WO2016058396A1 - 通信系统及其通信设备 - Google Patents

通信系统及其通信设备 Download PDF

Info

Publication number
WO2016058396A1
WO2016058396A1 PCT/CN2015/081196 CN2015081196W WO2016058396A1 WO 2016058396 A1 WO2016058396 A1 WO 2016058396A1 CN 2015081196 W CN2015081196 W CN 2015081196W WO 2016058396 A1 WO2016058396 A1 WO 2016058396A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed circuit
circuit board
communication device
heat
thermally conductive
Prior art date
Application number
PCT/CN2015/081196
Other languages
English (en)
French (fr)
Inventor
杨正东
李际涛
张敏华
唐毅
范坤
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15851522.1A priority Critical patent/EP3209102B1/en
Priority to US15/518,867 priority patent/US20170231109A1/en
Publication of WO2016058396A1 publication Critical patent/WO2016058396A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/18Construction of rack or frame
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1401Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
    • H05K7/1402Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards
    • H05K7/1407Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards by turn-bolt or screw member
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10409Screws

Definitions

  • the present invention relates to the field of communications, and in particular to a communication system and a communication device therefor.
  • PCBs printed circuit boards
  • various electronic devices inside the communication equipment, which have a certain power consumption.
  • the power consumption of various electronic devices is output through signal cables, and most of them are converted into Thermal energy causes the temperature of the device and the PCB to rise. Therefore, the heat dissipation design of the communication device is required, so that the thermal energy generated by the communication device can be smoothly discharged outside the device.
  • the means for dissipating heat of communication equipment can be divided into natural heat dissipation and forced air cooling; among them, forced air cooling is to drive air through the heating element through the fan, thereby bringing the heat of the device out of the communication device; natural heat dissipation is a fan without active heat dissipation, which is a Passive heat dissipation method, the heat-generating component firstly transfers its own heat to the heat sink by adding a heat sink, etc., the heat sink has a large heat-dissipating surface area, the heat is extended to the surface of the heat sink, and then the air is transmitted to the accessory.
  • the change of the air temperature produces a density change, thereby generating natural convection under the action of gravity; in another embodiment, the component and the heat sink itself have a certain infrared heat radiation to the outside, and a part of the heat energy is transmitted through the radiation in the form of electromagnetic waves. .
  • Natural heat dissipation and forced air cooling have certain advantages and disadvantages. Forced air cooling is suitable for equipment with large power consumption, that is, the situation that natural heat dissipation cannot be solved, but forced air cooling requires a fan, so the fan rotates at the same time. It also brings reliability problems such as noise, dust, and fan failure. For the case where the power density is between natural heat dissipation and forced air cooling, it is difficult to install the fan through the traditional natural heat dissipation method. In other problems, if some of the insufficiency of the heat dissipation capability of the prior art can be solved by some means of enhancing natural heat dissipation, the heat dissipation problem is solved, and the disadvantages caused by forced air cooling are avoided.
  • the PCB is installed in the housing of the communication device through a conventional stud screw or through a PCB slide rail, and the heat-generating component on the PCB is cooled by adding heat. Cooling down.
  • the heat dissipation capability of the heat dissipation method is limited, and the heat sink is installed in the device casing. Even if the metal casing is punched, the temperature of the air inside and outside the equipment casing is different, that is, the heat sink is not external to the casing. Direct contact with air.
  • the package is characterized by preferentially transferring internal heat to the PCB. And the thermal resistance to the upper surface is much greater than the thermal resistance to the PCB. Therefore, it is not the best way to add a heat sink on the upper surface of the chip. How to spread heat to the PCB and then efficiently transfer the PCB is also a key to the heat dissipation of the device.
  • QFN Quad Flat No-Lead Package
  • FIG. 1 and 2 are simplified illustrations of a small box type communication device 3 in the prior art.
  • a plurality of protruding compression nuts are arranged on the bottom case 1 of the device, and the corresponding positions of the PCB board 2 are screw holes, and the PCB board 2 is supported by the protruding pressing nut, and is fixed to the bottom case of the device by the mounting screws.
  • the components on the PCB can be naturally dissipated through an additional heat sink.
  • the related art is characterized in that the PCB board 2 is in point contact with the device bottom case 1, that is, only the screw hole is in contact with the pressing nut of the device bottom case 1, and the rest is suspended in the device bottom case; thus, a disadvantage is caused by the PCB board. 2
  • the heat of the body itself cannot be effectively conducted and diffused, and it can only naturally dissipate heat through its limited area.
  • a plurality of such devices may cause heat accumulation on the PCB, which is not conducive to the heat dissipation of the package itself, and affects other temperature sensitive devices such as the crystal oscillator.
  • the local temperature environment of the PCB board may cause heat accumulation on the PCB, which is not conducive to the heat dissipation of the package itself, and affects other temperature sensitive devices such as the crystal oscillator.
  • the main object of the present invention is to provide a communication system and a communication device thereof to solve the problem of poor heat dissipation capability of the communication device in the prior art.
  • a communication device comprising a bottom case and a printed circuit board mounted on the bottom case, the communication device further comprising a heat conducting mounting strip, the printed circuit board being mounted by the heat conducting mounting strip The bottom end of the heat conducting mounting strip is connected to the bottom case, and the upper end surface of the heat conducting mounting strip is connected to the printed circuit board.
  • the printed circuit board is provided with a retaining port
  • the heat conducting mounting bar includes a supporting portion and a connecting portion
  • the printed circuit board is supported on the supporting portion, and the connecting portion passes through the retaining port and the printed circuit board The radiator is connected.
  • each of the contact faces of the thermally conductive mounting strip, the printed circuit board, and the bottom case is coated with a thermally conductive filler material.
  • the thermally conductive filler material is a thermal grease.
  • the thermally conductive mounting strip and the printed circuit board are connected to the bottom case by screws.
  • the communication device includes a plurality of thermally conductive mounting strips, and the plurality of thermally conductive mounting strips are disposed along a circumference of the printed circuit board.
  • the printed circuit board includes a device placement region and a device exclusion region disposed about the periphery of the device placement region, and the thermally conductive mounting strip is coupled to the device exclusion region of the printed circuit board.
  • the surface of the device forbidden area of the printed circuit board is covered with a heat conductive layer, and the heat conductive layer is connected with the ground copper of the printed circuit board through the first heat dissipation via.
  • the printed circuit board is soldered with components, the soldering portion of the component and the printed circuit board is provided with a second heat dissipation via, and the component is connected to the ground copper layer in the printed circuit board through the second heat dissipation via.
  • a communication system in accordance with another embodiment of the present invention, includes a cabinet and a communication device mounted within the cabinet, the communication device being the communication device described above.
  • the communication device of the present invention connects the edge of the printed circuit board and the bottom case through the heat-conducting mounting bar, so that the point contact between the printed circuit board and the bottom case in the prior art solution becomes surface contact.
  • the path of the printed circuit board to conduct heat diffusion to the bottom case is improved, and the heat dissipation capability of the communication device is improved.
  • FIG. 1 is a schematic diagram showing the internal structure of a communication device in the prior art
  • FIG. 2 is a schematic diagram showing the external structure of a communication device in the prior art
  • FIG. 3 is a schematic diagram showing the internal structure of a communication device in the present invention.
  • Figure 4 is a schematic view showing the bottom structure of the printed circuit board assembly of Figure 3;
  • Figure 5 is a block diagram showing the structure of the printed circuit board assembly of Figure 3.
  • Figure 6 shows a front view of Figure 5
  • Figure 7 is a schematic view showing the structure of a printed circuit board having a heat conductive layer
  • Figure 8 is a schematic view showing the structure of the first heat dissipation via hole of Figure 7;
  • Fig. 9 is a view showing the structure of a layer of copper of a printed circuit board.
  • a communication device in accordance with an embodiment of the present invention, includes a bottom case 10 and a printed circuit board 20 mounted on the bottom case 10, the communication device further including a thermally conductive mounting strip 30.
  • the printed circuit board 20 is mounted on the bottom case 10 via the thermally conductive mounting strip 30; wherein the lower end surface of the thermally conductive mounting strip 30 is coupled to the bottom case 10, and the upper end surface of the thermally conductive mounting strip 30 is coupled to the printed circuit board 20.
  • the communication device in the present invention connects the edge of the printed circuit board 20 with the bottom case 10 through the heat-conductive mounting strip 30, so that the printed circuit board 20 and the bottom case 10 are in point contact in the prior art.
  • the surface contact is improved, thereby improving the path through which the printed circuit board 20 conducts heat to the bottom case 10, thereby improving the heat dissipation capability of the communication device.
  • the printed circuit board 20 is provided with a retaining port 21, the heat conducting mounting strip 30 includes a supporting portion 31 and a connecting portion 32, and the printed circuit board 20 is supported on the supporting portion 31, and the connecting portion 32 passes through The port 21 is then connected to the heat sink 40 on the printed circuit board 20.
  • the heat-conducting mounting strip 30 can provide an additional surface to the heat sink 40 of the top surface of the device while providing a Bottom panel edge of the printed circuit board 20 in surface contact with the bottom case 10 of the device. Contact heat conduction. As shown in FIG. 5, the heat sink 40 of the component of the top surface of the printed circuit board 20 or the substrate of the heat sink 40 may extend toward the edge of the board until it can cover the board edge of the printed circuit board 20 and the heat conducting mounting strip 30.
  • the printed circuit board 20 is designed with corresponding notches or windows (placement 21), so that the heat-conducting mounting strip 30 can extend upward through the notch to the top surface of the printed circuit board, and then to the bottom surface of the substrate of the heat sink 40. Contact.
  • the thermally conductive mounting strip 30 not only provides the printed circuit board 20 with the surface contact of the bottom case 10, but also provides the heat sink 40 with the surface contact of the bottom case 10, thus giving the printed circuit board 20 itself. Provides a good heat dissipation channel and also enhances the heat dissipation of specific devices.
  • some components that mainly dissipate heat through the heat sink 40 can extend the thermal conductive mounting strip 30 to the printed circuit by opening a window or a notch (a bit 21) at a corresponding position on the printed circuit board.
  • the other side of the board is in contact with the heat sink 40 to enhance heat dissipation from the heat sink 40.
  • each of the contact faces of the thermally conductive mounting strip 30, the printed circuit board 20, and the bottom case 10 is coated with a thermally conductive filler material. Since the roughness of each contact surface of the heat conducting mounting strip 30, the printed circuit board 20 and the bottom case 10 is large, the smoothness of each contact surface can be improved after coating the heat conductive filling material, and the thermal conductivity of each component is improved.
  • the thermally conductive filler material is a thermal grease. According to the actual situation, other materials can also be used as the heat conductive filling material.
  • the thermally conductive mounting strip 30 and the printed circuit board 20 are connected to the bottom case 10 by screws. In this way, the tightness between the thermally conductive mounting strip 30 and the printed circuit board 20 and the bottom case 10 can be improved.
  • the communication device includes a plurality of thermally conductive mounting strips 30, and a plurality of thermally conductive mounting strips 30 are disposed along the circumference of the printed circuit board 20.
  • 4 is a schematic diagram showing the relative relationship between the heat-conductive mounting strip 30 and the printed circuit board 20 according to the embodiment of the present invention.
  • the heat-conductive mounting strip 30 is mounted on the edge region of the printed circuit board 20, and the length, width, and number are according to the actual printed circuit board 20.
  • the device distribution and the distribution of the copper layer 23 of the formation can be flexibly arranged. In this way, heat dissipation to the printed circuit board 20 can be improved.
  • the printed circuit board 20 includes a device placement area and a device exclusion area disposed around the periphery of the device placement area, and the thermally conductive mounting strip 30 is coupled to the device exclusion area of the printed circuit board 20.
  • the edge of the printed circuit board 20 is a device forbidden area, and a plane in contact with other structural planes can be formed in the edge region of the printed circuit board 20 without affecting the layout of the devices on the printed circuit board 20.
  • the width of the thermally conductive mounting strip 30 generally does not exceed the size of the panel edge of the printed circuit board.
  • the surface of the device forbidden area of the printed circuit board 20 is covered with a heat conductive layer 22, and the heat conductive layer 22 is connected to the ground copper sheet 23 in the printed circuit board 20 through the first heat dissipation vias 24.
  • the heat conducting layer 22 is a copper layer. In this way, the formation copper sheet 23 in the printed circuit board 20 can be passed through A heat dissipation via 24 and a heat conductive layer 22 are connected to the bottom case 10, thereby improving the heat dissipation performance of the printed circuit board 20.
  • the printed circuit board 20 is soldered with components, and the soldering portion of the component and the printed circuit board 20 is provided with a second heat dissipation via 25, and the component passes through the second heat dissipation via 25 and the printed circuit board 20.
  • the formation copper is connected 23 .
  • the edge of the printed circuit board 20 connects the thermally conductive layer 22 of the surface thermally conductive contact surface to the inner layer of the copper layer 23 through the first heat dissipation via 24, and the heat on the printed circuit board 20 mainly passes through the large layer of the copper layer 23 of the inner layer.
  • the components on the printed circuit board 20 are connected to the formation copper 23 through via holes, such as QFN, TO package devices, etc., and the heat can be extended and transmitted to the edge of the printed circuit board 20, and then transmitted to The thermally conductive mounting strip 30, in turn, diffuses to the bottom casing 10 of the apparatus.
  • a communication system in accordance with another embodiment of the present invention, includes a cabinet and a communication device mounted within the cabinet, the communication device being the communication device described above.
  • the communication system has better heat dissipation performance.
  • the embodiment of the invention provides a small box type communication device, as shown in FIG.
  • the small box type communication device that naturally dissipates heat generally comprises a panel, a metal bottom case, an open top cover case, a printed circuit board assembly and an auxiliary heat sink, an interface panel, etc., and the appearance is as shown in FIG. 2;
  • a plurality of protruding pressing nuts are arranged on the bottom case 1 of the device, and the corresponding positions of the printed circuit board 20 are screw holes, and the printed circuit board 20 is supported by the protruding pressing nut, and is fixed to the device by the mounting screws.
  • the printed circuit board 20 is in point contact with the device bottom case 1, that is, only the screw hole is in contact with the pressing nut of the device bottom case 1, and the remaining portion is suspended in the device bottom case.
  • a thermally conductive mounting strip 30 is added between the Bottom face of the printed circuit board 20 and the device metal back 10, such that the thermally conductive mounting strip 30 and the printed circuit board 20 and bottom Surface contact is formed between the shells 10, providing a good path for heat transfer.
  • the material of the heat-conducting mounting bar 30 is preferably aluminum.
  • the mounting of the heat-conducting mounting bar 30 can be preferentially mounted on the bottom case 10 as the component of the device bottom case 10, and the contact between the heat-conductive mounting bar 30 and the bottom case 10 is achieved.
  • the surface may be coated with an interface material that reduces contact thermal resistance, such as thermal grease; the mounting of the thermally conductive mounting strip 30 may also be preferentially mounted as a component of the printed circuit board 20 on the bottom surface of the printed circuit board 20, and then the entire printed circuit.
  • the board assembly is mounted to the bottom case of the device.
  • the edge of the printed circuit board 20 is surface-coated copper (heat-conducting layer 22) according to actual needs
  • FIG. 7 is a schematic diagram showing copper plating on the side surface of the Bottom panel of the printed circuit board 20 according to the embodiment of the present invention.
  • the thermally conductive layer 22 is in surface contact with the thermally conductive mounting strip 30 via a thermally conductive silicone grease.
  • FIG. 8 is a schematic view showing a via hole (first heat dissipation via 24) of a copper-clad region of an edge of a printed circuit board 20 according to an embodiment of the present invention.
  • the material of the printed circuit board 20 is mainly composed of copper (ground layer copper 23) having good thermal conductivity and FR4 having poor thermal conductivity, the printed circuit board 20 is a multi-layer material printed in layers, and the thermal conductivity between the layers is poor.
  • the thermal conductivity in the plane varies depending on the copper area and range. Therefore, the thermal conductivity of the printed circuit board in the thickness direction is generally much smaller than that of the printed circuit board in the planar direction.
  • the size of the first heat dissipation via 24 of the board edge is generally larger than that of a conventional signal via, preferably 90 mils in outer diameter and 50 mils in inner diameter, but is not limited to this size.
  • the ground layer of the printed circuit board 20 is subjected to a large area of copper plating, while the formation copper sheet 23 extends to the edge of the printed circuit board 20 and passes through the first heat dissipation via 24 and the edge of the printed circuit board 20.
  • the surface copper (thermal layer 22) is connected. 9 shows an example of a formation copper sheet 23 of the printed circuit board 20 of the present invention, the formation copper sheet 23 extending to the edge region, and the edge regions having the aforementioned surface copper, the first heat dissipation via 24, and Thermally conductive mounting strip 30.
  • the ground copper sheet 23 of the printed circuit board 20 extends to the edge of the board, and is connected to the copper sheet of the surface layer of the printed circuit board 20 through the thermal via of the board edge, thereby achieving surface contact with the heat conducting mounting strip 30 through the thermal grease. Heat flow path.
  • some of the components on the printed circuit board 20 have heat-dissipating pads (such as QFN, TO package).
  • the heat of the components is transmitted to the printing through the pads.
  • the solder bumps of the surface of the circuit board 20 are then conducted through the second heat dissipation vias 25 on the printed circuit board 20 to the formation copper bumps 23 of the aforementioned printed circuit board 20.
  • the component-printed circuit board 20 edge-to the thermally conductive mounting strip 30-bottom shell 10 forms a complete heat transfer path.
  • the communication device in the present invention connects the edge of the printed circuit board and the bottom case through the heat-conducting mounting bar, so that the point contact between the printed circuit board and the bottom case in the prior art solution becomes surface contact. , thereby improving the path of the printed circuit board to conduct heat diffusion to the bottom case, and improving the heat dissipation capability of the communication device.
  • the communication device connects the edge of the printed circuit board and the bottom case through the heat-conducting mounting bar, so that the point contact between the printed circuit board and the bottom case in the prior art solution becomes surface contact.
  • the path of the printed circuit board to conduct heat diffusion to the bottom case is improved, and the heat dissipation capability of the communication device is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种通信系统及其通信设备,该通信设备包括底壳和安装在底壳上的印刷电路板,通信设备还包括导热安装条,印刷电路板通过导热安装条安装在底壳上;其中,导热安装条的下端面与底壳连接,导热安装条的上端面与印刷电路板连接。应用本发明的技术方案,本发明中的通信设备通过导热安装条将印刷电路板的边缘与底壳连接起来,使得现有技术方案中印刷电路板与底壳的点接触变成了面接触,进而改善了印刷电路板向底壳传导扩散热量的通路,提高了通信设备的散热能力。

Description

通信系统及其通信设备 技术领域
本发明涉及通信领域,具体而言,涉及一种通信系统及其通信设备。
背景技术
通信设备内部有印刷电路板(Printed Circuit Board,简称为PCB)及各种电子器件,具备一定的功耗,各种电子器件的功耗除极少部分通过信号线缆输出,绝大部分转化为热能,使得器件及PCB的温度升高。因此,需要对通信设备进行散热设计,使得通信设备产生的热能能顺利排出设备外部。
通信设备散热的手段可分为自然散热和强迫风冷;其中,强迫风冷是通过风扇驱动空气流经发热元件,从而将器件热量带出通信设备;自然散热是没有主动散热的风扇,是一种被动散热方式,发热元器件通过加装散热器等方法,首先将自身的热量传导至散热器,散热器具有较大的散热表面积,热量扩展到散热器的表面,进而传导至附件的空气,空气温度的变化产生密度变化,从而在重力的作用下产生自然对流;另一实施例,元器件和散热器自身向外界有一定的红外热辐射,一部分热能通过这种辐射以电磁波的形式传递出去。
自然散热和强迫风冷散热都有一定的优缺点,强迫风冷适合功耗较大的设备,也就是自然散热无法解决的情况,但强迫风冷由于需要加装风扇,因此风扇转动的同时,也带来了噪声、防尘、风扇失效等可靠性问题;对于功耗密度介于自然散热和强迫风冷之间的情况,即通过传统自然散热方式有一定难度但又不希望加装风扇引入其他问题时,如果能通过一些强化自然散热的手段来解决现有技术散热能力的不足,那么既解决了散热问题,有避免了采用强迫风冷所带来的弊端。
对于小型的盒式通信设备,有一大部分是采用传统的自然散热的方式,即PCB通过传统的螺柱螺钉或通过PCB滑轨安装在通信设备的壳体内,PCB上的发热元件通过加装散热器进行散热。这种散热方式的散热能力有限,散热器安装在设备壳体内,即使是冲孔的金属壳体,设备壳体内外的空气温度也有一定的差异,也就是说散热器并没有与壳体外部的空气直接接触。另一实施例,对于某些封装类型的器件,比如方形扁平无引脚的封装(Quad Flat No-LeadPackage,简称为QFN)、TO等封装,其封装的特点是优先将内部的热量传导至PCB,而到上表面的热阻则远大于到PCB的热阻, 因此,在芯片上表面加散热器并不是最好的办法,如何将热量扩散到PCB再高效传出PCB对于设备的散热也是一个关键。
图1和图2为现有技术中的一种小型盒式的通信设备3的简易示意。在设备的底壳1上具有多个凸出的压卯螺母,PCB板2相对应的位置有安装螺孔,PCB板2被凸出的压卯螺母支撑,进而通过安装螺钉固定在设备底壳上,PCB板上的器件可通过另外安装的散热器进行自然散热。
该相关技术的特点是PCB板2与设备底壳1为点接触,即只有螺孔处与设备底壳1的压卯螺母接触,其余部分悬空于设备底壳;这样就导致一个缺点,PCB板2本身的热量得不到有效的传导扩散,只能通过自身的有限面积自然散热。
而对前文所述热量优先传导至PCB组件的器件封装,多个这样的器件会使得PCB板上的热量集聚,既不利于这类封装本身的散热,也影响了其他温度敏感器件比如晶振所处的PCB板的局部温度环境。
发明内容
本发明的主要目的在于提供一种通信系统及其通信设备,以解决现有技术中的通信设备的散热能力较差的问题。
为了实现上述目的,根据本发明的一个实施例,提供了一种通信设备,包括底壳和安装在底壳上的印刷电路板,通信设备还包括导热安装条,印刷电路板通过导热安装条安装在底壳上;其中,导热安装条的下端面与底壳连接,导热安装条的上端面与印刷电路板连接。
在本发明实施例中,印刷电路板上设置有让位口,导热安装条包括支撑部和连接部,且印刷电路板支撑在支撑部上,连接部穿过让位口后与印刷电路板上的散热器连接。
在本发明实施例中,导热安装条、印刷电路板和底壳的各个接触面上均涂覆有导热填充材料。
在本发明实施例中,导热填充材料为导热硅脂。
在本发明实施例中,导热安装条和印刷电路板与底壳通过螺钉连接。
在本发明实施例中,通信设备包括多个导热安装条,且多个导热安装条沿印刷电路板的周向设置。
在本发明实施例中,印刷电路板包括器件布置区和设置在器件布置区周边的器件禁布区,且导热安装条与印刷电路板的器件禁布区连接。
在本发明实施例中,印刷电路板的器件禁布区的表面铺设有导热层,且导热层与印刷电路板内的地层铜皮之间通过第一散热过孔连接。
在本发明实施例中,印刷电路板焊接有元器件,元器件与印刷电路板的焊接处设置有第二散热过孔,元器件通过第二散热过孔与印刷电路板内的地层铜皮连接。
根据本发明的另一实施例,提供了一种通信系统,包括机柜和安装在机柜内的通信设备,通信设备为上述的通信设备。
应用本发明的技术方案,本发明中的通信设备通过导热安装条将印刷电路板的边缘与底壳连接起来,使得现有技术方案中印刷电路板与底壳的点接触变成了面接触,进而改善了印刷电路板向底壳传导扩散热量的通路,提高了通信设备的散热能力。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有技术中的通信设备的内部结构示意图;
图2示出了现有技术中的通信设备的外部结构示意图;
图3示出了本发明的中的通信设备的内部结构示意图;
图4示出了图3中的印刷电路板组件的底部结构示意图;
图5示出了图3中的印刷电路板组件的结构示意图;
图6示出了图5的主视图;
图7示出了铺设有导热层的印刷电路板的结构示意图;
图8示出了图7中的具有第一散热过孔的结构示意图;以及
图9示出了印刷电路板的地层铜皮的结构示意图。
其中,上述附图包括以下附图标记:
1、底壳;2、PCB板;3、通信设备;10、底壳;20、印刷电路板;21、让位口;22、导热层;23、地层铜皮;24、第一散热过孔;25、第二散热过孔;30、导热安装条;31、支撑部;32、连接部;40、散热器。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的一个实施例,提供了一种通信设备,请参考图3至图9,该通信设备包括底壳10和安装在底壳10上的印刷电路板20,通信设备还包括导热安装条30,印刷电路板20通过导热安装条30安装在底壳10上;其中,导热安装条30的下端面与底壳10连接,导热安装条30的上端面与印刷电路板20连接。
由上技术方案可以看出,本发明中的通信设备通过导热安装条30将印刷电路板20的边缘与底壳10连接起来,使得现有技术方案中印刷电路板20与底壳10的点接触变成了面接触,进而改善了印刷电路板20向底壳10传导扩散热量的通路,提高了通信设备的散热能力。
在本发明实施例中,印刷电路板20上设置有让位口21,导热安装条30包括支撑部31和连接部32,且印刷电路板20支撑在支撑部31上,连接部32穿过让位口21后与印刷电路板20上的散热器40连接。
在本申请中,在前述实施例的基础上,导热安装条30可以在提供印刷电路板20的Bottom面板边与设备的底壳10面接触的同时,对板上Top面的散热器40提供额外的接触导热。如图5所示,印刷电路板20的Top面的元器件的散热器40整体或散热器40的基板可以向板边作出延伸,直到能覆盖住印刷电路板20的板边和导热安装条30,同时,印刷电路板20在此处设计相应的缺口或窗口(让位口21),使得导热安装条30可以通过该缺口向上延伸至印刷电路板的Top面,然后与散热器40的基板底面相接触。
从图6中可以更清楚地示意出散热器40与导热安装条30、印刷电路板20的相对关系。在该实施例中,导热安装条30不仅给印刷电路板20提供了与底壳10的面接触,同时也给散热器40提供了到底壳10的面接触,这样既能给印刷电路板20本身提供良好的散热通道,同时也强化了特定的器件的散热。
在该基础上,一些主要通过散热器40散热的元器件,如BGA封装等,可以通过在印刷电路板的相应位置开窗或缺口(让位口21),将导热安装条30延伸与印刷电路板的另一面并与散热器40接触,以强化散热器40的散热。这样,既解决了现有技术中的印刷电路板20向外导热途径缺乏的问题,又提升了现有技术中器件散热器40的散热能力。
在本发明实施例中,导热安装条30、印刷电路板20和底壳10的各个接触面上均涂覆有导热填充材料。由于导热安装条30、印刷电路板20和底壳10的各个接触面上的粗糙度较大,涂覆导热填充材料后可以提高各个接触面的光滑性,提高各个部件件的导热性能。
在本发明实施例中,导热填充材料为导热硅脂。根据实际情况,也可以选用其他的材料作为导热填充材料。
在本发明实施例中,导热安装条30和印刷电路板20与底壳10通过螺钉连接。这样,可以提高导热安装条30和印刷电路板20与底壳10之间的紧固性。
在本发明实施例中,通信设备包括多个导热安装条30,且多个导热安装条30沿印刷电路板20的周向设置。如图4所示为本发明实施例的导热安装条30与印刷电路板20的相对关系示意,导热安装条30安装于印刷电路板20的边缘区域,长度、宽度、数量根据实际印刷电路板20的器件分布、地层铜皮23分布情况可灵活布置。这样,可以提高对印刷电路板20的散热。
在本发明实施例中,印刷电路板20包括器件布置区和设置在器件布置区周边的器件禁布区,且导热安装条30与印刷电路板20的器件禁布区连接。一般印刷电路板20的边缘为器件禁布区域,在印刷电路板20边缘区域可以形成与其他结构面接触的平面,而不会影响印刷电路板20上器件的布局。导热安装条30的宽度一般不超过印刷电路板的板边禁布尺寸。
在本发明实施例中,印刷电路板20的器件禁布区的表面铺设有导热层22,且导热层22与印刷电路板20内的地层铜皮23之间通过第一散热过孔24连接。在本发明实施例中,该导热层22为铜层。这样,可以将印刷电路板20内的地层铜皮23通过第 一散热过孔24和导热层22与底壳10连接起来,进而提高了印刷电路板20的散热性能。
在本发明实施例中,印刷电路板20焊接有元器件,元器件与印刷电路板20的焊接处设置有第二散热过孔25,元器件通过第二散热过孔25与印刷电路板20内的地层铜皮23连接。印刷电路板20的边缘通过第一散热过孔24将表层导热接触面的导热层22与内部的地层铜皮23相连,而印刷电路板20上的热量主要通过内部地层大面积的地层铜皮23在平面方向扩展,这就使得印刷电路板20上的元器件通过过孔连接到地层铜皮23上,比如QFN、TO封装器件等,其热量可以扩展传递到印刷电路板20边缘,进而传递给导热安装条30,进而扩散到设备的底壳10。
根据本发明的另一个实施例,提供了一种通信系统,包括机柜和安装在机柜内的通信设备,通信设备为上述的通信设备。该通信系统的散热性能较好。
本发明实施例提供了一种小型盒式的通信设备,如图3所示。在现有技术方案中,自然散热的小型盒式通信设备一般由面板、金属底壳、开孔上盖壳、印刷电路板组件及附属散热器、接口面板等组成,外观如图2所示;在设备的底壳1上具有多个凸出的压卯螺母,印刷电路板20相对应的位置有安装螺孔,印刷电路板20被凸出的压卯螺母支撑,进而通过安装螺钉固定在设备底壳1上,印刷电路板20与设备底壳1为点接触,即只有螺孔处与设备底壳1的压卯螺母接触,其余部分悬空于设备底壳。如图3所示的本发明实施例中,在印刷电路板20的Bottom面与设备金属底壳10之间,增加了一个导热安装条30,这样,导热安装条30与印刷电路板20和底壳10之间形成了面接触,为热量的传递提供了良好的通路。
在本发明实施例中,导热安装条30的材料优选使用铝,导热安装条30的安装可以作为设备底壳10的组件优先安装于底壳10上,在导热安装条30与底壳10的接触面上可涂有减少接触热阻的界面材料,如导热硅脂;导热安装条30的安装也可作为印刷电路板20的组件优先安装于印刷电路板20的bottom面,然后再将整个印刷电路板组件安装于设备底壳。
在前述实施例的基础上,印刷电路板20的边缘根据实际需要进行表层铺铜皮(导热层22),图7所示为本发明实施例的印刷电路板20的Bottom面板边表层铺铜示意,导热层22通过导热硅脂与导热安装条30进行面接触。
在前述实施例的基础上,印刷电路板20的边缘表层铺铜区域内设置有大量的热过孔。图8所示为本发明实施例印刷电路板20的边缘铺铜区域的过孔(第一散热过孔24)的示意图。
由于印刷电路板20的材料主要由导热性好的铜(地层铜皮23)和导热性差的FR4组成,印刷电路板20是分层印刷的多层材质,层之间的导热性较差,层平面内的导热性能根据铜皮面积和范围而异,因此,印刷电路板在厚度方向的导热性能一般远小于印刷电路板在平面方向的导热性能。
通过增加热过孔,可以将印刷电路板20不同层之间的地层铜皮23连接起来,进而改进了印刷电路板20厚度方向不同层之间的导热。板边的第一散热过孔24的尺寸一般大于普通信号过孔,优选外径90mil、内径50mil,但不限于此尺寸。
在前述实施例的基础上,印刷电路板20的地层进行大面积的铺铜,同时,地层铜皮23延伸到印刷电路板20的边缘,并通过第一散热过孔24与印刷电路板20边缘的表层铜皮(导热层22)相连。图9所示为本发明印刷电路板20的地层铜皮23的一个示例,地层铜皮23延伸至板边区域,而这些板边区域具有前述的表层铜皮、第一散热过孔24、以及导热安装条30。因此,印刷电路板20的地层铜皮23扩展到板边,通过板边的热过孔与印刷电路板20的表层板边铜皮相连,进而与导热安装条30通过导热脂实现面接触,形成热流通路。
在前述实施例的基础上,印刷电路板20上的部分元器件底部具有散热焊盘(如QFN、TO封装),元器件焊接在印刷电路板上时,元器件的热量通过焊盘传导至印刷电路板20表层的焊接铜皮,然后通过印刷电路板20上的第二散热过孔25传导至前述印刷电路板20的地层铜皮23。此时,元器件-印刷电路板20的板边-到导热安装条30-底壳10就形成了一个完整的传热路径。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
由上技术方案可以看出,本发明中的通信设备通过导热安装条将印刷电路板的边缘与底壳连接起来,使得现有技术方案中印刷电路板与底壳的点接触变成了面接触,进而改善了印刷电路板向底壳传导扩散热量的通路,提高了通信设备的散热能力。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,通信设备通过导热安装条将印刷电路板的边缘与底壳连接起来,使得现有技术方案中印刷电路板与底壳的点接触变成了面接触,进而改善了印刷电路板向底壳传导扩散热量的通路,提高了通信设备的散热能力。

Claims (10)

  1. 一种通信设备,包括底壳(10)和安装在所述底壳(10)上的印刷电路板(20),所述通信设备还包括导热安装条(30),所述印刷电路板(20)通过所述导热安装条(30)安装在所述底壳(10)上;其中,所述导热安装条(30)的下端面与所述底壳(10)连接,所述导热安装条(30)的上端面与所述印刷电路板(20)连接。
  2. 根据权利要求1所述的通信设备,其中,所述印刷电路板(20)上设置有让位口(21),所述导热安装条(30)包括支撑部(31)和连接部(32),且所述印刷电路板(20)支撑在所述支撑部(31)上,所述连接部(32)穿过所述让位口(21)后与所述印刷电路板(20)上的散热器(40)连接。
  3. 根据权利要求1所述的通信设备,其中,所述导热安装条(30)、所述印刷电路板(20)和所述底壳(10)的各个接触面上均涂覆有导热填充材料。
  4. 根据权利要求3所述的通信设备,其中,所述导热填充材料为导热硅脂。
  5. 根据权利要求1所述的通信设备,其中,所述导热安装条(30)和所述印刷电路板(20)与所述底壳(10)通过螺钉连接。
  6. 根据权利要求1所述的通信设备,其中,所述通信设备包括多个所述导热安装条(30),且所述多个导热安装条(30)沿所述印刷电路板(20)的周向设置。
  7. 根据权利要求1所述的通信设备,其中,所述印刷电路板(20)包括器件布置区和设置在所述器件布置区周边的器件禁布区,且所述导热安装条(30)与所述印刷电路板(20)的器件禁布区连接。
  8. 根据权利要求7所述的通信设备,其中,所述印刷电路板(20)的所述器件禁布区的表面铺设有导热层(22),且所述导热层(22)与所述印刷电路板(20)内的地层铜皮(23)之间通过第一散热过孔(24)连接。
  9. 根据权利要求8所述的通信设备,其中,所述印刷电路板(20)焊接有元器件,所述元器件与所述印刷电路板(20)的焊接处设置有第二散热过孔(25),所述元器件通过所述第二散热过孔(25)与所述印刷电路板(20)内的所述地层铜皮(23)连接。
  10. 一种通信系统,包括机柜和安装在所述机柜内的通信设备,所述通信设备为权利要求1至9中任一项所述的通信设备。
PCT/CN2015/081196 2014-10-17 2015-06-10 通信系统及其通信设备 WO2016058396A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15851522.1A EP3209102B1 (en) 2014-10-17 2015-06-10 Communication system and communication device therefor
US15/518,867 US20170231109A1 (en) 2014-10-17 2015-06-10 Communication system and communication device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410555066.7 2014-10-17
CN201410555066.7A CN105578839B (zh) 2014-10-17 2014-10-17 通信系统及其通信设备

Publications (1)

Publication Number Publication Date
WO2016058396A1 true WO2016058396A1 (zh) 2016-04-21

Family

ID=55746083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081196 WO2016058396A1 (zh) 2014-10-17 2015-06-10 通信系统及其通信设备

Country Status (4)

Country Link
US (1) US20170231109A1 (zh)
EP (1) EP3209102B1 (zh)
CN (1) CN105578839B (zh)
WO (1) WO2016058396A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342127B2 (en) * 2016-11-14 2019-07-02 Samsung Electronics Co., Ltd Electronic device including a reinforced printed circuit board
CN107889425A (zh) * 2017-10-30 2018-04-06 惠州市德赛西威汽车电子股份有限公司 一种连接器散热结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201115248Y (zh) * 2007-09-14 2008-09-10 杭州华三通信技术有限公司 一种散热器
CN201134983Y (zh) * 2007-12-26 2008-10-15 深圳市三旺通信技术有限公司 通信设备结构
CN102465766A (zh) * 2010-11-15 2012-05-23 美国Gac公司 电子数字调速器及其装置的生产方法
CN103338613A (zh) * 2012-10-15 2013-10-02 东莞生益电子有限公司 具有非对称散热结构的电子设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599680A (en) * 1983-09-26 1986-07-08 Southwest Research Institute Packaging arrangement for spacecraft computer
US5175613A (en) * 1991-01-18 1992-12-29 Digital Equipment Corporation Package for EMI, ESD, thermal, and mechanical shock protection of circuit chips
JPH07106782A (ja) * 1993-10-05 1995-04-21 Nippon Steel Corp 電子機器における冷却構造
US5473511A (en) * 1994-05-05 1995-12-05 Ford Motor Company Printed circuit board with high heat dissipation
US5581443A (en) * 1994-09-14 1996-12-03 Kabushiki Kaisha Toshiba Structure for cooling a circuit module having a circuit board and a heat-generating IC chip mounted on the board, and portable electronic apparatus incorporating the structure
US5982619A (en) * 1997-06-12 1999-11-09 Harris Corporation Housing for diverse cooling configuration printed circuit cards
US5880930A (en) * 1997-06-18 1999-03-09 Silicon Graphics, Inc. Electromagnetic interference shielding enclosure and heat sink with compression coupling mechanism
US6434000B1 (en) * 1998-12-03 2002-08-13 Iv Phoenix Group, Inc. Environmental system for rugged disk drive
US6518868B1 (en) * 2000-08-15 2003-02-11 Galaxy Power, Inc. Thermally conducting inductors
JP2006278941A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd 放熱装置及びプラグインユニット
TWI292300B (en) * 2005-11-21 2008-01-01 Delta Electronics Inc Electronic device with dual heat dissipating structures
JP2008277327A (ja) * 2007-04-25 2008-11-13 Toyota Industries Corp 電子機器
CN101568247B (zh) * 2008-04-25 2012-09-05 深圳迈瑞生物医疗电子股份有限公司 屏蔽绝缘散热系统
WO2011071516A1 (en) * 2009-12-09 2011-06-16 Thomson Licensing Set-top box having microperforations
CN201623944U (zh) * 2009-12-17 2010-11-03 江苏艾索新能源股份有限公司 针对smd元件的散热结构
JP5546889B2 (ja) * 2010-02-09 2014-07-09 日本電産エレシス株式会社 電子部品ユニット及びその製造方法
EP2560466A4 (en) * 2010-04-15 2015-05-06 Furukawa Electric Co Ltd BOARD AND METHOD FOR PRODUCING A BOARD
US8714459B2 (en) * 2011-05-12 2014-05-06 Waveconnex, Inc. Scalable high-bandwidth connectivity
TWM413319U (en) * 2011-05-13 2011-10-01 Askey Computer Corp Heat-dissipating casing for communication apparatus
JP6070977B2 (ja) * 2012-05-21 2017-02-01 日本精機株式会社 電子回路装置
TWI508238B (zh) * 2012-12-17 2015-11-11 Princo Corp 晶片散熱系統
CA2896300C (en) * 2013-01-22 2020-10-27 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition, heat conductive layer, and semiconductor device
TWI522032B (zh) * 2013-03-07 2016-02-11 台達電子工業股份有限公司 散熱模組

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201115248Y (zh) * 2007-09-14 2008-09-10 杭州华三通信技术有限公司 一种散热器
CN201134983Y (zh) * 2007-12-26 2008-10-15 深圳市三旺通信技术有限公司 通信设备结构
CN102465766A (zh) * 2010-11-15 2012-05-23 美国Gac公司 电子数字调速器及其装置的生产方法
CN103338613A (zh) * 2012-10-15 2013-10-02 东莞生益电子有限公司 具有非对称散热结构的电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3209102A4 *

Also Published As

Publication number Publication date
CN105578839A (zh) 2016-05-11
EP3209102B1 (en) 2022-11-16
US20170231109A1 (en) 2017-08-10
CN105578839B (zh) 2019-03-15
EP3209102A1 (en) 2017-08-23
EP3209102A4 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP4159861B2 (ja) プリント回路基板の放熱構造の製造方法
WO2008122220A1 (en) Shielding and heat-dissipating device
WO2017161738A1 (zh) 一种散热屏蔽装置
JPH10125832A (ja) 熱伝導方法および装置
JPH11330750A (ja) 伝熱経路の形成方法および伝熱経路装置
US20080198557A1 (en) Heat-dissipating module
JP2001168560A (ja) 電子回路ユニット
JP2928236B1 (ja) 発熱素子の放熱部材
WO2016058396A1 (zh) 通信系统及其通信设备
TWI645588B (zh) 半導體的導熱及散熱結構
KR20180016799A (ko) 인쇄회로기판 조립체
TWI522032B (zh) 散熱模組
JP2000082888A (ja) 放熱装置を備える電子機器
JP2004079949A (ja) メモリモジュール内発熱半導体素子の放熱装置
CN210725475U (zh) 具有散热结构的多层pcb板
TW201927084A (zh) 軟性線路板結構
TWM531125U (zh) 散熱板組合及電子裝置
JPH07321471A (ja) 多層基板
US20100251536A1 (en) Heat-dissipating structure on case of industrial computer and manufacturing method thereof
JPH07273462A (ja) 電子部品搭載用基板
JPH07106782A (ja) 電子機器における冷却構造
JP2008124326A (ja) 熱伝導経路プレート、電子部品基板及び電子部品筺体
JP2003258465A (ja) 電子回路ユニット
JP2008270683A (ja) 積層基板
JPH03177095A (ja) 電子部品の放熱方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015851522

Country of ref document: EP