WO2016062206A1 - 一种水平电化学沉积金属的方法 - Google Patents

一种水平电化学沉积金属的方法 Download PDF

Info

Publication number
WO2016062206A1
WO2016062206A1 PCT/CN2015/091697 CN2015091697W WO2016062206A1 WO 2016062206 A1 WO2016062206 A1 WO 2016062206A1 CN 2015091697 W CN2015091697 W CN 2015091697W WO 2016062206 A1 WO2016062206 A1 WO 2016062206A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sheet substrate
electrochemical deposition
electrolyte solution
anode
Prior art date
Application number
PCT/CN2015/091697
Other languages
English (en)
French (fr)
Inventor
季静佳
覃榆森
朱凡
Original Assignee
苏州易益新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州易益新能源科技有限公司 filed Critical 苏州易益新能源科技有限公司
Priority to EP15852603.8A priority Critical patent/EP3206236B1/en
Priority to US15/519,782 priority patent/US20170250295A1/en
Priority to JP2017521075A priority patent/JP6431980B2/ja
Publication of WO2016062206A1 publication Critical patent/WO2016062206A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/011Electroplating using electromagnetic wave irradiation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/026Electroplating of selected surface areas using locally applied jets of electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/028Electroplating of selected surface areas one side electroplating, e.g. substrate conveyed in a bath with inhibited background plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices

Definitions

  • the present invention relates to a method of electrochemically depositing a metal, and more particularly to a method of performing a gap or continuous horizontal electrochemical deposition of a metal on a sheet substrate.
  • the method of electrochemically depositing metal of the present invention has a wide range of applications and is suitable for mass production.
  • the most widely used method for forming metal electrodes of crystalline silicon solar cells is to use a screen printing technique to print metal pastes such as silver paste and aluminum paste on the negative and positive surfaces of crystalline silicon solar cells, respectively. These metal pastes are sintered at a high temperature to form metal electrodes of crystalline silicon solar cells.
  • the method has the advantages of simple process and convenient mass production.
  • Metallic copper is one of the ways to replace expensive silver paste. However, at high temperatures, metal copper diffused into crystalline silicon significantly reduces the minority carrier lifetime of crystalline silicon. Therefore, metallic copper can only be deposited on a crystalline silicon solar cell at a low temperature, thereby generating an electrode of a crystalline silicon solar cell.
  • one method of replacing the silver paste with metallic copper is to first screen a small amount of silver paste on the negative electrode of the crystalline silicon solar cell, and after sintering at a high temperature, the silver paste and the crystalline silicon solar cell are used.
  • the negative electrode forms an ohmic contact, that is, a metal electrode of a crystalline silicon solar cell is generated, and then metal copper is electrochemically deposited on the silver paste to meet the requirements for collecting and transmitting the electric energy generated by the crystalline silicon solar cell.
  • Another method of replacing silver paste with metallic copper is to electrochemically deposit various metals, such as nickel-copper-silver stacks, on a crystalline silicon solar cell, ultimately resulting in a metal electrode of a crystalline silicon solar cell.
  • various metals such as nickel-copper-silver stacks
  • electrochemical deposition of metal is a simple method and low production cost to produce a metal electrode of a crystalline silicon solar cell. Therefore, the use of electrochemical methods to deposit metal on crystalline silicon solar cells is currently a very active field of technology research and development.
  • Patent CN101257059A discloses a method of electrochemically depositing a metal on a negative electrode surface of a crystalline silicon solar cell by using a potential difference generated by a crystalline silicon solar cell after being irradiated, that is, a method of photoinduced electrochemical deposition of a metal. Since this method lacks the positive electrode electronic contact technology of a reliable crystalline silicon solar cell, the method can only be obtained in the laboratory. use.
  • Patent CN102083717A discloses a positive electrode electronic contact method in a crystalline silicon solar cell, which enables the application of electrochemically deposited metal in the mass production of crystalline silicon solar cells.
  • this method has two drawbacks.
  • the negative electrode surface of the crystalline silicon solar cell under the action of the upper metal spring roller, continuously rubs against the lower roller, not only damages the negative electrode surface of the crystalline silicon solar cell, but also deposits metal deposited by electrochemical deposition of metal. The electrodes also cause some damage.
  • Another disadvantage is that the method has limitations in its application, which is limited to applications on crystalline silicon solar cells with screen printed aluminum backfields.
  • the back passivation technology of crystalline silicon solar cells will gradually replace the aluminum back field technology of the conventional crystalline silicon solar cells.
  • the anode of the crystalline silicon solar cell can also be used to form an electrode of a crystalline silicon solar cell using an electrochemical deposition method.
  • the two methods of electrochemically depositing metals disclosed above can only be performed by electrochemically depositing metal on the negative electrode of a crystalline silicon solar cell.
  • both the negative electrode of the crystalline silicon solar cell and the electrode of the positive electrode need to be electrochemically deposited to form an electrode, it is necessary to separately perform electrochemical deposition of the metal on the negative electrode and the positive electrode, which is disadvantageous for mass production.
  • the present invention provides a method of performing horizontal electrochemical deposition of a metal on a sheet substrate.
  • One of the objects of the present invention is to find a method for forming a metal electrode on a crystalline silicon solar cell by electrochemically depositing a metal, in which the negative electrode surface of the crystalline silicon solar cell does not contact any solid during the electrochemical deposition of the metal.
  • the negative electrode surface of the crystalline silicon solar cell and the metal are protected from damage due to friction between the solids after being deposited.
  • Another object of the present invention is to find a method for forming a metal electrode on a crystalline silicon solar cell by electrochemically depositing a metal, which can simultaneously perform electrochemical deposition of a metal on a negative electrode surface and a positive electrode surface of a crystalline silicon solar cell. Simplify the metal electrode formation process of a double-sided crystalline silicon solar cell.
  • a further object of the present invention is to find a method for producing a metal electrode on a crystalline silicon solar cell using an electrochemically deposited metal, which has wide applicability and utility, that is, the method can be used alone in the p-type of a solar cell. Electroplating on the electrodes can also be performed by electroplating on the n-type electrode of the solar cell alone or on both the p-type electrode and the n-type electrode of the solar cell.
  • a final object of the present invention is to further seek a method for electrochemically depositing metal on other thin substrates, in addition to a method for forming a metal electrode on a crystalline silicon solar cell using an electrochemically deposited metal, and further expanding the method for electrochemically depositing metal on other thin substrates.
  • the scope of application of the present invention is to further seek a method for electrochemically depositing metal on other thin substrates, in addition to a method for forming a metal electrode on a crystalline silicon solar cell using an electrochemically deposited metal, and further expanding the method for electrochemically depositing metal on other thin substrates.
  • the present invention discloses a method of performing electrochemical deposition of a metal on a sheet substrate.
  • the method for performing electrochemical deposition of metal on a sheet substrate disclosed by the present invention is to place an upper metal anode in an electrochemical deposition metal process on top of an electrolyte solution on a surface of a sheet substrate to be electrochemically deposited, or elsewhere
  • the electrolyte solution flows to the upper surface of the sheet substrate after passing through the upper metal anode.
  • the upper metal anode undergoes an oxidation reaction under the action of a positive potential, and the electrons are generated to form metal ions, and then flow down to the upper surface of the sheet substrate with the electrolyte solution.
  • the metal ions in the electrolyte solution acquire electrons on the surface of the cathode on the sheet substrate to form a solid metal and deposit on the cathode surface of the sheet substrate.
  • One of the advantages of the present invention is that the metal ions generated by the oxidation reaction on the upper metal anode are transported to the surface of the cathode in time by the flowing electrolyte solution, thereby improving the effectiveness of the redox reaction in the electrochemical deposition of the metal. Sex. Also, in the electrochemical deposition metal method of the present invention, the surface of the cathode is continuously washed by the top-down electrolyte solution, so that the concentration of the metal ions is always uniform at any point on the surface of the cathode, thereby improving the deposition of the metal. Uniformity. Further, the process of the cathode surface being continuously washed by the top-down electrolyte solution can also prevent any gas that may be generated from accumulating on the surface of the cathode.
  • Another advantage of the present invention is that the upper surface of the sheet substrate may not be in contact with any solid during the electrochemical deposition of the metal of the present invention.
  • This advantage of the present invention is more pronounced when the electrochemical deposition metal method of the present invention is applied to the deposition of a metal on the surface of a crystalline silicon solar cell anode (n-type surface), i.e., the sheet substrate is a crystalline silicon solar cell.
  • the main light receiving surface of most crystalline silicon solar cells is a negative electrode, and the quality of the negative receiving surface of the negative electrode is directly related to the photoelectric conversion efficiency of the crystalline silicon solar cell. Since the electrochemical deposition metal method of the present invention makes the negative electrode surface of the crystalline silicon solar cell not in contact with any solid, the possibility that the negative electrode surface of the crystalline silicon solar cell is damaged is effectively avoided.
  • a crystalline silicon solar cell generates electrical energy under illumination.
  • a method of photoinduced electrochemical deposition of a metal can be employed.
  • the electrochemical deposition metal method of the present invention has a small liquid thickness of the electrolyte solution above the negative electrode of the crystalline silicon solar cell, which reduces the absorption of light by the electrolyte solution.
  • the illumination energy can be utilized to the utmost.
  • the electrochemical deposition metal method of the present invention can be used very flexibly in practical applications.
  • the electrochemical deposition metal method of the present invention can be carried out using a conventional external power source method.
  • the electrochemical deposition metal method of the present invention can also be carried out using a method of photoinduced electrochemical deposition of a metal.
  • conventional external power source methods and photoinduced electrochemical deposition metal methods can be used together to implement the electrochemical deposition metal method of the present invention.
  • the position of the metal anode can be more selected under the condition that the circuit in the electrochemical deposition metal process is closed.
  • the metal anode can be made not to directly face the negative electrode surface of the electrochemically deposited metal.
  • the electrochemical deposition metal method of the present invention can perform the electrochemical deposition metal method of the present invention on the negative electrode surface of the crystalline silicon solar cell, or on the positive electrode of the crystalline silicon solar cell.
  • the electrochemical deposition metal method of the present invention can be carried out simultaneously on the negative electrode and the positive electrode of a crystalline silicon solar cell. Therefore, one of the important advantages of the present invention is that the method of electrochemically depositing metal of the present invention makes it possible to simultaneously perform electrochemical deposition of metal on the positive and negative electrodes of a solar cell.
  • the electrochemical deposition metal method of the present invention is well suited for use in equipment having a horizontally advanced structure.
  • the horizontal advancement device makes the loading and unloading steps very simple and is more conducive to the automation of the entire production line.
  • Another advantage of the present invention is that the apparatus for carrying out the electrochemical deposition metal process of the present invention is very simple.
  • an electrolyte solution is disposed on the sheet substrate, and the self-weight of the electrolyte solution layer enables the sheet substrate to be closely attached to the conductive roller supporting the same, thereby implementing the present invention.
  • the electrode solution of the electrochemical deposition metal method does not need to have an upper roller, which not only simplifies the structure of the device, but also saves the cost of the device.
  • the electrochemical deposition metal method of the present invention is suitable for continuous electrochemical deposition of metals, as well as for gap electrochemical deposition of metals. That is to say, with the electrochemical deposition metal method of the present invention, the results can be communicated regardless of whether the metal is continuously deposited by electrochemical deposition or the metal is deposited by gap electrochemical deposition. For example, the results of the gap electrochemical deposition metal method of the present invention in the laboratory can be applied to mass-produced horizontally advanced equipment without any modification.
  • Figure 1 Schematic cross-sectional view of one of the applications of the electrochemical deposition metal method of the present invention on a p-type screen printing battery
  • Figure 2 Schematic cross-sectional view of one of the applications of the electrochemical deposition metal method of the present invention on a conductive sheet substrate
  • Figure 3 Schematic cross-sectional view of one of the applications of the electrochemical deposition metal method of the present invention on an n-type double-sided battery
  • FIG. 4 Schematic cross-section of one of the applications of the electrochemical deposition metal method of the present invention on a p-type solar cell
  • Figure 5 Schematic cross-sectional view of one of the applications of the electrochemical deposition metal method of the present invention on a sheet substrate.
  • Figure 1 illustrates one embodiment of a method of performing the electrochemical deposition of metals of the present invention using a photoinduced electrochemical deposition metal process.
  • the sheet substrate 90 is a p-type crystalline silicon screen printed solar cell.
  • the so-called p-type crystalline silicon screen printing solar cell means that the metal electrode 320 of the positive electrode of the battery is formed by screen printing aluminum paste and then sintering.
  • the screen printed aluminum paste substantially covers the majority of the positive electrode area of the solar cell.
  • the negative electrode surface 310 of the p-type crystalline silicon screen printing solar cell 90 receives light from the light source 80, electrical energy is generated, and a positive potential generated on the metal electrode 320 is transmitted to the electrochemically deposited metal of the present invention through the conductive roller 60 supporting it.
  • the upper metal anode 20 of the electrochemical deposition metal method of the present invention undergoes an oxidation reaction to lose electron-generated metal ions under the action of a positive potential of a p-type crystalline silicon screen-printed solar cell.
  • the generated metal ions flow down with the electrolyte solution 40 to the negative electrode surface 310 of the p-type crystalline silicon screen printing solar cell 90, and the metal ions in the electrolyte solution 40 are p-type crystalline silicon screen printing solar cells under the upper metal anode 20.
  • the negative electrode surface 310 of 90 is free of electrons on the insulated area, and a reduction reaction is generated to form a metal and deposited on the uninsulated area of the negative electrode surface 310 of the p-type crystalline silicon screen printing solar cell, thereby completing one in the system.
  • a photoinduced electrochemical redox reaction of the complete electrochemical deposition metal process of the present invention is
  • the method of electrochemically depositing metal of the present invention may also be externally added to the embodiment of FIG. power supply.
  • the positive electrode of the external power source is coupled to the upper metal anode 20
  • the negative electrode of the external power source is coupled to the conductive roller 60
  • the potential of the external power source is used to increase the power. The potential difference of a chemically deposited metal.
  • the method of electrochemically depositing metal of the present invention is to place the upper metal anode 20 above the liquid level 42 of the electrolyte solution 40.
  • the upper metal anode 20 can be formed in a tubular form.
  • the electrolyte solution 40 may contact the inner surface of the upper metal anode 20, directly flowing from the inside of the upper metal anode 20 to the negative electrode of the sheet substrate 90 of the electrochemical deposition metal method of the present invention.
  • Surface 310 By forming the upper metal anode 20 in the electrochemical deposition metal method of the present invention into a tubular form, the apparatus for carrying out the electrochemical deposition metal method of the present invention can be simplified.
  • the upper metal anode 20 can be placed within the electrolyte solution conduit 30, and the electrolyte solution conduit 30 can be a tube of inert material, such as a plastic tube, or a glass tube or the like.
  • the electrolyte solution 40 contacts the outer surface of the metal anode 20, and flows from the electrolyte solution conduit 30 to the negative electrode upper surface 310 of the sheet substrate 90 of the solar cell of the electrochemical deposition metal method of the present invention.
  • This structural design of the electrochemical deposition metal method of the present invention can improve the utilization of the upper metal anode 20 of the electrochemical deposition metal method of the present invention.
  • the upper metal anode 20 can be higher than the liquid level 42 of the electrolyte solution 40. In other embodiments, the upper metal anode 20 above the liquid level 42 of the electrolyte solution 40 may also be as low as the liquid level 42 of the electrolyte solution 40.
  • the electrolyte solution 40 flowing out of the negative electrode upper surface 310 of the sheet substrate 90 is collected by the electrolyte solution tank 50 and returned to the electrolyte solution catheter 30 to complete the electrochemical reaction metal flowing through the upper metal anode 20 of the present invention.
  • the electrolyte solution of the upper surface 310 of the negative electrode of the sheet substrate 90 of the deposition metal method is circulated.
  • the conductive roller 60 supports the sheet substrate 90.
  • the conductive roller 60 can be rotated left and right to make the metal deposited by the electrochemical deposition metal method of the present invention more uniform.
  • the conductive roller 60 can be rotated in one direction. For example, in some mass production equipment having a horizontally advanced structure, the conductive roller 60 rotating in one direction can be continuously completed. The method of electrochemically depositing a metal of the present invention.
  • the conductive roller 60 may be made of a metal material. In some embodiments of the present invention, a majority of the electrically conductive area of the metal conductive roller may be covered with an insulating material to reduce the loss of potential difference due to a short circuit during the implementation of the electrochemical deposition metal method of the present invention. . In other embodiments of the invention, the conductive roller 60 may also be of an insulating material. In these embodiments, a conductive material may be used to couple the area of the portion of the conductive roller 60 that needs to be electrically conductive to achieve the effect of the conductive roller.
  • the conductive roller 60 can be modified to a fixed number of fixed conductive support points, particularly when the gap electrochemical deposition metal method is employed in the electrochemical deposition metal method of the present invention.
  • the use of a certain amount of solid conductive support enables the implementation of the electrochemical deposition metal method of the present invention to be simpler.
  • the method of horizontal electrochemical deposition of metals of the present invention can be extended to other sheet substrates.
  • the sheet substrate 10 is a conductor, i.e., the conductive property between the upper surface and the lower surface of the sheet substrate 10 is the conductive property of the sheet substrate 10 itself. Determined.
  • the upper metal anode of the present invention is not an upper metal anode in a general physical sense, but an upper metal anode in the electrochemical deposition metal relative to the cathode of the upper surface of the sheet substrate 10.
  • the metal anode which flows to the upper surface of the sheet substrate 10 after the electrolyte solution contacts the metal anode is referred to as an upper metal anode.
  • the upper metal anode can be placed in any suitable location. In the embodiment of Figure 2, the upper metal anode 20 is placed in the electrolysis The bottom of the solution tank 50.
  • the electrolyte solution 40 is transferred to the upper surface of the sheet substrate 10 through the infusion tube 32 after contacting the metal anode 20.
  • the infusion tube 32 can be mounted above the electrolyte solution level 42 or it can be mounted very close to the electrolyte solution level 42 and can even be as low as the electrolyte solution level 42.
  • the upper metal anode 20 of the electrochemical deposition metal method of the present invention is coupled to the anode of the power source 70, and the conductive roller 60 is coupled to the cathode of the power source 70.
  • the upper metal anode 20 undergoes an oxidation reaction to lose electron-generated metal ions.
  • the generated metal ions flow down to the upper surface 300 of the sheet substrate 10 with the electrolyte solution 40, and metal ions in the electrolyte solution 40 get electrons on the upper surface of the sheet substrate 10, and a reduction reaction occurs to form a metal and deposit on the cathode surface of the sheet substrate 10.
  • the sheet substrate 10 is continuously supplied with electrons from the negative electrode of the power source 70 through the conductive roller 60, thereby completing an electrochemical electrochemical redox reaction of the complete electrochemical deposition metal method of the present invention in the system.
  • the sheet substrate 10 material may not be a conductor, such as a printed wiring board.
  • the sheet substrate 10 may cause the sheet substrate 10 to generate a cathode surface by a specific process such as a method using conductive holes, under the action of the conduction of the conductive roller 60 and the negative potential of the negative electrode of the power source 70.
  • Inventive method of electrochemically depositing metals are described in detail below.
  • the sheet substrate 10 is a rigid substrate, such as a rigid printed wiring board.
  • the sheet substrate 10 can also be a flexible substrate, such as a flexible printed wiring board. Since the electrochemical deposition metal method of the present invention does not have solids in contact with the upper surface of the sheet substrate 10 and does not cause any damage to the upper surface of the sheet substrate, the electrochemical deposition metal method of the present invention is particularly suitable for electrochemically performing a flexible substrate. Deposit metal.
  • the electrochemical deposition metal method of the present invention can simultaneously perform electrochemical deposition of metal on the two surfaces of the sheet substrate by using the potential difference generated by the external power source and the light-inducing power source.
  • 3 is a view showing an embodiment of the method of electrochemically depositing metal of the present invention, in which an electroless deposition metal is simultaneously performed on a positive electrode and a negative electrode of an n-type crystalline silicon solar double-sided battery having a positive light-receiving surface as a positive electrode.
  • the sheet substrate is an n-type crystalline silicon solar double-sided battery 200 having a main light receiving surface as a positive electrode.
  • the light source 80 can be moved below the crystalline silicon solar cell 200.
  • the light generated by the light source 80 passes through the through-tube electrolyte solution container 50, and is irradiated onto the main light-receiving surface of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is the positive electrode.
  • the upper metal anode 20 and the lower metal anode 24 are simultaneously above the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is a positive electrode.
  • the electrolyte solution 40 is transferred through the infusion tube 34 to the upper surface of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is the positive electrode, that is, its negative surface 350, after contacting the upper metal anode 20.
  • the electrolyte solution 40 is transferred through the infusion tube 36 to the n-type crystal whose main light receiving surface is the positive electrode.
  • the lower surface of the silicon solar double-sided battery 200 that is, its positive surface 360.
  • the infusion tube 34 can be mounted above the electrolyte solution level 42 or it can be mounted very close to the electrolyte solution level 42 and can even be as low as the electrolyte solution level 42.
  • the infusion tube 36 is mounted below the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is a positive electrode.
  • the optimized mounting method is to install the infusion tube 36 on the lower surface of the n-type crystalline silicon solar double-sided battery 200 which is very close to the main light receiving surface.
  • the apparatus for carrying out the method of electrochemically depositing metal of the present invention in mass production is simplified.
  • the positive electrode of the external power source 70 is connected to the lower metal anode 24, and the negative electrode of the external power source 70 is connected to the conductive roller 60 of the support sheet substrate 200.
  • the positive electrode 360 of the n-type crystalline silicon solar double-sided battery 200 whose main receiving surface is positive is conducted under the action of the external power source 70 and the conductive roller 60 supporting the sheet substrate 200, and in the electrochemical reaction, relative to the lower metal anode 24 a cathode.
  • the metal ions in the electrolyte solution 40 receive electrons on the uninsulated area of the positive electrode 360 of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is the positive electrode, and then form an n-type metal deposited on the main light receiving surface as a positive electrode.
  • the positive electrode 360 of the crystalline silicon solar double-sided battery 200 is not insulated on the area.
  • the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is a positive electrode generates electric energy.
  • the electrolyte solution 40 flows down through the upper metal anode 20 to the surface of the negative electrode 350 of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is the positive electrode, the metal ions in the electrolyte solution 40 receive electrons. After the metal is formed, it is deposited on the negative electrode 350 of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is the positive electrode, without being insulated.
  • the upper metal anode 20 is formed by the positive electrode 360 of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is a positive electrode, and the metal anode is generated by the oxidation of the conductive roller 60 supporting the thin substrate 200. And dissolved in the electrolyte solution 40 to complete a complete electrochemical redox reaction.
  • the system simultaneously performs light-induced electrochemical deposition of metal on the surface of the anode 350 on the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is positive.
  • the metal is electrochemically deposited on an external power source on the surface of the positive electrode 350.
  • the potential difference determines the rate of the electrochemical reaction.
  • the generated potential of the solar cell 200 can be adjusted by adjusting the light intensity of the light source 80, thereby controlling the negative electrode 350 of the solar cell 200.
  • the rate at which metal is deposited it is also possible to control the rate at which metal is deposited on the positive electrode 360 of the solar cell 200 by adjusting the potential of the power source 70, and finally to attain the rate of electrochemically depositing metal at the positive electrode 360 and the negative electrode 350 of the solar cell 200.
  • the upper metal anode 20 may be electrically conductive from the positive electrode 360 of the n-type crystalline silicon solar double-sided battery 200 coupled to the main light-receiving surface as a positive electrode, that is, the support sheet substrate 200.
  • the roller 60 is instead coupled to the lower metal anode 24.
  • This connection method can reduce the dependence of the rate of electrochemical deposition of the metal of the negative electrode 350 of the n-type crystalline silicon solar double-sided battery 200 whose main light receiving surface is positive on the light intensity of the light source 80.
  • the electrochemical deposition metal method of the present invention can simultaneously perform electrochemical deposition of metal on the two surfaces of the p-type crystalline silicon solar cell by utilizing the potential difference generated by the external power source and the light-inducing power source.
  • 4 shows an embodiment of the method of electrochemically depositing metal of the present invention, in which an electroless deposition of a metal is simultaneously performed on a positive electrode and a negative electrode of a p-type crystalline silicon solar cell whose main light receiving surface is a negative electrode.
  • the sheet substrate is a p-type crystalline silicon solar cell 200 having a main light receiving surface as a negative electrode.
  • the p-type crystalline silicon solar cell 200 in which the main light receiving surface is a negative electrode is supported by the insulating roller 60. Since the main light receiving surface of the battery is a negative electrode, in carrying out the method of electrochemically depositing metal of the present invention, as shown in FIG. 4, the light source 80 can be moved below the crystalline silicon solar cell 200. The light generated by the light source 80 is transmitted through the transparent electrolyte solution container 50, and is irradiated onto the main light receiving surface of the p-type crystalline silicon solar cell 200 whose main light receiving surface is the negative electrode.
  • the upper metal anode 24 and the lower metal anode 20 are respectively placed above and below the p-type crystalline silicon solar cell 200 whose main light receiving surface is a negative electrode.
  • the upper metal anode 24 is placed on the upper surface of the p-type crystalline silicon solar cell 200 whose main light receiving surface is the negative electrode, but does not contact the upper surface of the p-type crystalline silicon solar cell 200 whose main light receiving surface is the negative electrode. .
  • the electrolyte solution 40 flows to the upper surface of the p-type crystalline silicon solar cell 200 whose main light receiving surface is the negative electrode, that is, its positive surface 360.
  • the upper metal anode 24 is not in physical contact with the upper surface of the p-type crystalline silicon solar cell 200 whose main light receiving surface is a negative electrode, the upper surface of the p-type crystalline silicon solar cell 200 having the upper metal anode 24 and the main light receiving surface as a negative electrode The distance is small, and when the electrolyte solution is present on the upper surface of the p-type crystalline silicon solar cell 200 whose main receiving surface is the negative electrode, the upper metal anode 24 is in contact with the surface of the electrolyte solution.
  • the lower metal anode 20 is placed under the lower surface of the p-type crystalline silicon solar cell 200 whose main light receiving surface is a negative electrode, and is directly immersed in the electrolytic solution 40.
  • the external electrode is externally disposed.
  • the positive electrode of the power source 70 is connected to the upper metal anode 24, and the negative electrode conductive roller 66 of the external power source 70 is connected.
  • the positive electrode 360 of the p-type crystalline silicon solar cell 200 whose main receiving surface is the negative electrode is conducted under the action of the external power source 70 and the conductive roller 66. In the electrochemical reaction, it is a cathode with respect to the upper metal anode 24.
  • the metal ions in the electrolyte solution 40 receive electrons on the uninsulated area on the positive electrode 360 of the p-type crystalline silicon solar cell 200 whose main light-receiving surface is the negative electrode, and then generate p-type crystalline silicon whose metal is deposited on the main light-receiving surface as a negative electrode.
  • the positive electrode 360 of the solar cell 200 is not on the insulated area.
  • the p-type crystalline silicon solar cell 200 whose main light receiving surface is the negative electrode generates electric energy.
  • the metal ions in the electrolyte solution 40 receive electrons on the surface of the negative electrode 350 of the p-type crystalline silicon solar cell 200 whose main light-receiving surface is a negative electrode, and are deposited on the negative electrode of the p-type crystalline silicon solar cell 200 whose main light-receiving surface is a negative electrode.
  • the 350 is not insulated on the area.
  • the lower metal anode 20 is formed by the conduction of the conductive roller 66 by the conduction of the conductive roller 66 under the action of the positive electrode 360 of the p-type crystalline silicon solar cell 200 whose main light receiving surface is the negative electrode, and then generates metal ions and dissolves in the electrolyte solution 40. , complete a complete electrochemical redox reaction.
  • the system simultaneously performs light-induced electrochemical deposition of the metal on the surface of the anode 350 and the anode for the p-type crystalline silicon solar cell 200 whose main light-receiving surface is the negative electrode.
  • An external power source on the 360 surface electrochemically deposits metal.
  • the potential difference determines the rate of the electrochemical reaction.
  • the generated potential of the solar cell 200 can be adjusted by adjusting the light intensity of the light source 80, thereby controlling the negative electrode 350 of the solar cell 200.
  • the rate at which metal is deposited it is also possible to control the rate at which metal is deposited on the positive electrode 360 of the solar cell 200 by adjusting the potential of the power source 70, and finally to attain the rate of electrochemically depositing metal at the positive electrode 360 and the negative electrode 350 of the solar cell 200.
  • the method of horizontal electrochemical deposition of metals of the present invention can be extended to simultaneously perform electrochemical deposition of metals on both surfaces of any sheet substrate.
  • the sheet substrate 100 is an insulator, and the conductive property between the upper surface and the lower surface of the sheet substrate 100 is realized by the conductive holes 400 that couple the upper and lower surfaces.
  • the method of electrochemically depositing metal of the present invention is to place the upper metal anode 20 above the liquid level 42 of the electrolyte solution 40.
  • the upper metal anode 20 can be formed into a tubular form.
  • the electrolyte solution 40 may flow through the inner surface of the metal anode 20 directly from the inside of the metal anode 20 to the upper surface of the sheet substrate 100 of the electrochemical deposition metal method of the present invention. .
  • the metal anode 20 can be placed within the electrolyte solution conduit 30, and the electrolyte solution conduit 30 can be a tube of inert material, such as a plastic tube, or a glass tube or the like.
  • the electrolyte solution 40 flows through the outer surface of the metal anode 20, and flows from the inside of the electrolyte solution conduit 30 to the upper surface of the sheet substrate 100 of the electrochemical deposition metal method of the present invention.
  • This structural design of the electrochemical deposition metal method of the present invention can improve the utilization of the metal anode 20 of the electrochemical deposition metal method of the present invention.
  • the metal anode 20 can be higher than the liquid level 42 of the electrolyte solution 40. In other embodiments, the metal anode 20 above the liquid level 42 of the electrolyte solution 40 may also be as low as the liquid level 42 of the electrolyte solution 40. In this embodiment, the lower metal anode 22 is placed at the bottom of the vessel 50 of the electrolyte solution. The liquid surface of the electrolyte solution 40 in the electrolyte solution container 50 just contacts the lower surface of the sheet substrate 100.
  • the upper metal anode 20 and the lower metal anode 22 of the electrochemical deposition metal method of the present invention are simultaneously coupled to the positive electrode of the power source 70, and the conductive roller 60 supporting the sheet substrate 100 is coupled to the negative electrode of the power source 70.
  • the upper metal anode 20 and the lower metal anode 22 are subjected to an oxidation reaction under the action of a positive potential of the power source 70 to lose electron-generated metal ions.
  • the generated metal ions flow down to the upper surface of the sheet substrate 100 with the electrolyte solution 40, or migrate from the bottom to the lower surface of the sheet substrate by the electrolyte 40 under the action of the potential difference, and the metal ions in the electrolyte solution 40 are on the sheet substrate 100.
  • the cathode surface is electron-derived, and a reduction reaction occurs to form a metal and is deposited on the cathode surface of the sheet substrate 100.
  • the sheet substrate 100 continuously obtains electrons from the negative electrode of the power source 70 by supporting the conductive roller 60 of the sheet substrate 100, thereby completing an electrochemical electrochemical redox reaction of the entire electrochemical deposition metal method of the present invention in the system.
  • the electrochemical deposition metal method of the present invention may also adopt two external power sources to respectively perform electrochemical deposition of metal on the upper and lower surfaces of the sheet substrate, and respectively control the electrochemical deposition metal of the upper and lower surfaces of the sheet substrate. s speed.
  • the upper metal anode 20 is coupled to the anode of one of the external power sources
  • the lower metal anode 22 is coupled to the anode of the other external power source
  • the cathodes of the two external power sources are simultaneously coupled to the conductive roller 60 of the support sheet substrate 100.
  • the upper metal anode 20 and the lower metal anode 22 respectively undergo an oxidation reaction to lose electron-generated metal ions under the action of the positive potentials of the two power sources.
  • the generated metal ions flow down to the upper surface of the sheet substrate 100 with the electrolyte solution 40, or migrate from the bottom to the lower surface of the sheet substrate by the electrolyte 40 under the action of the potential difference, and the metal ions in the electrolyte solution 40 are on the sheet substrate 100.
  • the cathode surface is electron-derived, and a reduction reaction occurs to form a metal and is deposited on the cathode surface of the sheet substrate 100.
  • the sheet substrate 100 is continuously obtained from the negative electrodes of the two external power sources by the conductive rollers 60 supporting the sheet substrate 100, thereby completing a complete electrochemical redox reaction of the electrochemical deposition metal method of the present invention in the system.
  • the method of electrochemically depositing metal of the present invention can achieve the rate of electrochemically depositing metals independently on the upper and lower surfaces of the sheet substrate 100, respectively.
  • the upper metal anode 20 and the lower metal anode 22 of the method of electrochemically depositing metals of the present invention may also use an insoluble anode.
  • the metal ions in the electrochemically deposited metal of the present invention are not produced by the upper metal anode 20 and the lower metal anode 22, but by the metal oxide dissolved in the electrolyte solution 40.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种在薄片基板(90)上实施电化学沉积金属的方法,上金属阳极(20)置于电解质溶液(40)液位(42)上方,电解质溶液(40)在接触上金属阳极(20)后自上而下地流到薄片基板(90)的上表面(310)。上金属阳极(20)在正电势的作用下发生氧化反应,失去电子生成金属离子后随电解质溶液(40)流下到薄片基板(90)的上表面(310)。电解质溶液(40)中的金属离子在薄片基板(90)上的阴极获得电子,生成金属并沉积在薄片基板(90)的阴极表面(310)。

Description

一种水平电化学沉积金属的方法 技术领域
本发明是有关电化学沉积金属的方法,特别是涉及在薄片基板上实施间隙或者连续水平电化学沉积金属的方法。本发明的电化学沉积金属的方法具有应用领域广泛以及适用于大规模生产的特点。
背景技术
目前,应用最广泛的晶体硅太阳能电池的金属电极的生成方法是,采用丝网印刷技术,把金属浆料,例如银浆和铝浆等,分别印刷在晶体硅太阳能电池的负极和正极表面。这些金属浆料经过高温烧结后,形成晶体硅太阳能电池的金属电极。该方法的优点是工艺简单,便于大规模生产。
随着晶体硅原材料的成本和价格的大幅度降低,银浆在生产晶体硅太阳能电池中的成本比例不断地上升。特别是,由于银粉价格的上升,使得银浆在整个生产晶体硅太阳能电池的成本中高于15%。因此,采用价格低廉的金属替代部分甚至全部银浆,在降低晶体硅太阳能电池的目标中有着显著的意义。
金属铜是替换昂贵银浆的方法之一。但是在高温下,扩散到晶体硅中得金属铜会明显降低晶体硅的少子寿命。因此,金属铜只能在低温下沉积到晶体硅太阳能电池上,从而生成晶体硅太阳能电池的电极。
基于以上的温度限制,采用金属铜替代银浆的一种方法是,首先在晶体硅太阳能电池负极上丝网印刷一层少量的银浆,在高温烧结后,使银浆与晶体硅太阳能电池的负极形成欧姆接触,即生成晶体硅太阳能电池的金属电极,然后在该银浆上再电化学沉积金属铜,满足收集和传输晶体硅太阳能电池所产生的电能的要求。
另外一种采用金属铜替换银浆的方法是在晶体硅太阳能电池上直接电化学沉积各种金属,例如镍铜银叠层,最终生成晶体硅太阳能电池的金属电极。
相比于丝网印刷银浆技术,电化学沉积金属是一个工艺简单,生产成本低的生成晶体硅太阳能电池金属电极的方法。因此,利用电化学的方法在晶体硅太阳能电池上沉积金属是目前相当活跃的一个技术研发领域。
专利CN101257059A公开了利用晶体硅太阳能电池受到光照后所产生的电位差,在晶体硅太阳能电池的负极表面实施电化学沉积金属的方法,即光诱导电化学沉积金属的方法。由于该方法缺乏可靠的晶体硅太阳能电池的正极电子接触技术,该方法只能在实验室得到应 用。
专利CN102083717A公开了一种在晶体硅太阳能电池的正极电子接触方法,使电化学沉积金属在大规模生产晶体硅太阳能电池过程中得到应用。但是,该方法存在二个缺点。一是晶体硅太阳能电池的负极表面,在上金属弹簧滚轮的作用下,与下滚轮不断地摩擦,不仅损伤了晶体硅太阳能电池的负极表面,而且对由电化学沉积金属的方法所沉积的金属电极也造成一定程度的破坏。另一个缺点是该方法有其应用的局限性,该方法仅限于在有丝网印刷铝背场的晶体硅太阳能电池上应用。
为了提高光电转换效率,晶体硅太阳能电池的背钝化技术将会逐渐取代传统的晶体硅太阳能电池的铝背场技术。在采用背钝化技术后,晶体硅太阳能电池的正极也可以使用电化学沉积金属的方法生成晶体硅太阳能电池的电极。但是以上所公开二种电化学沉积金属的方法只能在晶体硅太阳能电池的负极上实施电化学沉积金属。这样,如果晶体硅太阳能电池的负极和正极的电极都需要采用电化学沉积金属的方法生成电极,就必须对其负极和正极分别实施电化学沉积金属的过程,不利于大规模生产。
发明内容
针对以上现有技术的缺陷,本发明提供了一种对薄片基板实施水平电化学沉积金属的方法。
本发明的目的之一是寻求一种采用电化学沉积金属在晶体硅太阳能电池上生成金属电极的方法,该方法在电化学沉积金属的过程中,晶体硅太阳能电池的负极表面不接触任何固体,避免晶体硅太阳能电池的负极表面以及金属在被沉积后受到由于固体之间的摩擦而造成的损伤。
本发明的另一个目的是寻求一种采用电化学沉积金属在晶体硅太阳能电池上生成金属电极的方法,该方法可以同时对晶体硅太阳能电池的负极表面和正极表面实施电化学沉积金属的过程,简化双面晶体硅太阳能电池的金属电极生成工艺。
本发明的进一步目的是寻求一种采用电化学沉积金属在晶体硅太阳能电池上生成金属电极的方法,该方法具有广泛的适用性和实用性,即,该方法既可以单独在太阳能电池的p型电极上电镀,也能单独在太阳能电池的n型电极上电镀,或者在太阳能电池的p型电极和n型电极上同时实施电镀。
本发明的最后一个目的是除了寻求一种采用电化学沉积金属在晶体硅太阳能电池上生成金属电极的方法外,进一步寻求适用性更广泛的在其它薄片基板上的电化学沉积金属的方法,扩大本发明的应用范围。
为了实现上述目的,本发明公开了一种在薄片基板上实施电化学沉积金属的方法。本发明所公开的在薄片基板上实施电化学沉积金属的方法是把电化学沉积金属工艺中的上金属阳极置于待电化学沉积金属的薄片基板上表面上的电解质溶液的上方,或者其它地方,电化学沉积金属工艺中电解质溶液在通过上金属阳极后流到薄片基板的上表面。上金属阳极在正电势的作用下发生氧化反应,失去电子生成金属离子后随电解质溶液流下到薄片基板的上表面。电解质溶液中的金属离子在薄片基板上的阴极表面获得电子,生成固体金属并沉积在薄片基板的阴极表面。
本发明的优点之一是,在上金属阳极上发生氧化反应所生成的金属离子,被流过的电解质溶液及时地传输到阴极表面,提高了该电化学沉积金属过程中的氧化还原反应的有效性。同样,在本发明的电化学沉积金属方法中,阴极表面不断的被自上而下的电解质溶液冲刷,可以使金属离子的浓度在该阴极表面的任何一点始终保持均匀,从而提高了沉积金属的均匀性。进一步,阴极表面不断的被自上而下的电解质溶液冲刷的过程还能够避免任何可能生成的气体积累在阴极表面。
本发明的另一个优点是在实施本发明的电化学沉积金属的过程中,薄片基板的上表面可以不与任何固体接触。当本发明的电化学沉积金属方法应用在晶体硅太阳能电池负极(n型表面)表面沉积金属时,即薄片基板是晶体硅太阳能电池的情况下,本发明的这个优点显得更为突出。例如,目前大多数晶体硅太阳能电池的主受光面是负极,负极主受光面的质量直接关系到该晶体硅太阳能电池的光电转换效率。由于本发明的电化学沉积金属方法使晶体硅太阳能电池的负极表面不与任何固体接触,有效地避免了晶体硅太阳能电池的负极表面被受到损坏的可能。
晶体硅太阳能电池在光照下会产生电能,当本发明的电化学沉积金属方法应用在晶体硅太阳能电池表面沉积金属时,可以采用光诱导电化学沉积金属的方法。在采用光诱导电化学沉积金属的方法的时候,本发明的电化学沉积金属方法在晶体硅太阳能电池负极上方的电解质溶液的液体厚度很小,减小了电解质溶液对光的吸收,在实施本发明的电化学沉积金属方法的时候,可以最大限度的利用光照能量。
本发明的另一个优点是本发明的电化学沉积金属方法在实际应用中可以非常灵活的被使用。例如,可以使用传统的外置电源的方法实施本发明的电化学沉积金属方法。也可以使用光诱导电化学沉积金属的方法实施本发明的电化学沉积金属方法。更进一步,传统的外置电源的方法和光诱导电化学沉积金属方法可以同时被一起使用来实施本发明的电化学沉积金属方法。
本发明的电化学沉积金属方法在实际应用中可以被非常灵活的使用的另一个特征是,在保证电化学沉积金属工艺中的电路是闭路的条件下,金属阳极的位置可以有更多的选择。例如,可以使金属阳极不直接面对电化学沉积金属的负极表面。
在薄片基板是晶体硅太阳能电池的情况下,本发明的电化学沉积金属方法既可以在晶体硅太阳能电池的负极表面实施本发明的电化学沉积金属方法,也可以在晶体硅太阳能电池的正极上实施本发明的电化学沉积金属方法,更可以同时在晶体硅太阳能电池的负极和正极上实施本发明的电化学沉积金属方法。因此,本发明的其中一个重要优点是,本发明的电化学沉积金属的方法使得在太阳能电池的正极和负极上同时实施电化学沉积金属成为现实。
本发明的电化学沉积金属方法,非常适用于具有水平前进式结构的设备。水平前进式设备使得上料和下料步骤变得十分的简单,更有利于实现整个生产线的自动化。
本发明的另一个优点是实施本发明的电化学沉积金属方法的设备非常简单。在实施本发明的电化学沉积金属方法过程中,薄片基板上有一层电解质溶液,依靠该电解质溶液层的自重,能使薄片基板紧密的贴在支撑它的导电滚轮上,因此在实施本发明的电化学沉积金属方法的电解质溶液槽内可以不需要有上滚轮,不仅简化了设备结构,而且节约了设备的成本。这些优点在薄片基板是柔性材料时显得更为重要。
当然,本发明的还有一个优点是,本发明的电化学沉积金属方法即适用于连续电化学沉积金属,也适用于间隙电化学沉积金属。也就是说,采用本发明的电化学沉积金属方法,无论采用连续电化学沉积金属,或者采用间隙电化学沉积金属,所产生的结果可以互通。例如,在实验室采用本发明的间隙式电化学沉积金属方法的结果,可以不加任何修改,应用到大规模生产的水平前进式设备。
附图说明
图1.本发明电化学沉积金属方法在p型丝网印刷电池上应用之一的截面示意图
图2.本发明电化学沉积金属方法在导电薄片基板上应用之一的截面示意图
图3.本发明电化学沉积金属方法在n型双面电池上应用之一的截面示意图
图4.本发明电化学沉积金属方法在p型太阳能电池上应用之一的截面示意图
图5.本发明电化学沉积金属方法在薄片基板上应用之一的截面示意图。
具体实施方式
参照附图,可以对本发明做进一步详细说明。显然,这些说明并不是用于限制本发明。在不背离本发明精神及其实质情况下,本领域的技术人员可根据本发明做出各种其它相应的组合,变更或修改。这些相应的组合,变更和修改都属于本发明所附权力要求的保护范 围内。
图1展示了利用光诱导电化学沉积金属方法实施本发明的电化学沉积金属的方法的一个实施例。在本实施例中,薄片基板90是一个p型晶体硅丝网印刷太阳能电池。所谓的p型晶体硅丝网印刷太阳能电池是指该电池的正极的金属电极320是由丝网印刷铝浆后烧结而生成的。在p型晶体硅丝网印刷太阳能电池90的结构中,丝网印刷的铝浆基本上覆盖绝大多数该太阳能电池的正极面积。当p型晶体硅丝网印刷太阳能电池90的负极表面310接收到光源80的光照后产生电能,在金属电极320上产生的正电势,通过支撑它的导电滚轮60传输给本发明电化学沉积金属方法的上金属阳极20。本发明电化学沉积金属方法的上金属阳极20在p型晶体硅丝网印刷太阳能电池的正电势的作用下,发生氧化反应失去电子生成金属离子。所生成的金属离子随电解质溶液40流下到p型晶体硅丝网印刷太阳能电池90的负极表面310,电解质溶液40中的金属离子在处于上金属阳极20下方的p型晶体硅丝网印刷太阳能电池90的负极表面310没有被绝缘的面积上得到电子,发生还原反应生成金属并沉积在p型晶体硅丝网印刷太阳能电池的负极表面310的没有被绝缘的面积上,从而在该系统内完成一个完整的本发明电化学沉积金属方法的光诱导电化学氧化还原反应。
为了加快光诱导电化学沉积金属的速率,或者为了降低光诱导电化学沉积金属对光源80的光照度的要求,本发明的电化学沉积金属的方法也可以在图1的实施例中加一个外置电源。在本发明的电化学沉积金属的方法的这种应用中,把外置电源的正极与上金属阳极20联接,把外置电源的负极与导电滚轮60联接,利用外置电源的电势,增加电化学沉积金属的电位差。
在附图1的实施例中,本发明的电化学沉积金属的方法是把上金属阳极20放置于电解质溶液40的液面42上方。上金属阳极20可以做成管状形式。在把上金属阳极20做成管状形式的实施例中,电解质溶液40可以接触上金属阳极20的内表面,直接从上金属阳极20的管内流向本发明电化学沉积金属方法的薄片基板90的负极表面310。把本发明的电化学沉积金属方法中的上金属阳极20做成管状形式,可以简化实施本发明的电化学沉积金属方法的装置。
在其它一些实施例中,上金属阳极20可以被放置于电解质溶液导管30内,电解质溶液导管30可以使用惰性材料管,如塑料管,或者玻璃管等。电解质溶液40接触上金属阳极20的外表面,从电解质溶液导管30内流向本发明的本发明电化学沉积金属方法的太阳能电池的薄片基板90的负极上表面310。本发明电化学沉积金属方法的这种结构设计,可以提高本发明电化学沉积金属方法的上金属阳极20的利用率。
在一些实施方式中,上金属阳极20可以高于电解质溶液40的液面42。在其它一些实施方式中,在电解质溶液40的液面42上方的上金属阳极20也可以低至与电解质溶液40的液面42接触。
流经本发明电化学沉积金属方法的上金属阳极20后的电解质溶液40流向本发明电化学沉积金属方法的太阳能电池的薄片基板90的负极上表面310。流出薄片基板90的负极上表面310的电解质溶液40经电解质溶液槽50收集后返回电解质溶液导液管30,完成流经本发明电化学沉积金属方法的上金属阳极20后再流向本发明电化学沉积金属方法的薄片基板90负极上表面310的电解质溶液循环。
在图1中,导电滚轮60支撑着薄片基板90。在本发明电化学沉积金属方法的一些实施例中,导电滚轮60可以左右转动,使本发明电化学沉积金属方法所沉积的金属更加均匀。在其它一些本发明电化学沉积金属方法的实施例中,导电滚轮60可以向一个方向转动,例如在一些具有水平前进式结构的大规模生产设备中,向一个方向转动的导电滚轮60可以连续完成本发明电化学沉积金属的方法。
导电滚轮60可以采用金属材料。在本发明的一些实施例中,可以采用绝缘材料覆盖该金属导电滚轮的大部分不需要导电的面积,减少在实施本发明的电化学沉积金属方法的过程中由于短路所造成的电位差的损失。在本发明的其它一些实施例中,导电滚轮60也可以采用绝缘材料。在这些实施例中,可以采用导电材料联接需要导电的部分导电滚轮60的面积,以达到导电滚轮的效果。
在一些本发明电化学沉积金属方法的其它应用中,导电滚轮60可以被改成一定数量的固定导电支撑点,特别在实施本发明电化学沉积金属方法中采用间隙电化学沉积金属方法时,改用一定数量的固体导电支撑能够使得实施本发明电化学沉积金属方法更为简单。
除了太阳能电池以外,本发明的水平电化学沉积金属的方法还可以被扩展到其它薄片基板。参照附图2,在一些本发明电化学沉积金属方法的实施例中,薄片基板10是导体,即薄片基板10的上表面和下表面之间的导电性质是由薄片基板10的自身的导电性质所决定的。
进一步,本发明的上金属阳极不是一般物理意义的在上方的金属阳极,而是在电化学沉积金属意义上相对于薄片基板10的上表面阴极的上金属阳极。或者说,在本发明的电化学沉积金属的方法中,电解质溶液接触金属阳极后流向薄片基板10的上表面的金属阳极被称之为上金属阳极。因此,在实施本发明的电化学沉积金属的方法的具体实施例中,可以把上金属阳极放置于任何合适的位置。在附图2的实施例中,上金属阳极20被放置在电解 质溶液槽50的底部。电解质溶液40在接触上金属阳极20后通过输液管32被传送到薄片基板10的上表面。输液管32可以被安装在电解质溶液液面42的上方,也可以被安装在非常靠近电解质溶液液面42的位置,甚至可以低至接触到电解质溶液液面42。
在附图2的实施例中,本发明电化学沉积金属方法的上金属阳极20被联接到电源70的正极,导电滚轮60被联接到电源70的负极。上金属阳极20在电源70正电势的作用下,发生氧化反应失去电子生成金属离子。所生成的金属离子随电解质溶液40流下到薄片基板10的上表面300,电解质溶液40中的金属离子在薄片基板10的上表面得到电子,发生还原反应生成金属并沉积在薄片基板10的阴极表面。薄片基板10通过导电滚轮60,从电源70的负极不断的得到电子,从而在该系统内完成一个完整的本发明电化学沉积金属方法的电化学氧化还原反应。
在其它一些本发明电化学沉积金属方法的实施例中,薄片基板10材料可以不是导体,例如印刷线路板。在这些实施例中,薄片基板10可以通过一些特定的处理,例如使用导电孔的方法,在导电滚轮60的传导和电源70负极的负电势的作用下,使薄片基板10产生阴极表面,完成本发明的电化学沉积金属的方法。
在另一些实施例中薄片基板10是刚性基板,例如刚性印刷线路板。在其它一些实施例中,薄片基板10也可以是柔性基板,例如柔性印刷线路板。由于本发明的电化学沉积金属方法没有固体与薄片基板10的上表面接触,不会对薄片基板的上表面造成任何损伤,所以本发明的电化学沉积金属方法特别适用于对柔性基板实施电化学沉积金属。
进一步,本发明电化学沉积金属方法还可以利用外置电源和光诱导电源所产生的电位差,分别对薄片基板的二个表面同时实施电化学沉积金属。附图3展示了本发明的电化学沉积金属的方法对主受光面为正极的n型晶体硅太阳能双面电池的正极和负极同时实施电化学沉积金属的实施例。在该实施例中,薄片基板是一个主受光面为正极的n型晶体硅太阳能双面电池200。由于该电池的主受光面是正极,在实施本发明的电化学沉积金属的方法时,如图3所示,可以把光源80移至该晶体硅太阳能电池200的下方。光源80所产生的光透过透管电解质溶液容器50,照射到主受光面为正极的n型晶体硅太阳能双面电池200的主受光面。
在本实施例中,上金属阳极20和下金属阳极24同时在主受光面为正极的n型晶体硅太阳能双面电池200的上方。电解质溶液40在接触上金属阳极20后通过输液管34被传送到主受光面为正极的n型晶体硅太阳能双面电池200的上表面,即它的负极表面350。电解质溶液40在接触到下金属阳极24后通过输液管36被传送到主受光面为正极的n型晶体 硅太阳能双面电池200的下表面,即它的正极表面360。输液管34可以被安装在电解质溶液液面42的上方,也可以被安装在非常靠近电解质溶液液面42的位置,甚至可以低至接触到电解质溶液液面42。输液管36被安装在主受光面为正极的n型晶体硅太阳能双面电池200的下方。优化的安装方法是把输液管36安装在非常靠近主受光面为正极的n型晶体硅太阳能双面电池200的下表面。在本实施例中,由于上金属阳极20和下金属阳极24被放置在相对集中的地方,简化了在大规模生产中实施本发明的电化学沉积金属的方法的设备。
为了达到同时在主受光面为正极的n型晶体硅太阳能双面电池200的正极360和负极350二个电极同时实施本发明的电化学沉积金属的目的,在本发明的这个实施例中,把外置电源70的正极与下金属阳极24连接,把外置电源70的负极与支撑薄片基板200的导电滚轮60连接。主受光面为正极的n型晶体硅太阳能双面电池200的正极360在外置电源70的作用下和支撑薄片基板200的导电滚轮60传导下,在电化学反应中,相对于下金属阳极24是一个阴极。这样,电解质溶液40中的金属离子在主受光面为正极的n型晶体硅太阳能双面电池200的正极360上没有被绝缘的面积上接收电子后生成金属沉积在主受光面为正极的n型晶体硅太阳能双面电池200的正极360上没有被绝缘的面积上。
在本发明的该实施例中,如果开启光源80,主受光面为正极的n型晶体硅太阳能双面电池200就会产生电能。当电解质溶液40经过上金属阳极20流下到主受光面为正极的n型晶体硅太阳能双面电池200的负极350的表面上没有被绝缘的面积上后,在电解质溶液40中的金属离子接受电子,生成金属后沉积在主受光面为正极的n型晶体硅太阳能双面电池200的负极350上没有被绝缘的面积上。上金属阳极20在主受光面为正极的n型晶体硅太阳能双面电池200的正极360的作用下,通过支撑薄片基板200的导电滚轮60的传导,上金属阳极20发生氧化反应之后生成金属离子并溶解在电解质溶液40中,完成一个完整的电化学氧化还原反应。在该实施例中,如果同时开启光源80和外置电源70,该系统分别对主受光面为正极的n型晶体硅太阳能双面电池200同时实施对负极350表面的光诱导电化学沉积金属和对正极350表面的外置电源电化学沉积金属。
电化学氧化还原反应中,电位差决定了该电化学反应的速率。在利用光诱导电化学沉积金属方法实施本发明的电化学沉积金属的方法过程中,可以通过调节光源80的光强调节太阳能电池200的所产生的电势,从而控制在太阳能电池200的负极350上沉积金属的速率。另外一方面,也可以通过调节电源70的电势,控制在太阳能电池200的正极360上沉积金属的速率,最后达到随意控制在太阳能电池200的正极360和负极350的电化学沉积金属的速率。
在本发明电化学沉积金属方法的一些其它的实施例中,可以把上金属阳极20从联接主受光面为正极的n型晶体硅太阳能双面电池200的正极360,即支撑薄片基板200的导电滚轮60,改为联接下金属阳极24。这种连接方法可以降低主受光面为正极的n型晶体硅太阳能双面电池200的负极350的电化学沉积金属的速率对光源80的光照强度的依赖。
对实施例3稍作改动,本发明的电化学沉积金属方法就可以利用外置电源和光诱导电源所产生的电位差,分别对p型晶体硅太阳能电池的二个表面同时实施电化学沉积金属。附图4展示了本发明的电化学沉积金属的方法对主受光面为负极的p型晶体硅太阳能电池的正极和负极同时实施电化学沉积金属的实施例。在该实施例中,薄片基板是一个主受光面为负极的p型晶体硅太阳能电池200。该主受光面为负极的p型晶体硅太阳能电池200被绝缘滚轮60支撑。由于该电池的主受光面是负极,在实施本发明的电化学沉积金属的方法时,如图4所示,可以把光源80移至该晶体硅太阳能电池200的下方。光源80所产生的光透过透光电解质溶液容器50,照射到主受光面为负极的p型晶体硅太阳能电池200的主受光面。
在本实施例中,上金属阳极24和下金属阳极20分别放置于主受光面为负极的p型晶体硅太阳能电池200的上方和下方。在本实施例中,上金属阳极24被放置主受光面为负极的p型晶体硅太阳能电池200的上表面之上,但不接触主受光面为负极的p型晶体硅太阳能电池200的上表面。电解质溶液40在接触上金属阳极24后流向主受光面为负极的p型晶体硅太阳能电池200的上表面,即它的正极表面360。尽管上金属阳极24与主受光面为负极的p型晶体硅太阳能电池200的上表面没有物理接触,但是,由于上金属阳极24与主受光面为负极的p型晶体硅太阳能电池200的上表面的距离很小,当主受光面为负极的p型晶体硅太阳能电池200的上表面上存在电解质溶液时,上金属阳极24与电解质溶液的表面接触。下金属阳极20被放置在主受光面为负极的p型晶体硅太阳能电池200的下表面下方,并直接浸没在电解溶液40中。
为了达到同时在主受光面为负极的p型晶体硅太阳能电池200的正极360和负极350二个电极同时实施本发明的电化学沉积金属的目的,在本发明的这个实施例中,把外置电源70的正极与上金属阳极24连接,把外置电源70的负极导电滚轮66连接。主受光面为负极的p型晶体硅太阳能电池200的正极360在外置电源70的作用下和导电滚轮66传导下,在电化学反应中,相对于上金属阳极24是一个阴极。这样,电解质溶液40中的金属离子在主受光面为负极的p型晶体硅太阳能电池200的正极360上没有被绝缘的面积上接收电子后生成金属沉积在主受光面为负极的p型晶体硅太阳能电池200的正极360上没有被绝缘的面积上。
在本发明的该实施例中,如果开启光源80,主受光面为负极的p型晶体硅太阳能电池200就会产生电能。电解质溶液40中的金属离子在主受光面为负极的p型晶体硅太阳能电池200的负极350的表面在接受电子,生成金属后沉积在主受光面为负极的p型晶体硅太阳能电池200的负极350上没有被绝缘的面积上。下金属阳极20在主受光面为负极的p型晶体硅太阳能电池200的正极360的作用下,通过导电滚轮66的传导,下金属阳极20发生氧化反应之后生成金属离子并溶解在电解质溶液40中,完成一个完整的电化学氧化还原反应。在该实施例中,如果同时开启光源80和外置电源70,该系统分别对主受光面为负极的p型晶体硅太阳能电池200同时实施对负极350表面的光诱导电化学沉积金属和对正极360表面的外置电源电化学沉积金属。
电化学氧化还原反应中,电位差决定了该电化学反应的速率。在利用光诱导电化学沉积金属方法实施本发明的电化学沉积金属的方法过程中,可以通过调节光源80的光强调节太阳能电池200的所产生的电势,从而控制在太阳能电池200的负极350上沉积金属的速率。另外一方面,也可以通过调节电源70的电势,控制在太阳能电池200的正极360上沉积金属的速率,最后达到随意控制在太阳能电池200的正极360和负极350的电化学沉积金属的速率。
除了双面太阳能电池以外,本发明的水平电化学沉积金属的方法还可以被扩展到在任意薄片基板的二个表面同时实施电化学沉积金属。参照附图5,在该实施例中,薄片基板100是绝缘体,薄片基板100的上表面和下表面之间的导电性质是由联接上下表面的导电孔400来实现的。
在该实施例中,本发明的电化学沉积金属的方法是把上金属阳极20放置于电解质溶液40的液面42上方。在一些实施方式中,可以把上金属阳极20做成管状形式。在把上金属阳极20做成管状形式的实施例中,电解质溶液40可以流经金属阳极20的内表面,直接从金属阳极20的管内流向本发明电化学沉积金属方法的薄片基板100的上表面。把本发明的电化学沉积金属方法中的金属阳极20做成管状形式,可以简化实施本发明的电化学沉积金属方法的装置。
在其它一些实施例中,金属阳极20可以被放置于电解质溶液导管30内,电解质溶液导管30可以使用惰性材料管,如塑料管,或者玻璃管等。电解质溶液40流经金属阳极20的外表面,从电解质溶液导管30内流向本发明的本发明电化学沉积金属方法的薄片基板100的上表面。本发明电化学沉积金属方法的这种结构设计,可以提高本发明电化学沉积金属方法的金属阳极20的利用率。
在一些实施方式中,金属阳极20可以高于电解质溶液40的液面42。在其它一些实施方式中,在电解质溶液40的液面42上方的金属阳极20也可以低至与电解质溶液40的液面42接触。在该实施例中,下金属阳极22被放置在电解质溶液的容器50的底部。在电解质溶液容器50内的电解质溶液40的液面刚好接触薄片基板100的下表面。
在附图5的实施例中,本发明电化学沉积金属方法的上金属阳极20和下金属阳极22同时被联接到电源70的正极,支撑薄片基板100的导电滚轮60被联接到电源70的负极。上金属阳极20和下金属阳极22在电源70正电势的作用下,发生氧化反应失去电子生成金属离子。所生成的金属离子随电解质溶液40流下到薄片基板100上表面,或者在电位差的作用下由下而上通过电解质40迁移到薄片基板的下表面,电解质溶液40中的金属离子在薄片基板100的阴极表面得到电子,发生还原反应生成金属并沉积在薄片基板100的阴极表面。薄片基板100通过支撑薄片基板100的导电滚轮60,从电源70的负极不断的得到电子,从而在该系统内完成一个完整的本发明电化学沉积金属方法的电化学氧化还原反应。
在以上的实施例中,本发明电化学沉积金属方法还可以采用二个外置电源,分别实施对薄片基板的上下表面的电化学沉积金属,并且分别控制薄片基板的上下表面的电化学沉积金属的速率。例如把上金属阳极20联接其中一个外置电源的正极,下金属阳极22联接另一个外置电源的正极,二个外置电源的负极同时联接支撑薄片基板100的导电滚轮60。上金属阳极20和下金属阳极22分别在二个电源的正电势的作用下,发生氧化反应失去电子生成金属离子。所生成的金属离子随电解质溶液40流下到薄片基板100上表面,或者在电位差的作用下由下而上通过电解质40迁移到薄片基板的下表面,电解质溶液40中的金属离子在薄片基板100的阴极表面得到电子,发生还原反应生成金属并沉积在薄片基板100的阴极表面。薄片基板100通过支撑薄片基板100的导电滚轮60,分别从二个外置电源的负极不断的得到电子,从而在该系统内完成一个完整的本发明电化学沉积金属方法的电化学氧化还原反应。通过调节该二个外置电源,本发明的电化学沉积金属的方法可以实现分别独立控制在薄片基板100的上下二个表面的电化学沉积金属的速率。
根据不同的电化学沉积金属的应用,在其它一些实施例中,本发明的电化学沉积金属的方法的上金属阳极20和下金属阳极22还可以使用非溶解阳极。在这些实施例中,本发明的电化学沉积金属中的金属离子不是由上金属阳极20和下金属阳极22产生,而是由溶解在电解质溶液40中的金属氧化物提供。

Claims (11)

  1. 一种对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的水平电化学沉积金属的方法是把上金属阳极放置于待电化学沉积金属的薄片基板的上阴极表面之上,或者使电解质溶液在接触上金属阳极后向下连续流向待电化学沉积金属的薄片基板的上阴极表面;电解质溶液浸没下金属阳极后与待电化学沉积金属的薄片基板的下阴极表面接触,或者电解质溶液接触下金属阳极后连续向上喷向待电化学沉积金属的薄片基板的下阴极表面。
  2. 根据权利要求1所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的把上金属阳极放置于待电化学沉积金属的薄片基板的上阴极表面之上是把上金属阳极与在该薄片基板的上阴极表面之上的电解质溶液接触;所述的电解质溶液浸没下金属阳极后与待电化学沉积金属的薄片基板的下阴极表面接触,或者电解质溶液接触下金属阳极后连续向上喷向待电化学沉积金属的薄片基板的下阴极表面是把下金属阳极放置在待电化学沉积金属的薄片基板的下方。
  3. 根据权利要求1所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的电解质溶液接触上金属阳极后向下连续流向待电化学沉积金属的薄片基板的上阴极表面是把上金属阳极放置于任意位置,电解质溶液在接触该任意位置的上金属阳极后被输送到待电化学沉积金属的薄片基板的上阴极表面上。
  4. 根据权利要求1,2或3所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的水平电化学沉积金属的方法没有下金属阳极,对除该薄片基板的下表面以外的阴极表面实施电化学沉积金属,或者没有上金属阳极,对除该薄片基板的上表面以外的阴极表面实施电化学沉积金属,或者同时有上金属阳极和下金属阳极,对薄片基板的所有阴极表面实施电化学沉积金属。
  5. 根据权利要求1,2或3所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的待电化学沉积金属的薄片基板的厚度小于3毫米。
  6. 根据权利要求5所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的待电化学沉积金属的薄片基板是刚性体,或者是柔性体。
  7. 根据权利要求5所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的待电化学沉积金属的薄片基板是导电体,或者是半导体, 或者是由在绝缘薄片基板上的导电材料所形成的导电体。
  8. 根据权利要求7所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的半导体是太阳能电池。
  9. 根据权利要求1,2或3所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的对薄片基板的阴极表面实施电化学沉积金属是光诱导电化学沉积金属,或者是外置电源电化学沉积金属,或者是同时实施光诱导电化学沉积金属和外置电源电化学沉积金属。
  10. 根据权利要求1,2或3所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的电解质溶液包括金属离子,酸根,水和添加剂。
  11. 根据权利要求1,2或3所述的对薄片基板的阴极表面实施水平电化学沉积金属的方法,其特征在于,所述的上金属阳极和下金属阳极是可溶性阳极,或者是不可溶性阳极,上金属阳极和下金属阳极是相同的金属材料,或者是不同的金属材料。
PCT/CN2015/091697 2014-10-20 2015-10-11 一种水平电化学沉积金属的方法 WO2016062206A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15852603.8A EP3206236B1 (en) 2014-10-20 2015-10-11 Method for horizontally electrochemically depositing metal
US15/519,782 US20170250295A1 (en) 2014-10-20 2015-10-11 Method for horizontally electrochemically depositing metal
JP2017521075A JP6431980B2 (ja) 2014-10-20 2015-10-11 金属の水平電気化学堆積法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410557444.5 2014-10-20
CN201410557444.5A CN105590987B (zh) 2014-10-20 2014-10-20 一种水平电化学沉积金属的方法

Publications (1)

Publication Number Publication Date
WO2016062206A1 true WO2016062206A1 (zh) 2016-04-28

Family

ID=55760285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091697 WO2016062206A1 (zh) 2014-10-20 2015-10-11 一种水平电化学沉积金属的方法

Country Status (5)

Country Link
US (1) US20170250295A1 (zh)
EP (1) EP3206236B1 (zh)
JP (1) JP6431980B2 (zh)
CN (1) CN105590987B (zh)
WO (1) WO2016062206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784047A (zh) * 2016-12-30 2017-05-31 苏州阿特斯阳光电力科技有限公司 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057106B1 (fr) 2016-10-05 2018-11-09 Electricite De France Contacts perfectionnes d'une cellule photovoltaique a deux faces actives
WO2018181499A1 (ja) * 2017-03-31 2018-10-04 株式会社カネカ 光電変換素子及び光電変換素子の製造方法
CN110528054B (zh) * 2019-08-31 2021-05-18 江西豪越群电子有限公司 一种pcb板不停槽电沉积镍的装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183799A (en) * 1978-08-31 1980-01-15 Production Machinery Corporation Apparatus for plating a layer onto a metal strip
CN1300882A (zh) * 1999-12-21 2001-06-27 住友特珠金属株式会社 电镀处理装置和电镀处理方法
US20060163078A1 (en) * 2005-01-25 2006-07-27 Hutchinson Technology Incorporated Single pass, dual thickness electroplating system for head suspension components
CN101257059A (zh) * 2007-11-30 2008-09-03 无锡尚德太阳能电力有限公司 一种电化学沉积太阳能电池金属电极的方法
JP2011225923A (ja) * 2010-04-16 2011-11-10 Nippon Steel Engineering Co Ltd 水平型流体支持めっき装置
US20120043215A1 (en) * 2010-08-17 2012-02-23 EncoreSolar, Inc. Method and apparatus for electrodepositing large area cadmium telluride thin films for solar module manufacturing
TW201347001A (zh) * 2011-11-15 2013-11-16 Newsouth Innovations Pty Ltd 用於太陽能電池之金屬接點架構
CN103834982A (zh) * 2012-11-22 2014-06-04 宝山钢铁股份有限公司 一种水平式电镀槽及其电镀区阴阳极间隙自动补偿方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251327A (en) * 1980-01-14 1981-02-17 Motorola, Inc. Electroplating method
JP3644195B2 (ja) * 1997-05-15 2005-04-27 豊田合成株式会社 基材へのめっき方法
WO1999041434A2 (en) * 1998-02-12 1999-08-19 Acm Research, Inc. Plating apparatus and method
JP4615094B2 (ja) * 1999-06-03 2011-01-19 古河電気工業株式会社 部分めっき方法
US20070256937A1 (en) * 2006-05-04 2007-11-08 International Business Machines Corporation Apparatus and method for electrochemical processing of thin films on resistive substrates
DE102009029551B4 (de) * 2009-09-17 2013-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur galvanischen Beschichtung von Substraten
DE102009057466A1 (de) * 2009-12-03 2011-06-09 Hübel, Egon, Dipl.-Ing. (FH) Vorrichtung und Verfahren zum elektrischen Kontaktieren von Behandlungsgut in Galvanisieranlagen
CN101789468B (zh) * 2010-02-26 2011-07-20 华南师范大学 电刷镀制备太阳能电池阵列电极的方法
US20120055612A1 (en) * 2010-09-02 2012-03-08 International Business Machines Corporation Electrodeposition methods of gallium and gallium alloy films and related photovoltaic structures
KR101449942B1 (ko) * 2012-01-17 2014-10-17 주식회사 호진플라텍 전기도금 및 광 유도 도금을 병행하는 태양전지 기판용 도금장치 및 도금 방법
DE102012221012B4 (de) * 2012-11-16 2023-01-19 Atotech Deutschland Gmbh Vorrichtung und Verfahren zur Behandlung von flachem Behandlungsgut

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183799A (en) * 1978-08-31 1980-01-15 Production Machinery Corporation Apparatus for plating a layer onto a metal strip
CN1300882A (zh) * 1999-12-21 2001-06-27 住友特珠金属株式会社 电镀处理装置和电镀处理方法
US20060163078A1 (en) * 2005-01-25 2006-07-27 Hutchinson Technology Incorporated Single pass, dual thickness electroplating system for head suspension components
CN101257059A (zh) * 2007-11-30 2008-09-03 无锡尚德太阳能电力有限公司 一种电化学沉积太阳能电池金属电极的方法
JP2011225923A (ja) * 2010-04-16 2011-11-10 Nippon Steel Engineering Co Ltd 水平型流体支持めっき装置
US20120043215A1 (en) * 2010-08-17 2012-02-23 EncoreSolar, Inc. Method and apparatus for electrodepositing large area cadmium telluride thin films for solar module manufacturing
TW201347001A (zh) * 2011-11-15 2013-11-16 Newsouth Innovations Pty Ltd 用於太陽能電池之金屬接點架構
CN103834982A (zh) * 2012-11-22 2014-06-04 宝山钢铁股份有限公司 一种水平式电镀槽及其电镀区阴阳极间隙自动补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3206236A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784047A (zh) * 2016-12-30 2017-05-31 苏州阿特斯阳光电力科技有限公司 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池

Also Published As

Publication number Publication date
CN105590987B (zh) 2022-06-14
JP2017536477A (ja) 2017-12-07
EP3206236A1 (en) 2017-08-16
EP3206236B1 (en) 2019-12-11
EP3206236A4 (en) 2017-11-22
CN105590987A (zh) 2016-05-18
JP6431980B2 (ja) 2018-11-28
US20170250295A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5123394B2 (ja) 太陽電池の金属電極の電気化学的堆積方法
Ahmet et al. Demonstration of a 50 cm 2 BiVO 4 tandem photoelectrochemical-photovoltaic water splitting device
CN105283963B (zh) 太阳能电池中金属结构的形成
WO2016062206A1 (zh) 一种水平电化学沉积金属的方法
CN102660761A (zh) 一种太阳电池镀膜设备及其镀膜方法
CN108660500A (zh) 一种水平电化学沉积金属的方法及其装置
CN111826692A (zh) 一种光伏电池光诱导或光辅助电镀的方法
Cummings et al. Rocking disc electro-deposition of CuIn alloys, selenisation, and pinhole effect minimisation in CISe solar absorber layers
CN104040698A (zh) 在平坦导电表面上形成氧化物层
CN104241439A (zh) 一种碲化镉薄膜太阳能电池的制备方法
CN102983206A (zh) 一种提高CuInS2薄膜光电转换性能的方法
CN108389936A (zh) 一种太阳能电池上tco导电材料的表面处理方法
CN102242383B (zh) 一种太阳能焊带电镀的后处理方法
CN105633203B (zh) 无水电化学刻蚀铜锌锡硫薄膜材料表面的方法
KR101370637B1 (ko) Cis계 박막 코팅 장치
CN105543923B (zh) 一种水平电镀的方法和设备
CN105633204B (zh) 改善铜铟镓硒薄膜表面性质的电化学处理方法
Cummings et al. Rocking disc electro-deposition of copper films on Mo/MoSe2 substrates
Gruszecki et al. Preparation of thin films of polycrystalline CdSe for solar energy conversion: II. Experimental
CN216237322U (zh) 一种水平电镀晶体硅太阳能电池上表面的设备
CN105633201B (zh) 钝化铜铟镓硒薄膜表面缺陷的电化学处理方法
CN105633200B (zh) 铜铟镓硒薄膜表面刻蚀的电化学处理方法
Golgovici et al. Preparation of copper telluride films by co-reduction of Cu (I) and Te (IV) ions in choline chloride: Ethylene glycol ionic liquid
CN115704100A (zh) 一种水平电镀晶体硅太阳能电池上表面的方法和设备
CN105633206B (zh) 无水电化学修饰铜铟镓硒薄膜表面特性的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15519782

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017521075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015852603

Country of ref document: EP