WO2016056431A1 - 樹脂組成物および成形品 - Google Patents

樹脂組成物および成形品 Download PDF

Info

Publication number
WO2016056431A1
WO2016056431A1 PCT/JP2015/077551 JP2015077551W WO2016056431A1 WO 2016056431 A1 WO2016056431 A1 WO 2016056431A1 JP 2015077551 W JP2015077551 W JP 2015077551W WO 2016056431 A1 WO2016056431 A1 WO 2016056431A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fluororesin
resin composition
ppm
less
Prior art date
Application number
PCT/JP2015/077551
Other languages
English (en)
French (fr)
Inventor
淳也 飯田
幸二 仲西
綾音 仲上
英樹 河野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020177009276A priority Critical patent/KR101940431B1/ko
Priority to EP15848426.1A priority patent/EP3214134B1/en
Priority to US15/516,959 priority patent/US20170301430A1/en
Priority to CN201580053998.4A priority patent/CN106795368B/zh
Publication of WO2016056431A1 publication Critical patent/WO2016056431A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK

Definitions

  • the present invention relates to a resin composition and a molded article.
  • thermoplastic resins such as polyamide resins, polycarbonate resins, polyacetal resins, etc.
  • Electrical and electronic parts have been put into practical use.
  • sliding applications such as gears and bearing retainers, the replacement of metal sliding members with plastic sliding members is progressing, but the sliding members used under conditions such as high load, high temperature, and high speed rotation.
  • the above-mentioned thermoplastic resin has insufficient slidability, and problems such as wear, melting, cracking and chipping may occur.
  • fluororesin has excellent characteristics such as slidability, heat resistance, product resistance, solvent resistance, weather resistance, flexibility, electrical properties, etc., and is widely used in automobiles, industrial machines, OA equipment, electrical and electronic equipment, etc. It is used in the field and is particularly excellent in slidability, and its low coefficient of friction is prominent among resins. However, it is often inferior to physical heat resistance as indicated by mechanical properties and deflection temperature under load compared to crystalline heat-resistant thermoplastic resin, and dimensions compared to amorphous heat-resistant thermoplastic resin. In some cases, the stability is inferior, and the range of use is limited.
  • Patent Document 1 a resin composition containing an aromatic polyether ketone resin (I) and a fluororesin (II) as a resin composition capable of obtaining a molded product having a low dynamic friction coefficient and a high limit PV value.
  • the mass ratio (I) :( II) of the aromatic polyetherketone resin (I) and the fluororesin (II) is 95: 5 to 50:50, and the fluororesin (II) is an aromatic poly
  • a resin composition has been proposed which is dispersed in the ether ketone resin (I) in the form of particles, and the average dispersed particle size of the fluororesin (II) is 3.0 ⁇ m or less.
  • aromatic polyetherketone resin (I) and fluororesin (II) are used as a resin composition capable of obtaining a molded article having excellent flexibility, high acid resistance, and excellent electrical characteristics.
  • a resin composition comprising an aromatic polyether ketone resin (I) and a fluororesin (II) in a mass ratio (I) :( II) of 50:50 to 10:90 Compositions have been proposed.
  • thermoplastic resin composition for forming a thin molded article having a thin part having a thickness of 1.5 mm or less, and is composed of an arylene group, an ether group, and a carbonyl group.
  • thermoplastic fluororesin (B) is dispersed in the form of particles in the thermoplastic resin (A) to form a dispersed phase, and the average particle size of the dispersed phase is 3 ⁇ m or less Flame retardant thermoplastic resin compositions have been proposed.
  • An object of the present invention is to provide a resin composition having high slidability and impact resistance, and capable of obtaining a molded product having excellent tensile strength.
  • the present invention is a resin composition
  • a resin composition comprising an aromatic polyether ketone resin (I) and a fluororesin (II), wherein the amount of sodium in the composition is 120 ppm or less or calcium relative to the composition.
  • the amount of the resin composition is 15 ppm or less based on the composition.
  • the amount of sodium in the composition is preferably 120 ppm or less with respect to the composition, and the amount of calcium is preferably 15 ppm or less with respect to the composition.
  • the mass ratio (I) :( II) of the aromatic polyether ketone resin (I) to the fluororesin (II) is preferably 99: 1 to 30:70.
  • the melt viscosity ratio (I) / (II) between the aromatic polyether ketone resin (I) and the fluororesin (II) is preferably 0.01 to 5.0.
  • the melting point of the fluororesin (II) is preferably 230 to 350 ° C.
  • the aromatic polyether ketone resin (I) is preferably a polyether ether ketone.
  • the present invention is also a pellet obtained by molding the resin composition. Moreover, it is also preferable that the said pellet is what added the lubricant after shaping
  • the present invention is also a molded product formed from the resin composition or the pellet.
  • the present invention is also an electric wire characterized by being coated with the resin composition or the pellet.
  • the present invention is also a production method for producing the resin composition, wherein the amount of sodium is 120 ppm or less with respect to the composition or the amount of calcium is 15 ppm or less with respect to the composition. It is also a production method including a step of selecting a combination of the aromatic polyether ketone resin (I) and the fluororesin (II), and a step of kneading the aromatic polyether ketone resin (I) and the fluororesin (II).
  • the resin composition of the present invention has the above-described configuration, a molded product having high slidability and impact resistance and excellent tensile strength can be obtained. Since the molded product of the present invention has the above-described configuration, it has high slidability and impact resistance, and exhibits excellent tensile strength.
  • the inventors of the present invention have intensively studied to improve the tensile strength of a molded product obtained from a resin composition containing an aromatic polyetherketone resin and a fluororesin, and have determined the concentration of a specific metal species contained in the composition. It has been found that the tensile strength of the obtained molded product can be improved by reducing the amount, and the present invention has been completed.
  • the resin composition of the present invention is characterized in that the amount of sodium in the composition is 120 ppm or less with respect to the composition or the amount of calcium is 15 ppm or less with respect to the composition.
  • the amount of sodium or calcium in the composition is within a specific range, the resin composition of the present invention can have excellent tensile strength of a molded product obtained from the resin composition.
  • the amount of calcium is preferably 15 ppm or less with respect to the composition.
  • the amount of sodium in the composition is preferably 120 ppm or less with respect to the composition, and the amount of calcium is preferably 15 ppm or less with respect to the composition.
  • the amount of the sodium is more preferably 100 ppm or less, still more preferably 80 ppm or less, still more preferably 50 ppm or less, particularly preferably 40 ppm or less, and 30 ppm or less. More preferably, it is most preferably 20 ppm or less.
  • the lower limit may be 0 ppm but may be 0.5 ppm.
  • the amount of calcium is more preferably 10 ppm or less, still more preferably 8 ppm or less, still more preferably 6 ppm or less, particularly preferably 5 ppm or less, based on the composition. Most preferably.
  • the lower limit may be 0 ppm but may be 0.5 ppm.
  • the amount of sodium and calcium contained in the resin composition can be measured by ashing 1 g of a sample at 600 ° C., dissolving the residue in hydrochloric acid, and performing ICP emission analysis on the solution.
  • the resin composition of the present invention contains an aromatic polyether ketone resin (I) and a fluororesin (II).
  • the aromatic polyether ketone resin (I) is not particularly limited as long as it includes a repeating unit composed of an arylene group, an ether group [—O—], and a carbonyl group [—C ( ⁇ O) —], For example, it contains a repeating unit represented by any of the following formulas (a1) to (a5).
  • Ar represents a divalent aromatic hydrocarbon ring group which may have a substituent
  • Examples of the divalent aromatic hydrocarbon ring group represented by Ar include an arylene group having 6 to 10 carbon atoms such as a phenylene group (such as o-, m-, or p-phenylene group) and a naphthylene group, Biarylene
  • aromatic hydrocarbon ring groups are substituted with, for example, a halogen atom, an alkyl group (such as a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group), a haloalkyl group, a hydroxyl group, Alkoxy groups (linear or branched alkoxy groups having 1 to 4 carbon atoms such as methoxy groups), mercapto groups, alkylthio groups, carboxyl groups, sulfo groups, amino groups, N-substituted amino groups, cyano groups, etc. You may have.
  • the types of Ar may be the same as or different from each other.
  • Preferred Ar is a phenylene group (for example, p-phenylene group) or a biphenylene group (for example, 4,4′-biphenylene group).
  • Examples of the resin having the repeating unit (a1) include polyether ketone (for example, “PEEK-HT” manufactured by Victrex).
  • Examples of the resin having the repeating unit (a2) include polyether ketone ketone (for example, “PEKK” manufactured by Arkema + Oxford Performance Material).
  • polyether ether ketone for example, “VICTREX PEEK” manufactured by Victrex, “Vestakeep (registered trademark)” manufactured by Evonik, “Vestakeep-J” manufactured by Daicel-Evonik, Solvay Specialty Examples include “KetaSpire (registered trademark)” manufactured by Polymers, and polyether-diphenyl-ether-phenyl-ketone-phenyl (for example, “Kadel (registered trademark)” manufactured by Solvay Specialty Polymers).
  • resin having the repeating unit (a4) include polyether ketone ether ketone ketone (for example, “VICTREX ST” manufactured by Victrex).
  • Examples of the resin having the repeating unit (a5) include polyether ether ketone ketone.
  • the ether segment imparts flexibility to the molecular chain
  • the ketone segment imparts rigidity to the molecular chain, so the more the ether segment, the faster the crystallization rate and the higher the crystallinity that can ultimately be reached. As the number of segments increases, the glass transition temperature and melting point tend to increase.
  • These aromatic polyether ketone resins (I) can be used alone or in combination of two or more.
  • aromatic polyetherketone resins having any of the repeating units (a1) to (a4) are preferred.
  • the aromatic polyether ketone resin (I) is at least one resin selected from the group consisting of polyether ketone, polyether ether ketone, polyether ketone ketone, and polyether ketone ether ketone ketone. Is preferred. Further, at least one resin selected from the group consisting of polyether ketone and polyether ether ketone is more preferable.
  • an aromatic polyetherketone resin having a repeating unit (a3) is preferable, and a polyetheretherketone is more preferable from the viewpoint of excellent balance between a glass transition temperature and a high melting point and a high crystallization rate. .
  • the aromatic polyether ketone resin (I) preferably has a melt viscosity of 0.01 to 4.0 kNsm ⁇ 2 at 60 sec ⁇ 1 and 390 ° C.
  • the melt viscosity is in the above range, the processing characteristics are improved, and a molded product having excellent tensile strength can be obtained.
  • a more preferred lower limit of the melt viscosity is 0.05 kNsm -2 , further preferably 0.08 kNsm -2 , still more preferably 0.10 kNsm -2 , particularly preferably 0.15 kNsm -2 , most preferably Preferably it is 0.25 kNsm -2 .
  • the upper limit of the melt viscosity is more preferably 3.5 kNsm ⁇ 2 , further preferably 3.0 kNsm ⁇ 2 , still more preferably 2.8 kNsm ⁇ 2 , particularly preferably 2.5 kNsm ⁇ 2 , most preferably It is preferably 2.3 kNsm -2 .
  • the melt viscosity of the aromatic polyether ketone resin (I) is measured according to ASTM D3835.
  • the aromatic polyether ketone resin (I) preferably has a glass transition temperature of 130 ° C. or higher. More preferably, it is 135 degreeC or more, More preferably, it is 140 degreeC or more. When the glass transition temperature is in the above range, a resin composition having excellent heat resistance can be obtained. The glass transition temperature is measured by a differential scanning calorimetry (DSC) apparatus.
  • DSC differential scanning calorimetry
  • the aromatic polyether ketone resin (I) preferably has a melting point of 300 ° C. or higher. More preferably, it is 320 degreeC or more. When the melting point is in the above range, the heat resistance of the obtained molded product can be improved. The melting point is measured by a differential scanning calorimetry (DSC) apparatus.
  • DSC differential scanning calorimetry
  • the amount of sodium in the aromatic polyetherketone resin (I) is preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 150 ppm or less, based on the resin (I). More preferably, it is 100 ppm or less, and it is especially preferable that it is 50 ppm or less.
  • the amount of calcium in the aromatic polyetherketone resin (I) is preferably 30 ppm or less, more preferably 25 ppm or less, and further preferably 20 ppm or less with respect to the resin (I). Preferably, it is still more preferably 15 ppm or less, particularly preferably 10 ppm or less, and most preferably 5 ppm or less.
  • the amount of sodium and calcium in the aromatic polyether ketone resin (I) means the amount of sodium and calcium in the resin (I) as a raw material for forming the resin composition of the present invention.
  • the fluororesin (II) is, for example, a polymer having polymerized units based on at least one fluorine-containing ethylenic monomer.
  • the fluororesin (II) is preferably a melt processable fluororesin.
  • 1 type may be used and 2 or more types may be used.
  • fluororesin (II) examples include tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) copolymer, TFE / HFP / perfluoro (alkyl vinyl ether) (PAVE) copolymer, and TFE / PAVE copolymer.
  • low molecular weight polytetrafluoroethylene can be used as long as it is melt processable.
  • the PAVE preferably has an alkyl group having 1 to 6 carbon atoms, and examples thereof include perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), and perfluoro (butyl vinyl ether). .
  • TFE tetrafluoroethylene
  • Rf 1 represents —CF 3 or —ORf 2.
  • Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • Rf 2 is preferably a perfluoroalkyl group having 1 to 3 carbon atoms.
  • the perfluoroethylenically unsaturated compound represented by the general formula (1) it is possible to obtain a molded product having further excellent impact resistance, molding stability, withstand voltage characteristics, etc., so hexafluoropropylene (HFP) And at least one selected from the group consisting of perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE) and perfluoro (propyl vinyl ether) (PPVE), More preferably, it is at least one selected from the group consisting of perfluoro (propyl vinyl ether).
  • the fluororesin (II) is more preferably a copolymer of TFE and HFP, or a copolymer of TFE, HFP and PPVE.
  • the fluororesin (II) is preferably composed of 60 to 99% by mass of TFE and 1 to 40% by mass of a perfluoroethylenically unsaturated compound represented by the general formula (1).
  • 68 mass% is more preferable, as for the minimum of content of TFE which comprises the said fluororesin (II), 72 mass% is still more preferable, 77 mass% is especially preferable, and 83 mass% is especially more preferable.
  • 98 mass% is more preferable, and, as for the upper limit of content of TFE which comprises the said fluororesin (II), 97 mass% is still more preferable.
  • the lower limit of the content of the perfluoroethylenically unsaturated compound represented by the general formula (1) constituting the fluororesin (II) is more preferably 2% by mass, and further preferably 3% by mass.
  • the upper limit of the content of the perfluoroethylenically unsaturated compound represented by the general formula (1) constituting the fluororesin (II) is more preferably 32% by mass, still more preferably 28% by mass, and 23% by mass. Is particularly preferred, with 17% by weight being even more preferred.
  • the fluororesin (II) is preferably a copolymer composed only of TFE and a perfluoroethylenic compound represented by the general formula (1).
  • the fluororesin (II) preferably has a melt viscosity of 0.2 to 4.0 kNsm -2 at 60 sec -1 and 390 ° C.
  • the lower limit of the melt viscosity is more preferably 0.25 kNsm ⁇ 2 , further preferably 0.3 kNsm ⁇ 2 , particularly preferably 0.35 kNsm ⁇ 2 , and most preferably 0.4 kNsm ⁇ 2 .
  • the upper limit of the melt viscosity is more preferably 3.7 kNsm -2 , further preferably 3.6 kNsm -2 , particularly preferably 3.5 kNsm -2 .
  • the melt viscosity of the fluororesin (II) is measured according to ASTM D3835.
  • the fluororesin (II) preferably has a melt flow rate (MFR) measured under the condition of 372 ° C. and a load of 5000 g of 0.1 to 100 g / 10 minutes, preferably 0.5 to 80 g / 10 minutes. More preferred is 0.5 to 70 g / 10 min.
  • MFR melt flow rate
  • An even more preferred lower limit of MFR is 0.7 g / 10 minutes, a particularly preferred lower limit is 1.0 g / 10 minutes, a still more preferred lower limit is 1.5 g / 10 minutes, and a most preferred lower limit is 2.0 g. / 10 minutes.
  • MFR is 60 g / 10 min
  • a particularly preferred upper limit is 50 g / 10 min
  • a still more preferred upper limit is 45 g / 10 min
  • a most preferred upper limit is 40 g / 10 min.
  • the MFR of the fluororesin (II) is measured using a melt indexer according to ASTM D1238. Set values such as measurement temperature and load are determined with reference to the standards of individual fluororesins (for example, ASTM D 2116).
  • the melting point of the fluororesin (II) is not particularly limited, but it is preferable in molding that the fluororesin (II) is already melted at a temperature at which the aromatic polyetherketone resin (I) used in molding is melted.
  • the temperature is preferably not higher than the melting point of the aromatic polyether ketone resin (I).
  • the melting point of the fluororesin (II) is preferably 230 to 350 ° C., more preferably 240 to 310 ° C., and still more preferably 240 to 300 ° C.
  • the melting point of the fluororesin (II) is determined as a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) apparatus.
  • the amount of sodium in the fluororesin (II) is preferably 10 ppm or less, more preferably 3 ppm or less with respect to the resin (II).
  • the amount of calcium in the fluororesin (II) is preferably 10 ppm or less, more preferably 3 ppm or less with respect to the resin (II).
  • the amount of sodium and calcium in the fluororesin (II) means the amount of sodium and calcium in the resin (II) as a raw material for forming the resin composition of the present invention.
  • the fluororesin (II) may be treated with fluorine gas by a known method or may be treated with ammonia.
  • the resin composition of the present invention contains an aromatic polyether ketone resin (I) and a fluororesin (II), the molded product obtained from this resin composition has excellent slidability, impact resistance, etc. It can be.
  • the resin composition of the present invention comprises a melt viscosity ratio (I) / (II) (aromatic polyetherketone resin (I) / fluororesin (II) of aromatic polyetherketone resin (I) and fluororesin (II). )) Is preferably from 0.01 to 5.0.
  • a melt viscosity ratio (I) / (II) is more preferably 0.02, still more preferably 0.025, and particularly preferably 0.03.
  • the upper limit of the melt viscosity ratio (I) / (II) is more preferably 4.0, still more preferably 3.0, particularly preferably 2.5, and 2.0. Is even more preferred, with 1.8 being most preferred.
  • the mass ratio (I) :( II) of the aromatic polyetherketone resin (I) and the fluororesin (II) is not particularly limited, but for example, 99: 1 to 30:70 Preferably there is. Further, it is more preferably 95: 5 to 35:65, and still more preferably 95: 5 to 40:60.
  • the fluororesin (II) is dispersed in the form of particles in the aromatic polyetherketone resin (I), and the average dispersed particle size of the fluororesin (II) is less than 3.0 ⁇ m. It is preferable. When the average dispersed particle size is less than 3.0 ⁇ m, it is possible to produce a molded product having further excellent impact resistance, molding stability, voltage resistance characteristics, and the like.
  • the average dispersed particle size of the fluororesin (II) is more preferably 2.0 ⁇ m or less, and more preferably, since a molded product having higher characteristics can be obtained and the moldability becomes more excellent. Is 1.5 ⁇ m or less, still more preferably 1.0 ⁇ m or less, particularly preferably 0.7 ⁇ m or less, even more preferably 0.5 ⁇ m or less, and most preferably 0.3 ⁇ m or less.
  • the lower limit of the average dispersed particle size is not particularly limited, but may be 0.01 ⁇ m.
  • the resin composition of the present invention preferably has a maximum dispersed particle size of 10 ⁇ m or less.
  • the maximum dispersed particle size is 10 ⁇ m or less, mechanical strength and wear resistance are improved. Since the moldability becomes better and the mechanical strength and wear resistance are improved, the maximum dispersed particle size of the fluororesin (II) is more preferably 5 ⁇ m or less, and further preferably 1 ⁇ m or less. Preferably, it is 0.8 ⁇ m or less, more preferably 0.7 ⁇ m or less, and most preferably 0.5 ⁇ m or less.
  • the average dispersed particle size of the fluororesin (II) is less than 0.3 ⁇ m and the maximum dispersed particle size is 0.8 ⁇ m or less.
  • the maximum dispersed particle size of the fluororesin (II) is more preferably 0.7 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the melting point of the fluororesin (II) is 230 to 350 ° C.
  • the mass ratio (I) :( II) of the aromatic polyetherketone resin (I) to the fluororesin (II) Is preferably 99: 1 to 30:70.
  • the melting point of the fluororesin (II) is 240 to 310 ° C.
  • the mass ratio (I) :( II) is more preferably 95: 5 to 35:65
  • the melt viscosity ratio (I) / (II) of the aromatic polyether ketone resin (I) and the fluororesin (II) (aromatic polyether ketone resin (I) / fluororesin (II) )) Is 0.01 to 5.0, and the mass ratio (I) :( II) of the aromatic polyetherketone resin (I) to the fluororesin (II) is 99: 1 to 30:70. It is preferable.
  • the melt viscosity ratio (I) / (II) is 0.02 to 4.0, and the mass ratio (I) :( II) is 95: 5 to 35:65. More preferably, the melt viscosity ratio (I) / (II) is 0.025 to 3.0, and the mass ratio (I) :( II) is 99: 1 to 30:70.
  • the resin composition has an average dispersed particle size of fluororesin (II) of less than 3.0 ⁇ m, and a mass ratio (I) of aromatic polyetherketone resin (I) to fluororesin (II): (II ) Is preferably 99: 1 to 30:70.
  • a mass ratio (I) of aromatic polyetherketone resin (I) to fluororesin (II): (II ) Is preferably 99: 1 to 30:70.
  • the resin composition preferably has an average dispersed particle size of fluororesin (II) of 2.0 ⁇ m or less and a mass ratio (I) :( II) of 95: 5 to 35:65. More preferably, the resin (II) has an average dispersed particle size of 1.5 ⁇ m or less and a mass ratio (I) :( II) of 95: 5 to 40:60.
  • the average dispersed particle size and the maximum dispersed particle size of the fluororesin (II) were determined by cutting out a section having a thickness of 20 to 60 ⁇ m from the strand of the resin composition obtained by melt-kneading by a known method. Can be obtained by binarizing the obtained microscopic image data. A microtome etc. can be illustrated as a method of cutting out a section
  • the resin composition of the present invention contains an aromatic polyether ketone resin (I) and a fluororesin (II), but may contain other components as necessary.
  • Fibrous reinforcement materials such as whisker, such as potassium titanate, glass fiber, asbestos fiber, carbon fiber, ceramic fiber, potassium titanate fiber, aramid fiber, and other high-strength fibers
  • Inorganic fillers such as talc, mica, clay, carbon powder, graphite and glass beads; colorants; commonly used inorganic or organic fillers such as flame retardants; lubricants such as silicone oil and molybdenum disulfide; pigments; Conductive agents such as carbon black; impact resistance improvers such as rubber; lubricants such as magnesium stearate; ultraviolet absorbers such as benzotriazole compounds; blowing agents such as boron nitride; other additives and the like can be used.
  • additives may be added to the raw material aromatic polyether ketone resin (I) or may be added to the raw material fluororesin (II) as long as the effects of the present application are not impaired. Further, when the aromatic polyether ketone resin (I) and the fluororesin (II) are kneaded within a range not impairing the effects of the present application, they may be added to the molten raw material by a side feed method or the like.
  • a pellet may be sufficient. That is, a pellet obtained by molding the resin composition of the present invention is also one aspect of the present invention.
  • the pellets of the present invention are, for example, kneaded aromatic polyetherketone resin (I) and fluororesin (II) using a kneader, then taken out from the kneader, and then molded into a pellet shape. It may be a thing, and after kneading aromatic polyetherketone resin (I) and fluororesin (II) using a kneader, it may be formed by extrusion from a kneader by melt extrusion or the like. .
  • the pellets may be formed by adding known components that may be added later after being formed into a pellet shape.
  • a method for adding to the pellet a known method can be used, and examples thereof include a method of spraying the pellet by spraying, a method of dry blending the pellet and the additive powder, and the like.
  • the pellet may have a lubricant (for example, magnesium stearate) added after molding.
  • a molded product formed from the pellets is excellent in tensile strength.
  • the pellets may be further kneaded after adding known components that may be added later.
  • the inventors in the method for producing a resin composition including a step of kneading the aromatic polyetherketone resin (I) and the fluororesin (II), the amount of sodium is 120 ppm or less, or the total amount of calcium is By selecting the combination of the aromatic polyetherketone resin (I) and the fluororesin (II) so as to be 15 ppm or less, the aromatic polyetherketone resin (I It was found that the fluororesin (II) was uniformly dispersed in Although the cause is not clear, in the production method including the step of kneading under the condition that the amount of sodium is small or the amount of calcium is small, that is, the aromatic polyetherketone resin (I) and the fluororesin (II) are kneaded, By selecting a combination of the aromatic polyetherketone resin (I) and the fluororesin (II) so that the amount of sodium is 120 ppm or less or the amount of calcium is 15 ppm or less, the
  • mixing ketone resin (I) and fluororesin (II) is also one of this invention.
  • the resin composition of the present invention can be suitably produced by the above production method.
  • molding are also one of this invention.
  • the step of selecting an appropriate combination can be performed by the following method that can be easily performed by those skilled in the art.
  • the sodium content and the calcium content are determined by measuring the sodium and calcium contents in the same manner as the resin composition described above. decide.
  • the content of sodium and calcium in the aromatic polyether ketone resin (I) and the fluororesin (II) is a known additive containing the aromatic polyether ketone resin (I) or the fluororesin (II) and a metal.
  • a method in which the aromatic polyetherketone resin (I) and the fluororesin (II) are washed with water or an organic solvent, the aromatic polyetherketone resin (I) and the fluororesin (II) in a metal It can also be adjusted by a method of diluting by kneading in a molten state with the aromatic polyetherketone resin (I) and the fluororesin (II) having a small content.
  • the quantitative ratio of the aromatic polyether ketone resin (I) and the fluororesin (II) is determined. Then, from the amount of sodium in each resin and the amount and amount ratio of calcium, the amount of sodium and the amount of calcium in the finally obtained composition can be calculated.
  • the kneading of the aromatic polyether ketone resin (I) and the fluororesin (II) can be carried out using a mixer such as a compounding mill, a Banbury mixer, a pressure kneader, or an extruder. Since the average dispersed particle size of the fluororesin (II) can be reduced, the mixer is preferably a twin screw extruder, and particularly preferably a twin screw extruder having a screw configuration with a large L / D.
  • L / D is the effective length of the screw (L) / screw diameter (D).
  • the resin composition of the present invention may be produced by kneading the aromatic polyether ketone resin (I) and the fluororesin (II) in a molten state.
  • a resin composition having a desired dispersion state can be obtained by kneading the aromatic polyetherketone resin (I) and the fluororesin (II) in a molten state. Since the dispersion state of the fluororesin (II) affects the impact resistance, molding stability, withstand voltage characteristics, etc. of the obtained molded product, the selection of the kneading method so that the desired dispersed state can be obtained in the molded product. Should be done appropriately.
  • the temperature at the time of the kneading may be appropriately set depending on the kind of the aromatic polyether ketone resin (I) and the fluororesin (II) to be used, but is preferably 360 to 430 ° C., for example.
  • the kneading time is usually 10 seconds to 1 hour.
  • the resin composition of the present invention is kneaded under mild kneading conditions, a good dispersion state can be realized, and an excessive load can be avoided on each resin.
  • mild kneading conditions a setting temperature of 360 to 380 ° C. can be employed.
  • the molding conditions can also be defined by the resin temperature immediately after kneading.
  • the resin temperature immediately after kneading is preferably 425 ° C. or lower, more preferably 420 ° C. or lower, and even more preferably 415 ° C. or lower.
  • the other components may be added to the aromatic polyether ketone resin (I) and the fluororesin (II) in advance and mixed, or the aromatic polyether ketone resin (I) and the fluororesin (II). You may add when mix
  • a molded article formed from the resin composition or pellet of the present invention is also one aspect of the present invention.
  • Molded articles formed from the resin composition of the present invention are, in the electric / electronic / semiconductor field, semiconductor / liquid crystal manufacturing equipment parts such as CMP retainer rings, etching rings, silicon wafer carriers, IC chip trays, insulating films, and small buttons.
  • semiconductor / liquid crystal manufacturing equipment parts such as CMP retainer rings, etching rings, silicon wafer carriers, IC chip trays, insulating films, and small buttons.
  • Battery cable connector, aluminum electrolytic capacitor body case; in automotive field, thrust washer, oil filter, auto air conditioner control unit gear, throttle body gear, motor coil wire coating, ABS parts, AT seal ring, MT shift fork Pads, bearings, seals, clutch rings; in the industrial field, compressor parts, cables for mass transit systems, conveyor belt chains, connectors for oilfield development machinery, pump parts for hydraulic drive systems (bearings, Plate, piston ball joint), gears, piston seal ring; in the aerospace field, aircraft cabin interior parts, fuel pipe protection materials; and food / beverage production equipment parts and medical equipment parts (sterilization equipment, gas / (Liquid chromatograph) and the like. It does not specifically limit as a shape of the said molded article, For example, it can be set as various shapes, such as a sheet form; a film form; a rod form;
  • the molded article for a sliding member formed from the resin composition of the present invention not only has excellent tensile strength but also has a low coefficient of dynamic friction, and therefore can be suitably used as a sliding member. Moreover, since it contains fluororesin (II), it is excellent also in chemical resistance, weather resistance, non-adhesiveness, water repellency, electrical properties and the like.
  • a sealing material for sealing members, for example, a sealing material, a gear, an actuator, a piston, a bearing, a bearing retainer, a bush, a switch, a belt, a bearing, a cam, a roller, a socket etc. are mentioned.
  • the above-mentioned bearing is a member that is installed on the outer periphery of the shaft and used in contact with the shaft, such as an inner ring of a rolling bearing, a sliding bearing, etc., and normally supports a shaft that rotates or linearly moves. And holds the acting load.
  • the bearing can be used alone or in combination with other members.
  • rolling bearings such as ball bearings, roller bearings, radial bearings, thrust bearings, etc .
  • sliding bearings such as perfect circle bearings, partial bearings, multi-face bearings; oilless bearings; air bearings; magnetic bearings, etc. Used for.
  • the gears are usually mounted on a rotating shaft and used for power transmission.
  • spur gears for example, spur gears, helical gears, racks, internal gears, bevel gears, miter gears, screw gears, worm gears, drives A gear, an idle gear, etc. are mentioned.
  • the seal ring is usually attached to a shaft that rotates or moves in the axial direction, and serves to seal oil between a shaft of a transmission or a cylinder of a piston, for example.
  • a seal ring can be used for various applications. For example, it can be used as a seal ring for an automatic transmission such as an automobile or an engine piston of an automobile, a ship, a construction vehicle, an industrial machine, or the like. it can.
  • the molding temperature is preferably a temperature equal to or higher than the melting point of the aromatic polyetherketone resin (I) to be used.
  • the molding temperature is preferably a temperature lower than the lower one of the decomposition temperature of the fluororesin (II) and the decomposition temperature of the aromatic polyether ketone resin (I).
  • Such a molding temperature may be 250 to 400 ° C., for example.
  • the molded product of the present invention is generally a thermoplastic resin composition such as injection molding, extrusion molding, press molding, blow molding, calendar molding, casting molding, etc., depending on the type, application, shape, etc. of the target molded product. It can shape
  • the molded product formed from the resin composition or pellet of the present invention is particularly excellent in tensile strength, flexibility, and electrical characteristics, when used for an insulating layer of an insulated wire, the insulating layer has excellent insulating properties. In addition, it has a low relative dielectric constant and is excellent in wire handling. In addition, the insulating layer is excellent in heat resistance, mechanical strength, tensile elongation, and crack resistance, and the insulating layer does not peel from the conductor even when the insulated wire is used at a high temperature. Thus, the molded article formed from the resin composition or pellet of the present invention can be suitably used as an insulating layer of an insulated wire.
  • an insulated wire which has a conductor (A) and the insulating layer (B) formed in the outer periphery of a conductor (A), Comprising: That an insulating layer (B) is formed from the resin composition of this invention.
  • the featured insulated wire exhibits good characteristics.
  • the resin composition or pellet of the present invention can also be suitably used for thin wires having a thin insulating layer (B).
  • the insulating layer (B) formed on the outer periphery of the conductor (A) may be in contact with the conductor (A), or another layer, for example, between the conductor (A), for example, It may be formed via another resin layer.
  • the insulating layer (B) is preferably in contact with the conductor (A). In that case, the conductor (A) and the insulating layer (B) are firmly bonded.
  • the thickness of the insulating layer (B) is not particularly limited, but is preferably 1 to 500 ⁇ m, for example. More preferably, it is 50 to 200 ⁇ m, and still more preferably 70 to 150 ⁇ m. Moreover, it can also be thinned to 80 ⁇ m or less. Reducing the thickness of the insulating layer (B) is advantageous in that it has excellent heat dissipation performance.
  • An insulating layer (B) can be obtained by forming the resin composition or pellet of this invention in the outer periphery of a conductor (A), and the said insulated wire manufactures the resin composition of this invention mentioned above, for example. It can be manufactured by a manufacturing method including a step and a step of forming the insulating layer (B) on the outer periphery of the conductor (A) by molding the resin composition or pellet of the present invention by melt extrusion. Since the resin composition of the present invention does not generate melt fracture even when the shear rate is increased during extrusion molding, the method of molding the resin composition of the present invention is very productive. Moreover, an insulating layer (B) can be formed also by winding the resin composition of this invention processed into the film form previously around a conductor (A).
  • the adhesive strength between the insulating layer (B) and the conductor (A) can be 10 N / cm or more. Due to the adhesive strength within the above range, it is particularly suitable for use in automobile electric wires and motor coil windings.
  • the adhesive strength is more preferably 15 N / cm or more, and further preferably 20 N / cm or more. The adhesive strength is measured according to ISO 6722.
  • the method for forming the insulating layer (B) is not particularly limited, and various conditions can be used as conventionally known. Further, the insulating layer (B) may be formed directly on the conductor (A), or may be formed through another layer, for example, another resin layer.
  • the insulating layer (B) is formed by melt-extruding the resin composition or pellets on the surface of the conductor (A) or the surface of the resin layer of the conductor (A) on which another resin layer has been formed in advance.
  • the resin composition is melt-extruded in advance to produce a film, the film is slit to a predetermined size, and then the surface of the conductor (A) or the resin layer of the conductor (A) in which another resin layer is formed in advance.
  • the film can be formed by, for example, a method of winding the film around the surface.
  • the forming temperature is a temperature equal to or higher than the melting point of the aromatic polyether ketone resin (I) used.
  • the molding temperature is preferably a temperature lower than the lower one of the decomposition temperature of the fluororesin (II) and the decomposition temperature of the aromatic polyether ketone resin (I).
  • Such a molding temperature may be 250 to 420 ° C., for example.
  • the molding temperature is preferably 300 to 400 ° C.
  • the insulated wire may be heated after the insulating layer (B) is formed.
  • the heating may be performed at a temperature near the melting point of the fluororesin (II).
  • an insulating layer (B) is formed on the outer periphery of the conductor (A). Another layer such as another resin layer may be provided between the conductor (A) and the insulating layer (B). Moreover, the said insulated wire may have another layer, for example, another resin layer, in the outer periphery of the said insulating layer (B).
  • the other resin layer is different from the insulating layer (B).
  • the other resin layer include a layer made of at least one resin selected from the group consisting of aromatic polyether ketone resin, fluororesin, polyamideimide, polyetherimide, polyethersulfone, and polyphenylene sulfide. Preferably there is.
  • the material for forming the conductor (A) is not particularly limited as long as the material has good conductivity.
  • copper, tin-plated copper, silver-plated copper, copper alloy, copper-clad aluminum, aluminum, silver, gold, zinc examples thereof include plated iron.
  • the shape of the conductor (A) is not particularly limited, and may be circular or flat.
  • the insulated wire can be suitably used for wrapping wires, automotive wires, robot wires, and the like. Moreover, it can be used suitably also as a coil winding (magnet wire), and if the said insulated wire is used, it will be hard to produce the damage by winding processing.
  • the above winding is suitable for motors, rotating electrical machines, compressors, transformers, etc., requires high voltage, high current and high thermal conductivity, requires high-density winding processing, and is downsized. -It has the characteristics that it can sufficiently withstand the use with high output motors. Moreover, it is suitable also as an electric wire for power distribution, power transmission, or communication.
  • melt viscosity of the aromatic polyetherketone resin was measured at 60 sec ⁇ 1 and 390 ° C. according to ASTM D3835.
  • the melt viscosity of the fluororesin was measured at 60 sec ⁇ 1 and 390 ° C. in accordance with ASTM D3835.
  • the melt viscosity of the resin composition was measured at 60 sec ⁇ 1 and 390 ° C. according to ASTM D3835.
  • ⁇ Calculation of average dispersed particle size> A section having a thickness of about 30 ⁇ m was cut out from the strand of the resin composition obtained by melt kneading. The cross section of the obtained slice was observed using a confocal laser microscope. The obtained image data was converted into an FRN file using conversion software (Tresvalle 7). This FRN file was read using image analysis software (WinROOF v6.4, manufactured by Mitani Corp.), and the electronic image was binarized. With reference to the luminance histogram of the binarized image, a point at which a gap is seen in the frequency value was set as a threshold value. Automatic processing was performed using this threshold setting, and the average dispersed particle size of the dispersed phase was determined.
  • the critical PV value was measured by increasing the load by 20 N every 10 minutes from 20 N at a constant speed of 3 m / sec.
  • ⁇ Measurement of dynamic friction coefficient> The dynamic friction coefficient was obtained under the conditions of room temperature and 50 Hz using a ball-on-disk type SRV friction and wear tester, using a press sheet having a thickness of 3 mm produced by the method described above.
  • Aromatic polyetherketone resin (1-1) polyetheretherketone (melt viscosity; 0.70 kNsm ⁇ 2 , sodium 20 ppm, calcium 9.1 ppm)
  • Fluororesin (1-1) tetrafluoroethylene / hexafluoropropylene / perfluoro (propyl vinyl ether) copolymer. Melt viscosity: 0.55 kNsm ⁇ 2 , melting point 255 ° C., sodium 1.1 ppm, calcium 0.2 ppm.
  • Fluororesin (2) Tetrafluoroethylene / hexafluoropropylene / perfluoro (propyl vinyl ether) copolymer. Melt viscosity: 1.0 kNsm ⁇ 2 , melting point 255 ° C., sodium 1.3 ppm, calcium 0.4 ppm.
  • Examples 2 to 10 and Comparative Examples 1 to 8 A resin composition was produced in the same manner as in Example 1, except that the type of aromatic polyether ketone resin, the type of fluororesin, and the kneading temperature were changed as shown in Tables 1 to 4. Similarly, various physical properties were measured. The results are shown in Tables 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、高い摺動性、耐衝撃性を有し、なおかつ、引張強度の優れた成形品を得ることができる樹脂組成物を提供することを目的とする。 本発明は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、前記組成物中のナトリウムの量が前記組成物に対して120ppm以下またはカルシウムの量が前記組成物に対して15ppm以下であることを特徴とする樹脂組成物である。

Description

樹脂組成物および成形品
本発明は、樹脂組成物および成形品に関する。
近年、軽量化や低コスト化を目的に、金属部品を樹脂化する検討が活発に行われ、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂等の熱可塑性樹脂を使用した自動車部品、工業部品又は電気電子部品が実用化されている。ギア、ベアリングリテーナ等の摺動用途においても、金属製摺動部材から樹脂製摺動部材への置換が進みつつあるが、高加重・高温・高速回転等の条件で使用される摺動部材には上記のような熱可塑性樹脂では摺動性が不充分であり、摩耗、溶融、割れ、欠け等の問題が発生することがあった。
一方、フッ素樹脂は、摺動性、耐熱性、耐品性、耐溶剤性、耐候性、柔軟性、電気的性質等の特性に優れ、自動車、産業機械、OA機器、電気電子機器等の幅広い分野で使用されており、とりわけ摺動性に優れており、その低い摩擦係数は樹脂の中でも突出している。しかしながら、結晶性の耐熱性熱可塑性樹脂に比べ、機械的特性や荷重たわみ温度で示されるような物理的な耐熱性に劣る場合が多く、また非晶性の耐熱性熱可塑性樹脂に比べて寸法安定性に劣っている場合があり、使用範囲が限定されているのが実情であった。
そこで、特許文献1では、低い動摩擦係数及び高い限界PV値を兼ね備えた成形品を得ることができる樹脂組成物として、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、フッ素樹脂(II)は、テトラフルオロエチレン及び下記の一般式(1)
CF=CF-Rf (1)
(式中、Rfは、-CFまたは-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体であり、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が95:5~50:50であり、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm以下であることを特徴とする樹脂組成物が提案されている。
特許文献2では、柔軟性に優れ、耐酸性が高く、また、電気特性に優れた成形品を得ることができる樹脂組成物として、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が50:50~10:90であることを特徴とする樹脂組成物が提案されている。
更に、特許文献3では、厚み1.5mm以下の薄肉部を有する薄肉成形体を形成するための難燃性熱可塑性樹脂組成物であって、アリーレン基とエーテル基とカルボニル基とで構成された繰り返し単位を含む熱可塑性樹脂(A)と、熱可塑性フッ素樹脂(B)とを含んでおり、熱可塑性樹脂(A)と熱可塑性フッ素樹脂(B)との重量割合が、前者/後者=80/20~99/1であり、熱可塑性フッ素樹脂(B)が熱可塑性樹脂(A)中に粒子状に分散し、分散相を形成しており、分散相の平均粒子径が3μm以下である難燃性熱可塑性樹脂組成物が提案されている。
国際公開第2012/005133号 国際公開第2014/024671号 国際公開第2014/034493号
特許文献1~3に記載された従来の技術においては、成形品の摺動性、耐衝撃性等を向上させる目的で開発がすすめられていたが、得られる成形品の引張強度に着目した検討は行われていなかった。本発明の目的は、高い摺動性、耐衝撃性を有し、なおかつ、引張強度の優れた成形品を得ることができる樹脂組成物を提供することにある。
本発明者らが鋭意検討した結果、驚くべきことに、成形品の材料に含まれるナトリウムの量およびカルシウムの量が最終製品の引張強度に影響していることを見出し、本発明を完成するに至った。
すなわち、本発明は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、上記組成物中のナトリウムの量が上記組成物に対して120ppm以下またはカルシウムの量が上記組成物に対して15ppm以下であることを特徴とする樹脂組成物である。
本発明の樹脂組成物は、組成物中のナトリウムの量が上記組成物に対して120ppm以下であり、かつカルシウムの量が上記組成物に対して15ppm以下であることが好ましい。
上記フッ素樹脂(II)は、テトラフルオロエチレン及び下記一般式(1):
CF=CF-Rf   (1)
(式中、Rfは、-CFまたは-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体であることが好ましい。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が99:1~30:70であることが好ましい。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)が0.01~5.0であることが好ましい。
上記フッ素樹脂(II)の融点は230~350℃であることが好ましい。
上記芳香族ポリエーテルケトン樹脂(I)は、ポリエーテルエーテルケトンであることが好ましい。
本発明はまた、上記樹脂組成物を成形して得られるペレットでもある。また、上記ペレットは、成形後に滑剤が添加されたものであることも好ましい。
本発明は更に、上記樹脂組成物、若しくは、上記ペレットから形成されることを特徴とする成形品でもある。本発明はまた、上記樹脂組成物、若しくは、上記ペレットにより被覆されることを特徴とする電線でもある。
本発明はそして、上記樹脂組成物を製造するための製造方法であって、ナトリウムの量が上記組成物に対して120ppm以下またはカルシウムの量が上記組成物に対して15ppm以下となるように、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の組み合わせを選択する工程、及び、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練する工程を含む製造方法でもある。
本発明の樹脂組成物は、上記の構成を有することから、高い摺動性、耐衝撃性を有し、なおかつ、優れた引張強度を示す成形品を得ることができる。本発明の成形品は、上記の構成を有することから、高い摺動性、耐衝撃性を有し、なおかつ、優れた引張強度を示す。
以下、本発明を具体的に説明する。
本発明者らは、芳香族ポリエーテルケトン樹脂とフッ素樹脂とを含む樹脂組成物から得られる成形品の引張強度を向上すべく鋭意検討したところ、組成物に含まれる特定の金属種の濃度を低減することで、得られる成形品の引張強度を向上できることを見出し、本発明を完成するに至った。
本発明の樹脂組成物は、組成物中のナトリウムの量が上記組成物に対して120ppm以下またはカルシウムの量が上記組成物に対して15ppm以下であることを特徴とする。本発明の樹脂組成物は、組成物中のナトリウム又はカルシウムの量が特定の範囲であることによって、この樹脂組成物から得られる成形品の引張強度を優れたものとすることができる。
本発明の樹脂組成物は、カルシウムの量が上記組成物に対して15ppm以下であることが好ましい。
また、本発明の樹脂組成物は、組成物中のナトリウムの量が上記組成物に対して120ppm以下、かつカルシウムの量が上記組成物に対して15ppm以下であることも好ましい。
上記ナトリウムの量は、組成物に対して100ppm以下であることがより好ましく、80ppm以下であることが更に好ましく、50ppm以下であることが更により好ましく、40ppm以下であることが特に好ましく、30ppm以下であることが殊更に好ましく、20ppm以下であることが最も好ましい。下限は0ppmであってよいが、0.5ppmであってもよい。
上記カルシウムの量は、組成物に対して10ppm以下であることがより好ましく、8ppm以下であることが更に好ましく、6ppm以下であることが更により好ましく、5ppm以下であることが特に好ましく、4ppm以下であることが最も好ましい。下限は0ppmであってよいが、0.5ppmであってもよい。
上記樹脂組成物に含まれるナトリウム及びカルシウムの量は、試料1gを600℃で灰化したのち、残渣を塩酸に溶解し、その溶液についてICP発光分析を行うことにより測定することができる。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む。
芳香族ポリエーテルケトン樹脂(I)は、アリーレン基とエーテル基[-O-]とカルボニル基[-C(=O)-]とで構成された繰り返し単位を含んでいる限り特に制限されず、例えば、下記式(a1)~(a5)のいずれかで表される繰り返し単位を含んでいる。
[-Ar-O-Ar-C(=O)-] (a1)
[-Ar-O-Ar-C(=O)-Ar-C(=O)-] (a2)
[-Ar-O-Ar-O-Ar-C(=O)-] (a3)
[-Ar-O-Ar-C(=O)-Ar-O-Ar-C(=O)-Ar-C(=O)-](a4)
[-Ar-O-Ar-O-Ar-C(=O)-Ar-C(=O)-](a5)
(式中、Arは置換基を有していてもよい2価の芳香族炭化水素環基を表す)
Arで表される2価の芳香族炭化水素環基としては、例えば、フェニレン基(o-、m-、又はp-フェニレン基など)、ナフチレン基などの炭素数が6~10のアリーレン基、ビフェニレン基(2,2’-ビフェニレン基、3,3’-ビフェニレン基、4,4’-ビフェニレン基など)などのビアリーレン基(各アリーレン基の炭素数は6~10)、o-、m-又はp-ターフェニレン基などのターアリーレン基(各アリーレン基の炭素数は6~10)などが例示できる。これらの芳香族炭化水素環基は、置換基、例えば、ハロゲン原子、アルキル基(メチル基などの直鎖上又は分岐鎖状の炭素数1~4のアルキル基など)、ハロアルキル基、ヒドロキシル基、アルコキシ基(メトキシ基などの直鎖状又は分岐鎖状の炭素数1~4のアルコキシ基など)、メルカプト基、アルキルチオ基、カルボキシル基、スルホ基、アミノ基、N-置換アミノ基、シアノ基などを有していてもよい。なお、繰り返し単位(a1)~(a5)において、各Arの種類は、互いに同一であってもよく、異なっていてもよい。
好ましいArは、フェニレン基(例えば、p-フェニレン基)、ビフェニレン基(例えば、4,4’-ビフェニレン基)である。
繰り返し単位(a1)を有する樹脂としては、ポリエーテルケトン(例えば、Victrex社製「PEEK-HT」)などが例示できる。繰り返し単位(a2)を有する樹脂としては、ポリエーテルケトンケトン(例えば、Arkema+Oxford Performance Material社製「PEKK」)などが例示できる。繰り返し単位(a3)を有する樹脂としては、ポリエーテルエーテルケトン(例えば、Victrex社製「VICTREX PEEK」、Evonik社製「Vestakeep(登録商標)」、ダイセル・エボニック社製「Vestakeep-J」、Solvay Speciality Polymers社製「KetaSpire(登録商標)」)、ポリエーテル-ジフェニル-エーテル-フェニル-ケトン-フェニル(例えば、Solvay Speciality Polymers社製「Kadel(登録商標)」)などが例示できる。繰り返し単位(a4)を有する樹脂としては、ポリエーテルケトンエーテルケトンケトン(例えば、Victrex社製「VICTREX ST」)などが例示できる。繰り返し単位(a5)を有する樹脂としては、ポリエーテルエーテルケトンケトンなどが例示できる。
アリーレン基とエーテル基とカルボニル基とで構成された繰り返し単位において、エーテルセグメント(E)とケトンセグメント(K)との割合は、例えば、E/K=0.5~3であり、好ましくは1~2.5程度である。エーテルセグメントは分子鎖に柔軟性を付与し、ケトンセグメントは分子鎖に剛直性を付与するため、エーテルセグメントが多いほど結晶化速度は速く、最終的に到達可能な結晶化度も高くなり、ケトンセグメントが多いほどガラス転移温度及び融点が高くなる傾向にある。
これらの芳香族ポリエーテルケトン樹脂(I)は、単独で又は二種以上組み合わせて使用できる。
これらの芳香族ポリエーテルケトン樹脂(I)のうち、繰り返し単位(a1)~(a4)のいずれかを有する芳香族ポリエーテルケトン樹脂が好ましい。例えば、上記芳香族ポリエーテルケトン樹脂(I)としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン及びポリエーテルケトンエーテルケトンケトンからなる群より選択される少なくとも1種の樹脂であることが好ましい。更には、ポリエーテルケトン及びポリエーテルエーテルケトンからなる群より選択される少なくとも1種の樹脂であることがより好ましい。
特に、ガラス転移温度及び融点の高さと、結晶化速度の速さとのバランスに優れる点から、繰り返し単位(a3)を有する芳香族ポリエーテルケトン樹脂が好ましく、ポリエーテルエーテルケトンであることが更に好ましい。
上記芳香族ポリエーテルケトン樹脂(I)は、60sec-1、390℃における溶融粘度が0.01~4.0kNsm-2であることが好ましい。溶融粘度が上記範囲であることにより、加工特性が向上し、更に、引張強度に優れた成形品が得られる。溶融粘度のより好ましい下限は0.05kNsm-2であり、更に好ましくは0.08kNsm-2であり、更により好ましくは0.10kNsm-2であり、特に好ましくは0.15kNsm-2であり、最も好ましくは0.25kNsm-2である。溶融粘度のより好ましい上限は3.5kNsm-2であり、更に好ましくは3.0kNsm-2であり、更により好ましくは2.8kNsm-2であり、特に好ましくは2.5kNsm-2であり、最も好ましくは2.3kNsm-2である。
上記芳香族ポリエーテルケトン樹脂(I)の溶融粘度は、ASTM D3835に準拠して測定する。
上記芳香族ポリエーテルケトン樹脂(I)は、ガラス転移温度が130℃以上であることが好ましい。より好ましくは、135℃以上であり、更に好ましくは、140℃以上である。上記範囲のガラス転移温度であることによって、耐熱性に優れた樹脂組成物を得ることができる。上記ガラス転移温度は、示差走査熱量測定(DSC)装置によって測定される。
上記芳香族ポリエーテルケトン樹脂(I)は、融点が300℃以上であることが好ましい。より好ましくは、320℃以上である。上記範囲の融点であることによって、得られる成形品の耐熱性を向上させることができる。上記融点は、示差走査熱量測定(DSC)装置によって測定される。
上記芳香族ポリエーテルケトン樹脂(I)中のナトリウムの量は、樹脂(I)に対して300ppm以下であることが好ましく、200ppm以下であることがより好ましく、150ppm以下であることが更に好ましく、100ppm以下であることが更により好ましく、50ppm以下であることが特に好ましい。
また、上記芳香族ポリエーテルケトン樹脂(I)中のカルシウムの量は、樹脂(I)に対して30ppm以下であることが好ましく、25ppm以下であることがより好ましく、20ppm以下であることが更に好ましく、15ppm以下であることが更により好ましく、10ppm以下であることが特に好ましく、5ppm以下であることが最も好ましい。
なお、上記芳香族ポリエーテルケトン樹脂(I)中のナトリウム及びカルシウムの量は、本発明の樹脂組成物を形成するための原料となる樹脂(I)中のナトリウム量及びカルシウム量を意味する。
上記フッ素樹脂(II)は、例えば、少なくとも1種の含フッ素エチレン性単量体に基づく重合単位を有する重合体である。フッ素樹脂(II)は、溶融加工性のフッ素樹脂であることが好ましい。フッ素樹脂(II)としては、1種を用いてもよいし、2種以上を用いてもよい。
上記フッ素樹脂(II)としては、例えば、テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体、TFE/HFP/パーフルオロ(アルキルビニルエーテル)(PAVE)共重合体、TFE/PAVE共重合体〔PFA〕、エチレン(Et)/TFE共重合体、Et/TFE/HFP共重合体、ポリクロロトリフルオロエチレン〔PCTFE〕、クロロトリフルオロエチレン(CTFE)/TFE共重合体、CTFE/TFE/PAVE共重合体、Et/CTFE共重合体、TFE/フッ化ビニリデン(VdF)共重合体、VdF/HFP/TFE共重合体、VdF/HFP共重合体、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニル(PVF)が挙げられる。また、溶融加工性であれば、低分子量のポリテトラフルオロエチレン(PTFE)を用いることも可能である。
上記PAVEとしては、炭素数1~6のアルキル基を有するものが好ましく、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、パーフルオロ(ブチルビニルエーテル)等が挙げられる。
上記フッ素樹脂(II)としては、テトラフルオロエチレン(TFE)及び下記の一般式(1):
CF=CF-Rf   (1)
(式中、Rfは、-CF又は-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体であることがより好ましい。上記Rfが、-ORfである場合、上記Rfは炭素数が1~3のパーフルオロアルキル基であることが好ましい。上記フッ素樹脂(II)を用いることによって、引張強度に優れた成形品を得ることができる。
一般式(1)で表されるパーフルオロエチレン性不飽和化合物としては、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができることから、ヘキサフルオロプロピレン(HFP)、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)及びパーフルオロ(プロピルビニルエーテル)(PPVE)からなる群より選択される少なくとも1種であることが好ましく、ヘキサフルオロプロピレン及びパーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種であることがより好ましい。
上記フッ素樹脂(II)としては、TFEとHFPとの共重合体、又は、TFEとHFPとPPVEとの共重合体であることが更に好ましい。
上記フッ素樹脂(II)は、60~99質量%のTFE及び1~40質量%の上記一般式(1)で表されるパーフルオロエチレン性不飽和化合物から構成されることが好ましい。上記フッ素樹脂(II)を構成するTFEの含有量の下限は、68質量%がより好ましく、72質量%が更に好ましく、77質量%が特に好ましく、83質量%が殊更に好ましい。上記フッ素樹脂(II)を構成するTFEの含有量の上限は、98質量%がより好ましく、97質量%が更に好ましい。
また、上記フッ素樹脂(II)を構成する上記一般式(1)で表されるパーフルオロエチレン性不飽和化合物の含有量の下限は、2質量%がより好ましく、3質量%が更に好ましい。上記フッ素樹脂(II)を構成する上記一般式(1)で表されるパーフルオロエチレン性不飽和化合物の含有量の上限は、32質量%がより好ましく、28質量%が更に好ましく、23質量%が特に好ましく、17質量%が殊更に好ましい。
上記フッ素樹脂(II)は、TFE及び一般式(1)で表されるパーフルオロエチレン性化合物のみからなる共重合体であることが好ましい。
上記フッ素樹脂(II)は、60sec-1、390℃における溶融粘度が0.2~4.0kNsm-2であることが好ましい。溶融粘度が上記範囲であることにより、加工特性が向上し、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができる。溶融粘度のより好ましい下限は0.25kNsm-2であり、更に好ましくは0.3kNsm-2であり、特に好ましくは0.35kNsm-2であり、最も好ましくは0.4kNsm-2である。溶融粘度のより好ましい上限は3.7kNsm-2であり、更に好ましくは3.6kNsm-2であり、特に好ましくは3.5kNsm-2である。
上記フッ素樹脂(II)の溶融粘度は、ASTM D3835に準拠して測定する。
上記フッ素樹脂(II)は、372℃、5000g荷重の条件下で測定したメルトフローレート(MFR)が0.1~100g/10分であることが好ましく、0.5~80g/10分であることがより好ましく、0.5~70g/10分であることが更に好ましい。MFRが上記範囲であることにより、引張強度に一層優れた成形品を得ることができる。MFRの更により好ましい下限は0.7g/10分であり、特に好ましい下限は1.0g/10分であり、殊更に好ましい下限は1.5g/10分であり、最も好ましい下限は2.0g/10分である。MFRの更により好ましい上限は60g/10分であり、特に好ましい上限は50g/10分であり、殊更に好ましい上限は45g/10分であり、最も好ましい上限は40g/10分である。
上記フッ素樹脂(II)のMFRは、ASTM D1238に準拠し、メルトインデクサーを用いて測定する。測定温度・荷重等の設定値は、個別のフッ素樹脂の規格(例えばASTM D 2116)を参照して決定する。
上記フッ素樹脂(II)の融点は特に限定されないが、成形する際に用いる芳香族ポリエーテルケトン樹脂(I)が溶融する温度で既にフッ素樹脂(II)が溶融していることが成形において好ましいため、上記芳香族ポリエーテルケトン樹脂(I)の融点以下の温度であることが好ましい。例えば、フッ素樹脂(II)の融点は、230~350℃であることが好ましく、240~310℃であることがより好ましく、240~300℃であることが更に好ましい。フッ素樹脂(II)の融点は、示差走査熱量測定(DSC)装置を用いて、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めたものである。
上記フッ素樹脂(II)中のナトリウムの量は、樹脂(II)に対して10ppm以下であることが好ましく、3ppm以下であることがより好ましい。
また、上記フッ素樹脂(II)中のカルシウムの量は、樹脂(II)に対して10ppm以下であることが好ましく、3ppm以下であることがより好ましい。
なお、上記フッ素樹脂(II)中のナトリウム及びカルシウムの量は、本発明の樹脂組成物を形成するための原料となる樹脂(II)中のナトリウム量及びカルシウム量を意味する。
上記フッ素樹脂(II)は、公知の方法によりフッ素ガス処理したものであってもよいし、アンモニア処理したものであってもよい。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含むものであるため、この樹脂組成物から得られる成形品の摺動性、耐衝撃性等を優れたものとすることができる。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)(芳香族ポリエーテルケトン樹脂(I)/フッ素樹脂(II))が0.01~5.0であることが好ましい。溶融粘度比(I)/(II)を上記範囲とすることで、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができる。溶融粘度比(I)/(II)の下限は、0.02であることがより好ましく、0.025であることが更に好ましく、0.03であることが特に好ましい。溶融粘度比(I)/(II)の上限は、4.0であることがより好ましく、3.0であることが更に好ましく、2.5であることが特に好ましく、2.0であることが殊更に好ましく、1.8であることが最も好ましい。
本発明の樹脂組成物において、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)は特に限定されないが、例えば、99:1~30:70であることが好ましい。また、95:5~35:65であることがより好ましく、95:5~40:60であることが更に好ましい。
本発明の樹脂組成物は、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に粒子状に分散しており、フッ素樹脂(II)の平均分散粒子径が3.0μm未満であることが好ましい。平均分散粒子径が3.0μm未満であることによって、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を製造することができる。
より高い特性を有する成形品を得ることができるとともに、成形性がより優れたものとなることから、フッ素樹脂(II)の平均分散粒子径は2.0μm以下であることがより好ましく、更に好ましくは1.5μm以下であり、更により好ましくは1.0μm以下であり、特に好ましくは0.7μm以下であり、殊更に好ましくは0.5μm以下であり、最も好ましくは0.3μm以下である。平均分散粒子径の下限は特に限定されないが0.01μmであってよい。
本発明の樹脂組成物は、最大分散粒子径が10μm以下であることが好ましい。最大分散粒子径が10μm以下であると、機械的強度及び耐磨耗性が向上する。成形性がより優れたものとなり、機械的強度及び耐磨耗性が向上することから、フッ素樹脂(II)の最大分散粒子径は5μm以下であることがより好ましく、1μm以下であることが更に好ましく、0.8μm以下であることが特に好ましく、0.7μm以下であることが更により好ましく、0.5μm以下であることが最も好ましい。
本発明の樹脂組成物において、フッ素樹脂(II)の平均分散粒子径が0.3μm未満であり、且つ最大分散粒子径が0.8μm以下であることが好ましい。平均分散粒子径が0.3μm未満であり、且つ最大分散粒子径が0.8μm以下であると、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができる。
上記フッ素樹脂(II)の最大分散粒子径は0.7μm以下であることがより好ましく、0.5μm以下であることが更に好ましい。
本発明の樹脂組成物において、フッ素樹脂(II)の融点が230~350℃であり、且つ芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が99:1~30:70であることが好ましい。フッ素樹脂(II)融点が230~350℃であり、且つ質量比(I):(II)が99:1~30:70であると、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができる。
本発明の樹脂組成物において、フッ素樹脂(II)の融点が240~310℃であり、且つ質量比(I):(II)が95:5~35:65であることがより好ましく、フッ素樹脂(II)の融点が240~300℃であり、且つ質量比(I):(II)が95:5~40:60であることが更に好ましい。
本発明の樹脂組成物において、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)(芳香族ポリエーテルケトン樹脂(I)/フッ素樹脂(II))が0.01~5.0であり、且つ芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が99:1~30:70であることが好ましい。溶融粘度比(I)/(II)を0.01~5.0、且つ質量比(I):(II)を99:1~30:70とすることで、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができる。
本発明の樹脂組成物において、溶融粘度比(I)/(II)が0.02~4.0であり、且つ質量比(I):(II)が95:5~35:65であることがより好ましく、溶融粘度比(I)/(II)が0.025~3.0であり、且つ質量比(I):(II)が99:1~30:70であることが更に好ましい。
上記樹脂組成物は、フッ素樹脂(II)の平均分散粒子径が3.0μm未満であり、且つ芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が99:1~30:70であることが好ましい。フッ素樹脂(II)の平均分散粒子径が3.0μm未満であり、且つ質量比(I):(II)が99:1~30:70であると、耐衝撃性、成形安定性、耐電圧特性等に一層優れた成形品を得ることができる。
上記樹脂組成物は、フッ素樹脂(II)の平均分散粒子径が2.0μm以下であり、且つ質量比(I):(II)が95:5~35:65であることがより好ましく、フッ素樹脂(II)の平均分散粒子径が1.5μm以下であり、且つ質量比(I):(II)が95:5~40:60であることが更に好ましい。
フッ素樹脂(II)の平均分散粒子径及び最大分散粒子径は、溶融混練して得られた樹脂組成物のストランドより公知の方法で厚さ20~60μmの切片を切り出し、得られた切片を顕微鏡により観察し、得られた顕微鏡画像データを二値化処理することにより求めることができる。切片を切り出す方法としては、ミクロトーム等が例示できる。顕微鏡としては、共焦点レーザー顕微鏡や透過型電子顕微鏡(TEM)が例示できる。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含むものであるが、必要に応じて他の成分を含んでいてもよい。上記他の成分としては特に限定されないが、チタン酸カリウム等のウィスカ、ガラス繊維、アスベスト繊維、カーボン繊維、セラミック繊維、チタン酸カリウム繊維、アラミド繊維、その他の高強度繊維等の繊維状の強化材;タルク、マイカ、クレイ、カーボン粉末、グラファイト、ガラスビーズ等の無機充填材;着色剤;難燃剤等通常使用される無機又は有機の充填材;シリコーンオイル、二硫化モリブデン等の潤滑剤;顔料;カーボンブラック等の導電剤;ゴム等の耐衝撃性向上剤;ステアリン酸マグネシウム等の滑剤;ベンゾトリアゾール化合物等の紫外線吸収剤;窒化ホウ素などの発泡剤;その他の添加剤等を用いることができる。
これらの添加剤は、本願の効果を損なわない範囲で、原料の芳香族ポリエーテルケトン樹脂(I)に加えてもよく、原料のフッ素樹脂(II)に加えてもよい。また、本願の効果を損なわない範囲で、芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)を混練する際、溶融状態の原料に、サイドフィード方式等により添加してもよい。
本発明の樹脂組成物の形態は特に限定されないが、ペレットであってよい。すなわち、本発明の樹脂組成物を成形して得られるペレットも本発明の一つである。
本発明のペレットは、例えば、混練機を用いて芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練した後、混練物を混練機から取り出して、その後、ペレットの形状に成形したものであってもよいし、混練機を用いて芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練した後、混練機から溶融押出等により押出して成形したものであってもよい。
成形方法としては特に限定されないが、例えば、二軸押出機等を用いて溶融押出する方法等が挙げられる。
上記ペレットは、ペレットの形状に成形された後、後添加してもよい公知の成分を添加したものであってもよい。ペレットへの添加方法としては公知の方法が使用でき、ペレットにスプレー等で噴霧する方法、ペレットと添加物の粉末をドライブレンドする方法等が例示できる。例えば、上記ペレットは、成形後に滑剤(例えばステアリン酸マグネシウムなど)が添加されたものであってもよい。上記ペレットから形成された成形品は引張強度に優れる。
また、上記ペレットは、後添加してもよい公知の成分を添加した後にさらに混練してもよい。
また、発明者らは、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練する工程を含む樹脂組成物の製造方法にあたり、ナトリウムの量が120ppm以下、または、カルシウムの量が合計で15ppm以下となるように、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の組み合わせを選択することで、より温和な混練条件下であっても、芳香族ポリエーテルケトン樹脂(I)中にフッ素樹脂(II)を均一に分散せしめることを見出した。
原因は明らかではないが、ナトリウムの量が少ない又はカルシウムの量が少ない条件で混練する、すなわち、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練する工程を含む製造方法において、ナトリウムの量が120ppm以下またはカルシウムの量が15ppm以下となるように、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の組み合わせを選択することによって混練性が良好になり、各樹脂に過度の負荷を与えなくても、フッ素樹脂(II)が芳香族ポリエーテルケトン樹脂(I)中に均一に分散した樹脂組成物を得ることができる。また、温和な混練条件下であっても均一に混練することができるため、混練工程において樹脂に過度の負荷を与えずに混練することができ、高い摺動性、耐衝撃性を有し、なおかつ、引張強度が優れた樹脂組成物を得ることができる。
すなわち、ナトリウムの量が120ppm以下、または、カルシウムの量が15ppm以下となるように、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の組み合わせを選択する工程、及び、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練する工程を含む樹脂組成物の製造方法も本発明の一つである。本発明の樹脂組成物は上記製造方法により好適に製造することができる。
また、上記製造方法により得られる樹脂組成物を成形して得られるペレット、及び、成形後に滑剤が添加されたペレットも本発明の一つである。
適切な組み合わせを選択する工程は、当業者にとって容易に実施可能な次の方法により実施することができる。
まず、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の各々について、上述した樹脂組成物と同じ方法でナトリウム及びカルシウムの含有量を測定することによって、ナトリウムの量およびカルシウムの量を決定する。なお、上記芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)のナトリウム及びカルシウムの含有量は、芳香族ポリエーテルケトン樹脂(I)またはフッ素樹脂(II)と金属を含む公知の添加剤を溶融状態で混練する方法、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を水または有機溶媒で洗浄する方法、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を金属含有量の少ない芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)と溶融状態で混練することで希釈する方法等によって調整することもできる。
次に、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の量比を決定する。
そして、各樹脂のナトリウムの量、および、カルシウムの量と量比とから、最終的に得られる組成物のナトリウムの量、および、カルシウムの量を算出できる。
芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との混練は、配合ミル、バンバリーミキサー、加圧ニーダー、押出機等の混合機を用いて実施することができる。フッ素樹脂(II)の平均分散粒子径を小さくすることができることから、混合機としては二軸押出機が好ましく、特にL/Dの大きいスクリュウ構成を有する二軸押出機が好ましい。二軸押出機のスクリュウ構成はL/D=35以上が好ましく、より好ましくはL/D=40以上であり、更に好ましくはL/D=45以上である。なお、L/Dは、スクリュウの有効長さ(L)/スクリュウ直径(D)である。
本発明の樹脂組成物は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を、溶融状態で混練することにより製造してもよい。芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)とを溶融状態で混練することによって、所望の分散状態を有する樹脂組成物を得ることができる。フッ素樹脂(II)の分散状態は、得られる成形品の耐衝撃性、成形安定性、耐電圧特性等に影響を与えるので、成形品において所望の分散状態が得られるように、混練方法の選択は適切に行われるべきである。
上記混練時の温度としては、用いる芳香族ポリエーテルケトン樹脂(I)、フッ素樹脂(II)の種類等によって適宜設定すればよいが、例えば、360~430℃であることが好ましい。混練時間としては、通常、10秒~1時間である。
上述したとおり、本発明の樹脂組成物は、温和な混練条件下で混練しても、良好な分散状態を実現することができ、各樹脂に過度の負荷を与えることを回避できる。温和な混練条件としては、混練機の設定温度として360~380℃を採用することができる。また、混練直後の樹脂温度により成形条件を定義することもできる。混練直後の樹脂温度は425℃以下であることが好ましく、420℃以下であることがより好ましく、415℃以下であることが更に好ましい。
上記他の成分は、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)に予め添加して混合しておいてもよいし、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を配合するときに添加してもよい。
本発明の樹脂組成物又はペレットから形成される成形品も本発明の1つである。
本発明の樹脂組成物から形成される成形品は、電気電子・半導体分野においては、CMPリテーナリング、エッチングリング、シリコンウェハーキャリア、ICチップトレイ等の半導体・液晶製造装置部品、絶縁フィルム、小型ボタン電池、ケーブルコネクタ、アルミ電解コンデンサー本体ケース;自動車分野においては、スラストワッシャー、オイルフィルター、オートエアコンコントロールユニットのギア、スロットルボディのギア、モーターコイルの電線被覆、ABSパーツ、ATシールリング、MTシフトフォークパット、ベアリング、シール、クラッチリング;産業分野においては、コンプレッサ部品、大量輸送システムのケーブル、コンベアベルトチェーン、油田開発機械用コネクタ、水圧駆動システムのポンプ部品(軸受け、ポートプレート、ピストンの玉継ぎ手)、歯車、ピストン用のシールリング;航空宇宙分野においては、航空機のキャビン内装部品、燃料パイプ保護材;及び食品・飲料製造設備部品や医療器具部品(滅菌器具、ガス・液体クロマトグラフ)などに使用することができる。
上記成形品の形状としては特に限定されず、例えば、シート状;フィルム状;ロッド状;パイプ状等の種々の形状にすることができる。
本発明の樹脂組成物から摺動部材用成形品を形成することも好適である。本発明の樹脂組成物から形成された摺動部材用成形品は、引張強度が優れるだけでなく、動摩擦係数も低いため、摺動部材として好適に利用することができる。また、フッ素樹脂(II)を含有するものであるため、耐薬品性、耐候性、非粘着性、撥水性、電気特性等にも優れる。
上記摺動部材用成形品としては、特に限定されないが、例えば、シール材、ギア、アクチュエーター、ピストン、ベアリング、ベアリングリテーナ、ブッシュ、スイッチ、ベルト、軸受け、カム、ローラー、ソケット等が挙げられる。
上記軸受けとは、転がり軸受けの内輪、滑り軸受け等のように、軸の外周に設置され、軸と接して使用される部材であり、通常、回転運動又は直線運動する軸を支えて、その運動及び作用する荷重を保持するものである。軸受けは単独で用いることもできるし、他の部材と組み合わせて用いることもできる。他の部材と組み合わせて用いる場合、例えば、玉軸受け、ころ軸受け、ラジアル軸受け、スラスト軸受けなどの転がり軸受け;真円軸受け、部分軸受け、多面軸受けなどの滑り軸受け;オイレスベアリング;空気軸受け;磁気軸受け等に用いられる。
上記歯車は、通常、回転運動する軸に取り付けられ、動力伝達に用いられるものであり、例えば、平歯車、はすば歯車、ラック、内歯車、かさ歯車、マイタ歯車、ねじ歯車、ウォームギヤ、駆動歯車、遊び歯車等が挙げられる。
上記シールリングは、通常、回転運動する軸、又は、軸方向に移動する軸に取り付けられ、例えば、トランスミッションやピストンのシリンダーと、軸との間でオイルをシールする役割を果たすものである。このようなシールリングは、種々の用途に使用することができ、例えば、自動車等の自動変速機や、自動車、船舶、建設車両、産業機械等のエンジンのピストン用のシールリングとして使用することができる。
上記成形品の製造方法における成形機に関する各種条件としては特に限定されず、例えば、通常行われる条件を採用することができる。成形温度は、通常、用いる芳香族ポリエーテルケトン樹脂(I)の融点以上の温度であることが好ましい。また、成形温度は、フッ素樹脂(II)の分解温度と芳香族ポリエーテルケトン樹脂(I)の分解温度のうち低い方の温度未満の温度であることが好ましい。このような成形温度としては、例えば250~400℃であってよい。
本発明の成形品は、目的とする成形品の種類、用途、形状などに応じて、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、流延成形等の一般に熱可塑性樹脂組成物に対して用いられている成形方法によって成形することができる。また上記成形方法を組み合わせた成形方法を採用することもできる。更に、本発明の樹脂組成物と他のポリマーとを複合成形して成形してもよい。
また、本発明の樹脂組成物又はペレットから形成される成形品は、特に引張強度、柔軟性、電気特性に優れるために、絶縁電線の絶縁層に用いると、当該絶縁層が優れた絶縁性を有すると共に、低い比誘電率を示し、また、電線の取り回し性にも優れたものとなる。その他、当該絶縁層は耐熱性、力学的強度、引張伸び、耐クラック性にも優れ、絶縁電線を高温で使用しても絶縁層が導体から剥離しない。このように、本発明の樹脂組成物又はペレットから形成される成形品は、絶縁電線の絶縁層として好適に用いることができる。
従って、導体(A)と、導体(A)の外周に形成された絶縁層(B)とを有する絶縁電線であって、絶縁層(B)が本発明の樹脂組成物から形成されることを特徴とする絶縁電線は、良好な特性を示す。本発明の樹脂組成物又はペレットは、絶縁層(B)の厚みが薄い細線にも好適に用いることができる。
上記絶縁電線において、導体(A)の外周に形成された絶縁層(B)は、導体(A)と接するものであってもよいし、導体(A)との間に、他の層、例えば他の樹脂層を介して形成されたものであってもよい。絶縁層(B)は、導体(A)と接するものであることが好ましく、その場合、導体(A)と絶縁層(B)とは強固に接着する。
絶縁層(B)の膜厚は、特に制限されないが、例えば、1~500μmであることが好ましい。より好ましくは50~200μmであり、更に好ましくは、70~150μmである。また、80μm以下まで薄くすることもできる。絶縁層(B)の膜厚を薄くすることは、放熱性能に優れる点で有利である。
絶縁層(B)は、本発明の樹脂組成物又はペレットを導体(A)の外周に形成することで得ることができ、上記絶縁電線は、例えば、上述した本発明の樹脂組成物を製造する工程と、本発明の樹脂組成物又はペレットを溶融押出で成形して、導体(A)の外周に絶縁層(B)を形成する工程とを含む製造方法により製造することができる。本発明の樹脂組成物は、押出成形時に剪断速度を速くしてもメルトフラクチャーが発生しないので、本発明の樹脂組成物を成形する方法は、非常に生産性が高い。
また絶縁層(B)は、あらかじめフィルム状に加工した本発明の樹脂組成物を、導体(A)の周囲に巻き回すことによっても、形成することができる。
本発明の樹脂組成物又はペレットを用いることで、絶縁層(B)と導体(A)との接着強度を10N/cm以上にすることができる。上記範囲の接着強度であることによって、自動車用電線やモーターコイルの巻き線の用途に特に好適である。接着強度は、15N/cm以上であることがより好ましく、20N/cm以上であることが更に好ましい。上記接着強度は、ISO6722に準拠して測定される。
絶縁層(B)を形成する方法は特に限定されず、その各種条件としても、従来公知のように行うことができる。また、導体(A)の上に直接絶縁層(B)を形成させても、あるいは他の層、例えば他の樹脂層を介して形成させてもよい。
絶縁層(B)は、上記樹脂組成物又はペレットを、導体(A)の表面、又はあらかじめ他の樹脂層を形成した導体(A)の当該樹脂層の表面に、溶融押出して形成する方法や、あらかじめ樹脂組成物を溶融押出してフィルムを製造し、当該フィルムを所定の大きさにスリットした後、導体(A)の表面、又はあらかじめ他の樹脂層を形成した導体(A)の当該樹脂層の表面に、当該フィルムを巻きつけていく方法などで形成することができる。
絶縁層(B)を溶融押出で形成する場合、形成する温度は、通常、用いる上記芳香族ポリエーテルケトン樹脂(I)の融点以上の温度であることが好ましい。また、成形温度は、フッ素樹脂(II)の分解温度と芳香族ポリエーテルケトン樹脂(I)の分解温度のうち低い方の温度未満の温度であることが好ましい。このような成形温度としては、例えば250~420℃であってよい。成形温度としては、300~400℃であることが好ましい。
上記絶縁電線は、絶縁層(B)を形成した後加熱してもよい。上記加熱は、フッ素樹脂(II)の融点付近の温度で加熱してもよい。
上記絶縁電線は、導体(A)の外周に絶縁層(B)が形成されたものである。導体(A)と絶縁層(B)との間に、他の層、例えば他の樹脂層を有していてもよい。また、上記絶縁電線は、上記絶縁層(B)の外周に、更に他の層、例えば他の樹脂層を有するものであってもよい。
上記他の樹脂層は、絶縁層(B)とは異なるものである。他の樹脂層としては、例えば、芳香族ポリエーテルケトン樹脂、フッ素樹脂、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、及び、ポリフェニレンスルフィドからなる群より選択される少なくとも1種の樹脂からなる層であることが好ましい。
導体(A)の形成材料としては、導電性が良好な材料であれば特に制限されず、例えば、銅、すずめっき銅、銀めっき銅、銅合金、銅クラッドアルミニウム、アルミニウム、銀、金、亜鉛めっき鉄等が挙げられる。
上記導体(A)は、その形状に特に限定はなく、円形であっても平形であってもよい。
上記絶縁電線は、ラッピング電線、自動車用電線、ロボット用電線等に好適に使用できる。また、コイルの巻き線(マグネットワイヤー)としても好適に使用でき、上記絶縁電線を使用すれば巻線加工での損傷を生じにくい。上記巻き線は、モーター、回転電機、圧縮機、変圧器(トランス)等に好適であり、高電圧、高電流及び高熱伝導率が要求され、高密度な巻線加工が必要となる、小型化・高出力化モーターでの使用にも充分に耐えうる特性を有する。また、配電、送電又は通信用の電線としても好適である。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
<フッ素樹脂の融点>
示差走査熱量測定(DSC)装置を用いて、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求めた。
<溶融粘度の測定>
芳香族ポリエーテルケトン樹脂の溶融粘度は、60sec-1、390℃において、ASTM D3835に準拠して測定した。
フッ素樹脂の溶融粘度は、60sec-1、390℃において、ASTM D3835に準拠して測定した。
樹脂組成物の溶融粘度は、60sec-1、390℃において、ASTM D3835に準拠して測定した。
<平均分散粒子径の算出>
溶融混練して得られた樹脂組成物のストランドより、厚さ約30μmの切片を切り出した。
得られた切片の断面を共焦点レーザー顕微鏡を用いて観察を行った。得られた画像データを、変換ソフト(Tresvalle7)を用いてFRNファイルに変換した。このFRNファイルを画像解析ソフト(三谷商事(株)製WinROOF v6.4)を用いて読み込み、電子像を二値化する処理を行った。二値化された画像の輝度ヒストグラムを参照し、頻度値にギャップが見られる点を閾値に設定した。この閾値設定を用いて自動処理を行い、分散相の平均分散粒子径を求めた。
<金属量の測定>
実施例、比較例に用いた材料および製造した樹脂組成物の金属量は、試料1gを600℃で灰化したのち、残渣を塩酸に溶解し、その溶液についてICP発光分析を行うことにより測定した。
<プレスシート成形品の作製>
実施例、比較例で製造した樹脂組成物を用いて、熱プレス機により400℃、3MPaの条件下で圧縮成形しシートを作製した。
<引張強度の測定>
上述した方法で作製した厚さ0.5mmのプレスシートを用いて、ASTM D 638 V型のダンベルを作製した。作製したダンベルについて、ASTM D 638に基づいた引張試験を行い、引張破断強度、引張破断伸びを測定した。
<限界PV値の測定>
上述した方法で作製した厚さ3mmのプレスシートから、縦3cm・横3cm・厚さ3mmの試験片を切り出し、JIS K 7218のA法に準じて、摩擦摩耗試験機を使用して、鋼材S45C(#240サンドペーパー仕上げ)を相手材に、速度3m/秒一定、荷重を20Nから10分毎に20N上昇させることにより、限界PV値を測定した。
<動摩擦係数の測定>
上述した方法で作製した厚さ3mmのプレスシートを用いて、ボールオンディスク型のSRV摩擦摩耗試験機により、室温、50Hzの条件で、動摩擦係数を求めた。
実施例及び比較例では、下記の材料を用いた。
芳香族ポリエーテルケトン樹脂(1-1):ポリエーテルエーテルケトン(溶融粘度;0.70kNsm-2、ナトリウム20ppm、カルシウム9.1ppm。)
芳香族ポリエーテルケトン樹脂(1-2):ポリエーテルエーテルケトン(溶融粘度;0.70kNsm-2、ナトリウム260ppm、カルシウム2.3ppm。)
芳香族ポリエーテルケトン樹脂(1-3):ポリエーテルエーテルケトン(溶融粘度;0.70kNsm-2、ナトリウム42ppm、カルシウム17ppm。)
芳香族ポリエーテルケトン樹脂(1-4):ポリエーテルエーテルケトン(溶融粘度;0.70kNsm-2、ナトリウム330ppm、カルシウム30ppm。)
芳香族ポリエーテルケトン樹脂(2-1):ポリエーテルエーテルケトン(溶融粘度;0.50kNsm-2、ナトリウム28ppm、カルシウム1.8ppm。)
芳香族ポリエーテルケトン樹脂(2-2):ポリエーテルエーテルケトン(溶融粘度;0.50kNsm-2、ナトリウム310ppm、カルシウム28ppm。)
芳香族ポリエーテルケトン樹脂(2-3):ポリエーテルエーテルケトン(溶融粘度;0.50kNsm-2、ナトリウム370ppm、カルシウム50ppm。)
芳香族ポリエーテルケトン樹脂(1-1)~(1-4)は、ナトリウム量及びカルシウム量が相違する他は同一の樹脂である。
芳香族ポリエーテルケトン樹脂(2-1)~(2-3)は、ナトリウム量及びカルシウム量が相違する他は同一の樹脂である。
フッ素樹脂(1-1):テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(プロピルビニルエーテル)共重合体。溶融粘度;0.55kNsm-2、融点255℃、ナトリウム1.1ppm、カルシウム0.2ppm。
フッ素樹脂(1-2):テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(プロピルビニルエーテル)共重合体。溶融粘度;0.55kNsm-2、融点255℃、ナトリウム150ppm、カルシウム35ppm。
フッ素樹脂(2):テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(プロピルビニルエーテル)共重合体。溶融粘度;1.0kNsm-2、融点255℃、ナトリウム1.3ppm、カルシウム0.4ppm。
実施例1
芳香族ポリエーテルケトン樹脂(1-1)及びフッ素樹脂(1-1)を表1に示す割合(質量部)で予備混合を行い、二軸押出機(φ15mm、L/D=60)を使用して、シリンダー温度375℃の条件下で溶融混練し、樹脂組成物を製造した。得られた樹脂組成物を共焦点レーザー顕微鏡で観察したところ、フッ素樹脂が芳香族ポリエーテルケトン樹脂中に粒子状に分散していることが確認された。また、得られた樹脂組成物を用いて、上記した方法で試験片(プレスシート)を作製し、引張試験、限界PV値の測定及び動摩擦係数の測定を行った。結果を表1に示す。
実施例2~10及び比較例1~8
芳香族ポリエーテルケトン樹脂の種類、フッ素樹脂の種類、混練温度を表1~4に示すように変更したこと以外は、実施例1と同様にして樹脂組成物を製造した。また、同様にして、各種物性を測定した。結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (12)

  1. 芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を含む樹脂組成物であって、
    前記組成物中のナトリウムの量が前記組成物に対して120ppm以下またはカルシウムの量が前記組成物に対して15ppm以下であることを特徴とする樹脂組成物。
  2. 組成物中のナトリウムの量が前記組成物に対して120ppm以下であり、かつカルシウムの量が前記組成物に対して15ppm以下である請求項1記載の樹脂組成物。
  3. フッ素樹脂(II)は、テトラフルオロエチレン及び下記一般式(1):
    CF=CF-Rf   (1)
    (式中、Rfは、-CFまたは-ORfを表す。Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロエチレン性不飽和化合物の共重合体である請求項1又は2記載の樹脂組成物。
  4. 芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との質量比(I):(II)が99:1~30:70である請求項1、2又は3記載の樹脂組成物。
  5. 芳香族ポリエーテルケトン樹脂(I)とフッ素樹脂(II)との溶融粘度比(I)/(II)が0.01~5.0である請求項1、2、3又は4記載の樹脂組成物。
  6. フッ素樹脂(II)の融点が230~350℃である請求項1、2、3、4又は5記載の樹脂組成物。
  7. 芳香族ポリエーテルケトン樹脂(I)は、ポリエーテルエーテルケトンである請求項1、2、3、4、5又は6記載の樹脂組成物。
  8. 請求項1、2、3、4、5、6又は7記載の樹脂組成物を成形して得られることを特徴とするペレット。
  9. 成形後に滑剤が添加された請求項8記載のペレット。
  10. 請求項1、2、3、4、5、6又は7記載の樹脂組成物、若しくは、請求項8又は9記載のペレットから形成されることを特徴とする成形品。
  11. 請求項1、2、3、4、5、6又は7記載の樹脂組成物、若しくは、請求項8又は9記載のペレットにより被覆されることを特徴とする電線。
  12. 請求項1、2、3、4、5、6又は7記載の樹脂組成物を製造するための製造方法であって、
    ナトリウムの量が前記組成物に対して120ppm以下またはカルシウムの量が前記組成物に対して15ppm以下となるように、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)の組み合わせを選択する工程、及び、芳香族ポリエーテルケトン樹脂(I)及びフッ素樹脂(II)を混練する工程を含む製造方法。
PCT/JP2015/077551 2014-10-10 2015-09-29 樹脂組成物および成形品 WO2016056431A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177009276A KR101940431B1 (ko) 2014-10-10 2015-09-29 수지 조성물 및 성형품
EP15848426.1A EP3214134B1 (en) 2014-10-10 2015-09-29 Resin composition and moulded article
US15/516,959 US20170301430A1 (en) 2014-10-10 2015-09-29 Resin composition and moulded article
CN201580053998.4A CN106795368B (zh) 2014-10-10 2015-09-29 树脂组合物和成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014209140 2014-10-10
JP2014-209140 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056431A1 true WO2016056431A1 (ja) 2016-04-14

Family

ID=55653047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077551 WO2016056431A1 (ja) 2014-10-10 2015-09-29 樹脂組成物および成形品

Country Status (6)

Country Link
US (1) US20170301430A1 (ja)
EP (1) EP3214134B1 (ja)
JP (1) JP6070802B2 (ja)
KR (1) KR101940431B1 (ja)
CN (1) CN106795368B (ja)
WO (1) WO2016056431A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196243A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 樹脂組成物および成形品
WO2022071139A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 三次元造形用組成物及び三次元造形物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352480B2 (en) 2016-03-18 2022-06-07 Ticona Llc Polyaryletherketone composition
WO2017188397A1 (ja) * 2016-04-28 2017-11-02 旭硝子株式会社 被覆電線
WO2017188280A1 (ja) 2016-04-28 2017-11-02 旭硝子株式会社 含フッ素共重合体組成物、その製造方法、および成形体
JP6826466B2 (ja) 2017-03-07 2021-02-03 大同メタル工業株式会社 摺動部材
JP6990977B2 (ja) 2017-03-07 2022-01-12 大同メタル工業株式会社 摺動部材
KR102480848B1 (ko) * 2017-03-10 2022-12-26 솔베이 스페셜티 폴리머즈 유에스에이, 엘.엘.씨. 용융-가공성 조성물
JP6966896B2 (ja) * 2017-08-21 2021-11-17 信越ポリマー株式会社 摺動部材
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
CA3117167A1 (en) * 2018-10-24 2020-04-30 AGC Inc. Fluorinated copolymer compositions with improved impact resistance
JP7136734B2 (ja) 2019-03-28 2022-09-13 大同メタル工業株式会社 摺動部材
JP7136733B2 (ja) 2019-03-28 2022-09-13 大同メタル工業株式会社 摺動部材
JP7335178B2 (ja) 2020-02-06 2023-08-29 大同メタル工業株式会社 摺動部材
JP7335179B2 (ja) 2020-02-06 2023-08-29 大同メタル工業株式会社 摺動部材
CN115210315A (zh) * 2020-03-10 2022-10-18 大金工业株式会社 树脂组合物、成型品和成型品的制造方法
WO2022030410A1 (ja) * 2020-08-07 2022-02-10 ダイキン工業株式会社 フィルム、ラッピング電線被覆材料、可撓性印刷回路基板用フィルム、及び、積層体
JP7071685B2 (ja) * 2020-09-30 2022-05-19 ダイキン工業株式会社 絶縁電線及び樹脂組成物
WO2022071144A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 粉体組成物、塗膜及び三次元造形物
JP7142075B2 (ja) * 2020-11-13 2022-09-26 株式会社リケン Peek成形体、及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490296A (en) * 1977-09-07 1979-07-17 Ici Ltd Thermoplastic polyether aromatic ketone
JPS5993724A (ja) * 1977-09-07 1984-05-30 インペリアル・ケミカル・インダストリ−ズ・リミテイド 熱可塑性芳香族ポリエ−テルケトンの製法
JPS636023A (ja) * 1986-04-24 1988-01-12 アモコ コ−ポレ−シヨン ポリ(アリ−ルエ−テル)及びポリ(アリ−ルエ−テルケトン)を製造する改良方法
WO2012005133A1 (ja) * 2010-07-05 2012-01-12 清華大学 樹脂組成物および成形品
WO2014024671A1 (ja) * 2012-08-06 2014-02-13 ダイキン工業株式会社 樹脂組成物及び成形品
WO2014034493A1 (ja) * 2012-08-31 2014-03-06 ダイセル・エボニック株式会社 難燃性熱可塑性樹脂組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US294362A (en) * 1884-03-04 William e
US4001351A (en) * 1975-04-03 1977-01-04 E. I. Du Pont De Nemours And Company Process for preparing tetrafluoroethylene-hexafluoropropylene copolymer blends
JPS58176242A (ja) * 1982-04-09 1983-10-15 Sumitomo Chem Co Ltd 樹脂組成物
JPS60155275A (ja) * 1984-01-24 1985-08-15 Sumitomo Chem Co Ltd 被覆用樹脂組成物
US5789508A (en) * 1995-08-31 1998-08-04 E. I. Du Pont De Nemours And Company Polymerization process
GB2412915B (en) * 2001-05-30 2006-03-22 Victrex Mfg Ltd Polymeric materials
US7245973B2 (en) * 2003-12-23 2007-07-17 Cardiac Pacemakers, Inc. His bundle mapping, pacing, and injection lead
JP2006009819A (ja) * 2004-06-22 2006-01-12 Ntn Corp 燃料電池の冷却水循環ポンプ用滑り軸受
WO2006025375A1 (ja) * 2004-08-31 2006-03-09 Riken 熱安定性バイオポリエステル
JP2006274073A (ja) * 2005-03-29 2006-10-12 Mitsubishi Plastics Ind Ltd 樹脂組成物、その樹脂成形体、及び樹脂組成物の製造方法
GB0506934D0 (en) * 2005-04-06 2005-05-11 Victrex Mfg Ltd Polymeric material
WO2006123694A1 (ja) * 2005-05-18 2006-11-23 Daikin Industries, Ltd. フッ素樹脂組成物及び電線
WO2009044753A1 (en) * 2007-10-03 2009-04-09 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
JP5020353B2 (ja) * 2010-06-10 2012-09-05 住友ゴム工業株式会社 天然ゴム、その製造方法、ゴム組成物及び空気入りタイヤ
EP2767986B1 (en) * 2011-12-14 2019-11-13 Daikin Industries, Ltd. Insulated wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490296A (en) * 1977-09-07 1979-07-17 Ici Ltd Thermoplastic polyether aromatic ketone
JPS5993724A (ja) * 1977-09-07 1984-05-30 インペリアル・ケミカル・インダストリ−ズ・リミテイド 熱可塑性芳香族ポリエ−テルケトンの製法
JPS636023A (ja) * 1986-04-24 1988-01-12 アモコ コ−ポレ−シヨン ポリ(アリ−ルエ−テル)及びポリ(アリ−ルエ−テルケトン)を製造する改良方法
WO2012005133A1 (ja) * 2010-07-05 2012-01-12 清華大学 樹脂組成物および成形品
WO2014024671A1 (ja) * 2012-08-06 2014-02-13 ダイキン工業株式会社 樹脂組成物及び成形品
WO2014034493A1 (ja) * 2012-08-31 2014-03-06 ダイセル・エボニック株式会社 難燃性熱可塑性樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196243A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 樹脂組成物および成形品
JP2020158664A (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 樹脂組成物および成形品
JP7181465B2 (ja) 2019-03-27 2022-12-01 ダイキン工業株式会社 樹脂組成物および成形品
WO2022071139A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 三次元造形用組成物及び三次元造形物
JP2022058220A (ja) * 2020-09-30 2022-04-11 ダイキン工業株式会社 三次元造形用組成物及び三次元造形物
JP7144703B2 (ja) 2020-09-30 2022-09-30 ダイキン工業株式会社 三次元造形用組成物及び三次元造形物

Also Published As

Publication number Publication date
JP6070802B2 (ja) 2017-02-01
EP3214134A4 (en) 2018-08-22
KR20170049573A (ko) 2017-05-10
US20170301430A1 (en) 2017-10-19
CN106795368B (zh) 2020-03-17
EP3214134A1 (en) 2017-09-06
JP2016079391A (ja) 2016-05-16
CN106795368A (zh) 2017-05-31
KR101940431B1 (ko) 2019-01-18
EP3214134B1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6070802B2 (ja) 樹脂組成物および成形品
JP5854146B2 (ja) 樹脂組成物及び成形品
JP5757358B2 (ja) 熱可塑性樹脂組成物および成形品
JP5702385B2 (ja) 樹脂組成物および成形品
JPWO2013088964A1 (ja) 樹脂組成物及び成形品
JP5737464B2 (ja) 組成物及び絶縁電線
WO2016010127A1 (ja) フィルム及びその製造方法
JP5751347B2 (ja) 歯車
JP6604104B2 (ja) 絶縁電線及びその製造方法
JP5907282B2 (ja) 樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177009276

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15516959

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015848426

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848426

Country of ref document: EP