WO2016056117A1 - 搬送方法および搬送装置 - Google Patents

搬送方法および搬送装置 Download PDF

Info

Publication number
WO2016056117A1
WO2016056117A1 PCT/JP2014/077165 JP2014077165W WO2016056117A1 WO 2016056117 A1 WO2016056117 A1 WO 2016056117A1 JP 2014077165 W JP2014077165 W JP 2014077165W WO 2016056117 A1 WO2016056117 A1 WO 2016056117A1
Authority
WO
WIPO (PCT)
Prior art keywords
target position
tip
robot
movement control
vibration waveform
Prior art date
Application number
PCT/JP2014/077165
Other languages
English (en)
French (fr)
Inventor
良 永田
政利 藤田
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2016552781A priority Critical patent/JP6472813B2/ja
Priority to CN201480082470.5A priority patent/CN107073716B/zh
Priority to PCT/JP2014/077165 priority patent/WO2016056117A1/ja
Priority to US15/517,292 priority patent/US10456911B2/en
Priority to EP14903589.1A priority patent/EP3205457B1/en
Publication of WO2016056117A1 publication Critical patent/WO2016056117A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39195Control, avoid oscillation, vibration due to low rigidity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39241Force and vibration control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42077Position, speed or current, combined with vibration feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45063Pick and place manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Definitions

  • the present invention relates to a transport method and a transport apparatus for transporting and placing an object held on the tip portion to a predetermined target position using a robot whose tip portion can move in a first direction and a second direction. .
  • Patent Document 1 predicts and predicts a vibration pattern generated in a workpiece during workpiece conveyance in a conveyance system including a conveyance device that conveys the workpiece and a work robot that performs work on the workpiece being conveyed.
  • a device that eliminates the influence of vibration between the robot and the workpiece by causing the work robot to reproduce the vibration generated in the workpiece based on the vibration pattern is disclosed.
  • the system that performs work on the workpiece while the workpiece is being conveyed can eliminate the influence of vibration generated on the workpiece (object), but the workpiece itself continues to vibrate. It cannot be applied when trying to place it on
  • the main object of the present invention is to further improve the accuracy of placing an object in a case where the object held at the tip of the robot is transported to and placed on a predetermined target position.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the transport method of the present invention includes: A transport method for transporting and placing an object held at the tip part to a predetermined target position using a robot whose tip part is movable in a first direction and a second direction, As the predetermined target position, a first target position that is a target position in the first direction and a second target position that is a target position in the second direction are acquired, Performing a first direction movement control for controlling the robot so that a position of the tip portion in the first direction matches the first target position; After executing the first direction movement control, measure or predict the vibration waveform in the first direction of the tip, Based on the measured or predicted vibration waveform of the tip in the first direction, the robot is controlled so that the position of the tip in the second direction matches the second target position at a predetermined timing during vibration.
  • the second aspect is to execute the second direction movement control for placing the object.
  • the first direction movement control for controlling the robot is executed so that the position in the first direction of the tip portion holding the object coincides with the first target position, and the first direction movement control is executed.
  • the vibration waveform in the first direction of the tip is measured or predicted, and the robot is controlled based on the vibration waveform so that the position of the tip in the second direction matches the second target position at a predetermined timing during vibration.
  • the second direction movement control for placing the object is executed. Thereby, the mounting precision of a target object can be improved more.
  • the second direction movement control is performed at the timing when the displacement of the tip in the first direction becomes a node of the vibration waveform as the predetermined timing during the vibration.
  • the robot may be controlled so that the positions in two directions coincide with the second target position. In this way, it is possible to accurately place the vibrating object at the target position.
  • an imaging unit is provided at the tip and a plurality of images are picked up by the imaging unit after executing the first direction movement control.
  • the vibration waveform in the first direction of the tip portion can be measured based on a plurality of images obtained by multiple imaging, and an acceleration sensor is provided at the tip portion, which is detected by the acceleration sensor.
  • the vibration waveform in the first direction of the tip portion may be measured based on the acceleration, or the tip portion based on a control command signal used when controlling the robot by the first direction movement control. It is also possible to predict the vibration waveform in the first direction.
  • the vibration waveform in the first direction of the tip after performing the first direction movement control is predicted or learned in advance, and the first direction movement control is performed by the tip portion.
  • the robot is controlled so that the position in the first direction coincides with a position shifted from the first target position by the amplitude of the predicted or learned vibration waveform, and the second direction movement control is performed during the vibration. Controlling the robot so that the position of the tip in the second direction coincides with the second target position at a timing when the displacement of the tip in the first direction becomes an antinode of the vibration waveform.
  • An object can also be placed. In this way, it is possible to accurately place the vibrating object at the target position.
  • the transport device of the present invention is A transport device that performs a predetermined operation at a predetermined target position, A robot whose tip is movable in a first direction and a second direction; Target position acquisition means for acquiring, as the predetermined target position, a first target position that is a target position in the first direction and a second target position that is a target position in the second direction; First direction movement control means for performing first direction movement control for controlling the robot so that the position of the tip portion in the first direction matches the first target position; After the first direction movement control is executed, vibration waveform acquisition means for acquiring the vibration waveform of the tip portion in the first direction; Based on the acquired vibration waveform of the tip portion in the first direction, the robot is controlled so that the position of the tip portion in the second direction coincides with the second target position at a predetermined timing during vibration. Second direction movement control means for executing second direction movement control; It is a summary to provide.
  • the transport apparatus of the present invention it is possible to achieve the same effect as the transport method described above, that is, the effect that the placement accuracy of the object can be further improved.
  • FIG. 7 is a flowchart illustrating an example of a component mounting process executed by a CPU 71 of a control device 70. It is explanatory drawing which shows the front end coordinate time response waveform of the Example at the time of operating the XY robot 40. FIG. It is explanatory drawing which shows the front end coordinate time response waveform of the comparative example at the time of operating the XY robot. It is a block diagram which shows the outline of a structure of the components mounting apparatus 100 of a modification.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a component mounting apparatus 10 as an embodiment of the present invention
  • FIG. 2 is an explanatory diagram showing an electrical connection relationship of a control device 70 of the component mounting apparatus 10.
  • is there. 1 is the X-axis direction
  • the front (front) and rear (back) directions are the Y-axis directions
  • the vertical direction is the Z-axis directions.
  • the component mounting apparatus 10 picks up the component P, conveys it onto the substrate S, and mounts it on the target position of the substrate S.
  • the component mounting apparatus 10 includes a substrate transport device 30 that transports a substrate S, a component supply device 20 that supplies a component P, and a suction nozzle 51 that receives the component P supplied by the component supply device 20.
  • a head 50 that is transported and mounted on the substrate S transported by the substrate transport device 30 by being attracted to the substrate, an XY robot 40 that moves the head 50 in the XY direction, and a control device 70 that controls the entire mounting machine (see FIG. 2). ).
  • the component mounting apparatus 10 is provided near the suction nozzle 51 of the head 50 and the mark camera 56 for imaging the board positioning reference mark provided on the board S and provided on the head 50 in the Y direction.
  • An acceleration sensor 55 (see FIG. 2) for detecting the acceleration ⁇ , a parts camera 60 for imaging the suction posture of the component P sucked by the suction nozzle 51, and the like.
  • the component supply device 20 can use, for example, a tape feeder that supplies components by sending out a carrier tape.
  • the substrate transport device 30 includes a belt conveyor device 32, and the substrate S is transported from the left to the right (substrate transport direction) in FIG. 1 by driving the belt conveyor device 32.
  • a backup plate 34 for backing up the transported substrate S from the back side is provided in the center of the substrate transport device 30 in the substrate transport direction (X-axis direction).
  • the head 50 includes a Z-axis actuator 52 that moves the suction nozzle 51 in the vertical direction (Z direction), and a ⁇ -axis actuator 54 that rotates the suction nozzle 51 around the Z-axis.
  • the suction port of the suction nozzle 51 selectively communicates with either the vacuum pump 58 or the air pipe 59 via the electromagnetic valve 57.
  • the control device 70 drives the electromagnetic valve 57 so that the suction port of the suction nozzle 51 communicates with the vacuum pump 58, so that negative pressure is applied to the suction port and the component P can be sucked.
  • the solenoid valve 57 By driving the solenoid valve 57 so that the suction port communicates with the air pipe 59, the suction of the component P can be released by applying a positive pressure to the suction port.
  • the XY robot 40 has a Y-axis guide rail 43 provided on the upper stage portion of the main body frame 12 along the front-rear direction (Y direction), and a state spanned over the Y-axis guide rail 43.
  • a Y-axis slider 44 that can move along the Y-axis guide rail 43, an X-axis guide rail 41 that is provided on the lower surface of the Y-axis slider 44 along the left-right direction (X direction), and an X-axis guide rail 41
  • a head 50 is attached to the X-axis slider 42, and the control device 70 can move the head 50 to an arbitrary position on the XY plane by driving and controlling the XY robot 40.
  • the mark camera 56 images the substrate positioning reference mark attached to the substrate S and outputs the captured image to the control device 70.
  • the control device 70 that has input the captured image recognizes the backup position of the substrate S based on the captured image.
  • the control device 70 is configured as a microprocessor centered on the CPU 71, and includes a ROM 72, an HDD 73, a RAM 74, and an input / output interface 75 in addition to the CPU 71. These are electrically connected via a bus 76.
  • the control device 70 includes a position signal from the X-axis position sensor 47 that detects the position of the X-axis slider 42 (position in the X direction) and a Y-axis position that detects the position of the Y-axis slider 44 (position in the Y direction).
  • An acceleration ⁇ in the Y direction, an image signal from the parts camera 60, and the like are input via the input / output interface 75.
  • the control device 70 moves the control signal to the component supply device 20, the control signal to the substrate transfer device 30, the drive signal to the X-axis actuator 46 that moves the X-axis slider 42, and the Y-axis slider 44.
  • a drive signal to the Y-axis actuator 48, a drive signal to the Z-axis actuator 52, a drive signal to the ⁇ -axis actuator 54, a drive signal to the electromagnetic valve 57, and the like are output via the input / output interface 75.
  • FIG. 3 is a flowchart illustrating an example of a component mounting process executed by the CPU 71 of the control device 70. This process is executed when the operator instructs the mounting (production) of the component P on the board S.
  • the CPU 71 of the control device 70 When the component mounting process is executed, the CPU 71 of the control device 70 first inputs the target mounting position (X *, Y *, Z *) of the board S (S100). Subsequently, the CPU 71 performs a suction operation for sucking the component P supplied from the component supply device 20 to the suction nozzle 51 (S110).
  • the suction operation is specifically performed by controlling the XY robot 40 so that the suction nozzle 51 mounted on the head 50 comes directly above the component P, and then the suction nozzle until the suction port contacts the component P.
  • the Z-axis actuator 52 is driven and controlled so that 51 descends, and the electromagnetic valve 57 is driven and controlled so that a negative pressure acts on the suction port of the suction nozzle 51.
  • the CPU 71 drives and controls the XY robot 40 so that the component P sucked by the suction nozzle 51 coincides with the target mounting position (X *, Y *) on the XY plane (S120), and the X-axis position sensor 47 and The current position (current XY coordinates) on the XY plane of the component P detected by the Y-axis position sensor 49 is input (S130).
  • the CPU 71 determines whether or not the current position of the input component P has reached the vicinity of the target mounting position (X *, Y *) on the XY plane (S140), and the target mounting position (X *, Y). *) If it is determined that the vicinity has been reached, the acceleration ⁇ in the Y direction of the suction nozzle 51 (component P) from the acceleration sensor 55 is input (S150), and the Y coordinate (Y) of the current position of the component P input in S130 The vibration waveform in the Y direction of the component P is measured based on the direction displacement y) and the input acceleration ⁇ in the Y direction (S160).
  • the movement distance in the X direction is much shorter than the movement distance in the Y direction.
  • the X component immediately converges and only the Y component remains.
  • the process of S160 measures the vibration waveform of the Y component remaining after reaching the target mounting position.
  • the vibration generated in the component P is regarded as a sine wave
  • the amplitude is “A”
  • the angular frequency is “ ⁇ ”
  • the time is “t”
  • the following expressions (1) and (2) hold.
  • the angular frequency ⁇ can be replaced with the period T, the period T and the phase ⁇ t of the vibration waveform can be obtained based on the displacement y and the acceleration ⁇ .
  • the CPU 71 moves the component P in the Z direction from the current position and at the timing when the time required for mounting the component P on the substrate S has elapsed, the Y component displacement y measured in S160 is the vibration of the Y component.
  • the control timing in the Z direction is set so as to cross the node of the waveform (S170), and the Z-axis actuator 52 is controlled so that the component P is moved in the Z direction according to the set control timing and is mounted on the substrate S ( S180).
  • the required time for example, an elapsed time from when the component P is moved in the Z direction to be mounted on the substrate S can be experimentally obtained in advance.
  • FIG. 4 and 5 are explanatory diagrams showing the robot tip coordinate time response waveform when the XY robot 40 is operated.
  • FIG. 4 shows a time response waveform in the example
  • FIG. 5 shows a time response waveform in the comparative example.
  • the vibration waveform in the Y direction is measured, and the component P reaches the target Z coordinate (value 0) at the timing when the displacement y in the Y direction of the component P crosses the node of the vibration waveform.
  • the movement in the Z direction is controlled as follows.
  • the component P can be accurately mounted on the target XY coordinates.
  • the component P is mounted on the substrate S at the fastest timing without measuring the vibration waveform. For this reason, if vibration in the Y direction remains on the component P, the component P is mounted at a position shifted from the target Y coordinate.
  • the waveform (vibration waveform) generated in the component P is measured.
  • the Z-axis actuator 52 is controlled so that the component P reaches the target Z coordinate (value 0) at the timing when the displacement y of the component P crosses the node of the measured vibration waveform.
  • the component P is mounted on the substrate S without measuring the vibration waveform of the robot tip (component P), or the component P is mounted after the vibration of the robot tip (component P) has converged.
  • the mounting position accuracy of the component P can be further improved while shortening the time required for mounting.
  • control is performed so that the component P reaches the target Z coordinate (value 0) at the timing when the displacement y of the robot tip (component P) crosses the node of the measured vibration waveform.
  • the CPU 71 experimentally obtains in advance an amplitude A of vibration generated at the robot tip (component P) when the robot tip (component P) reaches the vicinity of the target XY coordinate, and shifts the target Y coordinate by the amplitude A.
  • the corrected target Y coordinate is set, and when the conveyance and mounting of the component P are instructed, the XY robot 40 is controlled so that the component P moves to the target X coordinate and the corrected target Y coordinate.
  • the CPU 71 measures the vibration waveform in the Y direction of the robot tip (component P), and at the timing when the time required for moving the component P in the Z direction from the current position and mounting on the substrate S has elapsed.
  • the control timing in the Z direction is set so that the displacement y in the Y direction of the P passes through the antinode of the measured Y component vibration waveform, and the component P is moved in the Z direction according to the set control timing to be on the substrate S.
  • the Z-axis actuator 52 is controlled so as to be mounted. Thereby, even when the component P is moved in the Z direction and mounted on the substrate S while vibration remains, the same effect as that of the embodiment in which the mounting position shift can be further reduced. Can play.
  • the tip of the robot (component) is reached after the component P reaches the vicinity of the target XY coordinate.
  • the present invention is not limited to this. If the movement distance when moving the component P to the target XY coordinates is longer in the X direction than in the Y direction, the component It is possible to consider only the X component for the vibration generated at the robot tip (component P) after P reaches the vicinity of the target XY coordinate, or to the robot tip (component P) after the component P reaches the vicinity of the target XY coordinate.
  • Both the X component and the Y component may be considered for the generated vibration.
  • the component P when the component P reaches the vicinity of the target XY coordinates, the X-component vibration waveform and the Y-component vibration waveform are measured, and the sum of the X-direction deviation and the Y-direction deviation of the robot tip (part P) is measured. Control may be made so that the component P reaches the target Z coordinate at the timing when the minimum value of. Further, when the component P reaches the vicinity of the target XY coordinates, the vibration waveform of the X component and the vibration waveform of the Y component are measured, and one of the X direction and the Y direction of the robot tip (component P) is converged. It is also possible to control so that the part P reaches the target Z coordinate at the timing based on the other vibration waveform.
  • the residual vibration waveform when the component P is moved in the XY direction based on the displacement y and the acceleration ⁇ is measured.
  • the vibration waveform may be measured based on image data obtained by continuously capturing images with a camera (for example, mark camera 56) attached to the tip (head 50), or when controlling the XY robot 40.
  • the vibration waveform may be predicted by estimating the acceleration ⁇ using the control signal output to the X-axis actuator 46 or the Y-axis actuator 48.
  • the component P is transported using a Cartesian coordinate robot, but is not limited to this.
  • a vertical coordinate robot a cylindrical coordinate type, a vertical coordinate type robot, It can be applied to any type of robot such as a joint type.
  • An example of a vertical articulated robot apparatus is shown in FIG.
  • the component mounting apparatus 100 shown in FIG. 6 includes a base 110 installed on the floor, first to fifth links 120a to 120e, and a base 110 and first to fifth links 120a to 120e connected in series.
  • the robot is configured as an articulated robot apparatus including first to fifth joints 122a to 122e forming arms and drive motors (not shown) that drive the first to fifth joints 122a to 122e, respectively.
  • the first joint 122a and the fifth joint 122e are rotary joints, and the second to fourth joints 122b to 122d are turning joints.
  • the XYZ direction of the embodiment may be replaced with the rotation direction or the turning direction of the first to fifth joints 122a to 122e to execute the flowchart of FIG.
  • the vibration of the arm tip portion becomes larger when the arm is moved, so that it is significant to apply the present invention.
  • the present invention is applied to the component mounting apparatus 10 that transports and mounts the component P on the substrate S using a robot (XY robot 40 or head 50), but the present invention is not limited to this. Instead, the present invention can also be applied to an adhesive application device that conveys and applies an adhesive to a target position using a robot, a solder application device that conveys and applies a solder to a target position using a robot, and the like. In this case, the part P may be replaced with an adhesive and solder, and the flowchart of FIG. 3 may be executed.
  • the XY robot 40 and the head 50 correspond to a “robot”
  • the X direction or the Y direction corresponds to a “first direction”
  • the Z direction corresponds to a “second direction”.
  • the mark camera 56 corresponds to “imaging means”.
  • the acceleration sensor 55 corresponds to an “acceleration sensor”.
  • the CPU 71 of the control device 70 that executes the process of S100 of the component mounting process of FIG. 3 corresponds to the “target position acquisition means”
  • the CPU 71 of the control device 70 that executes the processes of S120 to S140 is “the first direction movement control means”.
  • the CPU 71 of the control device 70 that executes the processing of S150 and S160 corresponds to “vibration waveform acquisition means”, and the CPU 71 of the control device 70 that executes the processing of S170 to S210 corresponds to “second direction movement control means”. Is equivalent to.
  • this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
  • the present invention can be used in the parts mounting apparatus manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

 吸着ノズル(51)に吸着させた部品(P)を、目標XY座標へ向かってXY方向に移動させた後(S120~S140)、目標XY座標近傍に到達した後に部品(P)に生じるY方向の振動の波形(振動波形)を計測し(S150,S160)、部品(P)の変位yが計測した振動波形の節を横切るタイミングで、部品(P)が目標Z座標(値0)に到達するようにZ方向の移動を制御する(S170~S210)。これにより、部品(P)をXY方向に移動させた後、振動が残存している間に部品(P)をZ方向に移動させて基板(S)上に装着する場合であっても、装着位置ズレをより少なくすることができる。

Description

搬送方法および搬送装置
 本発明は、先端部が第1方向と第2方向とに移動可能なロボットを用いて、前記先端部に保持した対象物を所定の目標位置へ搬送して載置する搬送方法および搬送装置に関する。
 従来より、ワークを搬送する搬送装置が知られている。例えば、特許文献1には、ワークを搬送する搬送装置と、搬送中のワークに対して作業を行う作業ロボットとを備える搬送システムにおいて、ワーク搬送中にワークに生じる振動パターンを予測し、予測した振動パターンに基づいてワークに生じる振動を作業ロボットに再現させることで、ロボットとワーク間の振動の影響を除外するものが開示されている。
特開2014-14894号公報
 このように、ワーク搬送中にワークに対して作業を行うシステムは、ワーク(対象物)に生じる振動の影響を除外することができるものの、ワーク自体は振動を続けているから、ワークを目標位置に載置しようとする場合には適用することができない。
 本発明は、ロボットの先端部に保持した対象物を所定の目標位置へ搬送して載置するものにおいて、対象物の載置精度をより向上させることを主目的とする。
 本発明は、上述の主目的を達成するために以下の手段を採った。
 本発明の搬送方法は、
 先端部が第1方向と第2方向とに移動可能なロボットを用いて、前記先端部に保持した対象物を所定の目標位置へ搬送して載置する搬送方法であって、
 前記所定の目標位置として、前記第1方向の目標位置である第1目標位置と前記第2方向の目標位置である第2目標位置とを取得し、
 前記先端部の前記第1方向の位置が前記第1目標位置に一致するよう前記ロボットを制御する第1方向移動制御を実行し、
 前記第1方向移動制御を実行した後、前記先端部の前記第1方向の振動波形を計測または予測し、
 前記計測または予測した前記先端部の前記第1方向の振動波形に基づいて振動中の所定タイミングで前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御して前記対象物を載置する第2方向移動制御を実行する
 ことを要旨とする。
 この本発明の搬送方法では、対象物を保持する先端部の第1方向の位置が第1目標位置に一致するようロボットを制御する第1方向移動制御を実行し、第1方向移動制御を実行した後、先端部の第1方向の振動波形を計測または予測し、その振動波形に基づいて振動中の所定タイミングで先端部の第2方向の位置が第2目標位置に一致するようロボットを制御して対象物を載置する第2方向移動制御を実行する。これにより、対象物の載置精度をより向上させることができる。
 こうした本発明の搬送方法において、前記第2方向移動制御は、前記振動中の所定タイミングとして前記先端部の前記第1方向の変位が前記振動波形の節となるタイミングで、前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御するものとすることもできる。こうすれば、振動中の対象物を精度良く目標位置に載置することができる。
 また、本発明の搬送方法において、先端部の第1方向の振動波形を計測または予測する手法として、前記先端部に撮像手段を設け、前記第1方向移動制御を実行した後に前記撮像手段で複数回撮像して得られる複数の画像に基づいて前記先端部の前記第1方向の振動波形を計測するものとすることもできるし、前記先端部に加速度センサを設け、前記加速度センサにより検知された加速度に基づいて前記先端部の前記第1方向の振動波形を計測するものとすることもできるし、前記第1方向移動制御で前記ロボットを制御する際に用いる制御指令信号に基づいて前記先端部の前記第1方向の振動波形を予測するものとすることもできる。
 また、本発明の搬送方法において、前記第1方向移動制御を実行した後の前記先端部の前記第1方向の振動波形を事前に予測または学習し、前記第1方向移動制御は、前記先端部の前記第1方向の位置が前記第1目標位置から前記予測または学習した振動波形の振幅分ずらした位置に一致するよう前記ロボットを制御し、前記第2方向移動制御は、前記振動中の所定タイミングとして前記先端部の前記第1方向の変位が前記振動波形の腹となるタイミングで、前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御して前記対象物を載置するものとすることもできる。こうすれば、振動中の対象物を精度良く目標位置に載置することができる。
 本発明の搬送装置は、
 所定の目標位置で所定の作業を行う搬送装置であって、
 先端部が第1方向と第2方向とに移動可能なロボットと、
 前記所定の目標位置として、前記第1方向の目標位置である第1目標位置と前記第2方向の目標位置である第2目標位置とを取得する目標位置取得手段と、
 前記先端部の前記第1方向の位置が前記第1目標位置に一致するよう前記ロボットを制御する第1方向移動制御を実行する第1方向移動制御手段と、
 前記第1方向移動制御が実行された後、前記先端部の前記第1方向の振動波形を取得する振動波形取得手段と、
 前記取得された前記先端部の前記第1方向の振動波形に基づいて振動中の所定のタイミングで前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御する第2方向移動制御を実行する第2方向移動制御手段と、
 を備えることを要旨とする。
 この本発明の搬送装置によれば、上述した搬送方法と同様の効果、即ち、対象物の載置精度をより向上させるできるといった効果を奏することができる。
本発明の一実施例としての部品装着装置10の構成の概略を示す構成図である。 制御装置70の電気的な接続関係を示すブロック図である。 制御装置70のCPU71により実行される部品装着処理の一例を示すフローチャートである。 XYロボット40を動作させた際の実施例の先端座標時間応答波形を示す説明図である。 XYロボット40を動作させた際の比較例の先端座標時間応答波形を示す説明図である。 変形例の部品装着装置100の構成の概略を示す構成図である。
 次に、本発明を実施するための形態について実施例を用いて説明する。
 図1は、本発明の一実施例としての部品装着装置10の構成の概略を示す構成図であり、図2は、部品装着装置10の制御装置70の電気的な接続関係を示す説明図である。なお、図1の左右方向がX軸方向であり、前(手前)後(奥)方向がY軸方向であり、上下方向がZ軸方向である。
 部品装着装置10は、部品Pをピックアップして基板S上へ搬送し、基板Sの目標位置に装着するものである。この部品装着装置10は、図1に示すように、基板Sを搬送する基板搬送装置30と、部品Pを供給する部品供給装置20と、部品供給装置20により供給された部品Pを吸着ノズル51に吸着させて基板搬送装置30により搬送された基板S上へ搬送し装着するヘッド50と、ヘッド50をXY方向へ移動させるXYロボット40と、実装機全体をコントロールする制御装置70(図2参照)とを備える。また、部品装着装置10は、これらの他に、ヘッド50に設けられ基板Sに付された基板位置決め基準マークを撮像するためのマークカメラ56や、ヘッド50の吸着ノズル51付近に設けられY方向の加速度αを検知する加速度センサ55(図2参照)、吸着ノズル51に吸着させた部品Pの吸着姿勢を撮像するためのパーツカメラ60なども備えている。
 部品供給装置20は、例えば、キャリアテープを送り出すことにより部品を供給するテープフィーダを用いることができる。
 基板搬送装置30は、図1に示すように、ベルトコンベア装置32を備えており、ベルトコンベア装置32の駆動により基板Sを図1の左から右(基板搬送方向)へと搬送する。基板搬送装置30の基板搬送方向(X軸方向)中央部には、搬送された基板Sを裏面側からバックアップするバックアッププレート34が設けられている。
 ヘッド50は、図2に示すように、吸着ノズル51を上下方向(Z方向)に移動させるZ軸アクチュエータ52と、吸着ノズル51をZ軸周りに回転させるθ軸アクチュエータ54とを備える。吸着ノズル51の吸引口は、電磁弁57を介して真空ポンプ58およびエア配管59のいずれか一方に選択的に連通するようになっている。制御装置70は、吸着ノズル51の吸引口が真空ポンプ58に連通するよう電磁弁57を駆動することで、吸引口に負圧を作用させて部品Pを吸着することができ、吸着ノズル51の吸引口がエア配管59に連通するよう電磁弁57を駆動することで、吸引口に正圧を作用させて部品Pの吸着を解除することができる。
 XYロボット40は、図1に示すように、本体枠12の上段部に前後方向(Y方向)に沿って設けられたY軸ガイドレール43と、Y軸ガイドレール43に架け渡された状態でY軸ガイドレール43に沿って移動が可能なY軸スライダ44と、Y軸スライダ44の下面に左右方向(X方向)に沿って設けられたX軸ガイドレール41と、X軸ガイドレール41に沿って移動が可能なX軸スライダ42とを備える。X軸スライダ42にはヘッド50が取り付けられており、制御装置70は、XYロボット40を駆動制御することにより、XY平面上の任意の位置にヘッド50を移動させることができる。
 マークカメラ56は、基板Sに付された基板位置決め基準マークを撮像し、撮像画像を制御装置70へ出力する。撮像画像を入力した制御装置70は、撮像画像に基づいて基板Sのバックアップ位置を認識する。
 制御装置70は、図4に示すように、CPU71を中心としたマイクロプロセッサとして構成されており、CPU71の他に、ROM72と、HDD73と、RAM74と、入出力インタフェース75とを備える。これらは、バス76を介して電気的に接続されている。制御装置70には、X軸スライダ42の位置(X方向の位置)を検知するX軸位置センサ47からの位置信号や、Y軸スライダ44の位置(Y方向の位置)を検知するY軸位置センサ49からの位置信号、吸着ノズル51の位置(Z方向の位置)を検知するZ軸位置センサ53からの位置信号、マークカメラ56からの画像信号、ヘッド50に取り付けられた加速度センサ55からのY方向の加速度α、パーツカメラ60からの画像信号などが入出力インタフェース75を介して入力されている。一方、制御装置70からは、部品供給装置20への制御信号や、基板搬送装置30への制御信号、X軸スライダ42を移動させるX軸アクチュエータ46への駆動信号、Y軸スライダ44を移動させるY軸アクチュエータ48への駆動信号、Z軸アクチュエータ52への駆動信号、θ軸アクチュエータ54への駆動信号、電磁弁57への駆動信号などが入出力インタフェース75を介して出力されている。
 次に、こうして構成された実施例の部品装着処理10の動作について説明する。図3は、制御装置70のCPU71により実行される部品装着処理の一例を示すフローチャートである。この処理は、オペレータによって基板Sへの部品Pの装着(生産)が指示されたときに実行される。
 部品装着処理が実行されると、制御装置70のCPU71は、まず、基板Sの目標装着位置(X*,Y*,Z*)を入力する(S100)。続いて、CPU71は、部品供給装置20から供給された部品Pを吸着ノズル51に吸着させる吸着動作を行う(S110)。ここで、吸着動作は、具体的には、部品Pの真上にヘッド50に装着された吸着ノズル51が来るようXYロボット40を駆動制御した後、吸引口が部品Pに当接するまで吸着ノズル51が下降するようZ軸アクチュエータ52を駆動制御し、吸着ノズル51の吸引口に負圧が作用するよう電磁弁57を駆動制御することにより行う。そして、CPU71は、吸着ノズル51に吸着させた部品PがXY平面上の目標装着位置(X*,Y*)に一致するようXYロボット40を駆動制御し(S120)、X軸位置センサ47およびY軸位置センサ49により検知された部品PのXY平面上の現在位置(現在XY座標)を入力する(S130)。
 次に、CPU71は、入力した部品Pの現在位置がXY平面上の目標装着位置(X*,Y*)近傍に到達したか否かを判定し(S140)、目標装着位置(X*,Y*)近傍に到達したと判定すると、加速度センサ55からの吸着ノズル51(部品P)のY方向の加速度αを入力し(S150)、S130で入力した部品Pの現在位置のうちY座標(Y方向の変位y)と入力したY方向の加速度αとに基づいて部品PのY方向の振動波形を計測する(S160)。本実施例では、部品PをXY方向に移動させて基板S上に装着する場合、X方向の移動距離がY方向の移動距離よりも大幅に短いため、XY方向の目標装着位置近傍到達時に部品Pに生じる振動はX成分が直ぐに収束し、Y成分のみが残存する。S160の処理は、目標装着位置に到達した後に残存しているY成分の振動波形を計測するものである。ここで、部品Pに生じる振動を正弦波とみなした場合、振幅を「A」とし、角周波数を「ω」とし、時刻を「t」とすると、次式(1)および(2)が成り立つ。角周波数ωは周期Tに置き換えることができるため、変位yと加速度αとに基づいて振動波形の周期Tおよび位相ωtを得ることができる。
 y=Asinωt             …(1)
 α=-ω2Asinωt        …(2)
 そして、CPU71は、部品Pを現在位置からZ方向に移動させて基板Sに装着するまでに要する所要時間が経過したタイミングで、部品PのY方向の変位yがS160で計測したY成分の振動波形の節を横切るように、Z方向の制御タイミングを設定し(S170)、設定した制御タイミングに従って部品PをZ方向に移動させて基板S上に装着されるようZ軸アクチュエータ52を制御する(S180)。ここで、所要時間は、例えば、部品PをZ方向に移動させて基板S上に装着するまでの経過時間を予め実験的に求めることができる。そして、Z軸位置センサ53からの部品PのZ方向の現在位置(Z座標)を入力し(S190)、部品Pが目標Z座標(Z*=0)に到達したか否かを判定する(S200)。CPU71は、部品Pが目標Z座標に到達していないと判定すると、S180に戻ってZ軸アクチュエータ52の制御を継続し、部品Pが目標Z座標に到達したと判定すると、吸着ノズル51による部品Pの吸着が解除されるよう電磁弁57を制御して(S210)、部品装着処理を終了する。
 図4および図5は、XYロボット40を動作させた際のロボット先端座標時間応答波形を示す説明図である。なお、図4は実施例における時間応答波形を示し、図5は比較例における時間応答波形を示す。図示するように、吸着ノズル51に吸着させた部品Pを、目標X座標および目標Y座標へ向かって移動させると、部品PにY方向の残留振動が生じる。実施例では、図4に示すように、Y方向の振動波形を計測し、部品PのY方向の変位yが振動波形の節を横切るタイミングで、部品Pが目標Z座標(値0)に到達するようにZ方向の移動を制御する。これにより、Y方向の振動が残存している間でも、部品Pを目標XY座標に正確に装着することができる。一方、比較例では、図5に示すように、振動波形を計測することなく、部品Pを最も速いタイミングで基板Sに装着する。このため、部品PにY方向の振動が残存していると、目標Y座標からズレた位置に部品Pが装着される。
 以上説明した実施例の部品装着処理10は、吸着ノズル51に吸着させた部品Pを、目標XY座標へ向かって移動させた後、部品Pに生じている振動の波形(振動波形)を計測し、部品Pの変位yが計測した振動波形の節を横切るタイミングで、部品Pが目標Z座標(値0)に到達するようにZ軸アクチュエータ52を制御する。これにより、部品PをXY方向に移動させた後、振動が残存している間に部品PをZ方向に移動させて基板S上に装着する場合であっても、装着位置ズレをより少なくすることができる。この結果、ロボット先端(部品P)の振動波形を計測することなく部品Pを基板Sに装着するものや、ロボット先端(部品P)の振動が収束するのを待って部品Pを装着するものに比して、装着に要する時間を短縮しつつ、部品Pの装着位置精度をより向上させることができる。
 実施例の部品装着処理10では、ロボット先端(部品P)の変位yが計測した振動波形の節を横切るタイミングで、部品Pが目標Z座標(値0)に到達するように制御するものとしたが、これに限定されるものではなく、以下のように制御してもよい。即ち、CPU71は、ロボット先端(部品P)が目標XY座標近傍に到達したときにロボット先端(部品P)に生じる振動の振幅Aを予め実験的に求めると共に目標Y座標を振幅Aの分だけズラした修正目標Y座標を設定しておき、部品Pの搬送と装着が指示されると、部品Pが目標X座標および修正目標Y座標に移動するようXYロボット40を制御する。そして、CPU71は、ロボット先端(部品P)のY方向の振動波形を計測し、部品Pを現在位置からZ方向に移動させて基板Sに装着するまでに要する所要時間が経過したタイミングで、部品PのY方向の変位yが計測したY成分の振動波形の腹を通過するように、Z方向の制御タイミングを設定し、設定した制御タイミングに従って部品PをZ方向に移動させて基板S上に装着されるようZ軸アクチュエータ52を制御する。これにより、振動が残存している間に部品PをZ方向に移動させて基板S上に装着する場合であっても、装着位置ズレをより少なくすることができるといった実施例と同様の効果を奏することができる。
 実施例の部品装着処理10では、部品Pを目標XY座標に移動させる際の移動距離がX方向よりもY方向に長くなる場合に、部品Pが目標XY座標近傍に到達した後にロボット先端(部品P)に生じる振動についてY成分のみを考慮したが、これに限定されるものではなく、部品Pを目標XY座標に移動させる際の移動距離がY方向よりもX方向に長くなる場合に、部品Pが目標XY座標近傍に到達した後にロボット先端(部品P)に生じる振動についてX成分のみを考慮するものとしてもよいし、部品Pが目標XY座標近傍に到達した後にロボット先端(部品P)に生じる振動についてX成分およびY成分の両方を考慮するものとしてもよい。後者の場合、部品Pが目標XY座標近傍に到達した際にX成分の振動波形とY成分の振動波形とを計測し、ロボット先端(部品P)のX方向のズレとY方向のズレの合計が最も少なくなるタイミングで部品Pが目標Z座標に到達するように制御するものとしてもよい。また、部品Pが目標XY座標近傍に到達した際にX成分の振動波形とY成分の振動波形とを計測し、ロボット先端(部品P)のX方向およびY方向のうち一方が収束するのを待って、他方の振動波形に基づくタイミングで部品Pが目標Z座標に到達するように制御するものとしてもよい。
 実施例の部品装着処理10では、変位yと加速度αとに基づいて部品PをXY方向に移動させた際の残留振動波形を計測するものとしたが、これに限定されるものではなく、ロボット先端(ヘッド50)に取り付けたカメラ(例えば、マークカメラ56)によって連続的に撮像して得られた画像データに基づいて振動波形を計測するものとしてもよいし、XYロボット40を制御する際にX軸アクチュエータ46やY軸アクチュエータ48に出力する制御信号を用いて加速度αを推定して振動波形を予測するものとしてもよい。
 実施例の部品装着処理10では、直交座標型のロボットを用いて部品Pを搬送するものとしたが、これに限定されるものではなく、例えば、垂直座標型のロボットや円筒座標型、垂直多関節型等、如何なるタイプのロボットにも適用可能である。なお、垂直多関節型のロボット装置の一例を図6に示す。図6の部品装着装置100は、床面に設置されるベース110と、第1~第5リンク120a~120eと、ベース110および第1~第5リンク120a~120eを直列に連結して多関節アームをなす第1~第5関節122a~122eと、第1~第5関節122a~122eをそれぞれ駆動する図示しない駆動モータとを備える多関節型ロボット装置として構成される。なお、図6の例では、第1関節122aと第5関節122eは回転関節であり、第2~第4関節122b~122dは旋回関節である。この場合、実施例のXYZ方向を第1~第5関節122a~122eの回転方向または旋回方向に置き換えて図3のフローチャートを実行するものとすればよい。こうした多関節型のロボット装置は、アームを移動させる際にアーム先端部の振動がより大きくなるため、本発明を適用する意義が大きい。
 実施例では、本発明を、ロボット(XYロボット40やヘッド50)を用いて部品Pを基板S上に搬送して装着する部品装着装置10に適用して説明したが、これに限定されるものではなく、ロボットを用いて接着剤を目標位置まで搬送して塗布する接着剤塗布装置やロボットを用いて半田を目標位置まで搬送して塗布する半田塗布装置等にも適用可能である。この場合、部品Pをそれぞれ接着剤,半田に置き換えて図3のフローチャートを実行すればよい。
 ここで、本実施例の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係について説明する。即ち、XYロボット40およびヘッド50が「ロボット」に相当し、X方向またはY方向が「第1方向」に相当し、Z方向が「第2方向」に相当する。また、マークカメラ56が「撮像手段」に相当する。また、加速度センサ55が「加速度センサ」に相当する。図3の部品装着処理のS100の処理を実行する制御装置70のCPU71が「目標位置取得手段」に相当し、S120~S140の処理を実行する制御装置70のCPU71が「第1方向移動制御手段」に相当し、S150,S160の処理を実行する制御装置70のCPU71が「振動波形取得手段」に相当し、S170~S210の処理を実行する制御装置70のCPU71が「第2方向移動制御手段」に相当する。
 なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 本発明は、部品装着装置の製造産業などに利用可能である。
 10 部品装着装置、11 基台、12 本体枠、14 支持台、20 部品供給装置、30 基板搬送装置、32 ベルトコンベア装置、34 バックアッププレート、40 XYロボット、41 X軸ガイドレール、42 X軸スライダ、43 Y軸ガイドレール、44 Y軸スライダ、46 X軸アクチュエータ、47 X軸位置センサ、48 Y軸アクチュエータ、49 Y軸位置センサ、50 ヘッド、51 吸着ノズル、52 Z軸アクチュエータ、54 θ軸アクチュエータ、55 加速度センサ、56 マークカメラ、57 電磁弁、58 真空ポンプ、59 エア配管、60 パーツカメラ、70 制御装置、71 CPU、72 ROM、73 HDD、74 RAM、75 入出力インタフェース、76 バス、100 部品装着装置、110 ベース、120a~120e 第1~第5リンク、122a~122e 第1~第5関節、S 基板、P 部品。

Claims (7)

  1.  先端部が第1方向と第2方向とに移動可能なロボットを用いて、前記先端部に保持した対象物を所定の目標位置へ搬送して載置する搬送方法であって、
     前記所定の目標位置として、前記第1方向の目標位置である第1目標位置と前記第2方向の目標位置である第2目標位置とを取得し、
     前記先端部の前記第1方向の位置が前記第1目標位置に一致するよう前記ロボットを制御する第1方向移動制御を実行し、
     前記第1方向移動制御を実行した後、前記先端部の前記第1方向の振動波形を計測または予測し、
     前記計測または予測した前記先端部の前記第1方向の振動波形に基づいて振動中の所定タイミングで前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御して前記対象物を載置する第2方向移動制御を実行する
     ことを特徴とする搬送方法。
  2.  請求項1記載の搬送方法であって、
     前記第2方向移動制御は、前記振動中の所定タイミングとして前記先端部の前記第1方向の変位が前記振動波形の節となるタイミングで、前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御する
     ことを特徴とする搬送方法。
  3.  請求項1または2記載の搬送方法であって、
     前記先端部に撮像手段を設け、
     前記第1方向移動制御を実行した後に前記撮像手段で複数回撮像して得られる複数の画像に基づいて前記先端部の前記第1方向の振動波形を計測する
     ことを特徴とする搬送方法。
  4.  請求項1または2記載の搬送方法であって、
     前記先端部に加速度センサを設け、
     前記加速度センサにより検知された加速度に基づいて前記先端部の前記第1方向の振動波形を計測する
     ことを特徴とする搬送方法。
  5.  請求項1または2記載の搬送方法であって、
     前記第1方向移動制御で前記ロボットを制御する際に用いる制御指令信号に基づいて前記先端部の前記第1方向の振動波形を予測する
     ことを特徴とする搬送方法。
  6.  請求項1記載の搬送方法であって、
     前記第1方向移動制御を実行した後の前記先端部の前記第1方向の振動波形を事前に予測または学習し、
     前記第1方向移動制御は、前記先端部の前記第1方向の位置が前記第1目標位置から前記予測または学習した振動波形の振幅分ずらした位置に一致するよう前記ロボットを制御し、
     前記第2方向移動制御は、前記振動中の所定タイミングとして前記先端部の前記第1方向の変位が前記振動波形の腹となるタイミングで、前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御して前記対象物を載置する
     ことを特徴とする搬送方法。
  7.  対象物を所定の目標位置へ搬送して載置する搬送装置であって、
     前記対象物を保持可能な先端部が第1方向と第2方向とに移動可能なロボットと、
     前記所定の目標位置として、前記第1方向の目標位置である第1目標位置と前記第2方向の目標位置である第2目標位置とを取得する目標位置取得手段と、
     前記先端部の前記第1方向の位置が前記第1目標位置に一致するよう前記ロボットを制御する第1方向移動制御を実行する第1方向移動制御手段と、
     前記第1方向移動制御が実行された後、前記先端部の前記第1方向の振動波形を取得する振動波形取得手段と、
     前記取得された前記先端部の前記第1方向の振動波形に基づいて振動中の所定のタイミングで前記先端部の前記第2方向の位置が前記第2目標位置に一致するよう前記ロボットを制御して前記対象物を載置する第2方向移動制御を実行する第2方向移動制御手段と、
     を備えることを特徴とする搬送装置。
PCT/JP2014/077165 2014-10-10 2014-10-10 搬送方法および搬送装置 WO2016056117A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016552781A JP6472813B2 (ja) 2014-10-10 2014-10-10 搬送方法および搬送装置
CN201480082470.5A CN107073716B (zh) 2014-10-10 2014-10-10 搬运方法及搬运装置
PCT/JP2014/077165 WO2016056117A1 (ja) 2014-10-10 2014-10-10 搬送方法および搬送装置
US15/517,292 US10456911B2 (en) 2014-10-10 2014-10-10 Conveyance method and conveyance device
EP14903589.1A EP3205457B1 (en) 2014-10-10 2014-10-10 Transfer method and transfer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077165 WO2016056117A1 (ja) 2014-10-10 2014-10-10 搬送方法および搬送装置

Publications (1)

Publication Number Publication Date
WO2016056117A1 true WO2016056117A1 (ja) 2016-04-14

Family

ID=55652773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077165 WO2016056117A1 (ja) 2014-10-10 2014-10-10 搬送方法および搬送装置

Country Status (5)

Country Link
US (1) US10456911B2 (ja)
EP (1) EP3205457B1 (ja)
JP (1) JP6472813B2 (ja)
CN (1) CN107073716B (ja)
WO (1) WO2016056117A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020152865A1 (ja) * 2019-01-25 2020-07-30
TWI806075B (zh) * 2016-06-24 2023-06-21 日商東京威力科創股份有限公司 基板處理系統

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305258B2 (ja) * 2018-07-18 2023-07-10 株式会社ディスコ 搬送システム
CN113277314B (zh) * 2021-05-21 2022-07-26 盐城工学院 基于fpga图像检测控制的板材偏移调整装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166489A (ja) * 1992-12-02 1994-06-14 Mitsubishi Heavy Ind Ltd 吊荷着床制御方法
JP2001001378A (ja) * 1999-06-22 2001-01-09 Yushin Precision Equipment Co Ltd 成形品の取出装置
JP2001092511A (ja) * 1999-09-17 2001-04-06 Kawasaki Heavy Ind Ltd ロボットなどの制御ゲイン調整装置
JP2012196749A (ja) * 2011-03-23 2012-10-18 Seiko Epson Corp ロボット装置
JP2014052763A (ja) * 2012-09-06 2014-03-20 Mitsubishi Electric Corp 振動抑制方法、振動抑制装置および振動抑制機能を備えた産業用機械装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615110B2 (en) * 1999-12-16 2003-09-02 Matsushita Electric Industrial Co., Ltd. Controlling method and apparatus for positioning a robot
JP3947384B2 (ja) * 2001-10-31 2007-07-18 Juki株式会社 部品搭載方法及び装置
US6983199B2 (en) * 2003-04-30 2006-01-03 General Electric Company Vibration measurement and recording system and method
JP5962020B2 (ja) * 2012-01-17 2016-08-03 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット及びロボット制御方法
JP5832388B2 (ja) 2012-07-09 2015-12-16 本田技研工業株式会社 作業方法及び作業装置
CN104669244A (zh) * 2013-12-02 2015-06-03 精工爱普生株式会社 机器人
JP2017087301A (ja) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 ロボット、制御装置およびロボットシステム
US10245724B2 (en) * 2016-06-09 2019-04-02 Shmuel Ur Innovation Ltd. System, method and product for utilizing prediction models of an environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166489A (ja) * 1992-12-02 1994-06-14 Mitsubishi Heavy Ind Ltd 吊荷着床制御方法
JP2001001378A (ja) * 1999-06-22 2001-01-09 Yushin Precision Equipment Co Ltd 成形品の取出装置
JP2001092511A (ja) * 1999-09-17 2001-04-06 Kawasaki Heavy Ind Ltd ロボットなどの制御ゲイン調整装置
JP2012196749A (ja) * 2011-03-23 2012-10-18 Seiko Epson Corp ロボット装置
JP2014052763A (ja) * 2012-09-06 2014-03-20 Mitsubishi Electric Corp 振動抑制方法、振動抑制装置および振動抑制機能を備えた産業用機械装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3205457A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806075B (zh) * 2016-06-24 2023-06-21 日商東京威力科創股份有限公司 基板處理系統
JPWO2020152865A1 (ja) * 2019-01-25 2020-07-30
JP7138194B2 (ja) 2019-01-25 2022-09-15 タカノ株式会社 画像検査装置

Also Published As

Publication number Publication date
CN107073716B (zh) 2020-03-10
US20170305012A1 (en) 2017-10-26
JP6472813B2 (ja) 2019-02-20
EP3205457B1 (en) 2020-07-08
JPWO2016056117A1 (ja) 2017-07-20
CN107073716A (zh) 2017-08-18
US10456911B2 (en) 2019-10-29
EP3205457A4 (en) 2018-08-08
EP3205457A1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6472813B2 (ja) 搬送方法および搬送装置
JPWO2015079740A1 (ja) ロボットシステムおよびロボットシステムの制御方法
JP5212347B2 (ja) 部品実装方法及び部品実装機
JP5152147B2 (ja) 部品実装機、部品実装システム及び部品実装方法
WO2021053750A1 (ja) 作業ロボットおよび作業システム
JP2020055059A (ja) 作業システム
JP2009016673A5 (ja)
JP2009016673A (ja) 部品の吸着位置補正方法および部品移載装置
JP6853374B2 (ja) 部品実装機
JP5408148B2 (ja) 部品実装装置及び部品実装方法
JP6709900B2 (ja) 部品搭載装置
JP2007189142A (ja) フレキシブル基板の貼付け方法および同装置
WO2018055697A1 (ja) 部品実装機
US11992957B2 (en) Mounting-related device and rail device
JP5316594B2 (ja) 部品実装システム及び部品実装方法
JP6748846B2 (ja) 部品実装システム及び部品実装システムにおけるデータフィードバック方法並びに部品実装システムにおけるデータフィードバック方法を実行するためのプログラム
JP5860688B2 (ja) 対基板作業機
JP2008311487A (ja) 部品実装装置
WO2019069438A1 (ja) 対基板作業システム
JP6738996B2 (ja) 部品実装方法
JP2020120132A (ja) 部品搭載装置
JP6842946B2 (ja) 作業機
JP6716969B2 (ja) 実装装置
JP5793692B2 (ja) 部品実装方法
JP2022052199A (ja) 部品実装システムおよび部品実装方法ならびに部品実装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552781

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014903589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15517292

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE