WO2016063503A1 - 低反射コーティング付きガラス板及びそれを用いた合わせガラス - Google Patents

低反射コーティング付きガラス板及びそれを用いた合わせガラス Download PDF

Info

Publication number
WO2016063503A1
WO2016063503A1 PCT/JP2015/005215 JP2015005215W WO2016063503A1 WO 2016063503 A1 WO2016063503 A1 WO 2016063503A1 JP 2015005215 W JP2015005215 W JP 2015005215W WO 2016063503 A1 WO2016063503 A1 WO 2016063503A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
glass plate
reflection coating
low reflection
Prior art date
Application number
PCT/JP2015/005215
Other languages
English (en)
French (fr)
Inventor
稲岡 大介
哲男 皆合
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2016555077A priority Critical patent/JP6611192B2/ja
Publication of WO2016063503A1 publication Critical patent/WO2016063503A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to a glass plate with a low reflection coating and a laminated glass using the same.
  • a thin film is formed by dry coating such as vapor deposition or sputtering on an inorganic oxide such as titanium oxide or silicon oxide on a substrate such as glass or plastic, and an optical multilayer film is formed by optical interference such as antireflection coating.
  • the optical design is a two-layer structure in which a high refractive index layer / low refractive index layer (optical thickness is ⁇ / 4- ⁇ / 4) are sequentially laminated from the surface of the substrate, and a low refractive index layer.
  • a four-layer structure in which a high refractive index layer and a high refractive index layer are alternately repeated is known (for example, Patent Document 1).
  • the antireflection coating disposed on the transparent substrate has a function of reducing light reflection, that is, a function of increasing light transmission.
  • a substrate coated in this way tends to have a large ratio of transmitted light to reflected light, which improves the visibility of the object behind it.
  • Such anti-reflective (AR) coatings are widely used in applications such as electronic equipment, lighting, appliances, architecture and displays.
  • Patent Document 2 A laminated body in which layers are stacked has also been proposed (Patent Document 2).
  • the conventional glass plate with a low reflection coating has a large change depending on the angle of the reflection color tone, which is particularly problematic when used in an exhibition room or a showcase of a museum or an art museum.
  • An object of the present invention is to provide a glass plate with a low reflection coating having a high visible light transmittance, a low visible light reflectance, and a small angle dependency of the reflection color tone.
  • the glass plate with a low reflection coating of the present invention comprises a glass plate and a low reflection coating, Low reflection coating A medium refractive index layer composed of a p-layer disposed on a glass plate; A high refractive index layer disposed on the middle refractive index layer; Having a low refractive index layer disposed on the high refractive index layer, Regarding the refractive index at a wavelength of 550 nm, the following formulas (I), (II), (III) and (IV) n s ⁇ n m (p) (I) n m (1) ⁇ n h (II) n h > n l (III) n m (p) ⁇ n s ⁇ 0.40 (IV) (In the formula, n s represents a refractive index of the glass plate, n m (p) represents the refractive index of the medium refractive index layer closest to the glass plate (M p layer), n m (1) high refractive The refractive index of
  • the refractive index of each medium refractive index layer is larger than the refractive index of the medium refractive index layer on the side close to the glass plate among the adjacent medium refractive index layers,
  • the difference in refractive index between the layers from the middle refractive index layer to the high refractive index layer closest to the glass plate is 0.45 or less.
  • the laminated glass with a low-reflection coating of the present invention includes two glass plates with the low-reflection coating of the present invention, and two glass plates with a low-reflection coating are disposed so that the low-reflection coating is exposed to the outside. Is.
  • the glass plate with a low reflection coating of the present invention has a high visible light transmittance, a low visible light reflectance, and can suppress a change in reflection color tone even when the incident angle changes.
  • the laminated glass with a low-reflection coating of the present invention including a glass plate with a low-reflection coating has a high visible light transmittance, a low visible light reflectance, and can suppress a change in reflected color even when the incident angle changes. it can.
  • the glass plate with a low reflection coating of the present invention comprises a glass plate and a low reflection coating.
  • the low reflection coating 3 includes, for example, a medium refractive index layer 4 composed of two layers disposed on a glass plate 2 and a high refractive index disposed on the medium refractive index layer 4. It has a layer 5 and a low refractive index layer 6 disposed on the high refractive index layer 5.
  • the glass plate 1 with a low reflection coating of the present invention has the following formulas (I), (II), (III) with respect to the refractive index at a wavelength of 550 nm (hereinafter, the refractive index in the present invention represents the refractive index at a wavelength of 550 nm). ) And (IV).
  • n s ⁇ n m (p) (I) n m (1) ⁇ n h (II) n h > n l (III) n m (p) ⁇ n s ⁇ 0.40 (IV)
  • n s represents a refractive index of the glass plate
  • n m (p) represents the refractive index of the medium refractive index layer closest to the glass plate (M p layer)
  • M 1 layer the refractive index of the middle refractive index layer closest to the refractive index layer
  • n h represents the refractive index of the high refractive index layer
  • n l represents the refractive index of the low refractive index layer
  • p is 2 or more. Is a natural number.
  • the refractive index n s of the glass plate 2 used in the present invention is not particularly limited as long as the above formulas (I) and (IV) are satisfied, but is, for example, 1.35 to 1.65, preferably 1.40 to 1 .60, more preferably 1.45 to 1.55.
  • the refractive index n h of the high refractive index layer 5 used in the present invention is not particularly limited as long as the above formulas (II) and (III) are satisfied, but is preferably 2.0 or more, more preferably 2.20 or more, and 2. 30 or more is more preferable.
  • the refractive index n h of the high refractive index layer 5 is not particularly limited, but is preferably 2.80 or less in order to suppress the angle dependency of the reflected color tone.
  • the refractive index can be adjusted, for example, by changing the component ratio of materials described later.
  • the refractive index n l of the low refractive index layer 6 used in the present invention is not particularly limited as long as the above formula (III) is satisfied, but is preferably 1.40 to 1.60, more preferably 1.42 to 1.55, More preferably, 1.44 to 1.50.
  • the refractive index can be adjusted, for example, by changing the component ratio of materials described later.
  • the refractive index of the medium refractive index layer 4 used in the present invention is not particularly limited as long as the above formulas (I), (II) and (IV) are satisfied, but the medium refractive index layer (M 1 layer) closest to the high refractive index layer.
  • refractive index n m (1 in) is preferably from 1.80 to 2.20, more preferably 1.80 to 2.15.
  • Refractive index of the medium refractive index layer adjacent to the M 1 layer (M 2 layers) n m (2) is preferably from 1.60 to 1.90, more preferably 1.60 to 1.85.
  • the refractive index can be adjusted, for example, by changing the component ratio of materials described later.
  • n m (p) -n s is preferably 0.35 or less, more preferably 0.30 or less.
  • the number of layers (p) of the medium refractive index layer is particularly limited as long as it is a natural number of 2 or more from the viewpoint that high visible light transmittance and low visible light reflectance can be obtained and the angle dependency of the reflection color tone can be reduced. However, it is preferably 2 to 10, more preferably 2 to 5, and still more preferably 2 to 3.
  • the refractive index of each medium refractive index layer is larger than the refractive index of the medium refractive index layer on the side close to the glass plate among the adjacent medium refractive index layers.
  • the refractive index of each medium refractive index layer is nm (3) ⁇ nm (2) ⁇ nm (1 ). ) Is satisfied.
  • the refractive index of each medium refractive index layer is nm (4) ⁇ nm (3) ⁇ nm (2) ⁇ n Satisfies the relationship of m (1) . That is, the refractive index of the middle refractive index layer with the middle refractive index layer closest to the high refractive index layer as the first and the kth (k is an arbitrary natural number from p to 2) is mn (k) ⁇ nm ( Satisfy the relationship of k-1) .
  • the refractive index difference between the layers from the medium refractive index layer closest to the glass plate to the high refractive index layer (H layer) is 0.45 or less, both More preferably, it is 0.43 or less.
  • Each interlayer means, for example, when there are two middle refractive index layers, the M 2 layer and the M 1 layer, and the M 1 layer and the H layer.
  • the refractive index difference between the layers from the glass plate to the high refractive index layer is preferably 0.14 or more, preferably 0.15 or more. It is more preferable that
  • the glass plate 2 used in the present invention may be a mass-produced general-purpose composition glass plate, typically a glass plate (float glass) made of soda lime silica glass manufactured by the float process, etc. Although it is not particularly limited as long as it has the effect of the invention, it is possible to increase the visible light transmittance when a low-reflection coating is laminated. From the point of mass% converted to Fe 2 O 3 , the content of iron oxide is 0.00.
  • the glass plate which is 020% or less is preferable.
  • a commercially available product may be used as the glass plate having an iron oxide content of 0.020% by mass or less. Examples of commercially available products include Optiwhite (refractive index: 1.52, manufactured by Nippon Sheet Glass).
  • visible light means light in the wavelength range of 380 to 780 nm.
  • the thickness of the glass plate 2 is not particularly limited and can be appropriately changed according to the required size, durability, etc., but is preferably about 3.0 to 12 mm.
  • the thickness of the low refractive index layer 6 varies depending on the type of material constituting the low refractive index layer, the layer configuration, etc., and is not particularly limited, but is preferably 70 to 150 nm, more preferably 75 to 130 nm, and 78 to 110 nm. More preferred is 80 to 100 nm.
  • the “thickness” of each layer means the geometric layer thickness.
  • the geometric layer thickness means a value measured by TEM (transmission electron microscope) observation of the layer cross section.
  • the material of the low refractive index layer 6 is not particularly limited, SiO 2, aluminum-doped SiO 2 (SiO 2: Al) and the like. These may be used alone or in combination of two or more.
  • the low refractive index layer 6 preferably contains SiO 2 as a main component, and more preferably one or more selected from the group consisting of SiO 2 and aluminum-doped SiO 2 .
  • the aluminum-doped SiO 2 the aluminum content is preferably 15% by mass or less in terms of aluminum converted to Al 2 O 3 .
  • the low refractive index layer 6 includes SiO 2 as a main component, components other than SiO 2 are not particularly limited.
  • the “main component” means a component that is contained most by weight.
  • the thickness of the high refractive index layer 5 varies depending on the type of material constituting the high refractive index layer, the structure of the layer, etc., and is not particularly limited, but is preferably 1 to 50 nm, more preferably 2 to 40 nm, and more preferably 5 to 35 nm. Further preferred is 10 to 30 nm.
  • the material of the high refractive index layer 5 is not particularly limited, and examples thereof include oxides such as indium, zirconium, cerium, titanium, tantalum, niobium, and tin.
  • the high refractive index layer 5 preferably contains titanium oxide or niobium oxide as a main component, and more preferably consists of titanium oxide or niobium oxide.
  • components other than titanium oxide or niobium oxide are not particularly limited.
  • the total thickness of the medium refractive index layer can be appropriately changed according to the type of material constituting the layer, the configuration of the layer (number of p), etc., and is not particularly limited, but is preferably 70 to 250 nm, more preferably 90 to 200 nm. 110 to 160 nm is more preferable.
  • the thickness of the M 1 layer 7 is not particularly limited, but is preferably 50 to 150 nm, more preferably 60 to 120 nm, and even more preferably 70 to 100 nm.
  • the thickness of the M 2 layer is not particularly limited, but is preferably 20 to 100 nm, more preferably 30 to 80 nm, and further preferably 40 to 60 nm.
  • the material of the M 1 layer is not particularly limited, but is an oxide of zinc and tin alloy (ZnSnOx); zinc oxide (zinc oxide (ZnO), or zinc oxide doped with tin, aluminum, silicon, etc. (ZnO) : Sn, ZnO: Al, ZnO: Si, etc.); Tin oxide (tin oxide (SnO 2 ), or tin oxide doped with zinc, aluminum, silicon, etc. (SnO 2 : Zn, SnO 2 : Al, SnO) 2 : Si and the like)); titanium oxide doped with silicon and the like (TiO 2 : Si and the like), silicon nitride (SiNx) and the like.
  • the M 1 layer preferably contains one or more selected from the group consisting of the aforementioned oxides of zinc and tin, zinc oxide, tin oxide, and silicon nitride as the main component, Zinc and tin alloy oxide (ZnSnOx); zinc oxide (ZnO); tin oxide or aluminum doped zinc oxide (ZnO: Sn, ZnO: Al); tin oxide (SnO 2 ); zinc doped More preferably, it is made of either tin oxide (SnO 2 : Zn); silicon-doped titanium oxide (TiO 2 : Si) or silicon nitride (SiNx).
  • the M 1 layer contains, as a main component, one or more selected from the group consisting of the aforementioned zinc oxide, tin oxide, titanium oxide doped with silicon, etc., and silicon nitride, other than the above components
  • these components are not particularly limited as long as the effects of the present invention are not impaired.
  • “consisting essentially of a component” means other than that which does not affect the characteristics of the product of the present invention (a glass plate with a low reflection coating and a laminated glass using the same).
  • the content of the other atoms and impurities is preferably less than 1.0% by mass, and more preferably 0.50% by mass or less.
  • the material of the M 2 layer is not particularly limited, but is a mixed oxide of titanium and silicon (TiSiOx), a mixed oxide of zinc and silicon (ZnSiOx), a mixed oxide of tin and silicon (SnSiOx), zinc and aluminum.
  • Examples thereof include an oxide of an alloy (ZnAlOx), an oxide of an alloy of tin and aluminum (SnAlOx), and an oxynitride of silicon (SiOxNy). These may be used alone or in combination of two or more.
  • the M 2 layer is preferably one containing at least one selected from the group consisting of the aforementioned mixed oxides and alloy oxides as a main component, and is substantially a mixed oxide of titanium and silicon (TiSiOx), zinc.
  • a mixed oxide of Zn and silicon ZnSiOx
  • a mixed oxide of tin and silicon SnSiOx
  • an oxynitride of silicon SiOxNy
  • Components other than the above components of the M 2 layer are not particularly limited as long as the effects of the present invention are not impaired.
  • FIG. 2 shows a glass plate with a low reflection coating having three medium refractive index layers.
  • Refractive index layer adjacent to M 2 layer 8 refractive index n m (3) of (M 3 layer 9) is preferably from 1.50 to 1.70, more preferably 1.52 to 1.68.
  • M 3 layer glass plate, M 1 layer, M 2 layer, high refractive index layer, low refractive index layer, and conditions between each layer, the same ones as in the embodiment of FIG. 1 can be used.
  • the thickness of the M 3 layer can be appropriately changed according to the type of material constituting the layer, the configuration of the layer (number of p), etc., and is not particularly limited, but is preferably 5 to 60 nm, more preferably 10 to 50 nm, More preferably, it is 15 to 40 nm.
  • the middle refractive index layer is three layers, it is not particularly limited, but since the fluctuation due to the angle of the reflection color tone can be suppressed, the refractive index difference between each layer from the glass plate to the high refractive index layer is 0.09 or more. It is preferable that it is 0.10 or more, and it is more preferable that it is 0.10 or more.
  • the material of the M 3 layer is not particularly limited, but aluminum oxide (aluminum oxide (Al 2 O 3 ); or aluminum oxide doped with zinc, tin, silicon, or the like (Al 2 O 3 : Zn, Al 2 O) 3 : Sn, Al 2 O 3 : Si, etc.); silicon-rich mixed oxide (titanium, zinc, tin, etc. and silicon mixed oxide (SiTiOx, SiZnOx, SiSnOx, etc.)); silicon oxynitride (SiOxNy) and the like. These may be used alone or in combination of two or more.
  • aluminum oxide aluminum oxide (Al 2 O 3 ); or aluminum oxide doped with zinc, tin, silicon, or the like (Al 2 O 3 : Zn, Al 2 O) 3 : Sn, Al 2 O 3 : Si, etc.); silicon-rich mixed oxide (titanium, zinc, tin, etc. and silicon mixed oxide (SiTiOx
  • the M 3 layer is preferably one containing at least one selected from the group consisting of the above-mentioned mixed oxides and alloy oxides as a main component, and is substantially aluminum oxide (Al 2 O 3 ); zinc or tin. More preferably, it is made of any one of silicon-doped aluminum oxide (Al 2 O 3 : Zn, Al 2 O 3 : Sn, Al 2 O 3 : Si); silicon oxynitride (SiOxNy). Components other than the above components of the M 3 layer are not particularly limited as long as the effects of the present invention are not impaired.
  • the glass plate with a low reflection coating according to the present invention only needs to be laminated on the glass plate, and the low reflection coating may be formed on one side or both sides.
  • the method for producing a glass plate with a low reflection coating according to the present invention is not particularly limited, and is formed on a glass plate as a base material by a physical vapor deposition method such as a well-known sputtering method or a chemical vapor deposition method such as a vapor deposition (CVD) method. It can be produced by forming a low reflection coating.
  • a physical vapor deposition method such as a well-known sputtering method or a chemical vapor deposition method such as a vapor deposition (CVD) method. It can be produced by forming a low reflection coating.
  • the glass plate with a low reflection coating of the present invention preferably has a visible light reflectance of 5.0% or less as defined in JIS R 3106: 1998 at both incident angles of 5 ° and 30 °.
  • the method for measuring the visible light reflectance is as described in Examples described later.
  • the angle indicates an angle when the vertical incident light on the low reflection coating surface side is 0 °.
  • the glass plate with a low reflection coating of the present invention preferably has a visible light transmittance of 93.5% or more as defined in JIS R 3106: 1998 at both incident angles of 5 ° and 30 °.
  • the method for measuring the visible light transmittance is as described in Examples described later.
  • the a * of the reflection color tone (Rcolor) is usually in the range of ⁇ 3.0 to 0.3 at both incident angles of 5 ° and 30 °, preferably ⁇ 2.
  • the range is from 0 to 0.2, and more preferably from -1.0 to 0.
  • the b * of the reflection color tone (Rcolor) is usually in the range of ⁇ 3.0 to 3.0 at both incident angles of 5 ° and 30 °, preferably ⁇
  • the range is from 2.0 to 2.0, and more preferably from -1.0 to 1.0.
  • a * and b * are chromaticities in the CIE1976 color system (L * a * b * color space; hereinafter referred to as “L * a * b * color system”) measured with a spectrocolorimeter.
  • a * and b * mean the value of the coating surface reflection when the glass plate with a low reflection coating is formed on one side.
  • the difference ( ⁇ a *) between the reflection color tone a * at an incident angle of 5 ° and the reflection color tone a * at an incident angle of 30 ° is preferably ⁇ 0.5 to 0.8. More preferably, it is in the range of -0.3 to 0.5.
  • the difference ( ⁇ b *) between the reflection color tone b * at an incident angle of 5 ° and the reflection color tone b * at an incident angle of 30 ° is preferably in the range of ⁇ 0.5 to 1.0. More preferably, it is in the range of -0.1 to 0.6.
  • a laminated glass with a low reflection coating as shown in FIG.
  • the laminated glass 11 shown in FIG. 3 is a laminated glass in which both film surfaces are used externally (embodiment in which the low reflection coating is disposed on the outside).
  • the laminated glass of the present invention includes two glass plates with the low reflection coating of the present invention described above. In the laminated glass of the present invention, two glass plates with a low reflection coating are disposed so that the low reflection coating 3 is exposed to the outside.
  • the laminated glass of the present invention has an intermediate film 10.
  • the interlayer film used in the laminated glass of the present invention is not particularly limited, and a known film can be used.
  • the intermediate film containing a polyvinyl acetal resin, a plasticizer, etc. is mentioned, for example. It does not specifically limit as a polyvinyl acetal resin, For example, a polyvinyl butyral (PVB) resin etc. are mentioned.
  • the plasticizer is not particularly limited.
  • triethylene glycol di-2-ethylhexanoate (3GO) triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol di-2-ethyl Examples include butyrate (4GH) and tetraethylene glycol-di-2-ethylhexanoate (4GO).
  • the laminated glass of the present invention may be manufactured by laminating the above-described glass plate with a low reflection coating (single plate) of the present invention by a known method, and a low reflection coating is formed on both surfaces of a commercially available laminated glass. You may manufacture by doing.
  • the low reflection coating in the laminated glass may be formed on one side of the glass plate or may be formed on both sides.
  • the laminated glass with a low reflection coating according to the present invention is JIS R at both incident angles of 5 ° and 30 ° when the low reflection coating as shown in FIG. 3106:
  • the visible light reflectance specified in 1998 is preferably 2.0% or less, and more preferably 1.4% or less.
  • the method for measuring the visible light reflectance is as described in Examples described later.
  • the laminated glass with a low reflection coating of the present invention has a visible light transmittance specified in JIS R 3106: 1998 at both incident angles of 5 ° and 30 ° when a glass plate having a thickness of 5.0 mm is used as a substrate. What is 95.5% or more is preferable.
  • the method for measuring the visible light transmittance is as described in Examples described later.
  • the reflection color tone (Rcolor) a * is usually in the range of ⁇ 10 to 10, preferably ⁇ 5.0 to 5.
  • the range is 0, and more preferably in the range of ⁇ 5.0 to 0.
  • the b * of the reflected color tone (Rcolor) is usually in the range of ⁇ 10 to 10, preferably ⁇ 5.0 to 5.0 at both incident angles of 5 ° and 30 °.
  • the range is more preferably 0 to 5.0.
  • the color difference ( ⁇ a *) between the reflection color tone a * at an incident angle of 5 ° and the reflection color tone a * at an incident angle of 30 ° is usually in the range of 0 to 10, preferably 0 to 6. .5.
  • the color difference ( ⁇ b *) between the reflection color tone b * at an incident angle of 5 ° and the reflection color tone b * at an incident angle of 30 ° is usually in the range of ⁇ 5.0 to 5.0, Preferably it is in the range of -3.0 to 3.0.
  • the present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
  • glass plate of the base material highly transmissive glass (trade name: Optiwhite, iron oxide content: 0.020% by mass or less, refractive index: 1.52, 5.0 mm Thick, manufactured by Nippon Sheet Glass).
  • Example 1 Two layers of a medium refractive index layer, a high refractive index layer, and a low refractive index layer were formed on a high transmission glass plate having a thickness of 5 mm by a reactive sputtering method. Specifically, a glass plate with a low reflection coating was produced as follows.
  • a highly transmissive glass plate is set in an in-line magnetron sputtering apparatus (hereinafter simply referred to as “sputtering apparatus”) having a plurality of chambers through a holder.
  • sputtering apparatus an in-line magnetron sputtering apparatus
  • the pressure in the chamber was reduced to 10 ⁇ 6 Torr.
  • a rotary pump and a cryopump are used for decompression, a turbo molecular pump or an oil diffusion pump may be used instead of the cryopump.
  • a Ti—Si alloy target having a Ti: Si atomic ratio of 1: 2 was used, O 2 gas was introduced into the chamber, and the gas pressure was 5 mTorr (5 ⁇ 10 ⁇ 3 Torr) by reactive sputtering. It was formed TiSiOx layer (M 2 layers).
  • the M 1 layer is formed.
  • H layer a high refractive index layer
  • a low refractive index layer (L layer) is formed.
  • a Si-Al alloy target containing 10% by mass of Al in a further chamber of the sputtering apparatus a glass plate with a high refractive index layer formed was introduced with O 2 gas into the chamber and a gas pressure of 5 mTorr. Then, a SiO 2 : Al layer was formed by reactive sputtering.
  • Examples 2 to 8 are examples in which the layer configuration is the same as that of Example 1 and the thickness of each layer is changed.
  • Examples 9 and 10 are reactive co-reactions using a Zn metal target and the Si—Al alloy target used in the L layer of Example 1 instead of the Ti—Si alloy target as the middle refractive index layer M 2 layer.
  • ZnSiOx sputtering layer (M 2 layer) was formed, the configuration of the other layers is an example of the same structure as in example 1.
  • Co-sputtering is a method in which two or more targets are placed in one chamber and different power is applied to each target to perform sputtering.
  • the ZnSiOx layer of Example 9 contains 70 atom% of ZnO, and the ZnSiOx layer of Example 10 contains 80 atom% of ZnO.
  • the atom% of ZnO refers to the 100 fraction of the atomic ratio of zinc atoms to metal atoms.
  • Examples 9 and 10 are examples in which the refractive index of the M 2 layer of Examples 1 to 8 was greatly changed.
  • the middle refractive index layer is made into three layers, the M 3 layer is formed by reactive sputtering using an Al metal target, and the other layers have the same structure as in Example 1, and the M 2 layer has the same structure.
  • Table 1 shows the constitution and thickness of each layer of the obtained glass plate with low reflection coating of Examples 2 to 11. In forming each layer in Examples 1 to 11, sputtering was performed in a gas atmosphere necessary for the reaction, but Ar gas may be mixed as necessary.
  • Comparative Examples 1 to 6 In Comparative Example 1, a highly transmissive glass was used as it was as a glass plate having no low reflection coating. Comparative Example 2 is an example in which the thickness of each layer is changed with the same configuration as in Example 1 except that the M 2 layer is not provided. Comparative Example 3, instead of providing the M 2 layer, as M 1 layer, instead of the Zn-Sn alloy target, a reactive sputtering using a Zn-Al alloy target containing 12 atom% of Al to form a M 1 layer, The other layer configurations are the same as those in the first embodiment, and the thickness of each layer is changed.
  • Comparative Example 4 is as M 2 layer, in place of the Ti-Si alloy target, Zn-Al alloy M 2 layers were formed target in a reactive sputtering using a other layer configuration similar to that of Example 1 In this configuration, the thickness of each layer is changed.
  • Comparative Example 5 instead of providing the M 2 layer, as M 1 layer, instead of the Zn-Sn alloy target, to form a M 1 layer by reactive sputtering using Ti-Si alloy target, the configuration of the other layers This is an example in which the thickness of each layer is changed with the same layer configuration as in Example 1.
  • Comparative Example 6 is not provided with the M 2 layer, as M 1 layer, Zn-Sn alloy in place of the target using the Si metal target, reactive with a mixed gas of O 2 and N 2 in place of the O 2 gas
  • the M 1 layer is formed by sputtering, and the other layers have the same layer structure as that of Example 1, and the thickness of each layer is changed.
  • Comparative Example 6 has a coating equivalent to Example 1 of JP-T-2013-542457. Table 1 shows the structure and thickness of each layer of the glass plates of Comparative Examples 1 to 6.
  • T 0 °
  • 30 ° the low reflection coating for the visible light transmittance and the visible light reflectance. It means that 30 ° incident light on the surface side (angle when the vertical is 0 °) was measured, and “R: 5 °” means 5 ° incident light (perpendicular to the low reflection coating surface side for visible light reflectance). This means that the angle when measured at 0 ° was measured.
  • a * and b * represent values measured by a spectrocolorimeter
  • ⁇ c * represents a value represented by the following formula (V)
  • ⁇ a * and ⁇ b * represent 5 ° incident light.
  • ⁇ c * ⁇ ( ⁇ a *) 2 + ( ⁇ b *) 2 ⁇ 1/2 (V)
  • the glass plate with a low-reflection coating of the example had a visible light reflectance of 5.0% or less and a visible light transmittance of 93.9% or more at both incident angles of 5 ° and 30 °.
  • the glass plate with a low reflection coating of the example has ⁇ 1.0 ⁇ a * when the reflection color tone (coating surface reflection) expressed in the L * a * b * color system is both 5 ° and 30 °. ⁇ 0.1 and ⁇ 0.3 ⁇ b * ⁇ 0.4.
  • the color difference in reflection color tone between 5 ° and 30 ° was ⁇ 0.1 ⁇ ⁇ a * ⁇ 0.8 and 0 ⁇ ⁇ b * ⁇ 0.5.
  • the glass plate with a low reflection coating of the example had a transmission color tone (reflection on the coating surface) of ⁇ 0.4 ⁇ a * ⁇ ⁇ 0.3 and 0 ⁇ b * ⁇ 0.1.
  • Comparative Example 1 having only a glass plate having no low reflection coating also had a visible light transmittance of 91.1% and a high visible light reflectance of 8.0%.
  • Comparative Examples 2 and 3 having only one middle refractive index layer ⁇ a * was larger than that of the Example, and the color difference of reflection color tone depending on the angle was large with respect to a *.
  • the difference refractive index n m and (2) of the refractive index layers (M 2 layer) in the most close to the refractive index n s and the glass plate of the glass plate is 0.41 Comparative In Example 4, ⁇ a * was larger than that of the example, and the color difference of reflection color tone depending on the angle was large with respect to a *. In Comparative Example 5 having only one medium refractive index layer, the visible light reflectance was as high as 5.5% compared to the Example. In Comparative Example 6 having only one medium refractive index layer, the color difference of the reflection color tone depending on the angle was larger with respect to a * and b * than in the example.
  • Laminated glasses (Examples 1B to 11B and Comparative Examples 1B to 6B) including two glass plates (single plates) of Examples 1 to 11 and Comparative Examples 1 to 6 were produced. Specifically, a laminated glass was produced as follows.
  • a * and b * represent values measured with a spectrocolorimeter
  • ⁇ c * represents a value represented by the following formula (V)
  • ⁇ a * and ⁇ b * are 5 °. It represents the color difference in reflection color tone between incident light and 30 ° incident light.
  • ⁇ c * ⁇ ( ⁇ a *) 2 + ( ⁇ b *) 2 ⁇ 1/2 (V)
  • the laminated glass of the example had a visible light reflectance of 1.7% or less and a visible light transmittance of 95.7% or more at both incident angles of 5 ° and 30 °.
  • the laminated glass of the example has ⁇ 9.2 ⁇ a * ⁇ 2.0 and 1.9 when the reflection color tone expressed in the L * a * b * color system is 5 ° and 30 °. ⁇ b * ⁇ 5.6.
  • the color difference in reflection color tone between 5 ° and 30 ° was 1.1 ⁇ ⁇ a * ⁇ 8.1 and ⁇ 2.9 ⁇ ⁇ b * ⁇ 2.9.
  • the laminated glass of Comparative Example 1B had a visible light reflectance of 7.6% or more.
  • the comparative example 5B had a visible light reflectance of 2.6% or more.
  • Comparative Example 6B the change in the reflection color tone was large, ⁇ c * was 11.4, and the angle dependency of the reflection color tone was high.
  • the glass plate with a low reflection coating of the present invention and the laminated glass using the same have high visible light transmittance, low visible light reflectance, and small angle dependency of reflected color tone. .
  • the glass plate with a low reflection coating of the present invention and the laminated glass using the same have high visible light transmittance, low visible light reflectance, and small angle dependency of the reflection color tone, Useful when used in showcases.

Abstract

 本発明は、低反射コーティングが、ガラス板上のp層の中屈折率層と中屈折率層上の高屈折率層(H層)とH層上の低屈折率層(L層)を有し、波長550nmの屈折率に関し、ns<nm(p)、nm(1)<nh、nl<nh及びnm(p)-ns≦0.40を満たし、各中屈折率層の屈折率は、隣接する中屈折率層のうち、ガラス板に近い側の中屈折率層の屈折率より大きく、ガラス板に最も近い中屈折率層(Mp層)からH層までの各層間の屈折率差が全て0.45以下の低反射コーティング付きガラス板に関し、nsはガラス板の屈折率、nm(p)はMp層の屈折率、nm(1)はH層に最も近い中屈折率層の屈折率、nhはH層の屈折率、nlはL層の屈折率、pは2以上の自然数である。

Description

低反射コーティング付きガラス板及びそれを用いた合わせガラス
 本発明は、低反射コーティング付きガラス板及びそれを用いた合わせガラスに関する。
 従来、ガラスやプラスチック等の基材に、酸化チタンや酸化ケイ素等の無機酸化物を蒸着法あるいはスパッタ法等のドライコーティングによって薄膜を形成して反射防止コーティング等の光干渉による光学多層膜を形成する方法が知られており、その光学設計は基材表面から順次高屈折率層/低屈折率層(光学膜厚がλ/4-λ/4)を積層した2層構成、低屈折率層と高屈折率層とが交互に繰り返した4層構成等が知られている(例えば、特許文献1)。透明基材上に配置した反射防止コーティングは、光の反射を減らす機能、すなわち光の透過を増大させる機能を持つ。従って、このようにコーティングされた基材は、透過光と反射光との比が大きくなりやすく、これはその背後にある対象物の可視性を向上させる。このような反射防止(AR)コーティングは、電子機器、照明、電化製品、建築及びディスプレイ等の用途に幅広く使用されている。
 このような反射防止コーティングを有する基材に、さらに物理的強度を付与するために、基材上にハードコート層を積層し、該ハードコート層の上に高屈折率層と低屈折率層とを積層した積層体も提案されている(特許文献2)。
 また、反射防止コーティングを有する基材において、基材のガラスとして、強化ガラス又は倍強化ガラスが使用される場合には、製造時の熱処理によって品質が変化するため、その品質変化の防止を目的として、基材のガラスに反射防止コーティング処理をした後、ガラスと反射防止コーティングとを同時に熱処理する方法(特許文献3)、当該方法によって得られる反射防止コーティングを含む被覆物品が提案されている(特許文献4)。
特開平08-337441号公報 特開2001-059902号公報 特表2013-544741号公報 特表2013-542457号公報
 しかしながら、従来の低反射コーティング付きガラス板では、反射色調の角度による変化が大きいため、博物館、美術館等の展示室又はショーケースに使用する場合に特に問題となっていた。
 本発明は、可視光透過率が高く、可視光反射率が低く、かつ反射色調の角度依存性が小さい低反射コーティング付きガラス板を提供することを目的とする。
 本発明の低反射コーティング付きガラス板は、ガラス板と低反射コーティングとを備え、
 低反射コーティングが、
 ガラス板上に配置されたp層からなる中屈折率層と、
 該中屈折率層上に配置された高屈折率層と、
 該高屈折率層上に配置された低屈折率層とを有し、
波長550nmにおける屈折率に関して、下記式(I)、(II)、(III)及び(IV)
 ns<nm(p)        (I)
 nm(1)<nh       (II)
 nh>nl         (III)
 nm(p)-ns≦0.40   (IV)
(上記式中、nsはガラス板の屈折率を表し、nm(p)はガラス板に最も近い中屈折率層(Mp層)の屈折率を表し、nm(1)は高屈折率層に最も近い中屈折率層(M1層)の屈折率を表し、nhは高屈折率層の屈折率を表し、nlは低屈折率層の屈折率を表す。pは2以上の自然数を表す。)
を満たし、
 各中屈折率層の屈折率は、隣接する中屈折率層のうち、ガラス板に近い側の中屈折率層の屈折率より大きく、
 ガラス板に最も近い中屈折率層から高屈折率層までの各層間の屈折率差がいずれも0.45以下である。
 本発明の低反射コーティング付き合わせガラスは、上記本発明の低反射コーティング付きガラス板を2枚含み、低反射コーティングが外部に露出するように2枚の低反射コーティング付きガラス板が配置されているものである。
 本発明の低反射コーティング付きガラス板は、可視光透過率が高く、可視光反射率が低く、かつ入射角が変わっても反射色調の変化を抑えることができる。また、低反射コーティング付きガラス板を含む本発明の低反射コーティング付き合わせガラスは、可視光透過率が高く、可視光反射率が低く、かつ入射角が変わっても反射色調の変化を抑えることができる。
本発明の低反射コーティング付きガラス板の一実施態様を模式的に示す断面図である。 本発明の低反射コーティング付きガラス板の他の一実施態様を模式的に示す断面図である。 本発明の合わせガラスの一実施態様を模式的に示す断面図である。
 本発明の低反射コーティング付きガラス板は、ガラス板と低反射コーティングとを備える。本発明の低反射コーティング付きガラス板の一例として、図1に、中屈折率層を2層(p=2)とした場合の低反射コーティング付きガラス板の構成を示す。図1に示されるように、低反射コーティング3は、例えば、ガラス板2の上に配置された2層からなる中屈折率層4と、中屈折率層4の上に配置された高屈折率層5と、高屈折率層5の上に配置された低屈折率層6を有する。
 本発明の低反射コーティング付きガラス板1は、波長550nmにおける屈折率(以下、本発明における屈折率は、波長550nmにおける屈折率を表す。)に関して、下記式(I)、(II)、(III)及び(IV)を満たす。
 ns<nm(p)        (I)
 nm(1)<nh       (II)
 nh>nl         (III)
 nm(p)-ns≦0.40   (IV)
(上記式中、nsはガラス板の屈折率を表し、nm(p)はガラス板に最も近い中屈折率層(Mp層)の屈折率を表し、nm(1)は高屈折率層に最も近い中屈折率層(M1層)の屈折率を表し、nhは高屈折率層の屈折率を表し、nlは低屈折率層の屈折率を表す。pは2以上の自然数である。)
 本発明に用いるガラス板2の屈折率nsは、上記式(I)及び(IV)を満たす限り特に限定されないが、例えば、1.35~1.65であり、好ましくは1.40~1.60であり、より好ましくは1.45~1.55である。
 本発明に用いる高屈折率層5の屈折率nhは、上記式(II)及び(III)を満たす限り特に限定されないが、2.0以上が好ましく、2.20以上がより好ましく、2.30以上がさらに好ましい。また、高屈折率層5の屈折率nhは、特に限定されないが、反射色調の角度依存性を抑えるために、2.80以下が好ましい。屈折率は、後記する材料の成分比率を変更する等で調整できる。
 本発明に用いる低屈折率層6の屈折率nlは、上記式(III)を満たす限り特に限定されないが、1.40~1.60が好ましく、1.42~1.55がより好ましく、1.44~1.50がさらに好ましい。屈折率は、後記する材料の成分比率を変更する等で調整できる。
 本発明に用いる中屈折率層4の屈折率は、上記式(I)、(II)及び(IV)を満たす限り特に限定されないが、高屈折率層に最も近い中屈折率層(M1層)の屈折率nm(1)は、1.80~2.20が好ましく、1.80~2.15がより好ましい。M1層に隣接する中屈折率層(M2層)の屈折率nm(2)は、1.60~1.90が好ましく、1.60~1.85がより好ましい。屈折率は、後記する材料の成分比率を変更する等で調整できる。
 ガラス板2の屈折率nsとガラス板2に最も近い中屈折率層との屈折率nm(p)の関係は、上記式(IV)を満たす。nm(p)-nsは、0.35以下が好ましく、0.30以下がより好ましい。
 中屈折率層の層数(p)は、高い可視光透過率及び低い可視光反射率が得られ、かつ反射色調の角度依存性を小さくできる点から、2以上の自然数であれば、特に限定されないが、2~10が好ましく、2~5がより好ましく、2~3がさらに好ましい。
 本発明の低反射コーティング付きガラス板おいて、各中屈折率層の屈折率は、隣接する中屈折率層のうち、ガラス板に近い側の中屈折率層の屈折率より大きい。例えば、3層(p=3)の中屈折率層を含む低反射コーティング付きガラス板では、各中屈折率層の屈折率は、nm(3)<nm(2)<nm(1)の関係を満たす。4層(p=4)の中屈折率層含む低反射コーティング付きガラス板では、各中屈折率層の屈折率は、nm(4)<nm(3)<nm(2)<nm(1)の関係を満たす。すなわち、高屈折率層に最も近い中屈折率層を1番目としてk番目(kはp~2までの任意の自然数)の中屈折率層の屈折率は、nm(k)<nm(k-1)の関係を満たす。
 本発明の低反射コーティング付きガラス板において、ガラス板に最も近い中屈折率層から高屈折率層(H層)までの各層間の屈折率差は、いずれも0.45以下であり、いずれも0.43以下であることがより好ましい。各層間とは、例えば、中屈折率層が2層の場合、M2層とM1層間、及びM1層とH層間を意味する。
 また、中屈折率層が2層(p=2)の場合、ガラス板から高屈折率層までの各層間の屈折率差は、いずれも0.14以上であることが好ましく、0.15以上であることがより好ましい。
 本発明に用いるガラス板2としては、量産されている汎用組成のガラス板、典型的にはフロート法により製造されたソーダライムシリカガラスからなるガラス板(フロートガラス)等であってもよく、本発明の効果を有する限り特に限定されないが、低反射コーティングを積層した際に可視光透過率を高くできる点から、Fe23に換算した質量%で、鉄の酸化物の含有率が0.020%以下であるガラス板が好ましい。鉄の酸化物の含有率が0.020質量%以下であるガラス板としては、市販品を使用してもよい。市販品としては、例えば、Optiwhite(屈折率:1.52、日本板硝子製)等が挙げられる。なお、本発明において、可視光は380~780nmの波長域内の光を意味する。
 ガラス板2の厚さは、特に限定されず、必要とされるサイズ、耐久性等に応じて適宜変更できるが、3.0~12mm程度が好ましい。
 低屈折率層6の厚さは、低屈折率層を構成する材料の種類、層の構成等によって異なり、特に限定されないが、70~150nmが好ましく、75~130nmがより好ましく、78~110nmがさらに好ましく、80~100nmが特に好ましい。本発明において、各層の「厚さ」は、幾何学的層厚を意味する。幾何学的層厚は、層断面のTEM(透過電子顕微鏡)観察によって測定した値を意味する。
 低屈折率層6の材料としては、特に限定されないが、SiO2、アルミニウムドープSiO2(SiO2:Al)等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。低屈折率層6としては、主成分としてSiO2を含むものが好ましく、SiO2及びアルミニウムドープSiO2からなる群から選ばれる1種以上であることがより好ましい。アルミニウムドープSiO2においては、アルミニウムの含有量はアルミニウムをAl23に換算して15質量%以下が好ましい。低屈折率層6が主成分としてSiO2を含むものである場合、SiO2以外の成分は、特に限定されない。「主成分」とは、重量比で最も多く含まれた成分を意味する。
 高屈折率層5の厚さは、高屈折率層を構成する材料の種類、層の構成等によって異なり、特に限定されないが、1~50nmが好ましく、2~40nmがより好ましく、5~35nmがさらに好ましく、10~30nmが特に好ましい。
 高屈折率層5の材料としては、特に限定されないが、インジウム、ジルコニウム、セリウム、チタン、タンタル、ニオブ、スズ等の酸化物が挙げられる。高屈折率層5としては、チタン酸化物又はニオブ酸化物を主成分として含むものが好ましく、チタン酸化物又はニオブ酸化物からなることがより好ましい。高屈折率層5が主成分としてチタン酸化物又はニオブ酸化物を含むものである場合、チタン酸化物又はニオブ酸化物以外の成分は、特に限定されない。
 中屈折率層の総厚さは、層を構成する材料の種類、層の構成(pの数)等に応じて適宜変更でき、特に限定されないが、70~250nmが好ましく、90~200nmがより好ましく、110~160nmがさらに好ましい。
 M1層7の厚さは、特に限定されないが、50~150nmが好ましく、60~120nmがより好ましく、70~100nmがさらに好ましい。M2層の厚さは、特に限定されないが、20~100nmが好ましく、30~80nmがより好ましく、40~60nmがさらに好ましい。
 M1層の材料としては、特に限定されないが、亜鉛とスズの合金の酸化物(ZnSnOx);亜鉛の酸化物(酸化亜鉛(ZnO)、又はスズもしくはアルミニウム、シリコン等をドープした酸化亜鉛(ZnO:Sn,ZnO:Al,ZnO:Si等));スズの酸化物(酸化スズ(SnO2)、又は亜鉛もしくはアルミニウム、シリコン等をドープした酸化スズ(SnO2:Zn,SnO2:Al,SnO2:Si等));シリコン等をドープした酸化チタン(TiO2:Si等)又はシリコンの窒化物(SiNx)等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。M1層としては、前述の亜鉛とスズの合金の酸化物、亜鉛の酸化物、スズの酸化物、及びシリコンの窒化物からなる群から選ばれる1種以上を主成分として含むものが好ましく、実質的に、亜鉛とスズの合金の酸化物(ZnSnOx);酸化亜鉛(ZnO);スズもしくはアルミニウムをドープした酸化亜鉛(ZnO:Sn,ZnO:Al);酸化スズ(SnO2);亜鉛をドープした酸化スズ(SnO2:Zn);シリコンドープした酸化チタン(TiO2:Si)又はシリコンの窒化物(SiNx)のいずれかからなることがより好ましい。M1層が主成分として、前述の亜鉛の酸化物、スズの酸化物、シリコン等をドープした酸化チタン、及びシリコンの窒化物からなる群から選ばれる1種以上を含むものである場合、前記成分以外の成分は、本発明の効果を損なわない限り特に限定されない。
 本発明の低反射コーティングにおいて、「実質的にある成分からなる」とは、本発明の製品(低反射コーティング付きガラス板及びこれを用いた合わせガラス)の特性に影響を与えない範囲において、他の原子、不純物を含有してもよいことを意味し、例えば、前記他の原子、不純物の含有量が1.0質量%未満とすることが好ましく、0.50質量%以下とすることがより好ましく、0.10質量%以下とすることがさらに好ましい。
 M2層の材料としては、特に限定されないが、チタンとシリコンの混合酸化物(TiSiOx)、亜鉛とシリコンの混合酸化物(ZnSiOx)、スズとシリコンの混合酸化物(SnSiOx)、亜鉛とアルミニウムの合金の酸化物(ZnAlOx)、スズとアルミニウムの合金の酸化物(SnAlOx)、シリコンの酸窒化物(SiOxNy)等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。M2層としては、前述の混合酸化物及び合金の酸化物からなる群から選ばれる1種以上を主成分として含むものが好ましく、実質的に、チタンとシリコンの混合酸化物(TiSiOx)、亜鉛とシリコンの混合酸化物(ZnSiOx)、スズとシリコンの混合酸化物(SnSiOx)、シリコンの酸窒化物(SiOxNy)、のいずれかからなることがより好ましい。M2層の前記成分以外の成分は、本発明の効果を損なわない限り特に限定されない。
 本発明の他の態様として、中屈折率層が3層である低反射コーティング付きガラス板を図2に示す。M2層8に隣接する中屈折率層(M3層9)の屈折率nm(3)は、1.50~1.70が好ましく、1.52~1.68がより好ましい。M3層以外(ガラス板、M1層、M2層、高屈折率層及び低屈折率層並びに各層間の条件)は、上記図1の実施態様と同様のものを使用できる。
 M3層の厚さは、層を構成する材料の種類、層の構成(pの数)等に応じて適宜変更でき、特に限定されないが、5~60nmが好ましく、10~50nmがより好ましく、15~40nmがさらに好ましい。
 中屈折率層が3層である場合、特に限定されないが、反射色調の角度による変動を抑制できることから、ガラス板から高屈折率層までの各層間の屈折率差は、いずれも0.09以上であることが好ましく、0.10以上であることがより好ましい。
 M3層の材料としては、特に限定されないが、アルミニウムの酸化物(酸化アルミニウム(Al23);又は亜鉛もしくはスズ、シリコン等をドープした酸化アルミニウム(Al23:Zn,Al23:Sn,Al23:Si等));シリコンがリッチな混合酸化物(チタン、亜鉛、スズ等と、シリコンの混合酸化物(SiTiOx,SiZnOx,SiSnOx等));シリコンの酸窒化物(SiOxNy)等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 M3層としては、前述の混合酸化物及び合金の酸化物からなる群から選ばれる1種以上を主成分として含むものが好ましく、実質的に、酸化アルミニウム(Al23);亜鉛もしくはスズ、シリコンをドープした酸化アルミニウム(Al23:Zn,Al23:Sn,Al23:Si);シリコンの酸窒化物(SiOxNy)のいずれかからなることがより好ましい。M3層の前記成分以外の成分は、本発明の効果を損なわない限り特に限定されない。
 発明の低反射コーティング付きガラス板は、上記の低反射コーティングが、ガラス板上に積層されていればよく、低反射コーティングは片面に形成されていてもよく、両面に形成されていてもよい。
 本発明の低反射コーティング付きガラス板の製造方法は、特に限定されず、周知のスパッタリング法等の物理蒸着法、気相成長(CVD)法等の化学蒸着法により、基材のガラス板上に低反射コーティングを形成することによって製造することができる。
 本発明の低反射コーティング付きガラス板は、入射角5°及び30°の両方において、JIS R 3106:1998に規定する可視光反射率が5.0%以下であるものが好ましい。可視光反射率の測定方法は、後記する実施例に記載のとおりである。本発明において、角度は低反射コーティング面側の垂直入射光を0°としたときの角度を示す。
 また、本発明の低反射コーティング付きガラス板は、入射角5°及び30°の両方において、JIS R 3106:1998に規定する可視光透過率が93.5%以上であるものが好ましい。可視光透過率の測定方法は、後記する実施例に記載のとおりである。
 本発明の低反射コーティング付きガラス板は、入射角5°及び30°の両方において、反射色調(Rcolor)のa*が通常-3.0~0.3の範囲であり、好ましくは-2.0~0.2の範囲であり、さらに好ましくは-1.0~0の範囲である。また、本発明の低反射コーティング付きガラス板は、入射角5°及び30°の両方において、反射色調(Rcolor)のb*が通常-3.0~3.0の範囲であり、好ましくは-2.0~2.0の範囲であり、さらに好ましくは-1.0~1.0の範囲である。a*、b*は、分光測色計にて測定したCIE1976表色系(L*a*b*色空間;以下、「L*a*b*表色系」と称する)での色度(L*、a*、b*)を表す値である。a*、b*は、低反射コーティング付きガラス板が片面に形成されている場合、コーティング面反射の値を意味する。
 本発明の低反射コーティング付きガラス板において、入射角5°における反射色調のa*と入射角30°における反射色調のa*の差(Δa*)は、好ましくは-0.5~0.8の範囲であり、より好ましくは-0.3~0.5の範囲である。低反射コーティング付きガラス板において、入射角5°における反射色調のb*と入射角30°における反射色調のb*の差(Δb*)は、好ましくは-0.5~1.0の範囲であり、より好ましくは-0.1~0.6の範囲である。本発明の低反射コーティング付きガラス板において、下記式(V)
 Δc*={(Δa*)2+(Δb*)21/2         (V)
(式中、Δa*及びΔb*は、分光測色計で測定した入射角5°と30°との反射色調の色差を表す。)
で表されるΔc*は、好ましくは0~1.3の範囲であり、より好ましくは0~1.0の範囲である。
 本発明の他の態様としては、例えば、図3に示されるような低反射コーティング付き合わせガラスが挙げられる。図3に示される合わせガラス11は、膜面がどちらも外使い(低反射コーティングが外側に配置される態様)合わせガラスである。本発明の合わせガラスは、上記した本発明の低反射コーティング付きガラス板を2枚含む。本発明の合わせガラスは、低反射コーティング3が外部に露出するように2枚の低反射コーティング付きガラス板が配置されている。本発明の合わせガラスは、中間膜10を有する。
 本発明の合わせガラスに用いる中間膜は、特に限定されず、公知のものを使用することができる。中間膜としては、例えば、ポリビニルアセタール樹脂、可塑剤等を含む中間膜が挙げられる。ポリビニルアセタール樹脂としては、特に限定されず、例えば、ポリビニルブチラール(PVB)樹脂等が挙げられる。可塑剤としては、特に限定されず、例えば、トリエチレングリコールジ2-エチルヘキサノエート(3GO)、トリエチレングリコール-ジ-2-エチルブチレート(3GH)、テトラエチレングリコール-ジ-2-エチルブチレート(4GH)、テトラエチレングリコール-ジ-2-エチルヘキサノエート(4GO)等が挙げられる。
 本発明の合わせガラスは、上記した本発明の低反射コーティング付きガラス板(単板)を公知の方法で積層することで製造してもよく、市販品の合わせガラスの両面に低反射コーティングを形成することで製造してもよい。合わせガラスにおける低反射コーティングは、ガラス板の片面に形成されていてもよく、両面に形成されていてもよい。
 本発明の低反射コーティング付き合わせガラスは、図3に示されるような低反射コーティングが外側に配置される態様(膜面外使い)の場合、入射角5°及び30°の両方において、JIS R 3106:1998に規定する可視光反射率が2.0%以下であるものが好ましく、1.4%以下であるものがより好ましい。可視光反射率の測定方法は、後記する実施例に記載のとおりである。
 本発明の低反射コーティング付き合わせガラスは、5.0mm厚のガラス板を基材に使用した場合、入射角5°及び30°の両方において、JIS R 3106:1998に規定する可視光透過率が95.5%以上であるものが好ましい。可視光透過率の測定方法は、後記する実施例に記載のとおりである。
 本発明の低反射コーティング付き合わせガラスは、入射角5°及び30°の両方において、反射色調(Rcolor)のa*が通常-10~10の範囲であり、好ましくは-5.0~5.0の範囲であり、より好ましくは-5.0~0の範囲である。また、本発明の合わせガラスは、入射角5°及び30°の両方において、反射色調(Rcolor)のb*が通常-10~10の範囲であり、好ましくは-5.0~5.0の範囲であり、より好ましくは0~5.0の範囲である。
 本発明の合わせガラスにおいて、入射角5°における反射色調のa*と入射角30°における反射色調のa*の色差(Δa*)は、通常0~10の範囲であり、好ましくは0~6.5である。本発明の合わせガラスにおいて、入射角5°における反射色調のb*と入射角30°における反射色調のb*の色差(Δb*)は、通常-5.0~5.0の範囲であり、好ましくは-3.0~3.0の範囲である。
 本発明の合わせガラスにおいて、下記式(V)
 Δc*={(Δa*)2+(Δb*)21/2         (V)
(式中、Δa*及びΔb*は、分光測色計で測定した入射角5°と30°との反射色調の色差を表す。)
で表されるΔc*は、通常0~10.0の範囲であり、反射色調の角度依存性が低い点から、好ましくは0~5.0の範囲である。
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
 以下の実施例及び比較例において、基材のガラス板として、高透過ガラス(商品名:Optiwhite、鉄の酸化物の含有率:0.020質量%以下、屈折率:1.52、5.0mm厚、日本板硝子製)を使用した。
(実施例1)
 2層の中屈折率層、高屈折率層、及び低屈折率層を反応性スパッタリング法により厚さ5mmの高透過ガラス板上に形成した。具体的には、以下のようにして、低反射コーティング付きガラス板を製造した。
 高透過ガラス板を、複数のチャンバーを有するインライン型マグネトロンスパッタリング装置(以下、単に「スパッタリング装置」という)内に、ホルダーを介してセットする。次に、チャンバー内を10-6 Torrまで減圧した。減圧には、ロータリーポンプと、クライオポンプを用いたが、クライオポンプの代わりにターボ分子ポンプもしくは油拡散ポンプを用いてもよい。続いて、Ti:Siの原子比が1:2のTi-Si合金ターゲットを用い、O2ガスをチャンバー内に導入し5 mTorr(5×10-3Torr)のガス圧で、反応性スパッタリングによりTiSiOx層(M2層)を形成した。
 次に、M1層を形成する。M2層の形成されたガラス板を、スパッタリング装置の別のチャンバーで、Zn52質量%Sn48質量%のZn-Sn合金ターゲットを用い、O2ガスをチャンバー内に導入し5 mTorrのガス圧で、反応性スパッタリングによりZnSnOx層(M1層)を形成した。
 次に、高屈折率層(H層)を形成する。M1層の形成されたガラス板を、スパッタリング装置のさらに別のチャンバーで、Ti金属ターゲットを用い、O2ガスをチャンバー内に導入し5 mTorrのガス圧で、反応性スパッタリングによりTiO2層を形成した。
 次に、低屈折率層(L層)を形成する。高屈折率層の形成されたガラス板を、スパッタリング装置のさらに別のチャンバーで、10質量%のAlを含むSi-Al合金ターゲットを用い、O2ガスをチャンバー内に導入し5 mTorrのガス圧で、反応性スパッタリングによりSiO2:Al層を形成した。
 このようにして、ガラス板の一方の主面上に、M2層、M1層、高屈折率層、及び低屈折率層を順次積層した低反射コーティングを有する低反射ガラス板を作製した(図1参照)。得られた低反射コーティング付きガラス板の各層の構成、厚みについて表1に示す。
(実施例2~11)
 実施例2~8は、実施例1と同様の層の構成で、各層の厚さを変更した例である。実施例9と10は、中屈折率層M2層として、Ti-Si合金ターゲットに代えて、Zn金属ターゲットと実施例1のL層で用いたSi-Al合金ターゲットを用いた反応性の共スパッタリングでZnSiOx層(M2層)を形成し、その他の層の構成は実施例1と同様の構成とした例である。共スパッタリングはひとつのチャンバーに2以上のターゲットを配置し、ターゲット毎に異なる電力を印加し、スパッタリングを行う方法である。実施例9のZnSiOx層はZnOを70atom%含み、実施例10のZnSiOx層はZnOを80atom%含む。ここでZnOのatom%とは、金属原子に対する亜鉛原子の原子比の100分率をいう。実施例9、10は実施例1~8のM2層の屈折率を大きく変化させた例である。実施例11は、中屈折率層を3層にし、Al金属ターゲットを用いた反応性スパッタリングでM3層を形成し、その他の層の構成は実施例1と同様の構成とし、M2層の厚さを変更した例である。得られた実施例2~11の低反射コーティング付きガラス板の各層の構成、厚みについて表1に示す。また、上記実施例1~11の各層形成にあたっては、反応に必要なガス雰囲気でスパッタリングを行ったが、必要に応じてArガスを混合することも可能である。
(比較例1~6)
 比較例1は、低反射コーティングを有しないガラス板として、高透過ガラスをそのまま用いた。比較例2は、M2層を設けない以外は、実施例1と同様の構成で、各層の厚さを変更した例である。比較例3は、M2層を設けず、M1層として、Zn-Sn合金ターゲットに代えて、Alを12atom%含むZn-Al合金ターゲットを用いた反応性スパッタリングでM1層を形成し、その他の層の構成は実施例1と同様の層の構成で、各層の厚さを変更した例である。比較例4は、M2層として、Ti-Si合金ターゲットに代えて、Zn-Al合金ターゲットを用いた反応性スパッタリングでM2層を形成し、その他の層の構成は実施例1と同様の構成で、各層の厚さを変更した例である。比較例5は、M2層を設けず、M1層として、Zn-Sn合金ターゲットに代えて、Ti-Si合金ターゲット用いた反応性スパッタリングでM1層を形成し、その他の層の構成は実施例1と同様の層の構成で、各層の厚さを変更した例である。比較例6は、M2層を設けず、M1層として、Zn-Sn合金ターゲットに代えてSi金属ターゲットを用い、O2ガスに代えてO2とN2の混合ガスを用いた反応性スパッタリングでM1層を形成し、その他の層の構成は実施例1と同様の層の構成で、各層の厚さを変更した例である。比較例6は、特表2013-542457号公報の実施例1に当たるコーティングを有する。比較例1~6のガラス板の各層の構成、厚みについて表1に示す。
[光学特性の評価]
 実施例及び比較例のガラス板について、JIS R 3106:1998に基づいて、可視光透過率(Tvis(%))及び可視光反射率(Rvis(%))を測定した。具体的には、積分球付き可視域分光光度計を用いて透過スペクトルあるいは反射スペクトルを測定し、JIS R 3106:1998の算出方法に基づいて可視光透過率及び可視光反射率を算出した。結果を表2に示す。なお、可視光反射率は、低反射コーティング面側の値であり、可視光反射率はコーティング層の表面反射光と裏面反射光の両方を含めた値である。表2において、「T:0°」は可視光透過率について低反射コーティング面側の垂直入射光を測定したこと意味し、「30°」は可視光透過率及び可視光反射率について低反射コーティング面側の30°入射光(垂直を0°としたときの角度)を測定したこと意味し、「R:5°」は可視光反射率について低反射コーティング面側の5°入射光(垂直を0°としたときの角度)を測定したこと意味する。また、表2において、a*及びb*は分光測色計で測定した値を表し、Δc*は下記式(V)で表される値を表し、Δa*及びΔb*は、5°入射光と30°入射光との反射色調の色差を表す。
 Δc*={(Δa*)2+(Δb*)21/2         (V)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例の低反射コーティング付きガラス板は、入射角5°及び30°の両方において、可視光反射率が5.0%以下であり、可視光透過率が93.9%以上であった。また、実施例の低反射コーティング付きガラス板は、L*a*b*表色系で表した反射色調(コーティング面反射)が、5°及び30°の両方において、-1.0≦a*≦0.1、かつ-0.3≦b*≦0.4であった。さらに、実施例の低反射コーティング付きガラス板は、5°と30°との反射色調の色差が、-0.1≦Δa*≦0.8、かつ0≦Δb*≦0.5であった。さらにまた、実施例の低反射コーティング付きガラス板は、透過色調(コーティング面反射)が、-0.4≦a*≦-0.3、かつ0≦b*≦0.1であった。
 一方、低反射コーティングを有しないガラス板のみの比較例1は、可視光透過率も91.1%であり、可視光反射率が8.0%と高かった。中屈折率層が1層のみの比較例2及び3は、実施例に比べて、Δa*が大きく、a*に関して角度による反射色調の色差が大きかった。中屈折率層が2層であるが、ガラス板の屈折率nsとガラス板に最も近い中屈折率層(M2層)の屈折率nm(2)と差が0.41である比較例4は、実施例に比べて、Δa*が大きく、a*に関して角度による反射色調の色差が大きかった。中屈折率層が1層のみの比較例5は、実施例に比べて、可視光反射率が5.5%と高かった。中屈折率層が1層のみの比較例6は、実施例に比べて、a*及びb*に関して角度による反射色調の色差が大きかった。
(応用例)
 次に、本発明の応用形態として、合わせガラスについて以下に説明する。
(実施例1B~11B及び比較例1B~6B)
 実施例1~11及び比較例1~6の各ガラス板(単板)2枚を含む合わせガラス(実施例1B~11B及び比較例1B~6B)を製造した。具体的には、以下のようにして、合わせガラスを製造した。
 まず、所望のサイズに切断し端面を研磨加工した2枚の高透過ガラス板を用意した。上述したスパッタリング法により、中屈折率層、高屈折率層、低屈折率層、及び中屈折率層を、実施例1~11及び比較例1~6のように順次積層した低反射コーティングを形成した。この2枚の低反射コーティング付きガラス板を、低反射コーティングが外側になるようにして、熱可塑性の中間膜として、ポリビニルブチラール(PVB)膜を挟み込み、オートクレーブで接着して、合わせガラス板とした。それにより、低反射コーティングが外部に露出するように2枚の低反射コーティング付きガラス板が配置されている低反射コーティング付き合わせガラス(膜面がどちらも外使い)を作製した。得られた各合わせガラス(実施例1B~11B及び比較例1B~6B)について、実施例1~11及び比較例1~6のガラス板と同様に、特性を評価した。結果を表3に示す。なお、表3において、「5°」は可視光透過率及び可視光反射率について5°入射光(垂直を0°としたときの角度)を測定したこと意味し、「30°」は可視光透過率及び可視光反射率について30°入射光(垂直を0°としたときの角度)を測定したこと意味する。また、表3において、a*及びb*は、分光測色計にて測定した値を表し、Δc*は、下記式(V)で表される値を表し、Δa*及びΔb*は5°入射光と30°入射光との反射色調の色差を表す。
 Δc*={(Δa*)2+(Δb*)21/2         (V)
Figure JPOXMLDOC01-appb-T000003
 実施例の合わせガラスは、入射角5°及び30°の両方において、可視光反射率が1.7%以下であり、可視光透過率が95.7%以上であった。また、実施例の合わせガラスは、L*a*b*表色系で表した反射色調が、5°及び30°の両方において、-9.2≦a*≦2.0、かつ1.9≦b*≦5.6であった。さらに、実施例の合わせガラスは、5°と30°との反射色調の色差が、1.1≦Δa*≦8.1、かつ-2.9≦Δb*≦2.9であった。さらにまた、実施例の合わせガラスの上記式(V)で表される反射色調の色差は、1.17≦Δc*≦8.12であった。
 一方、比較例1Bの合わせガラスは、可視光反射率が7.6%以上であった。比較例2B~4Bの合わせガラスは、反射色調の変化が大きく、Δc*が10.8以上であり、反射色調の角度依存性が高かった。比較例5Bは、可視光反射率が2.6%以上であった。比較例6Bは、反射色調の変化が大きく、Δc*が11.4であり、反射色調の角度依存性が高かった。
 上記結果から、本発明の低反射コーティング付きガラス板及びこれを用いた合わせガラスは、可視光透過率が高く、可視光反射率が低く、かつ反射色調の角度依存性が小さいことが確認できた。
 本発明の低反射コーティング付きガラス板及びこれを用いた合わせガラスは、可視光透過率が高く、可視光反射率が低く、かつ反射色調の角度依存性が小さいため、博物館、美術館の展示室又はショーケースに使用する場合に有用である。

Claims (13)

  1.  ガラス板と、低反射コーティングとを備え、
     低反射コーティングが、
     ガラス板上に配置されたp層からなる中屈折率層と、
     該中屈折率層上に配置された高屈折率層と、
     該高屈折率層上に配置された低屈折率層とを有し、
    波長550nmにおける屈折率に関して、下記式(I)、(II)、(III)及び(IV)
     ns<nm(p)       (I)
     nm(1)<nh       (II)
     nh>nl         (III)
    m(p)-ns≦0.40   (IV)
    (上記式中、nsはガラス板の屈折率を表し、nm(p)はガラス板に最も近い中屈折率層(Mp層)の屈折率を表し、nm(1)は高屈折率層に最も近い中屈折率層(M1層)の屈折率を表し、nhは高屈折率層の屈折率を表し、nlは低屈折率層の屈折率を表す。pは2以上の自然数である。)
    を満たし、
     各中屈折率層の屈折率は、隣接する中屈折率層のうち、ガラス板に近い側の中屈折率層の屈折率より大きく、
     ガラス板に最も近い中屈折率層から高屈折率層までの各層間の屈折率差がいずれも0.45以下である
    低反射コーティング付きガラス板。
  2.  低屈折率層の波長550nmにおける屈折率が1.40~1.60であり、
     高屈折率層の波長550nmにおける屈折率が2.0以上である請求項1に記載の低反射コーティング付きガラス板。
  3.  pが2であり、ガラス板から高屈折率層までの各層間の屈折率差がいずれも0.14以上である請求項1又は2に記載の低反射コーティング付きガラス板。
  4.  pが3であり、ガラス板から高屈折率層までの各層間の屈折率差がいずれも0.09以上である請求項1又は2に記載の低反射コーティング付きガラス板。
  5.  M1層の波長550nmにおける屈折率が1.80~2.20であり、
     M2層の波長550nmにおける屈折率が1.60~1.90である請求項3に記載の低反射コーティング付きガラス板。
  6.  M1層の波長550nmにおける屈折率が1.80~2.20であり、
     M2層の波長550nmにおける屈折率が1.60~1.90であり、
     M3層の波長550nmにおける屈折率が1.50~1.70である請求項4に記載の低反射コーティング付きガラス板。
  7.  Fe23に換算した質量%で、ガラス板に含まれる鉄の酸化物の含有率が、0.020%以下である請求項1~6のいずれか1項に記載の低反射コーティング付きガラス板。
  8.  低屈折率層が主成分としてSiO2を含み、
     高屈折率層が主成分としてチタン酸化物又はニオブ酸化物を含む請求項1~7のいずれか1項に記載の低反射コーティング付きガラス板。
  9.  低屈折率層が、SiO2及びアルミニウムドープSiO2からなる群から選ばれる1種以上である請求項1~8のいずれか1項に記載の低反射コーティング付きガラス板。
  10.  中屈折率層において、
     M1層が主成分として、
    亜鉛とスズの合金の酸化物(ZnSnOx)、
    酸化亜鉛(ZnO)、
    スズもしくはアルミニウムをドープした酸化亜鉛(ZnO:Sn,ZnO:Al)、
    酸化スズ(SnO2)、
    亜鉛をドープした酸化スズ(SnO2:Zn)、
    シリコンドープした酸化チタン(TiO2:Si)、及び
    シリコンの窒化物(SiNx)からなる群から選ばれる1種以上を含み、
     M2層が主成分として、
    チタンとシリコンの混合酸化物(TiSiOx)、
    亜鉛とシリコンの混合酸化物(ZnSiOx)、
    スズとシリコンの混合酸化物(SnSiOx)、及び
    シリコン酸窒化物(SiOxNy)からなる群から選ばれる1種以上を含む請求項3又は5に記載の低反射コーティング付きガラス板。
  11.  中屈折率層において、
     M1層が主成分として、
    亜鉛とスズの合金の酸化物(ZnSnOx)、
    酸化亜鉛(ZnO)、
    スズもしくはアルミニウムをドープした酸化亜鉛(ZnO:Sn,ZnO:Al)、
    酸化スズ(SnO2)、
    亜鉛をドープした酸化スズ(SnO2:Zn)、
    シリコンドープした酸化チタン(TiO2:Si)、及び
    シリコンの窒化物(SiNx)からなる群から選ばれる1種以上を含み、
     M2層が主成分として、
    チタンとシリコンの混合酸化物(TiSiOx)、
    亜鉛とシリコンの混合酸化物(ZnSiOx)、
    スズとシリコンの混合酸化物(SnSiOx)、
    シリコンの酸窒化物(SiOxNy)、及び
    亜鉛とアルミニウムの合金の酸化物(ZnAlOx)からなる群から選ばれる1種以上を含み、
     M3層が主成分として、
    酸化アルミニウム(Al23)、
    亜鉛もしくはシリコンをドープした酸化アルミニウム(Al23:Zn,Al23:Si))、又は
    シリコンの酸窒化物(SiOxNy)を含む請求項4又は6に記載の低反射コーティング付きガラス板。
  12.  請求項1~11のいずれか1項に記載の低反射コーティング付きガラス板を2枚含み、低反射コーティングが外部に露出するように2枚の低反射コーティング付きガラス板が配置されている低反射コーティング付き合わせガラス。
  13.  請求項1~11のいずれか1項に記載の低反射コーティング付きガラス板であって、
     該低反射コーティングが該ガラス板の両方の主表面に備えられている低反射コーティング付きガラス板。
PCT/JP2015/005215 2014-10-20 2015-10-15 低反射コーティング付きガラス板及びそれを用いた合わせガラス WO2016063503A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016555077A JP6611192B2 (ja) 2014-10-20 2015-10-15 低反射コーティング付きガラス板及びそれを用いた合わせガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014213777 2014-10-20
JP2014-213777 2014-10-20

Publications (1)

Publication Number Publication Date
WO2016063503A1 true WO2016063503A1 (ja) 2016-04-28

Family

ID=55760563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005215 WO2016063503A1 (ja) 2014-10-20 2015-10-15 低反射コーティング付きガラス板及びそれを用いた合わせガラス

Country Status (2)

Country Link
JP (1) JP6611192B2 (ja)
WO (1) WO2016063503A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022042A (ja) * 2016-08-03 2018-02-08 三菱マテリアル株式会社 赤外線フィルター、Zn−Sn含有酸化物膜およびZn−Sn含有酸化物スパッタリングターゲット
CN109180020A (zh) * 2018-10-24 2019-01-11 信义玻璃(天津)有限公司 可切割增透减反射镀膜夹层玻璃及其制造方法
CN110462450A (zh) * 2017-03-31 2019-11-15 郡是株式会社 防反射膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018051A (ja) * 1973-06-18 1975-02-26
JPS5870201A (ja) * 1981-10-22 1983-04-26 Tokyo Optical Co Ltd 反射防止膜を施した強化ガラス
JPH0569701U (ja) * 1992-02-19 1993-09-21 旭硝子株式会社 低反射ガラス
JP2004157497A (ja) * 2002-09-09 2004-06-03 Shin Meiwa Ind Co Ltd 光学用反射防止膜及びその成膜方法
JP2010186159A (ja) * 2009-01-14 2010-08-26 Seiko Epson Corp 光学物品およびその製造方法
US20120196133A1 (en) * 2011-01-27 2012-08-02 David Broadway Heat treatable four layer anti-reflection coating
JP2013542457A (ja) * 2010-09-03 2013-11-21 ガーディアン・インダストリーズ・コーポレーション 焼入れ可能な3層反射防止コーティング、焼入れ可能な3層反射防止コーティングを含む被覆物品及び/又はその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018051A (ja) * 1973-06-18 1975-02-26
JPS5870201A (ja) * 1981-10-22 1983-04-26 Tokyo Optical Co Ltd 反射防止膜を施した強化ガラス
JPH0569701U (ja) * 1992-02-19 1993-09-21 旭硝子株式会社 低反射ガラス
JP2004157497A (ja) * 2002-09-09 2004-06-03 Shin Meiwa Ind Co Ltd 光学用反射防止膜及びその成膜方法
JP2010186159A (ja) * 2009-01-14 2010-08-26 Seiko Epson Corp 光学物品およびその製造方法
JP2013542457A (ja) * 2010-09-03 2013-11-21 ガーディアン・インダストリーズ・コーポレーション 焼入れ可能な3層反射防止コーティング、焼入れ可能な3層反射防止コーティングを含む被覆物品及び/又はその製造方法
US20120196133A1 (en) * 2011-01-27 2012-08-02 David Broadway Heat treatable four layer anti-reflection coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022042A (ja) * 2016-08-03 2018-02-08 三菱マテリアル株式会社 赤外線フィルター、Zn−Sn含有酸化物膜およびZn−Sn含有酸化物スパッタリングターゲット
CN110462450A (zh) * 2017-03-31 2019-11-15 郡是株式会社 防反射膜
CN109180020A (zh) * 2018-10-24 2019-01-11 信义玻璃(天津)有限公司 可切割增透减反射镀膜夹层玻璃及其制造方法
CN109180020B (zh) * 2018-10-24 2023-04-14 信义玻璃(天津)有限公司 可切割增透减反射镀膜夹层玻璃及其制造方法

Also Published As

Publication number Publication date
JP6611192B2 (ja) 2019-11-27
JPWO2016063503A1 (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
US6165598A (en) Color suppressed anti-reflective glass
US7005188B2 (en) Transparent substrate with an antireflection, low-emissivity or solar-protection coating
TWI634087B (zh) 控制太陽光之鑲嵌玻璃單元
JP5249054B2 (ja) 反射光がニュートラル色を示す、反射防止コーティングを備える透明な基板
JP5336739B2 (ja) 反射防止特性および断熱特性を有する窓ガラス
US20050074591A1 (en) Transparent substrate with antiglare coating having abrasion-resistant properties
US20070236798A1 (en) Antireflective coating and substrates coated therewith
US20140113120A1 (en) Anti-color banding topcoat for coated articles
CN110248906B (zh) 低反射涂膜玻璃
JP2008201633A (ja) 反射防止膜付きガラス板および窓用合わせガラス
MX2007011247A (es) Composicion de recubrimiento con propiedades solares.
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
WO2014109368A1 (ja) 光学多層膜、積層体、および複層ガラス
JP6611192B2 (ja) 低反射コーティング付きガラス板及びそれを用いた合わせガラス
CN109716180B (zh) 日照遮蔽构件
JP2917456B2 (ja) 無光彩ガラス
CN113165965B (zh) 涂覆玻璃板
WO2020184694A1 (ja) 赤外線反射顔料
WO2011045412A1 (fr) Vitrage réfléchissant émaillé
WO2018030355A1 (ja) 化粧板
JP2004217432A (ja) 積層体および構造体
US11531148B2 (en) Optical coatings for glass and glass laminates
JP2007520734A (ja) 光学的に透明な基板の反射を低減する光学構造
WO2020235540A1 (ja) 膜付き透明基板
WO2019181421A1 (ja) 積層膜付きガラス基板及び窓ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851972

Country of ref document: EP

Kind code of ref document: A1