WO2016056453A1 - 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 - Google Patents
逆浸透膜の洗浄剤、洗浄液、および洗浄方法 Download PDFInfo
- Publication number
- WO2016056453A1 WO2016056453A1 PCT/JP2015/077901 JP2015077901W WO2016056453A1 WO 2016056453 A1 WO2016056453 A1 WO 2016056453A1 JP 2015077901 W JP2015077901 W JP 2015077901W WO 2016056453 A1 WO2016056453 A1 WO 2016056453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning
- membrane
- agent
- cleaning liquid
- pure water
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3272—Urea, guanidine or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
- B01D65/06—Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/08—Liquid soap, e.g. for dispensers; capsuled
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/162—Use of acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/164—Use of bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/168—Use of other chemical agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
Definitions
- the present invention relates to a cleaning agent for recovering the performance of a reverse osmosis (RO) membrane used in the field of water treatment when it is contaminated with organic matter or inorganic matter and the performance such as the amount of permeated water or the desalination rate is reduced. And a cleaning liquid.
- the cleaning agent and the cleaning liquid of the present invention have an effect of suppressing a decrease in the rejection rate of the film accompanying cleaning.
- the present invention also relates to a method for cleaning an RO membrane using this cleaning liquid.
- Separation and purification by RO membrane system is an energy-saving process compared to systems using evaporation and electrodialysis, and is widely used for desalination of seawater and brine, production of industrial water and ultrapure water, wastewater recovery, etc. ing.
- Conventional cleaning agents used for RO membranes include acids (oxalic acid, citric acid, etc.), alkalis (sodium hydroxide, etc.), surfactants (sodium dodecyl sulfate, dodecylbenzene) depending on the nature of the membrane contaminants. Sodium sulfonate), chelating agents (EDTA, etc.), bound chlorine agents, oxidizing agents, etc. (Non-patent Document 1).
- the materials of RO membranes currently used are roughly classified into aromatic polyamides and cellulose acetates.
- the aromatic polyamide RO membrane has low resistance to an oxidizing agent, but has high resistance to alkali, and can be cleaned under alkaline conditions of pH 10 or higher.
- Cellulose acetate-based RO membranes are more resistant to oxidizing agents (such as chlorine) than aromatic polyamide-based RO membranes, but are less resistant to alkali, and cannot be washed under alkaline conditions of pH 9 or higher.
- Patent Document 1 proposes a sterilizing agent for water systems such as a paper manufacturing system that contains free chlorine, urea and alkali. Patent Document 1 does not describe this disinfectant as a membrane cleaning agent. Patent Document 1 also does not describe that urea has an action of protecting the RO membrane from deterioration due to cleaning chemicals.
- Patent Document 2 proposes a biofouling inhibitor using a urea derivative for stabilizing a halogen.
- this inhibitor can be applied to a membrane.
- urea is blended for stabilizing the halogen, and urea is prevented from being deteriorated by a cleaning agent.
- the cleaning agent Although the purpose of using the cleaning agent is to restore the water permeability of the RO membrane, the blocking performance of the RO membrane often decreases due to the cleaning. For example, when an aromatic polyamide RO membrane is cleaned using a cleaning solution having a high pH, a higher cleaning effect can be expected as the pH of the cleaning solution increases, but on the other hand, there is an increased risk that the blocking rate of the RO membrane decreases.
- Non-Patent Document 1 there is a report on a component of a cleaning agent for enhancing the cleaning effect of the RO membrane, but the reduction of the RO membrane rejection rate due to cleaning is suppressed, that is, the RO membrane.
- the component of the cleaning agent which protects is not examined.
- the present inventor has studied the phenomenon that the blocking performance of the RO membrane is reduced by cleaning, and obtained the following knowledge.
- the demineralization rate of the RO membrane and the silica rejection rate, particularly the IPA (isopropyl alcohol) rejection rate, which is a neutral solute, is reduced by washing.
- the condition of the cleaning liquid that causes a decrease in the rejection rate is an alkaline condition of pH 10 or higher, and the effect becomes stronger as the pH increases. Combined chlorine and oxidizing agents also cause a reduction in the rejection rate.
- the present inventor has found that by adding a urea derivative such as urea or biuret as a component of the cleaning agent, it is possible to suppress a decrease in the RO membrane blocking rate due to cleaning.
- the gist of the present invention is as follows.
- a reverse osmosis membrane cleaning agent comprising a urea derivative.
- a reverse osmosis membrane cleaning solution which is an aqueous solution obtained by diluting the cleaning agent according to any one of [1] to [3].
- a reverse osmosis membrane cleaning solution comprising a urea derivative and one or more selected from the group consisting of an alkali agent, a combined chlorine agent and an oxidizing agent.
- a method for cleaning a reverse osmosis membrane comprising bringing the reverse osmosis membrane into contact with the cleaning liquid according to any one of [4] to [6].
- the present invention it is possible to suppress a decrease in the RO membrane blocking performance due to high alkali conditions, a combined chlorine agent, an oxidizing agent, and the like in the cleaning of the RO membrane. Therefore, it is easy to cause a reduction in the blocking performance of the RO membrane, but it is possible to adopt a cleaning method with a high cleaning effect, and it is possible to perform more effective cleaning on the RO membrane.
- FIG. 4 is a system diagram showing a test apparatus used in Experiments I to IV.
- FIG. 6 is a graph showing the measurement results of salt permeability of Comparative Example V-1 and Example V-1. It is a graph which shows the measurement result of the flux of comparative example V-1 and example V-1. It is a graph which shows the measurement result of the salt permeability
- Urea derivatives such as urea (H 2 N—CO—NH 2 ) and biuret (H 2 N—CO—NH—CO—NH 2 ) are adsorbed on the RO membrane and exert the action of protecting the membrane from the cleaning solution.
- urea and biuret have a structure close to the amide bond of the aromatic polyamide RO membrane, and have a strong affinity with the amide bond portion. For this reason, it is considered that the cleavage of the amide bond by the cleaning liquid is suppressed by adsorbing to the amide bond portion of the aromatic polyamide RO membrane.
- urea and biuret are low molecules, after flushing the cleaning liquid, they remain adsorbed on the amide bond portion and are removed.
- the RO membrane to be cleaned may be an aromatic polyamide RO membrane or a cellulose acetate RO membrane.
- the present invention is effective for cleaning the aromatic polyamide RO membrane in terms of the adsorption action of the urea derivative to the amide bond portion of the aromatic polyamide RO membrane.
- the cleaning agent of the present invention is characterized by containing a urea derivative.
- the cleaning agent of the present invention is usually prepared by dissolving a urea derivative and an alkali agent, a combined chlorine agent, other agents, etc. used as necessary in water.
- the “cleaning agent” means a product prepared by setting the drug concentration higher than that at the time of use for the distribution and storage of the product.
- the “cleaning solution” refers to a solution obtained by diluting this cleaning agent with water and adjusting the concentration to actually clean the film surface.
- the urea derivative contained in the cleaning agent of the present invention is preferably a low molecular compound having a molecular weight of about 300 or less in that there is no residue after flushing of the cleaning liquid.
- a urea derivative what is represented by the following general formula (I) is mentioned, for example. Specifically, urea (H 2 N—CO—NH 2 ), biuret (H 2 N—CO—NH—CO—NH 2 ), polyurea, others, semicarbazide, allantoin, citrulline, thiourea, thiosemicarbazide, thiourea Derivatives and the like.
- R 1 , R 2 , R 3 , and R 4 each independently represents a hydrogen atom, an alkyl group, an aryl group, or —R 5 CONH 2 (wherein R 5 represents a single bond or an alkylene group) Represents an amidoacyl group having
- urea derivatives may be used alone or in combination of two or more.
- urea and biuret are particularly preferable in terms of RO membrane protection effect, solubility, and availability.
- the cleaning agent of the present invention may contain an alkali agent, a combined chlorine agent, an oxidizing agent, other chemicals and a solvent other than water, which are necessary for cleaning the RO membrane.
- alkali agent used in the cleaning agent of the present invention examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
- Examples of the combined chlorine agent include chloramine compounds.
- the chloramine compound is a compound having a primary amino group, ammonia, or an ammonium salt (hereinafter referred to as “NH 2 -based compound”), hypochlorous acid and / or hypochlorite, It is preferable to produce
- the compound having a primary amino group include aliphatic amines, aromatic amines, sulfamic acids, sulfanilic acids, sulfamoylbenzoic acids, and amino acids.
- ammonium salts include ammonium chloride and ammonium sulfate. These may be used alone or in combination of two or more. Of these NH 2 compounds, sulfamic acid (NH 2 SO 2 OH) is preferable.
- Hypochlorite to be reacted with the NH 2 -based compound includes alkali metal salts of hypochlorous acid such as sodium hypochlorite, alkaline earth metal salts of hypochlorous acid such as calcium hypochlorite, and the like. Can be mentioned. These may be used alone or in combination of two or more.
- the Cl 2 / N molar ratio which is the molar ratio between the effective chlorine (Cl 2 ) derived from chloric acid and / or hypochlorite and the nitrogen atom N derived from the NH 2 -based compound, is 0.1 to 1. It is preferable to use the chloramine in view of the production efficiency and stability of chloramine.
- the amount of hypochlorous acid and / or hypochlorite is the amount of chloramine compound in the cleaning agent.
- Oxidizing agents include hydrogen peroxide, peracetic acid, percarbonate, halogen oxoacids such as hypochlorous acid and their salts (eg, alkali metal salts, alkaline earth metal salts), peroxides, chlorine, bromine, 1 type, or 2 or more types, such as halogens, such as iodine, are mentioned.
- halogen oxoacids such as hypochlorous acid and their salts (eg, alkali metal salts, alkaline earth metal salts), peroxides, chlorine, bromine, 1 type, or 2 or more types, such as halogens, such as iodine, are mentioned.
- Solvents include alcohols such as ethanol, polyols such as ethylene glycol, propylene glycol and butanediol, amines such as monoethanolamine, diethanolamine and triethanolamine, ketones such as acetone, dimethyl ether, diethyl ether and diethylene glycol monomethyl. And ethers such as ether.
- surfactants include surfactants and dispersants.
- Surfactants include anionic surfactants such as alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, alkyl sulfates such as sodium dodecyl sulfate, and nonionic surfactants such as polyalkylene glycol monoalkyl ethers such as diethylene glycol monomethyl ether. Surfactant etc. are mentioned.
- anionic surfactants are particularly preferable in terms of dispersion effect.
- Dispersants include ethylenediaminetetraacetic acid (EDTA), glycol etherdiaminetetraacetic acid (EGTA), polyphosphoric acid, phosphonobutanetricarboxylic acid (PBTC), phosphonic acid, polymaleic acid, citric acid, oxalic acid, gluconic acid, and the like Of the salt.
- EDTA ethylenediaminetetraacetic acid
- EGTA glycol etherdiaminetetraacetic acid
- PBTC phosphonobutanetricarboxylic acid
- phosphonic acid polymaleic acid
- citric acid citric acid
- oxalic acid gluconic acid
- the cleaning agent may be a one-agent type in which a urea derivative, an alkali agent, a combined chlorine agent, an oxidizing agent, other chemicals, a solvent, and the like are mixed in advance, and a part of these is supplied as another chemical. Two or more dosage forms may be used.
- the cleaning solution of the present invention prepared by diluting the cleaning agent of the present invention with water may also be a one-part type, a two-part type, or more.
- the RO membrane may be washed with a cleaning solution containing a urea derivative, and then washed with a cleaning solution containing another drug such as an acid.
- the cleaning agent of the present invention has a concentration of each drug so that the concentration of each drug is suitable for the cleaning solution of the present invention described later when diluted to about 5 to 100 times by weight with water, preferably pure water. It is prepared to be about 5 to 100 times the drug concentration in
- the cleaning liquid of the present invention is an aqueous solution obtained by diluting the above-described cleaning agent of the present invention with water.
- the cleaning solution of the present invention is adjusted to a predetermined concentration by diluting the cleaning agent of the present invention with water and, if necessary, adding an alkali agent, a combined chlorine agent, an oxidizing agent, other chemicals, a solvent, etc. It may be what you did.
- the cleaning liquid of the present invention may be prepared directly at a predetermined drug concentration without going through the cleaning agent of the present invention.
- the urea derivative concentration in the cleaning liquid of the present invention varies depending on the pH of the cleaning liquid and the concentration of other cleaning chemicals, but is preferably about 0.01 to 10% by weight. If the urea derivative concentration is lower than the above lower limit, the RO membrane protection effect due to the use of the urea derivative cannot be sufficiently obtained, and the rejection rate may be lowered by cleaning. If the urea derivative concentration is higher than the above upper limit, the cleaning effect may be reduced, and the nitrogen content of the cleaning waste liquid is unnecessarily increased.
- the pH of the cleaning liquid of the present invention is preferably 10 to 14 in terms of its cleaning effect.
- the membrane permeability may not be sufficiently recovered by cleaning.
- the pH of the cleaning liquid is preferably 14 or less, more preferably 11 or more and 13 or less.
- the cleaning liquid of the present invention is prepared to have the above-mentioned preferable pH by adding an alkaline agent.
- the concentration of the chloramine compound in the cleaning liquid of the present invention is preferably 0.0001 to 0.5M, particularly 0.001 to 0.05M. It is preferable. If the chloramine compound concentration in the cleaning solution is too low, a sufficient cleaning effect cannot be obtained, and if it is too high, the RO membrane may be deteriorated.
- the chloramine compound concentration of 0.0001 to 0.5 M is a concentration corresponding to 7.1 to 35,500 mg-Cl 2 / L in terms of total chlorine concentration.
- the total chlorine concentration can be measured by the DPD method defined in JIS K0400-33-10.1999.
- the oxidizing agent concentration in the cleaning liquid of the present invention is preferably 0.000001 to 10% by weight, particularly 0.00001 to 1% by weight. If the oxidizing agent concentration in the cleaning liquid is too low, a sufficient cleaning effect cannot be obtained. If the oxidant concentration in the cleaning liquid is too high, the RO membrane may be deteriorated.
- the surfactant concentration in the cleaning liquid of the present invention is preferably 0.005 to 2% by weight, particularly 0.02 to 0.5% by weight. Is preferred. If the surfactant concentration is too low, the dispersion effect by the surfactant and the effect of improving the cleaning action cannot be sufficiently obtained. If the surfactant concentration is too high, the association of the surfactant is rather strong, which may reduce the cleaning effect.
- the concentration of the dispersing agent in the cleaning liquid of the present invention is preferably 0.01 to 5% by weight, particularly preferably 0.1 to 2% by weight. If the dispersant concentration is too low, the dispersion effect by the dispersant cannot be sufficiently obtained. If the dispersant concentration is too high, the cleaning effect will not increase with respect to the concentration.
- the cleaning agent of the present invention is prepared by mixing a urea derivative with water and an alkali agent, a combined chlorine agent, an oxidizing agent, other agents, a solvent and the like that are blended as necessary.
- an NH 2 -based compound such as sulfamic acid is added to an aqueous solution of an alkaline agent and dissolved, and hypochlorous acid and / or hypochlorous acid is added to the resulting NH 2 -based compound aqueous solution. It can be prepared by adding and mixing chlorate.
- the amount of water is preferably 50 to 90% by weight.
- the surfactant of the preparation process of the cleaning agent may be added in any step may be included in advance in an aqueous solution of an alkali agent, NH 2 system It may be added when hypochlorous acid and / or hypochlorite is added to the compound aqueous solution, or may be added before or after the addition of hypochlorous acid and / or hypochlorite.
- the surfactant is added after the addition of hypochlorous acid and / or hypochlorite.
- a compound having a primary amino group such as sulfamic acid may be added in the form of a salt.
- the salt include those that are soluble when used in the cleaning liquid of the present invention, and sodium sulfamate, potassium sulfamate, ammonium sulfamate, and the like can be used.
- the NH 2 -based compound is added so that the concentration of the chloramine compound in the cleaning liquid of the present invention obtained by diluting the cleaning agent of the present invention becomes the above concentration.
- Amount of NH 2 compound, the content ratio of the alkaline agent and the NH 2 compound is preferably 0.5 to 0.7 N / alkali metal (molar ratio).
- the NH 2 -based compound is added in a powder state or in an aqueous solution state.
- the amount of alkali metal contained in the sulfamate is added as an alkali.
- an aqueous solution is used, the amount of water contained in the aqueous solution is added as the amount of water in the alkaline aqueous solution.
- Hypochlorous acid and / or hypochlorite is preferably added as an aqueous solution having an effective chlorine (Cl 2 ) concentration of 5 to 20% by weight, preferably 10 to 15% by weight.
- Hypochlorous acid and / or hypochlorite is used so that the concentration of the chloramine compound in the cleaning liquid of the present invention obtained by diluting the cleaning agent of the present invention becomes the above concentration, and the NH 2 compound and the following hypochlorite. It is added so that the content ratio with chlorous acid and / or hypochlorite is the aforementioned Cl 2 / N molar ratio.
- the cleaning agent of this invention which consists of aqueous solution formulation excellent in reactivity, stability, handleability, a chlorine-free odor, etc. can be manufactured efficiently.
- Hypochlorous acid and / or hypochlorite is preferably added and mixed gradually.
- the cleaning solution of the present invention is prepared by diluting the cleaning agent of the present invention thus produced with water, preferably pure water, and if necessary, an alkaline agent, a combined chlorine agent, an oxidizing agent, other chemicals, a solvent, etc. It is manufactured by adding.
- the cleaning liquid of the present invention can also be produced directly by the same method as above without passing through the cleaning agent of the present invention.
- the method for cleaning the RO membrane using the cleaning liquid of the present invention is not particularly limited as long as the RO membrane is brought into contact with the cleaning liquid.
- immersion cleaning is performed in which a cleaning liquid is introduced to the raw water side of the RO membrane module and allowed to stand.
- the cleaning agent and the cleaning liquid of the present invention are in a two-agent type or more, they may be mixed and used for cleaning, or may be sequentially cleaned using different agents. For example, after cleaning with a cleaning liquid containing a urea derivative, it may be cleaned with a cleaning liquid containing an acid and / or other cleaning agent.
- the cleaning with another cleaning liquid may be performed before and after the cleaning with the cleaning liquid of the present invention.
- the same immersion cleaning as described above is usually employed.
- cleaning with an alkaline aqueous solution not containing a urea derivative can be performed after cleaning with the cleaning liquid of the present invention.
- the alkaline agent of the alkaline aqueous solution those described above as the alkaline agent used in the cleaning liquid of the present invention can be used.
- the pH of the alkaline aqueous solution is preferably pH 10 or more, particularly preferably pH 11 to 13, from the viewpoints of cleaning effect and handleability.
- ⁇ Acid cleaning effective for removing scales and metal colloids may be performed.
- an aqueous solution containing one or more acids such as hydrochloric acid, nitric acid, citric acid and oxalic acid can be used.
- the pH of the aqueous acid solution is preferably pH 4 or less, particularly pH 1 to 3 from the viewpoint of cleaning effect and handleability.
- the immersion cleaning time with the cleaning liquid of the present invention and other cleaning liquids is not particularly limited as long as the desired film performance recovery rate can be obtained, but is usually about 2 to 24 hours.
- the cleaning procedure is not particularly limited.
- the acid cleaning with the acid aqueous solution is performed before the cleaning with the cleaning liquid of the present invention, it is effective for removing scale components.
- sodium chloride, sodium metasilicate nonahydrate (for silica solution preparation), hydrochloric acid, isopropyl alcohol (IPA), urea, biuret, and sodium hydroxide are all hydrated. It was obtained from Kojun Pharmaceutical. Sodium hypochlorite (effective chlorine concentration 10%) was obtained from Sigma-Aldrich. Propylene glycol (PG), sodium dodecyl sulfate (SDS), gluconic acid, and triethanolamine (TEA) were obtained from Wako Pure Chemical Industries.
- the blocking rate does not decrease or the salt permeability does not increase and the increase in flux is suppressed in the immersion test in the cleaning liquid. Since the flux increases due to deterioration of the film by the cleaning liquid, it is not preferable that the flux increases after the immersion experiment.
- the flux increases after cleaning.
- ⁇ RO membrane> (1) New membrane: aromatic polyamide RO membrane “ES20” (manufactured by Nitto Denko) (2) Contaminated membrane: An aqueous solution containing a nonionic surfactant (200 mg / L semi-clean KG (Yokohama Yushi Kogyo Co., Ltd.) aqueous solution) was passed through the new membrane at 0.75 MPa for 3 days to lower the flux.
- a nonionic surfactant 200 mg / L semi-clean KG (Yokohama Yushi Kogyo Co., Ltd.) aqueous solution
- the flat membrane test apparatus shown in FIG. 1 was used.
- RO membrane supply water is supplied from a pipe 11 to a raw water chamber 1A below the RO membrane cell 2 in which the RO membrane of the sealed container 1 is set by a high-pressure pump 4.
- the raw water chamber 1 ⁇ / b> A below the RO membrane cell 2 is agitated by rotating the agitator 5 with a stirrer 3.
- the RO membrane permeated water is taken out from the pipe 12 through the permeated water chamber 1B on the upper side of the RO membrane cell 2.
- the concentrated water is taken out from the pipe 13.
- the pressure in the sealed container 1 is adjusted by a pressure gauge 6 provided in the water supply pipe 11 and a pressure adjustment valve 7 provided in the concentrated water outlet pipe 13.
- Flux [m / day] Permeate flow rate [m 3 / day] / membrane area [m 2 ] ⁇ temperature conversion coefficient [ ⁇ ]
- Blocking rate [%] ⁇ 1- (permeated water concentration [mg / L] / concentrated water concentration [mg / L]) ⁇ ⁇ 100
- the pure water flux of the new membrane was measured. Moreover, it was set as the contaminated film by the above-mentioned method, and the pure water flux of the contaminated film was measured. Thereafter, the contaminated film was immersed in a cleaning solution for 15 hours, then flushed with pure water for 2 hours, and the pure water flux after cleaning was measured.
- the pure water flux of the new membrane is the pure water flux before contamination
- the pure water flux of the contaminated membrane is the pure water flux after contamination
- the pure water flux of the membrane after cleaning is the pure water flux after cleaning.
- Example I-1 As a cleaning agent, a 0.8 wt% sodium hydroxide aqueous solution containing 40 wt% urea was prepared. This cleaning agent was diluted to 5 wt% (20 times) with pure water to prepare a 2 wt% urea-containing sodium hydroxide aqueous solution having a pH of 12, and the above experiment was performed using this cleaning solution.
- Example I-2> The above experiment was performed using a 2 wt% biuret-containing sodium hydroxide aqueous solution having a pH of 12 as a cleaning solution.
- Tables 1a to 1c show the experimental results of ⁇ Influence of the number of immersions in the cleaning solution on the blocking rate and the pure water flux> for Comparative Example I-1 and Examples I-1 and I-2, respectively.
- Table 2 shows the experimental results of ⁇ contamination of the contaminated film>.
- Example I-1 the rejection of NaCl, IPA, and silica decreased and the pure water flux increased, whereas in Example I-1, the rejection was The pure water flux is almost constant.
- Example 1-2 the rejection rate of NaCl and silica is equivalent to that of Comparative Example I-1, but the rejection rate of IPA is kept relatively high, and the pure water flux is also stable.
- ⁇ RO membrane> (1) New membrane: aromatic polyamide RO membrane “ES20” (manufactured by Nitto Denko) (2) Contaminated membrane: An aqueous solution containing a nonionic surfactant (200 mg / L semi-clean KG (manufactured by Yokohama Oil & Fats Industries Co., Ltd.) aqueous solution) was passed through the new membrane at 0.75 MPa and 25 ° C. for 3 days.
- a nonionic surfactant 200 mg / L semi-clean KG (manufactured by Yokohama Oil & Fats Industries Co., Ltd.) aqueous solution
- the pure water flux of the new membrane is the pure water flux before contamination
- the pure water flux of the contaminated membrane is the pure water flux after contamination
- the pure water flux of the membrane after cleaning is the pure water flux after cleaning.
- Example II-1 The above experiment was conducted using an aqueous solution containing 2 wt% of combined chlorine-based cleaning agent and 2 wt% of urea adjusted to pH 6.5 with hydrochloric acid.
- Tables 3a to 3c show the experimental results of ⁇ Influence of cleaning liquid immersion on blocking rate and pure water flux> in Comparative Examples II-1 and II-2 and Example II-1.
- Table 4 shows the experimental results of ⁇ contamination of the contaminated film>.
- Example II-1 has the same cleaning effect as Comparative Example II-2.
- Example III-1 The pure water flux of the new membrane was measured. Similarly to Experiment II, a standard solution for measuring the rejection rate (500 mg / L sodium chloride, 15.7 mg / L IPA aqueous solution) was passed at 0.75 MPa at 25 ° C., and sodium chloride (NaCl) and IPA were passed through. The rejection rate was measured.
- a sodium hydroxide aqueous solution containing 0.5 wt% urea having a pH of 12 was used as a cleaning solution. After immersing the membrane in the cleaning solution for 15 hours and then flushing with pure water for 2 hours, measurement of pure water flux and inhibition rate The rejection rate of sodium chloride (NaCl) and IPA was measured with a standard solution for measurement.
- Example III-1 The result of Example III-1 is that the IPA blocking rate is decreased and the pure water flux is increased as compared with the first immersion in Comparative Example I-1 (Experiment I) using a pH 12 sodium hydroxide aqueous solution as a cleaning solution. It can be seen that is suppressed.
- ⁇ RO membrane> (1) New membrane: aromatic polyamide RO membrane “ES20” (manufactured by Nitto Denko) (2) Contaminated membrane: An aqueous solution containing a nonionic surfactant (200 mg / L semi-clean KG (manufactured by Yokohama Oil & Fats Industries Co., Ltd.) aqueous solution) was passed through the new membrane at 0.75 MPa and 25 ° C. for 3 days.
- a nonionic surfactant 200 mg / L semi-clean KG (manufactured by Yokohama Oil & Fats Industries Co., Ltd.) aqueous solution
- the pure water flux of the new membrane is the pure water flux before contamination
- the pure water flux of the contaminated membrane is the pure water flux after contamination
- the pure water flux of the membrane after cleaning is the pure water flux after cleaning.
- Example IV-1 The above experiment was conducted using a sodium hydroxide aqueous solution of pH 13 containing 2% by weight of urea as a washing solution.
- Tables 6a to 6b show the experimental results of ⁇ Effect of cleaning liquid immersion on blocking rate and pure water flux> in Comparative Example IV-1 and Example IV-1.
- Table 7 shows the experimental results of ⁇ contamination of the contaminated film>.
- Example IV-1 a decrease in IPA rejection and an increase in pure water flux are suppressed as compared with Comparative Example IV-1.
- ⁇ Test equipment and calculation formula> As a test apparatus, a flat membrane tester SEPA CF2 unit (manufactured by GE Energy Japan) was used.
- Salt permeability and flux were determined by the following formula.
- Example V-1 The above experiment was performed using a sodium hydroxide aqueous solution having a pH of 12 containing 1% by weight of urea as a washing solution.
- Example V-2 The above experiment was conducted using a sodium oxide aqueous solution having a pH of 12 containing 2% by weight of PG, 0.15% by weight of SDS, 0.5% by weight of gluconic acid, and 0.5% by weight of urea as a washing solution.
- Example V-3 The above experiment was performed using a sodium hydroxide aqueous solution having a pH of 12 containing 2% by weight of triethanolamine (TEA), 0.15% by weight of SDS, 0.5% by weight of gluconic acid and 0.5% by weight of urea as a washing solution.
- TEA triethanolamine
- Example V-4> The above experiment was performed using a sodium hydroxide aqueous solution of pH 12 containing 2% TEA, 0.15% SDS, 0.5% by weight gluconic acid, and 1% by weight urea as a cleaning solution.
- Example V-1 the increase in salt permeability and flux is suppressed by containing 1% by weight of urea.
- the film is damaged by the alkaline aqueous solution, it is considered that the denseness of the film is deteriorated, the blocking performance is lowered and the flux is increased. It can be said that the membrane damage was reduced by the urea contained in the cleaning liquid.
- Example V-2 the increase in salt permeability was suppressed and the membrane damage was reduced by containing 0.5% by weight of urea. Regarding the flux, the slope of the rise in Example V-2 is smaller than that in Comparative Example V-2.
- Example V-4 the increase in salt permeability and flux is suppressed in Example V-4 with 1 wt%, compared with Example V-3 with a urea concentration of 0.5 wt%. You can see that the damage is reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Detergent Compositions (AREA)
Abstract
Description
(1)洗浄によって、RO膜の脱塩率やシリカ阻止率、特に中性溶質であるIPA(イソプロピルアルコール)阻止率が低下する。
(2)阻止率の低下を引き起こす洗浄液の条件は、pH10以上のアルカリ性条件であり、pHが高くなるほどその影響が強くなる。結合塩素剤や酸化剤によっても阻止率の低下が引き起こされる。
本発明による作用機構は以下の通りである。
本発明において、洗浄対象となるRO膜は、芳香族ポリアミド系RO膜であってもよく、酢酸セルロース系RO膜であってもよい。芳香族ポリアミド系RO膜のアミド結合部分への尿素誘導体の吸着作用の点において、本発明は芳香族ポリアミド系RO膜の洗浄に有効である。
本発明の洗浄剤は、尿素誘導体を含むことを特徴とするものである。本発明の洗浄剤は、通常、尿素誘導体と、必要に応じて用いられるアルカリ剤、結合塩素剤、その他の薬剤等を水に溶解させて調製される。
本発明の洗浄剤に含まれる尿素誘導体としては、分子量300以下程度の低分子化合物であることが、洗浄液のフラッシング後の残留がない点において好ましい。尿素誘導体としては、例えば、下記一般式(I)で表されるものが挙げられる。具体的には尿素(H2N-CO-NH2)、ビウレット(H2N-CO-NH-CO-NH2)、ポリウレア、その他、セミカルバジド、アラントイン、シトルリン、チオ尿素、チオセミカルバジド、チオ尿素誘導体などが挙げられる。
(式中、R1、R2、R3、およびR4は、各々独立して水素原子、アルキル基、アリール基、又は-R5CONH2(式中、R5は単結合又はアルキレン基を表す。)を有するアミドアシル基を表す。)
本発明の洗浄剤には、尿素誘導体以外に、RO膜の洗浄に必要な、アルカリ剤、結合塩素剤、酸化剤、その他の薬剤や水以外の溶媒が含有されていてもよい。
次亜塩素酸及び/又は次亜塩素酸塩の量が洗浄剤中のクロラミン化合物量となる。
本発明の洗浄液は、上述の本発明の洗浄剤を水で希釈してなる水溶液である。本発明の洗浄液は、本発明の洗浄剤を水で希釈すると共に、更に、必要に応じて、アルカリ剤、結合塩素剤、酸化剤、その他の薬剤、溶媒等を添加して所定の濃度に調整したものであってもよい。
本発明の洗浄剤は、水に尿素誘導体と、必要に応じて配合されるアルカリ剤、結合塩素剤、酸化剤、その他の薬剤、溶媒等を混合して調製される。
本発明の洗浄液を用いてRO膜を洗浄する方法としては、この洗浄液にRO膜を接触させればよく、特に制限はない。通常、RO膜モジュールの原水側に洗浄液を導入して静置する浸漬洗浄が行われる。
プロピレングリコール(PG)、ドデシル硫酸ナトリウム(SDS)、グルコン酸、トリエタノールアミン(TEA)は和光純薬社から入手した。
以下の条件で、洗浄液への浸漬回数が阻止率と純水フラックスに及ぼす影響と、汚染膜の洗浄性を調べる実験を行った。
(1) 新膜:芳香族ポリアミド系RO膜「ES20」(日東電工社製)未使用品
(2) 汚染膜:上記新膜に、非イオン性界面活性剤を含む水溶液(200mg/LセミクリーンKG(横浜油脂工業社製)水溶液)を0.75MPaで3日間通水してフラックスが低下した膜
図1に示す平膜試験装置を用いた。
この平膜試験装置において、RO膜供給水は、配管11より高圧ポンプ4で、密閉容器1のRO膜をセットしたRO膜セル2の下側の原水室1Aに供給される。RO膜セル2の下側の原水室1A内はスターラー3で攪拌子5を回転させることにより攪拌される。RO膜透過水はRO膜セル2の上側の透過水室1Bを経て配管12より取り出される。濃縮水は配管13より取り出される。密閉容器1内の圧力は、給水配管11に設けた圧力計6と、濃縮水取出配管13に設けた圧力調整バルブ7により調整される。
フラックス[m/day]=
透過水流量[m3/day]/膜面積[m2]×温度換算係数[-]
阻止率[%]=
{1-(透過水濃度[mg/L]/濃縮水濃度[mg/L])}×100
<洗浄液への浸漬回数が阻止率と純水フラックスに及ぼす影響>
(1) 新膜の純水フラックスを測定した。また、阻止率測定用標準液(塩化ナトリウム、メタケイ酸ナトリウム9水和物およびIPAを水に混合して調製した500mg/L塩化ナトリウム、20mg/Lシリカ、15.7mg/L IPAの水溶液)を0.75MPa、25℃で通水して、塩化ナトリウム(NaCl)、シリカおよびIPAの阻止率を測定した。
新膜の純水フラックスを測定した。また上述の方法で汚染膜とし、汚染膜の純水フラックスを測定した。その後、洗浄液に汚染膜を15時間浸漬した後、純水で2時間フラッシングを行い、洗浄後の純水フラックスを測定した。
pH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤として、尿素40重量%を含む0.8重量%水酸化ナトリウム水溶液を調製した。この洗浄剤を純水で5重量%(20倍)に希釈して、pH12の2重量%尿素含有水酸化ナトリウム水溶液を調製し、この洗浄液を用いて、上記の実験を行った。
洗浄液として、pH12の2重量%ビウレット含有水酸化ナトリウム水溶液を用いて、上記の実験を行った。
比較例I-1,実施例I-1,I-2の<洗浄液への浸漬回数が阻止率と純水フラックスに及ぼす影響>の実験結果をそれぞれ表1a~1cに示す。<汚染膜の洗浄性>の実験結果を表2に示す。
表1より明らかなように、比較例I-1では、NaCl、IPA、およびシリカの阻止率が低下し、純水フラックスが増加しているのに対して、実施例I-1では、阻止率の低下が見られず、純水フラックスもほぼ一定である。実施例1-2では、NaClとシリカの阻止率は比較例I-1と同等であるが、IPAの阻止率が比較的高く維持されており、純水フラックスも安定している。
以下の条件で、洗浄液浸漬が阻止率と純水フラックスに及ぼす影響と、汚染膜の洗浄性を調べる実験を行った。
(1) 新膜:芳香族ポリアミド系RO膜「ES20」(日東電工社製)未使用品
(2) 汚染膜:上記新膜に、非イオン性界面活性剤を含む水溶液(200mg/LセミクリーンKG(横浜油脂工業社製)水溶液)を0.75MPa、25℃で3日間通水してフラックスが低下した膜
スルファミン酸、次亜塩素酸ナトリウム水溶液(有効塩素12重量%)、水酸化ナトリウム、水を重量比で18:50:11:21の割合で混合して(Cl2/Nモル比0.46)、結合塩素化合物であるモノクロロスルファミン酸を0.85M含有する洗浄剤を調製した。
実験Iと同一
<洗浄液浸漬が阻止率と純水フラックスに及ぼす影響>
(1) 新膜の純水フラックスを測定した。また阻止率測定用標準液(塩化ナトリウムおよびIPAを水に混合して調製した500mg/L塩化ナトリウム、15.7mg/L IPAの水溶液)を0.75MPa、25℃で通水して、塩化ナトリウム(NaCl)とIPAの阻止率を測定した。
新膜の純水フラックスを測定した。また、上述の方法で汚染膜とし、汚染膜の純水フラックスを測定した後、洗浄液に汚染膜を15時間浸漬し、その後純水で2時間フラッシングを行った。洗浄後の純水フラックスを測定した。
塩酸と水酸化ナトリウムでpH6.5に調整した水を洗浄液として用い、上記の実験を行った。
塩酸でpH6.5に調整した、結合塩素系洗浄剤2重量%の水溶液を洗浄液として用い、上記の実験を行った。
塩酸でpH6.5に調整した、結合塩素系洗浄剤2重量%と、尿素2重量%の水溶液を洗浄液として用い、上記の実験を行った。
比較例II-1,II-2、実施例II-1の<洗浄液浸漬が阻止率と純水フラックスに及ぼす影響>の実験結果を表3a~3cに示す。<汚染膜の洗浄性>の実験結果を表4に示す。
表3より明らかなように、比較例II-2では、比較例II-1と比較して、IPAの阻止率が僅かに低下し、純水フラックスが微増している。実施例II-1では、IPAの阻止率の低下が見られず、純水フラックスは若干低下している。
以下の条件で、洗浄液浸漬が阻止率と純水フラックスに及ぼす影響を調べる実験を行った。
(1) 新膜:芳香族ポリアミド系RO膜「ES20」(日東電工社製)未使用品
実験Iと同一
新膜の純水フラックスを測定した。また、実験IIにおけると同様に、阻止率測定用標準液(500mg/L塩化ナトリウム、15.7mg/L IPA水溶液)を0.75MPa、25℃で通水して、塩化ナトリウム(NaCl)とIPAの阻止率を測定した。
結果を表5に示す。
実施例III-1の結果は、洗浄液としてpH12の水酸化ナトリウム水溶液を用いた比較例I-1(実験I)の浸漬回数1回目と比較して、IPA阻止率の低下と純水フラックスの増加が抑制されていることが分かる。
以下の条件で、洗浄液浸漬が阻止率と純水フラックスに及ぼす影響と、汚染膜の洗浄性を調べる実験を行った。
(1) 新膜:芳香族ポリアミド系RO膜「ES20」(日東電工社製)未使用品
(2) 汚染膜:上記新膜に、非イオン性界面活性剤を含む水溶液(200mg/LセミクリーンKG(横浜油脂工業社製)水溶液)を0.75MPa、25℃で3日間通水してフラックスが低下した膜
実験Iと同一
<洗浄液浸漬が阻止率と純水フラックスに及ぼす影響>
(1) 新膜の純水フラックスを測定した。また、実験IIにおけると同様に、阻止率測定用標準液(500mg/L塩化ナトリウム、15.7mg/L IPAの水溶液)を0.75MPa、25℃で通水して、塩化ナトリウム(NaCl)とIPAの阻止率を測定した。
新膜の純水フラックスを測定した。また、上述の方法で汚染膜とし、汚染膜の純水フラックスを測定した後、洗浄液に汚染膜を15時間浸漬し、その後純水で2時間フラッシングを行い、洗浄後の純水フラックスを測定した。
pH13の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
尿素2重量%を含むpH13の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
比較例IV-1、実施例IV-1の<洗浄液浸漬が阻止率と純水フラックスに及ぼす影響>の実験結果を表6a~6bに示す。<汚染膜の洗浄性>の実験結果を表7に示す。
表6より、実施例IV-1では、比較例IV-1と比較して、IPA阻止率の低下と純水フラックスの増加が抑制されていることが分かる。
以下の条件で、洗浄液浸漬による塩透過率とフラックスの変化を調べる実験を行った。
(1) 新膜:海水淡水化用芳香族ポリアミド系RO膜「TM-810-V」(東レ社製)未使用品
試験装置として、平膜試験機SEPA CF2ユニット(GEエナジー・ジャパン社製)を使用した。
(1) 新膜に、海水淡水化用阻止率測定用標準液(32000mg/L塩化ナトリウム水溶液、pH8)を5.5MPa、25℃で通水して、塩化ナトリウムの透過率(塩透過率)とフラックスを測定した。
pH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
尿素を1重量%含むpH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
プロピレングリコール(PG)2重量%、ドデシル硫酸ナトリウム(SDS)0.15重量%、グルコン酸0.5重量%を含むpH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
PG2重量%、SDS0.15重量%、グルコン酸0.5重量%、尿素0.5重量%を含むpH12の酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
トリエタノールアミン(TEA)2重量%、SDS0.15重量%、グルコン酸0.5重量%、尿素0.5重量%を含むpH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
TEA2重量%、SDS0.15重量%、グルコン酸0.5重量%、尿素1重量%を含むpH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
比較例V-1および実施例V-1の塩透過率とフラックスの測定結果を図2,3に示す。比較例V-2および実施例V-2の塩透過率とフラックスの測定結果を図4,5に示す。実施例V-3および実施例V-4の塩透過率とフラックスの測定結果を図6,7に示す。
図2、図3より、実施例V-1では、尿素を1重量%含むことにより、塩透過率とフラックスの上昇が抑えられていることが分かる。膜がアルカリ水溶液によってダメージを受けると、膜の緻密性が悪くなり、阻止性能が低下するとともにフラックスが上昇すると考えられる。洗浄液に尿素が含まれることによって、膜のダメージが軽減されたと言える。
本出願は、2014年10月6日付で出願された日本特許出願2014-205704に基づいており、その全体が引用により援用される。
2 RO膜セル
3 スターラー
4 高圧ポンプ
5 攪拌子
6 圧力計
7 圧力調整バルブ
Claims (8)
- 尿素誘導体を含むことを特徴とする逆浸透膜の洗浄剤。
- 請求項1において、前記尿素誘導体が尿素および/又はビウレットであることを特徴とする逆浸透膜の洗浄剤。
- 請求項1又は2において、更に、アルカリ剤、結合塩素剤および酸化剤よりなる群から選ばれる1種又は2種以上を含むことを特徴とする逆浸透膜の洗浄剤。
- 請求項1ないし3のいずれか1項の洗浄剤を希釈した水溶液であることを特徴とする逆浸透膜の洗浄液。
- 尿素誘導体と、アルカリ剤、結合塩素剤および酸化剤よりなる群から選ばれる1種又は2種以上とを含むことを特徴とする逆浸透膜の洗浄液。
- 請求項4又は5において、pHが10~14であることを特徴とする逆浸透膜の洗浄液。
- 請求項4ないし6のいずれか1項に記載の洗浄液に逆浸透膜を接触させることを特徴とする逆浸透膜の洗浄方法。
- 請求項7において、前記逆浸透膜が芳香族ポリアミド系逆浸透膜であることを特徴とする逆浸透膜の洗浄方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580054150.3A CN106999860B (zh) | 2014-10-06 | 2015-10-01 | 逆渗透膜的洗净剂、洗净液及洗净方法 |
EP15848642.3A EP3205389B1 (en) | 2014-10-06 | 2015-10-01 | Cleaning method for reverse osmosis membrane |
SG11201701992WA SG11201701992WA (en) | 2014-10-06 | 2015-10-01 | Cleaning agent, cleaning liquid and cleaning method for reverse osmosis membrane |
US15/509,683 US10443023B2 (en) | 2014-10-06 | 2015-10-01 | Alkaline cleaning liquid comprising urea and/or biuret, and cleaning method for reverse osmosis membrane |
AU2015329247A AU2015329247B2 (en) | 2014-10-06 | 2015-10-01 | Cleaning agent, cleaning liquid and cleaning method for reverse osmosis membrane |
IL251015A IL251015B (en) | 2014-10-06 | 2017-03-08 | Cleaning agent, cleaning fluid and cleaning method for reverse osmosis membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014205704A JP5910696B1 (ja) | 2014-10-06 | 2014-10-06 | 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 |
JP2014-205704 | 2014-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056453A1 true WO2016056453A1 (ja) | 2016-04-14 |
Family
ID=55653068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077901 WO2016056453A1 (ja) | 2014-10-06 | 2015-10-01 | 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10443023B2 (ja) |
EP (1) | EP3205389B1 (ja) |
JP (1) | JP5910696B1 (ja) |
CN (1) | CN106999860B (ja) |
AU (1) | AU2015329247B2 (ja) |
IL (1) | IL251015B (ja) |
SG (1) | SG11201701992WA (ja) |
TW (1) | TWI661861B (ja) |
WO (1) | WO2016056453A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11369707B2 (en) * | 2017-01-30 | 2022-06-28 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for reducing bioburden in chromatography |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017148779A (ja) * | 2016-02-26 | 2017-08-31 | 栗田工業株式会社 | 逆浸透膜の劣化抑制剤、および水処理方法 |
JP6823401B2 (ja) * | 2016-08-23 | 2021-02-03 | オルガノ株式会社 | 低分子有機物含有水の処理方法および逆浸透膜の改質方法 |
JP6779706B2 (ja) * | 2016-08-23 | 2020-11-04 | オルガノ株式会社 | 逆浸透膜を用いる水処理方法 |
JP6848482B2 (ja) * | 2017-01-30 | 2021-03-24 | 栗田工業株式会社 | 逆浸透膜の洗浄方法 |
JP6844281B2 (ja) * | 2017-01-30 | 2021-03-17 | 栗田工業株式会社 | 逆浸透膜の洗浄方法 |
JP6933902B2 (ja) * | 2017-02-02 | 2021-09-08 | オルガノ株式会社 | 逆浸透膜の改質方法、および、非荷電物質含有水の処理方法 |
WO2018142904A1 (ja) * | 2017-02-02 | 2018-08-09 | オルガノ株式会社 | 逆浸透膜の改質方法、逆浸透膜、および、非荷電物質含有水の処理方法、逆浸透膜の運転方法および逆浸透膜装置 |
JP7144922B2 (ja) * | 2017-05-09 | 2022-09-30 | オルガノ株式会社 | 逆浸透膜の運転方法および逆浸透膜装置 |
KR102157931B1 (ko) * | 2017-12-22 | 2020-09-18 | 주식회사 엘지화학 | 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막 제조용 조성물 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08132093A (ja) * | 1994-11-09 | 1996-05-28 | Otsuka Chem Co Ltd | 洗浄剤組成物 |
JPH11512719A (ja) * | 1995-09-29 | 1999-11-02 | バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッド | チオ尿素化合物を用いる生物汚損を抑制する方法および組成物 |
JP2002035112A (ja) * | 2000-07-25 | 2002-02-05 | Clean Chemical Kk | 透析液のエンドトキシン除去方法 |
JP2009078218A (ja) * | 2007-09-26 | 2009-04-16 | Toray Ind Inc | 複合半透膜の製造方法 |
JP2011208138A (ja) * | 2010-03-12 | 2011-10-20 | Sanyo Chem Ind Ltd | 医療用具用洗浄剤 |
JP2012187469A (ja) * | 2011-03-09 | 2012-10-04 | Kurita Water Ind Ltd | 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 |
JP2012196614A (ja) * | 2011-03-18 | 2012-10-18 | Kubota Corp | 排水処理方法および排水処理システム |
JP2012529496A (ja) * | 2009-06-08 | 2012-11-22 | ブロミン・コンパウンズ・リミテツド | 殺生物剤としてのおよび防汚剤としての安定化されかつ活性化された臭素溶液 |
WO2013005787A1 (ja) * | 2011-07-06 | 2013-01-10 | 栗田工業株式会社 | 膜分離方法 |
JP2013215678A (ja) * | 2012-04-09 | 2013-10-24 | Kurita Water Ind Ltd | 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS585904B2 (ja) * | 1977-04-05 | 1983-02-02 | 三井東圧化学株式会社 | グアニジン及びその塩類の製造方法 |
US7776363B2 (en) * | 2006-01-27 | 2010-08-17 | Nalco Company | Suppressing microbial growth in pulp and paper |
US8206752B2 (en) * | 2006-04-01 | 2012-06-26 | Biomedical Development Corporation | Rejuvenation of reverse osmosis membrane |
EP2595818A1 (en) * | 2010-07-23 | 2013-05-29 | Datacard Corporation | Method of and apparatus for personalising a series of portable objects |
EP2684598B1 (en) | 2011-03-09 | 2019-05-01 | Kurita Water Industries Ltd. | Method for improving blocking rate of reverse osmosis membrane, and use of a treatment agent for improving blocking rate of a reverse osmosis membrane |
JP5691842B2 (ja) * | 2011-05-27 | 2015-04-01 | セイコーエプソン株式会社 | インク組成物、記録方法および記録物 |
US9161543B2 (en) * | 2011-10-21 | 2015-10-20 | Nalco Company | Biocontrol through the use of chlorine-stabilizer blends |
CN103143262B (zh) | 2011-12-07 | 2015-03-11 | 中国石油化工股份有限公司 | 一种清洗剂组合物和反渗透膜的清洗方法 |
US9988621B2 (en) * | 2012-02-15 | 2018-06-05 | Ecolab Usa Inc. | Method of enzyme inactivation |
US10307713B2 (en) * | 2012-05-30 | 2019-06-04 | Kurita Water Industries Ltd. | Agent and method for cleaning permeable membranes |
US8858721B2 (en) * | 2013-03-15 | 2014-10-14 | Ecolab Usa Inc. | Foaming drain cleaner and sanitizer |
CN110064308A (zh) | 2013-11-12 | 2019-07-30 | 艺康美国股份有限公司 | 膜分离装置的生物粘泥抑制剂和抑制方法 |
-
2014
- 2014-10-06 JP JP2014205704A patent/JP5910696B1/ja active Active
-
2015
- 2015-10-01 SG SG11201701992WA patent/SG11201701992WA/en unknown
- 2015-10-01 AU AU2015329247A patent/AU2015329247B2/en active Active
- 2015-10-01 EP EP15848642.3A patent/EP3205389B1/en active Active
- 2015-10-01 US US15/509,683 patent/US10443023B2/en active Active
- 2015-10-01 WO PCT/JP2015/077901 patent/WO2016056453A1/ja active Application Filing
- 2015-10-01 CN CN201580054150.3A patent/CN106999860B/zh active Active
- 2015-10-06 TW TW104132746A patent/TWI661861B/zh not_active IP Right Cessation
-
2017
- 2017-03-08 IL IL251015A patent/IL251015B/en active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08132093A (ja) * | 1994-11-09 | 1996-05-28 | Otsuka Chem Co Ltd | 洗浄剤組成物 |
JPH11512719A (ja) * | 1995-09-29 | 1999-11-02 | バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッド | チオ尿素化合物を用いる生物汚損を抑制する方法および組成物 |
JP2002035112A (ja) * | 2000-07-25 | 2002-02-05 | Clean Chemical Kk | 透析液のエンドトキシン除去方法 |
JP2009078218A (ja) * | 2007-09-26 | 2009-04-16 | Toray Ind Inc | 複合半透膜の製造方法 |
JP2012529496A (ja) * | 2009-06-08 | 2012-11-22 | ブロミン・コンパウンズ・リミテツド | 殺生物剤としてのおよび防汚剤としての安定化されかつ活性化された臭素溶液 |
JP2011208138A (ja) * | 2010-03-12 | 2011-10-20 | Sanyo Chem Ind Ltd | 医療用具用洗浄剤 |
JP2012187469A (ja) * | 2011-03-09 | 2012-10-04 | Kurita Water Ind Ltd | 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 |
JP2012196614A (ja) * | 2011-03-18 | 2012-10-18 | Kubota Corp | 排水処理方法および排水処理システム |
WO2013005787A1 (ja) * | 2011-07-06 | 2013-01-10 | 栗田工業株式会社 | 膜分離方法 |
JP2013215678A (ja) * | 2012-04-09 | 2013-10-24 | Kurita Water Ind Ltd | 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3205389A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11369707B2 (en) * | 2017-01-30 | 2022-06-28 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for reducing bioburden in chromatography |
US11717586B2 (en) | 2017-01-30 | 2023-08-08 | Regeneran Pharmaceuticals, Inc. | Compositions and methods for reducing bioburden in chromatography |
IL287543B1 (en) * | 2017-01-30 | 2024-10-01 | Regeneron Pharma | Compositions and methods for reducing bioburden in chromatography |
IL287543B2 (en) * | 2017-01-30 | 2025-02-01 | Regeneron Pharma | Preparations and methods for reducing bioburden in chromatography |
Also Published As
Publication number | Publication date |
---|---|
JP5910696B1 (ja) | 2016-04-27 |
EP3205389A4 (en) | 2018-06-06 |
IL251015B (en) | 2020-11-30 |
CN106999860A (zh) | 2017-08-01 |
IL251015A0 (en) | 2017-04-30 |
US20170275571A1 (en) | 2017-09-28 |
SG11201701992WA (en) | 2017-04-27 |
AU2015329247B2 (en) | 2020-01-23 |
EP3205389B1 (en) | 2021-05-19 |
JP2016073915A (ja) | 2016-05-12 |
TWI661861B (zh) | 2019-06-11 |
AU2015329247A1 (en) | 2017-03-30 |
TW201613685A (en) | 2016-04-16 |
EP3205389A1 (en) | 2017-08-16 |
CN106999860B (zh) | 2019-01-22 |
US10443023B2 (en) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910696B1 (ja) | 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 | |
TWI704221B (zh) | 逆滲透膜之洗淨液、及洗淨方法 | |
WO2013179775A1 (ja) | 透過膜の洗浄剤及び洗浄方法 | |
JP6364751B2 (ja) | 芳香族ポリアミド系逆浸透膜の洗浄剤及び洗浄方法 | |
JP6090377B2 (ja) | 水処理用ポリアミド系逆浸透膜用洗浄剤、洗浄液、および洗浄方法 | |
JP7136385B1 (ja) | 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法 | |
WO2017017993A1 (ja) | 逆浸透膜用洗浄剤、洗浄液、および洗浄方法 | |
JP5839087B1 (ja) | 酢酸セルロース系逆浸透膜の洗浄液及びその製造方法 | |
TW202428344A (zh) | 芳香族聚醯胺系逆滲透膜的清洗劑、清洗液及清洗方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15848642 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 251015 Country of ref document: IL Ref document number: 15509683 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015848642 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015848642 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015329247 Country of ref document: AU Date of ref document: 20151001 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |