観点から、ポリアミド樹脂組成物は、ポリアミド樹脂組成物全量に対し、組成物(X)の40重量%以上98重量%以下を含むことが好ましく、40重量%以上80量%以下を含むことがより好ましく、40重量%以上70重量%以下を含むことがさらに好ましい。
 成形品にした時の表面粗さをより小さくする観点から、ポリアミド樹脂組成物は、ポリアミド樹脂組成物全量に対し、ポリアミド樹脂(A-3)の2重量%以上60重量%以下で含むことが好ましく、10重量%以上60重量%以下を含むことがより好ましく、30重量%以上60重量%以下を含むことがさらに好ましい。
 ポリアミド樹脂組成物において、ポリアミド樹脂(A-3)の脂肪族ポリアミド樹脂(A-1)に対する含有比(A-3/A-1)は、0.1以上6.0以下が好ましく、0.6以上5.5以下がより好ましい。ポリアミド樹脂組成物において、ポリアミド樹脂(A-3)の芳香族ポリアミド樹脂(A-2)に対する含有比(A-3/A-2)は、0.5以上45以下が好ましく、1.0以上30以下がより好ましい。ポリアミド樹脂組成物において、ポリアミド樹脂(A-3)のガラス繊維(B)に対する含有比(A-3/B)は、0.05以上2.0以下が好ましく、0.1以上2.0以下がより好ましい。
 ポリアミド樹脂組成物は、その特性を損なわない範囲で、通常配合される各種の添加剤、改質剤、強化材、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、耐候剤、フィラー、可塑剤、発泡剤、ブロッキング防止剤、粘着性付与剤、シール性改良剤、防雲剤、離型剤、架橋剤、発泡剤、難燃剤、着色剤(顔料、染料等)、カップリング剤、流動性改良剤、タルク等のガラス以外の無機化合物を含有することができる。添加剤は、得られる成形品中の分散性や得られる成形品での特性発揮の観点から、予め、各種添加剤を熱可塑性樹脂等に含有させたペレット、所謂、マスターバッチとして含まれることが好ましい。
[成形品]
 成形品はポリアミド樹脂組成物を用いて作製される。ポリアミド樹脂組成物からなる成形品は、射出成形、押出成形、中空成形、プレス成形、ロール成形、発泡成形、真空・圧空成形、延伸成形などにより成形されるが、表面外観が良好な製品を得る成形加工の容易さの観点から、射出成形が好ましい。すなわち、本発明は、脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)と、前記ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)とを含むポリアミド樹脂組成物の射出成形における使用を包含する。
 ポリアミド樹脂組成物からなる成形品は、表面性に優れる事から、表面に薄膜を付与するような用途に好適に使用できる。具体的には、塗装やフィルム印刷などが挙げられる。塗装用に用いられることが好ましい。
 ポリアミド樹脂組成物からなる成形品としては、具体的には、射出成形品の中でも、塗装等が施される部品が挙げられ、意匠性と材料剛性の観点から自動車の内外装部品や2輪車の外装部品や家電製品のフレーム部品、パソコンやカメラの筐体などが好ましい。
 以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれに限定されるものではない。
[相対粘度]
 JIS K-6920に準じて、96%の硫酸中、ポリマー濃度1%、温度25℃の条件下で測定した。
[成形品]
 実施例、比較例にて、得られたポリアミド樹脂組成物をシリンダー温度280℃、金型温度80℃、金型内の樹脂流速200mm/secと50mm/secの条件で、125mm×75mm×3mmの平板に射出成形機で成形した。
 得られた成形品(平板)は、表面粗さとグロス光沢度の測定に用いた。
[表面粗さ]
 株式会社東京精密製の表面粗さ計であるハンディサーフE-35Bを用いて、JIS B0601規格に準拠したカットオフ0.8mm測定長さ4.0mmの条件で、成形品の中心線平均粗さ(Ra)を測定し、それを表面粗さとして評価した。
[グロス光沢度]
 スガ試験機株式会社製のSMカラーコンピューターSM-5 IS-2Bにデジタル変角光沢計UGV-5Kを接続してグロス光沢度をJIS Z8741に準じ入射角と受光角の測定角度を60°にて測定した。
[実施例及び比較例で用いた材料]
脂肪族ポリアミド(A-1)
・ポリアミド6(A-1-1)(以後、A-1-1と称する場合がある。)
 70リットルのオートクレーブに重合モノマーとしてε-カプロラクタム20kgに対し、水0.5kgを仕込み、槽内を窒素置換した後、100℃まで加熱し槽内圧力1.0MPaで均一になるよう3時間、攪拌した。次いで槽内圧力を開放後、260℃、3時間、重合を行い、ポリアミド6を得た。得られたA-1-1の相対粘度は1.95であった。
・ポリアミド6(A-1-2)(以後、A-1-2と称する場合がある。)
 70リットルのオートクレーブに重合モノマーとしてε-カプロラクタム20kgに対し、水0.5kgを仕込み、槽内を窒素置換した後、100℃まで加熱し槽内圧力1.0MPaで均一になるよう3時間、攪拌した。次いで槽内圧力を開放後、260℃、4時間、重合を行い、ポリアミド6を得た。得られたA-1-2の相対粘度は2.20であった。
・ポリアミド6(A-1-3)(以後、A-1-3と称する場合がある。)
 70リットルのオートクレーブに重合モノマーとしてε-カプロラクタム20kgに対し、水0.5kgを仕込み、槽内を窒素置換した後、100℃まで加熱し槽内圧力1.0MPaで均一になるよう3時間、攪拌した。次いで槽内圧力を開放後、260℃、5時間、重合を行い、ポリアミド6を得た。得られたA-1-3の相対粘度は2.47であった。
・ポリアミド6(A-1-4)(以後、A-1-4と称する場合がある。)
 70リットルのオートクレーブに重合モノマーとしてε-カプロラクタム20kgに対し、水0.5kgを仕込み、槽内を窒素置換した後、100℃まで加熱し槽内圧力1.0MPaで均一になるよう3時間、攪拌した。次いで槽内圧力を開放後、260℃、6時間、重合を行い、ポリアミド6を得た。得られたA-1-4の相対粘度は2.64であった。
・ポリアミド6(A-1-5)(以後、A-1-5と称する場合がある。)
 70リットルのオートクレーブに重合モノマーとしてε-カプロラクタム20kgに対し、水0.5kgを仕込み、槽内を窒素置換した後、100℃まで加熱し槽内圧力1.0MPaで均一になるよう3時間、攪拌した。次いで槽内圧力を開放後、260℃、8時間、重合を行い、ポリアミド6を得た。得られたA-1-5の相対粘度は3.35であった。
芳香族ポリアミド樹脂(A-2)
・ポリアミド6T6I(A-2-1)(以後、A-2-1と称する場合がある。)
A-2-1として、エムスケミー・ジャパン株式会社のGrivory G16を用いた。A-2-1のMVRは、ISO1133に準拠し、温度275℃、荷重5kgの条件で測定すると、100ml/10分)であった。
・ポリアミド6T6I(A-2-2)(以後、A-2-2と称する場合がある。)
A-2-2として、エムスケミー・ジャパン株式会社のGrivory G21を用いた。A-2-2のMVRは、ISO1133に準拠し、温度275℃、荷重5kgの条件で測定すると、20ml/10分)であった。
ポリアミド樹脂(A-3)
・ポリアミド6(A-3-1)(以後、A-3-1と称する場合がある。)
A-3-1として、A-1-1を用いた。
・ポリアミド6(A-3-2)(以後、A-3-2と称する場合がある。)
A-3-2として、A-1-2を用いた。
・ポリアミド6(A-3-3)(以後、A-3-3と称する場合がある。)
A-3-3として、A-1-3を用いた。
・ポリアミド6(A-3-4)(以後、A-3-4と称する場合がある。)
A-3-4として、A-1-4を用いた。
・ポリアミド6(A-3-5)(以後、A-3-5と称する場合がある。)
A-3-5として、A-1-5を用いた。
 ポリアミド樹脂(A-3)は、いずれもペレタイザーにてペレット化して用いた。
ガラス繊維(B)
・ガラス繊維(B-1)(以後、B-1と称する場合がある。)
B-1として、日本電気硝子株式会社の長さ方向に直角の断面が円形のガラス繊維である直径13μmのECS 03T-249を用いた。
・ガラス繊維(B-2)(以後、B-2と称する場合がある。)
B-2として、日本電気硝子株式会社の長さ方向に直角の断面が円形のガラス繊維である直径13μmのECS 03T-747Nを用いた。
・ガラス繊維(B-3)(以後、B-3と称する場合がある。)
B-3として、日東紡績株式会社の長さ方向に直角の断面における長径と短径が28μmと7μm、その比が4.0、断面形状が異形のガラス繊維であるCGS 3PA-820Sを用いた。
組成物(X)
・組成物(X-1)(以後、X-1と称する場合がある。)
A-1-3を35重量%、A-2-1を5重量%、B-1を60重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-1のペレットを得た。
・組成物(X-2)(以後、X-2と称する場合がある。)
A-1-3を25.5重量%、A-2-2を4.5重量%、B-2を70重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-2のペレットを得た。
・組成物(X-3)(以後、X-3と称する場合がある。)
A-1-3を35重量%、A-2-1を5重量%、B-3を60重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-3のペレットを得た。
・組成物(X-4)(以後、X-4と称する場合がある。)
A-1-3を42重量%、A-2-1を8重量%、B-3を50重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-4のペレットを得た。
・組成物(X-5)(以後、X-5と称する場合がある。)
A-1-4を70重量%、B-1を30重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-5のペレットを得た。
・組成物(X-6)(以後、X-6と称する場合がある。)
A-1-4を55重量%、B-1を45重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-6のペレットを得た。
・組成物(X-7)(以後、X-7と称する場合がある。)
A-1-3を55重量%、B-3を45重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-7のペレットを得た。
・組成物(X-8)(以後、X-8と称する場合がある。)
A-1-4を35重量%、A-2-1を5重量%、B-2を60重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-8のペレットを得た。
・組成物(X-9)(以後、X-9と称する場合がある。)
A-1-3を40重量%、B-2を60重量%の割合で二軸押出機を用い、溶融混練し、ペレタイザーにて、X-9のペレットを得た。
 組成物X-1からX-9の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1~9、比較例1~10
 表1に示す組成物(X)とポリアミド樹脂(A-3)の種類と割合で、タンブラーを用い、毎分60回転10分の条件で混合(ドライブレンド)を行い、ポリアミド樹脂組成物を得た。上記方法で成形品を作成し、作成した成形品の表面粗さとグロス光沢度を測定した。その結果を表2に示す。なお、表2中の空欄は未添加であることを示す。またポリアミド樹脂組成物の組成を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 日本国特許出願2014-218092号(出願日:2014年10月27日)の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (6)

  1.  脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を含み、これらが溶融混練されてなる組成物(X)に、
     前記脂肪族ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)をさらに加えたポリアミド樹脂組成物。
  2.  前記ガラス繊維(B)は、平均繊維径が5μm以上25μm以下の円形断面のガラス繊維及び/又は長さ方向に直角の断面における長径と短径の比が、1.2以上10以下である非円形断面のガラス繊維である請求項1に記載のポリアミド樹脂組成物。
  3.  前記脂肪族ポリアミド樹脂(A-1)の相対粘度が1.5以上5.0以下である請求項1又は2に記載のポリアミド樹脂組成物。
  4.  前記芳香族ポリアミド樹脂(A-2)がPA6T/6Iである請求項1~3のいずれかに記載のポリアミド樹脂組成物。
  5.  請求項1~4のいずれかに記載のポリアミド樹脂組成物からなる成形品。
  6.  脂肪族ポリアミド樹脂(A-1)、芳香族ポリアミド樹脂(A-2)及びガラス繊維(B)を溶融混練して組成物(X)を得ることと、
     組成物(X)と前記脂肪族ポリアミド樹脂(A-1)の相対粘度より小さい相対粘度を有するポリアミド樹脂(A-3)とを混合することと、
    を含むポリアミド樹脂組成物の製造方法。
PCT/JP2015/080166 2014-10-27 2015-10-27 ポリアミド組成物およびそれからなる成形品 WO2016068100A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016556568A JP6787133B2 (ja) 2014-10-27 2015-10-27 ポリアミド組成物およびそれからなる成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-218092 2014-10-27
JP2014218092 2014-10-27

Publications (1)

Publication Number Publication Date
WO2016068100A1 true WO2016068100A1 (ja) 2016-05-06

Family

ID=55857437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080166 WO2016068100A1 (ja) 2014-10-27 2015-10-27 ポリアミド組成物およびそれからなる成形品

Country Status (2)

Country Link
JP (1) JP6787133B2 (ja)
WO (1) WO2016068100A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014808A (ja) * 2017-07-06 2019-01-31 旭化成株式会社 ポリアミド組成物および成形品
WO2021187616A1 (ja) * 2020-03-19 2021-09-23 宇部興産株式会社 ポリアミド樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511608A (ja) * 2000-10-10 2004-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 半透明なポリアミドブレンド
JP2004143279A (ja) * 2002-10-24 2004-05-20 Ube Ind Ltd エンジン冷却水系部品用ポリアミド樹脂組成物及びそれからなる部品
JP2007231076A (ja) * 2006-02-28 2007-09-13 Unitika Ltd 光反射成形品用ポリアミド樹脂組成物
JP2007315483A (ja) * 2006-05-25 2007-12-06 Nsk Ltd スライドドア用転がり軸受
JP2008202693A (ja) * 2007-02-20 2008-09-04 Nsk Ltd 樹脂製プーリ
JP2012513499A (ja) * 2008-12-23 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ひけが少なく優れた表面外観を有する強化ポリアミド組成物およびその物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511608A (ja) * 2000-10-10 2004-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 半透明なポリアミドブレンド
JP2004143279A (ja) * 2002-10-24 2004-05-20 Ube Ind Ltd エンジン冷却水系部品用ポリアミド樹脂組成物及びそれからなる部品
JP2007231076A (ja) * 2006-02-28 2007-09-13 Unitika Ltd 光反射成形品用ポリアミド樹脂組成物
JP2007315483A (ja) * 2006-05-25 2007-12-06 Nsk Ltd スライドドア用転がり軸受
JP2008202693A (ja) * 2007-02-20 2008-09-04 Nsk Ltd 樹脂製プーリ
JP2012513499A (ja) * 2008-12-23 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ひけが少なく優れた表面外観を有する強化ポリアミド組成物およびその物品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014808A (ja) * 2017-07-06 2019-01-31 旭化成株式会社 ポリアミド組成物および成形品
JP7107646B2 (ja) 2017-07-06 2022-07-27 旭化成株式会社 ポリアミド組成物および成形品
WO2021187616A1 (ja) * 2020-03-19 2021-09-23 宇部興産株式会社 ポリアミド樹脂組成物
CN115315485A (zh) * 2020-03-19 2022-11-08 Ube株式会社 聚酰胺树脂组合物
CN115315485B (zh) * 2020-03-19 2024-09-17 Ube株式会社 聚酰胺树脂组合物

Also Published As

Publication number Publication date
JPWO2016068100A1 (ja) 2017-08-10
JP6787133B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6996606B2 (ja) ポリアミド組成物及びそれからなる成形品
US11254082B2 (en) Multi-layer tube
JP7131470B2 (ja) ポリアミド樹脂組成物、並びにそれを用いた回転成形用ポリアミド樹脂組成物及び回転成形品
US11781012B2 (en) Use of a semi-aromatic polyamide in a mixture of aliphatic polyamide comprising circular-section glass fibres to limit warping
WO2016002682A1 (ja) ポリアミド樹脂組成物及びそれからなる成形品
JP6202255B2 (ja) 積層チューブ
JP6455075B2 (ja) 積層チューブ
JP6787133B2 (ja) ポリアミド組成物およびそれからなる成形品
JP2014240149A (ja) 積層チューブ
JP6202253B2 (ja) 導電性積層チューブ
JP6131695B2 (ja) ポリアミド樹脂および無機充填剤を含む組成物及びそれを用いて製造される成形品
JP6852676B2 (ja) ポリアミド樹脂組成物
JP2018154825A (ja) ポリアミド樹脂組成物、フィルム及びフィルム積層体
JP2014240148A (ja) 導電性積層チューブ
JP6791236B2 (ja) 積層チューブ
JP6202254B2 (ja) 導電性積層チューブ
JP5724541B2 (ja) 積層チューブ
CN113614150A (zh) 共聚酰胺用于制造在温度影响下具有稳定刚度的组合物的用途
JP2022055023A (ja) ポリアミド樹脂組成物及びこれを含む成形品
JP6907843B2 (ja) 導電性ポリアミド樹脂組成物及びそれを用いた成形品
WO2020036116A1 (ja) 車両天井材用ポリアミド樹脂組成物、車両天井材用フィルム及び車両天井材用多層フィルム
JP2022046800A (ja) ポリアミド樹脂組成物
JP6728976B2 (ja) 低線膨張性ポリアミド樹脂組成物及びそれからなるポリアミド樹脂成形体
JP2014240138A (ja) 積層チューブ
CN113631633A (zh) 共聚酰胺用于制造在湿度影响下具有稳定刚度的组合物的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854302

Country of ref document: EP

Kind code of ref document: A1