EP3205457B1 - Transfer method and transfer apparatus - Google Patents

Transfer method and transfer apparatus Download PDF

Info

Publication number
EP3205457B1
EP3205457B1 EP14903589.1A EP14903589A EP3205457B1 EP 3205457 B1 EP3205457 B1 EP 3205457B1 EP 14903589 A EP14903589 A EP 14903589A EP 3205457 B1 EP3205457 B1 EP 3205457B1
Authority
EP
European Patent Office
Prior art keywords
end section
robot
component
target position
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14903589.1A
Other languages
German (de)
French (fr)
Other versions
EP3205457A4 (en
EP3205457A1 (en
Inventor
Ryo NAGATA
Masatoshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Corp filed Critical Fuji Corp
Publication of EP3205457A1 publication Critical patent/EP3205457A1/en
Publication of EP3205457A4 publication Critical patent/EP3205457A4/en
Application granted granted Critical
Publication of EP3205457B1 publication Critical patent/EP3205457B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39195Control, avoid oscillation, vibration due to low rigidity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39241Force and vibration control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42077Position, speed or current, combined with vibration feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45063Pick and place manipulator

Definitions

  • the present invention relates to a conveyance method and a conveyance device using a robot an end section of which is movable in a first direction and a second direction, that loads a target object held by the end section by conveying the target object to a specified target position.
  • Conveyance devices that convey work are well-known.
  • disclosed in patent literature 1 is an item that, in a conveyance system provided with a conveyance device that conveys a work and a work robot that performs work on the work during conveyance, eliminates the influence of vibration between the robot and the work by predicting a vibration pattern that arises in the work during conveyance and recreating the vibration that arises in the work in the work robot based on the predicted vibration pattern.
  • Patent literature 2 to 5 disclose further conveyance methods and conveyance devices according to the prior art.
  • a system that performs work on a work during conveyance of the work in this manner is able to eliminate the influence of vibration that arises in the work (target object), but because the work itself continues to experience vibration, it is not appropriate in a case in which the work is being loaded to a target position.
  • An object of the present invention is to improve the loading accuracy of a target object for an item that conveys and loads a target object held by an end section of a robot to a specified target position.
  • the present invention using the following means to achieve the above object.
  • the present invention of a conveyance method includes:
  • first direction movement control is performed such that the position in the first direction of the end section holding the target object matches the first target position
  • the vibration waveform of the end section in the first direction is measured after first direction movement control has been performed
  • second direction movement control to load the target object by controlling the robot such that the position of the end section in the second direction matches the second target position at a specified timing during vibration is performed based on the vibration waveform. According, the loading accuracy of the target object is improved.
  • the second direction movement control may be performed to control the robot such that the position of the end section in the second direction matches the second target position when a displacement of the end section in the first direction becomes a node of the vibration waveform as the specified timing during vibration. Accordingly, a vibrating target object can be loaded to the target position with good accuracy.
  • the end section may be provided with an imaging means, and the vibration waveform of the end section in the first direction measured based on multiple images obtained by the imaging means performing imaging multiple times after the performing of the first direction movement control; or the end section may be provided with an acceleration sensor, and the vibration waveform of the end section in the first direction measured based on an acceleration detected by the acceleration sensor; or the vibration waveform of the end section in the first direction may be predicted based on a control instruction signal used when the robot is controlled by the first direction movement control.
  • a conveyance device of the present invention is a conveyance device that performs specified work at a specified target position, and includes: a robot provided with an end section able to hold the target object and move in a first direction and a second direction; a target position acquiring means configured to acquire a first target position that is a target position in the first direction, and a second target position that is a target position in the second direction as the specified target positions; a first direction movement control means configured to perform first direction movement control on the robot such that the position of the robot in the first direction matches the first target position; a vibration waveform acquiring means configured to acquire a vibration waveform of the end section in the first direction after the first direction movement control has been performed, the vibration waveform acquiring means is configured to predict or measure the vibration waveform of the end section in the first direction after the first direction movement control has been performed; and a second direction movement control means configured to perform second direction movement control on the robot such that the position of the end section in the second direction matches the second target position at a specified timing during vibration, based on
  • a conveyance device of the present invention it is possible to achieve the same effect as the above conveyance method, that is, the effect of improving the loading accuracy of a target object.
  • Fig. 1 is a configuration diagram showing an outline of the configuration of component mounter 10, which is an embodiment of the present invention
  • fig. 2 shows the electrical connections of control device 70 of component mounter 10. Note that, in fig. 1 the left-right direction is the X-axis direction, the front-rear direction is the Y-axis direction, and the up-down direction is Z-axis direction.
  • Component mounter 10 picks up component P, conveys component P to board S, and mounts component P at a target position on board S.
  • component mounter 10 is provided with board conveyance device 30 configured to convey board S, component supply device 20 configured to supply components P, head 50 that picks up component P supplied from component supply device 20 using suction nozzle 51 and mounts component P on board S conveyed by board conveyance device 30, XY robot 40 that moves head 50 in the XY direction, and control device 70 that controls the mounting machine overall (refer to fig. 2 ).
  • component mounter 10 in addition to the above, is equipped with mark camera 56 provided on head 50 for imaging board positioning reference marks provided on board S, acceleration sensor 55 (refer to fig. 2 ) provided near suction nozzle 51 of head 50 that detects acceleration ⁇ in the Y direction, component camera 60 for imaging the holding orientation of component P picked up by suction nozzle 51, and the like.
  • Component supply device 20 may use a tape feeder that supplies component by feeding carrier tape.
  • board conveyance device 30 is provided with belt conveyor device 32, and board S is conveyed from the left to the right in fig. 1 (board conveyance direction) by the driving of belt conveyor device 32.
  • Backup plate 34 for supporting conveyed board S from beneath is provided in a central portion of board conveyance device 30 in the board conveyance direction (X-axis direction).
  • head 50 is provided with Z-axis actuator 52 that moves suction nozzle 51 in the up-down direction (Z direction) and ⁇ -axis actuator 54 that rotates suction nozzle 51 around the Z-axis.
  • the suction opening of suction nozzle 51 selectively connects to vacuum pump 58 or air pipe 59 via electromagnetic valve 57.
  • Control device 70 is able to pick up component P using negative pressure at the suction opening of suction nozzle 51 by connecting the suction opening of suction nozzle 51 to vacuum pump 58 and then operating electromagnetic valve 57, and is able to release component P using positive pressure at the suction opening of suction nozzle 51 by connecting the suction opening of suction nozzle 51 to air pipe 59 and then operating electromagnetic valve 57.
  • XY robot 40 is provided with ⁇ -axis guide rail 43 attached to an upper level of main body frame 12 extending in the front-rear direction (Y direction), ⁇ -axis slider 44 that is able to slide along ⁇ -axis guide rail 43 while being supported on ⁇ -axis guide rail 43, X-axis guide rail 41 attached to the lower surface of ⁇ -axis slider 44 extending in the left-right direction (X direction), and X-axis slider 42 that is able to slide along X-axis guide rail 41.
  • Head 50 is attached to X-axis slider 42, and control device 70 is able to move head 50 to any position in an XY plane by controlling XY robot 40.
  • Mark camera 56 images board positioning reference marks provided on board S, and outputs a captured image to control device 70.
  • Control device 70 to which the image is inputted recognizes the backup position of board S based on the image.
  • control device 70 is configured from CPU 71 that is based around a microprocessor, and is also provided with ROM 72, HDD 73, RAM 74, and input/output interface 75. These items are electrically connected by bus 76.
  • a control signal to component supply device 20, a control signal to board conveyance device 30, a drive signal to X-axis actuator 46 that moves X-axis slider 42, a drive signal to Y-axis actuator 48 that moves Y-axis slider 44, a drive signal Z-axis actuator 52, a drive signal to ⁇ -axis actuator 54, a drive signal to electromagnetic valve 57, and so on, are inputted to control device 70 via input/output interface 75.
  • FIG. 3 is a flowchart showing an example of component mounting processing performed by CPU 71 of control device 70. This processing is performed when an operator gives an instruction to perform mounting (production) of components P on board S.
  • first CPU 71 of control device 70 inputs the target mounting position (X*, Y*, Z*) of board S (S100). Continuing, CPU 71 performs pickup operation of causing suction nozzle 51 to pick up component P supplied from component supply device 20 (S110).
  • pickup operation specifically means, after controlling XY robot 40 such that suction nozzle 51 attached to head 50 comes directly above component P, controlling Z-axis actuator 52 such that the suction opening of suction nozzle 51 contacts component P, and controlling electromagnetic valve 57 to supply negative pressure to the suction opening of suction nozzle 51.
  • CPU 71 controls XY robot 40 such that the component P picked up by suction nozzle 51 matches the target mounting position (X*, Y*) in the XY plane (S120), and inputs the current position in the XY plane (current XY coordinates) of the component P detected by X-axis position sensor 47 and Y-axis position sensor 49 (S130).
  • CPU 71 determines whether the inputted current position of component P is near the target mounting position in the XY plane (X*, Y*) (S140), and if it is determined that the current position is near the target mounting position (X*, Y*), enters acceleration ⁇ in the Y direction of suction nozzle 51 (component P) from acceleration sensor 55 (S150), and measures the vibration waveform in the Y direction of component P based on the inputted acceleration ⁇ in the Y direction and the Y coordinate (displacement y in the Y direction) of the current position of component P inputted in S130.
  • CPU 71 sets (S170) control timing in the Z direction such that displacement y of component P in the Y direction crosses a node of the vibration waveform of the Y component measured in S160 when the time required for component P to be moved in the Z direction from the current position and mounted on board S will have elapsed, and controls (S180) Z-axis actuator 52 such that component P is moved in the Z direction and mounted on board S according to the set control timing.
  • the required time for example, is obtained by performing experiments in advance of the elapsed time of moving component P in the Z direction to mounting component P on board S.
  • Figs. 4 and 5 illustrate the waveforms of robot end coordinates over time as XY robot 40 is operated.
  • Fig. 4 shows the waveform over time for the embodiment
  • fig. 5 shows the waveform over time of a comparative example.
  • the vibration waveform in the Y direction is measured, and control of movement in the Z direction is performed such that component P arrives at the target Z coordinate (value zero) as displacement y of component P in the Y direction crosses a node of the vibration waveform.
  • component P is mounted on board S at the earliest possible timing without measuring the vibration waveform.
  • component P is mounted at a position deviated from the target Y coordinate.
  • Component mounting processing 10 of the present embodiment described above after moving component P picked up by suction nozzle 51 towards the target XY coordinates, measures the waveform of the vibration (vibration waveform) arising in component P, and controls Z-axis actuator 52 such that component P arrives at the target Z coordinate (value zero) when displacement y of component P crosses a node of the measured vibration waveform.
  • the mounting position accuracy of component P is improved while shortening the time required for mounting.
  • control is performed such that component P arrives at the target Z coordinate (value zero) when displacement y of the robot end (component P) crosses a node of the measured vibration waveform
  • embodiments are not restricted to this, and may also be configured as follows.
  • Amplitude A of vibration arising in the robot end (component P) when the robot end (component P) arrives near the target XY coordinates may be experimentally obtained in advance, and the target Y coordinate may be set as a corrected target Y coordinate that is shifted by amplitude A, and CPU 71 may control XY robot 40 such that component P moves to the target X coordinate and the corrected target Y coordinate when receiving an instruction to move and mount component P.
  • CPU 71 may measure the vibration waveform in the Y direction of the robot end (component P), and set control timing in the Z direction such that displacement y of component P in the Y direction passes through an antinode of the vibration waveform of the Y component that was measured when the time required for component P to be moved in the Z direction from the current position and mounted on board S will have elapsed, and may control Z-axis actuator 52 such that component P is moved in the Z direction and mounted on board S according to the set control timing.
  • component mounter 10 of the embodiment in a case in which the movement distance is longer in the Y direction than in the X direction when component P is moved to the target XY coordinates, only the Y component of the vibration arising in the robot end (component P) after component P has arrived near the target XY coordinates is considered, but embodiments are not limited to this, and in a case in which the movement distance is longer in the X direction than in the Y direction when component P is moved to the target XY coordinates, only the X component of the vibration arising in the robot end (component P) after component P has arrived near the target XY coordinates may be considered, or both the X and the Y component of the vibration arising in the robot end (component P) after component P has arrived near the target XY coordinates may be considered.
  • the vibration waveform of the X component and the vibration waveform of the Y component when component P arrives near the target XY coordinates may be measured, and control may be performed such that component P arrives at the target Z coordinate when the total of the deviation in the X direction and the deviation in the Y direction of the robot end (component P) is minimized.
  • the vibration waveform and the X component and the vibration waveform of the Y component when component P arrives near the target XY coordinates may be measured, then waiting for settling of the robot end (component P) in one of the X direction or the Y direction may be performed, and control performed such that component P arrives at the target Z coordinate at timing based on the other vibration waveform.
  • vibration waveforms may be measured based on image data obtained by imaging consecutively using a camera (for example, mark camera 56) attached to the robot end (head 50), or vibration waveforms may be predicted by estimating acceleration ⁇ using control signals output to X-axis actuator 46 and Y-axis actuator 48 when controlling XY robot 40.
  • component P is moved using a horizontal cartesian robot, but embodiments are not limited to this and various robot types are applicable, for example, a vertical cartesian robot, a cylindrical coordinate robot, or a vertical articulated robot.
  • An example mounter 100 of fig. 6 is a vertical articulated robot provided with base 110 that is set on the floor, first to fifth links 120a to 120e, first to fifth joints 122a to 122e forming an articulated arm connected in series to base 110 and first to fifth links 120a to 120e, and drive motors that are not shown and that drive each of first to fifth joints 122a to 122e.
  • base 110 that is set on the floor
  • first to fifth links 120a to 120e first to fifth joints 122a to 122e forming an articulated arm connected in series to base 110 and first to fifth links 120a to 120e
  • drive motors that are not shown and that drive each of first to fifth joints 122a to 122e.
  • first joint 122a and fifth joint 122e are rotation joints
  • second to fourth joints 122b to 122d are swing joints.
  • the flowchart in fig. 3 may be performed by replacing the XYZ directions of the first embodiment with rotation directions or swing directions of first to fifth joints 122a to 122e. Because for this type of articulated robot, the vibration of the arm end section when the arm is moved is large, the invention is particularly effective.
  • the present invention was described applied to component mounter 10 that moves and mounts component P on board S using a robot (XY robot 40 and head 50), but embodiments are not limited to this and may be applied to an adhesive application device that uses a robot to move adhesive to a target position and apply the adhesive, or a solder application device that uses a robot to move solder to a target position and apply the solder.
  • the flowchart in fig. 3 may be performed by replacing component P with adhesive or solder respectively.
  • XY robot 40 and head 50 correspond to "robot”
  • the X direction or Y direction corresponds to "first direction”
  • the Z direction corresponds to "second direction”.
  • mark camera 56 corresponds to "imaging means”.
  • acceleration sensor 55 corresponds to "acceleration sensor”.
  • CPU 71 of control device 70 that performs processing of S100 of the component mounting processing shown in fig.
  • CPU 71 of control device 70 that performs the processing of S120 to S140 corresponds to the "first direction movement control means”
  • CPU 71 of control device 70 that performs the processing of S150 and S160 corresponds to the "vibration waveform acquiring means”
  • CPU 71 of control device 70 that performs the processing of S170 to S210 corresponds to the "second direction movement control means”.
  • the present invention may be applied to the industrial field of component mounters and the like.
  • 10 component mounting device; 12: main body frame; 20: component supply device; 30: board conveyance device; 32: belt conveyor device; 34: backup plate; 40: XY robot; 41: X-axis guide rail; 42: X-axis slider; 43: Y-axis guide rail; 44: Y-axis slider; 46: X-axis actuator; 47: X-axis position sensor; 48: Y-axis actuator; 49: Y-axis position sensor; 50: head; 51: suction nozzle; 52: Z-axis actuator; 54: ⁇ -axis actuator; 55: acceleration sensor; 56: mark camera; 57: electromagnetic valve; 58: vacuum pump; 59: air pipe; 60: component camera; 70: control device; 71: CPU; 72: ROM; 73: HDD; 74: RAM; 75: input/output interface; 76: bus; 100: component mounting device; 110: base; 120a to 120e: first to fifth links; 122a to 122e: first to fifth joints; S:

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Manipulator (AREA)

Description

    Technical Field
  • The present invention relates to a conveyance method and a conveyance device using a robot an end section of which is movable in a first direction and a second direction, that loads a target object held by the end section by conveying the target object to a specified target position.
  • Background Art
  • Conveyance devices that convey work are well-known. For example, disclosed in patent literature 1 is an item that, in a conveyance system provided with a conveyance device that conveys a work and a work robot that performs work on the work during conveyance, eliminates the influence of vibration between the robot and the work by predicting a vibration pattern that arises in the work during conveyance and recreating the vibration that arises in the work in the work robot based on the predicted vibration pattern.
  • Patent literature 2 to 5 disclose further conveyance methods and conveyance devices according to the prior art.
  • Citation List Patent Literature
  • Summary of Invention
  • A system that performs work on a work during conveyance of the work in this manner is able to eliminate the influence of vibration that arises in the work (target object), but because the work itself continues to experience vibration, it is not appropriate in a case in which the work is being loaded to a target position.
  • An object of the present invention is to improve the loading accuracy of a target object for an item that conveys and loads a target object held by an end section of a robot to a specified target position.
  • The present invention using the following means to achieve the above object.
  • The present invention of a conveyance method includes:
    • conveying and loading a target object held by an end section of a robot to a specified target position, the end section of the robot being able to move in a first direction and a second direction;
    • acquiring a first target position that is a target position in the first direction, and a second target position that is a target position in the second direction, as the specified target positions;
    • performing first direction movement control on the robot such that the position of the robot in the first direction matches the first target position; measuring or predicting a vibration waveform of the end section in the first direction after performing first direction movement control; and
    • performing second direction movement control to load the target object by controlling the robot such that the position of the end section in the second direction matches the second target position at a specified timing during vibration, based on the measured or predicted vibration waveform of the end section in the first direction, characterized in that the first direction movement control controls the robot such that after the target position in the first direction is reached, the position of the end section in the first direction matches a position deviated from the first target position by the amplitude of the vibration waveform that was predicted or measured, and the second direction movement control controls the robot such that the position of the end section in the second direction matches the second target position when the displacement of the end section in the first direction becomes an antinode of the vibration waveform at the specified timing during vibration.
  • With a conveyance method of the present invention, first direction movement control is performed such that the position in the first direction of the end section holding the target object matches the first target position, the vibration waveform of the end section in the first direction is measured after first direction movement control has been performed, and second direction movement control to load the target object by controlling the robot such that the position of the end section in the second direction matches the second target position at a specified timing during vibration is performed based on the vibration waveform. According, the loading accuracy of the target object is improved.
  • With a conveyance method of the present invention as given above, the second direction movement control may be performed to control the robot such that the position of the end section in the second direction matches the second target position when a displacement of the end section in the first direction becomes a node of the vibration waveform as the specified timing during vibration. Accordingly, a vibrating target object can be loaded to the target position with good accuracy.
  • Further, with a conveyance method of the present invention, as a method for measuring or predicting the vibration waveform of the end section in the first direction, the end section may be provided with an imaging means, and the vibration waveform of the end section in the first direction measured based on multiple images obtained by the imaging means performing imaging multiple times after the performing of the first direction movement control; or the end section may be provided with an acceleration sensor, and the vibration waveform of the end section in the first direction measured based on an acceleration detected by the acceleration sensor; or the vibration waveform of the end section in the first direction may be predicted based on a control instruction signal used when the robot is controlled by the first direction movement control.
  • A conveyance device of the present invention is a conveyance device that performs specified work at a specified target position, and includes: a robot provided with an end section able to hold the target object and move in a first direction and a second direction; a target position acquiring means configured to acquire a first target position that is a target position in the first direction, and a second target position that is a target position in the second direction as the specified target positions; a first direction movement control means configured to perform first direction movement control on the robot such that the position of the robot in the first direction matches the first target position; a vibration waveform acquiring means configured to acquire a vibration waveform of the end section in the first direction after the first direction movement control has been performed, the vibration waveform acquiring means is configured to predict or measure the vibration waveform of the end section in the first direction after the first direction movement control has been performed; and a second direction movement control means configured to perform second direction movement control on the robot such that the position of the end section in the second direction matches the second target position at a specified timing during vibration, based on the acquired vibration waveform of the end section in the first direction, characterized in that the first direction movement control is configured to control the robot such that after the target position in the first direction is reached, the position of the end section in the first direction matches a position deviated from the first target position by the amplitude of the vibration waveform that was predicted or measured, and the second direction movement control is configured to control the robot such that the position of the end section in the second direction matches the second target position when the displacement of the end section in the first direction becomes an antinode of the vibration waveform at the specified timing during vibration.
  • According to a conveyance device of the present invention, it is possible to achieve the same effect as the above conveyance method, that is, the effect of improving the loading accuracy of a target object.
  • Brief Description of Drawings
    • [Fig. 1]
      Fig. 1 is a configuration diagram showing an outline of the configuration of component mounter 10, which is an embodiment of the present invention.
    • [Fig. 2]
      Fig. 2 is a block diagram showing the electrical connections of control device 70.
    • [Fig. 3]
      Fig. 3 is a flowchart showing an example of component mounting processing performed by CPU 71 of control device 70.
    • [Fig. 4]
      Fig. 4 illustrates the waveforms of end coordinates over time for the embodiment when XY robot 40 is operated.
    • [Fig. 5]
      Fig. 5 illustrates the waveforms of end coordinates over time for an alternative example when XY robot 40 is operated.
    • [Fig. 6]
      Fig. 6 is a configuration diagram showing an outline of the configuration of component mounter 100, which is an alternative embodiment.
    Description of Embodiments
  • Next, a form for performing the present invention will be described using an example embodiment.
  • Fig. 1 is a configuration diagram showing an outline of the configuration of component mounter 10, which is an embodiment of the present invention; fig. 2 shows the electrical connections of control device 70 of component mounter 10. Note that, in fig. 1 the left-right direction is the X-axis direction, the front-rear direction is the Y-axis direction, and the up-down direction is Z-axis direction.
  • Component mounter 10 picks up component P, conveys component P to board S, and mounts component P at a target position on board S. As shown in fig. 1, component mounter 10 is provided with board conveyance device 30 configured to convey board S, component supply device 20 configured to supply components P, head 50 that picks up component P supplied from component supply device 20 using suction nozzle 51 and mounts component P on board S conveyed by board conveyance device 30, XY robot 40 that moves head 50 in the XY direction, and control device 70 that controls the mounting machine overall (refer to fig. 2). Further, component mounter 10, in addition to the above, is equipped with mark camera 56 provided on head 50 for imaging board positioning reference marks provided on board S, acceleration sensor 55 (refer to fig. 2) provided near suction nozzle 51 of head 50 that detects acceleration α in the Y direction, component camera 60 for imaging the holding orientation of component P picked up by suction nozzle 51, and the like.
  • Component supply device 20, for example, may use a tape feeder that supplies component by feeding carrier tape.
  • As shown in fig. 1, board conveyance device 30 is provided with belt conveyor device 32, and board S is conveyed from the left to the right in fig. 1 (board conveyance direction) by the driving of belt conveyor device 32. Backup plate 34 for supporting conveyed board S from beneath is provided in a central portion of board conveyance device 30 in the board conveyance direction (X-axis direction).
  • As shown in fig. 2, head 50 is provided with Z-axis actuator 52 that moves suction nozzle 51 in the up-down direction (Z direction) and θ-axis actuator 54 that rotates suction nozzle 51 around the Z-axis. The suction opening of suction nozzle 51 selectively connects to vacuum pump 58 or air pipe 59 via electromagnetic valve 57. Control device 70 is able to pick up component P using negative pressure at the suction opening of suction nozzle 51 by connecting the suction opening of suction nozzle 51 to vacuum pump 58 and then operating electromagnetic valve 57, and is able to release component P using positive pressure at the suction opening of suction nozzle 51 by connecting the suction opening of suction nozzle 51 to air pipe 59 and then operating electromagnetic valve 57.
  • As shown in fig. 1, XY robot 40 is provided with γ-axis guide rail 43 attached to an upper level of main body frame 12 extending in the front-rear direction (Y direction), γ-axis slider 44 that is able to slide along γ-axis guide rail 43 while being supported on γ-axis guide rail 43, X-axis guide rail 41 attached to the lower surface of γ-axis slider 44 extending in the left-right direction (X direction), and X-axis slider 42 that is able to slide along X-axis guide rail 41. Head 50 is attached to X-axis slider 42, and control device 70 is able to move head 50 to any position in an XY plane by controlling XY robot 40.
  • Mark camera 56 images board positioning reference marks provided on board S, and outputs a captured image to control device 70. Control device 70 to which the image is inputted recognizes the backup position of board S based on the image.
  • As shown in fig. 2, control device 70 is configured from CPU 71 that is based around a microprocessor, and is also provided with ROM 72, HDD 73, RAM 74, and input/output interface 75. These items are electrically connected by bus 76. A position signal from X-axis position sensor 47 that detects the position (position in X direction) of X-axis slider 42, a position signal from γ-axis position sensor 49 that detects the position (position in Y direction) of γ-axis slider 44, a position signal from Z-axis position sensor 53 that detects the position (position in Z direction) of suction nozzle 51, an image signal from mark camera 56, acceleration α in the Y direction from acceleration sensor attached to head 50, an image signal from component camera 60, and so on, are inputted to control device 70 via input/output interface 75. Also, a control signal to component supply device 20, a control signal to board conveyance device 30, a drive signal to X-axis actuator 46 that moves X-axis slider 42, a drive signal to Y-axis actuator 48 that moves Y-axis slider 44, a drive signal Z-axis actuator 52, a drive signal to θ-axis actuator 54, a drive signal to electromagnetic valve 57, and so on, are inputted to control device 70 via input/output interface 75.
  • Operation of component mounter 10 of the embodiment configured as above is described next. Fig. 3 is a flowchart showing an example of component mounting processing performed by CPU 71 of control device 70. This processing is performed when an operator gives an instruction to perform mounting (production) of components P on board S.
  • When component mounting processing is performed, first CPU 71 of control device 70 inputs the target mounting position (X*, Y*, Z*) of board S (S100). Continuing, CPU 71 performs pickup operation of causing suction nozzle 51 to pick up component P supplied from component supply device 20 (S110). Here, pickup operation specifically means, after controlling XY robot 40 such that suction nozzle 51 attached to head 50 comes directly above component P, controlling Z-axis actuator 52 such that the suction opening of suction nozzle 51 contacts component P, and controlling electromagnetic valve 57 to supply negative pressure to the suction opening of suction nozzle 51. Then, CPU 71 controls XY robot 40 such that the component P picked up by suction nozzle 51 matches the target mounting position (X*, Y*) in the XY plane (S120), and inputs the current position in the XY plane (current XY coordinates) of the component P detected by X-axis position sensor 47 and Y-axis position sensor 49 (S130).
  • Next, CPU 71 determines whether the inputted current position of component P is near the target mounting position in the XY plane (X*, Y*) (S140), and if it is determined that the current position is near the target mounting position (X*, Y*), enters acceleration α in the Y direction of suction nozzle 51 (component P) from acceleration sensor 55 (S150), and measures the vibration waveform in the Y direction of component P based on the inputted acceleration α in the Y direction and the Y coordinate (displacement y in the Y direction) of the current position of component P inputted in S130. In the present embodiment, when component P is moved in the XY direction and mounted on board S, because the movement distance in the X direction is much shorter than the movement distance in the Y direction, with regard to the vibration arising in component P when it arrives near the target mounting position in the XY direction, the X component is immediately resolved, and only the Y component remains. Processing of S160 is for measuring the vibration waveform of the Y component that remains after arrival at the target mounting position. Here, in a case in which vibration arising in component P is taken as a sine wave, when "A" is the amplitude, "ω" is the angular frequency, and "t" is time, the following equations (1) and (2) hold true. Because angular frequency ω can be replaced by cycle T, phase ωt and cycle T of the vibration waveform can be obtained based on displacement y and acceleration α. y = Asin ωt
    Figure imgb0001
    α = ω 2 Asin ωt
    Figure imgb0002
  • Further, CPU 71, sets (S170) control timing in the Z direction such that displacement y of component P in the Y direction crosses a node of the vibration waveform of the Y component measured in S160 when the time required for component P to be moved in the Z direction from the current position and mounted on board S will have elapsed, and controls (S180) Z-axis actuator 52 such that component P is moved in the Z direction and mounted on board S according to the set control timing. Here, the required time, for example, is obtained by performing experiments in advance of the elapsed time of moving component P in the Z direction to mounting component P on board S. Further, the current position in the Z direction of component P (Z coordinate) is inputted from Z-axis position sensor 53 (S190), and it is determined whether component P has reached the target Z coordinate (Z* = 0) (S200). If CPU 71 determines that component P has not reached the target Z coordinate, CPU 71 returns processing to S180 and continues control of Z-axis actuator 52; if CPU 71 determines that component P has reached the target Z coordinate, CPU 71 controls electromagnetic valve 57 to release holding of component P by suction nozzle 51 (S210), and ends component mounting processing.
  • Figs. 4 and 5 illustrate the waveforms of robot end coordinates over time as XY robot 40 is operated. Fig. 4 shows the waveform over time for the embodiment, and fig. 5 shows the waveform over time of a comparative example. As shown in the figures, when component P picked up by suction nozzle 51 is moved towards the target X coordinate and the target Y coordinate, residual vibration in the Y direction arises in component P. In the present embodiment, as shown in fig. 4, the vibration waveform in the Y direction is measured, and control of movement in the Z direction is performed such that component P arrives at the target Z coordinate (value zero) as displacement y of component P in the Y direction crosses a node of the vibration waveform. Accordingly, it is possible to accurately mount component P at the XY coordinates even while vibration remains in the Y direction. Conversely, in the comparison example, as shown in fig. 5, component P is mounted on board S at the earliest possible timing without measuring the vibration waveform. Thus, if vibration in the Y direction remains in component P, component P is mounted at a position deviated from the target Y coordinate.
  • Component mounting processing 10 of the present embodiment described above, after moving component P picked up by suction nozzle 51 towards the target XY coordinates, measures the waveform of the vibration (vibration waveform) arising in component P, and controls Z-axis actuator 52 such that component P arrives at the target Z coordinate (value zero) when displacement y of component P crosses a node of the measured vibration waveform. By this, even when lowering component P and mounting component P on board S while vibration remains after moving component P in the XY direction, it is possible to decrease the mounting position deviation. As a result, compared to a case in which component P is mounted on board S without measuring the vibration waveform of the robot end (component P), or a case in which component P is mounted after waiting for the vibration of the robot end (component P) to dissipate, the mounting position accuracy of component P is improved while shortening the time required for mounting.
  • With component mounting processing 10 of the present embodiment, control is performed such that component P arrives at the target Z coordinate (value zero) when displacement y of the robot end (component P) crosses a node of the measured vibration waveform, embodiments are not restricted to this, and may also be configured as follows. Amplitude A of vibration arising in the robot end (component P) when the robot end (component P) arrives near the target XY coordinates may be experimentally obtained in advance, and the target Y coordinate may be set as a corrected target Y coordinate that is shifted by amplitude A, and CPU 71 may control XY robot 40 such that component P moves to the target X coordinate and the corrected target Y coordinate when receiving an instruction to move and mount component P. Further, CPU 71 may measure the vibration waveform in the Y direction of the robot end (component P), and set control timing in the Z direction such that displacement y of component P in the Y direction passes through an antinode of the vibration waveform of the Y component that was measured when the time required for component P to be moved in the Z direction from the current position and mounted on board S will have elapsed, and may control Z-axis actuator 52 such that component P is moved in the Z direction and mounted on board S according to the set control timing. By this, even when moving component P in the Z direction and mounting component P on board S while vibration remains, it is possible to decrease the mounting position deviation, thus achieving a similar effect to that achieved by the first embodiment.
  • With component mounter 10 of the embodiment, in a case in which the movement distance is longer in the Y direction than in the X direction when component P is moved to the target XY coordinates, only the Y component of the vibration arising in the robot end (component P) after component P has arrived near the target XY coordinates is considered, but embodiments are not limited to this, and in a case in which the movement distance is longer in the X direction than in the Y direction when component P is moved to the target XY coordinates, only the X component of the vibration arising in the robot end (component P) after component P has arrived near the target XY coordinates may be considered, or both the X and the Y component of the vibration arising in the robot end (component P) after component P has arrived near the target XY coordinates may be considered. In the latter case, the vibration waveform of the X component and the vibration waveform of the Y component when component P arrives near the target XY coordinates may be measured, and control may be performed such that component P arrives at the target Z coordinate when the total of the deviation in the X direction and the deviation in the Y direction of the robot end (component P) is minimized. Further, the vibration waveform and the X component and the vibration waveform of the Y component when component P arrives near the target XY coordinates may be measured, then waiting for settling of the robot end (component P) in one of the X direction or the Y direction may be performed, and control performed such that component P arrives at the target Z coordinate at timing based on the other vibration waveform.
  • With component mounter 10 of the present embodiment, the residual vibration waveform when component P is moved in the XY direction is measured based on displacement y and acceleration α, but embodiments are not limited to this; vibration waveforms may be measured based on image data obtained by imaging consecutively using a camera (for example, mark camera 56) attached to the robot end (head 50), or vibration waveforms may be predicted by estimating acceleration α using control signals output to X-axis actuator 46 and Y-axis actuator 48 when controlling XY robot 40.
  • With component mounter 10 of the present embodiment, component P is moved using a horizontal cartesian robot, but embodiments are not limited to this and various robot types are applicable, for example, a vertical cartesian robot, a cylindrical coordinate robot, or a vertical articulated robot. An example mounter 100 of fig. 6 is a vertical articulated robot provided with base 110 that is set on the floor, first to fifth links 120a to 120e, first to fifth joints 122a to 122e forming an articulated arm connected in series to base 110 and first to fifth links 120a to 120e, and drive motors that are not shown and that drive each of first to fifth joints 122a to 122e. In the example of fig. 6, first joint 122a and fifth joint 122e are rotation joints, and second to fourth joints 122b to 122d are swing joints. In this case, the flowchart in fig. 3 may be performed by replacing the XYZ directions of the first embodiment with rotation directions or swing directions of first to fifth joints 122a to 122e. Because for this type of articulated robot, the vibration of the arm end section when the arm is moved is large, the invention is particularly effective.
  • With the first embodiment, the present invention was described applied to component mounter 10 that moves and mounts component P on board S using a robot (XY robot 40 and head 50), but embodiments are not limited to this and may be applied to an adhesive application device that uses a robot to move adhesive to a target position and apply the adhesive, or a solder application device that uses a robot to move solder to a target position and apply the solder. In this case, the flowchart in fig. 3 may be performed by replacing component P with adhesive or solder respectively.
  • Correspondences between main constituent elements of the embodiments and main constituent elements of the invention will be clarified here. XY robot 40 and head 50 correspond to "robot", the X direction or Y direction corresponds to "first direction", and the Z direction corresponds to "second direction". Further, mark camera 56 corresponds to "imaging means". Also, acceleration sensor 55 corresponds to "acceleration sensor". CPU 71 of control device 70 that performs processing of S100 of the component mounting processing shown in fig. 3 corresponds to the "target position acquiring means", CPU 71 of control device 70 that performs the processing of S120 to S140 corresponds to the "first direction movement control means", CPU 71 of control device 70 that performs the processing of S150 and S160 corresponds to the "vibration waveform acquiring means", and CPU 71 of control device 70 that performs the processing of S170 to S210 corresponds to the "second direction movement control means".
  • Industrial Applicability
  • The present invention may be applied to the industrial field of component mounters and the like.
  • Reference Signs List
  • 10: component mounting device; 12: main body frame; 20: component supply device; 30: board conveyance device; 32: belt conveyor device; 34: backup plate; 40: XY robot; 41: X-axis guide rail; 42: X-axis slider; 43: Y-axis guide rail; 44: Y-axis slider; 46: X-axis actuator; 47: X-axis position sensor; 48: Y-axis actuator; 49: Y-axis position sensor; 50: head; 51: suction nozzle; 52: Z-axis actuator; 54: θ-axis actuator; 55: acceleration sensor; 56: mark camera; 57: electromagnetic valve; 58: vacuum pump; 59: air pipe; 60: component camera; 70: control device; 71: CPU; 72: ROM; 73: HDD; 74: RAM; 75: input/output interface; 76: bus; 100: component mounting device; 110: base; 120a to 120e: first to fifth links; 122a to 122e: first to fifth joints; S: board; P: component

Claims (5)

  1. A conveyance method comprising:
    conveying and loading a target object held by an end section of a robot (40) to a specified target position, the end section of the robot (40) being able to move in a first direction (X, Y) and a second direction (Z);
    acquiring a first target position that is a target position in the first direction (X, Y), and a second target position that is a target position in the second direction (Z), as the specified target positions;
    performing first direction movement control on the robot (40) such that the position of the robot (40) in the first direction (X, Y) matches the first target position;
    measuring or predicting a vibration waveform of the end section in the first direction (X, Y) after performing first direction movement control; and
    performing second direction movement control to load the target object by controlling the robot (40) such that the position of the end section in the second direction (Z) matches the second target position at a specified timing during vibration, based on the measured or predicted vibration waveform of the end section in the first direction (X, Y)
    characterized in that:
    the first direction movement control controls the robot (40) such that after the target position in the first direction (X, Y) is reached, the position of the end section in the first direction (X, Y) matches a position deviated from the first target position by the amplitude of the vibration waveform that was predicted or measured, and
    the second direction movement control controls the robot (40) such that the position of the end section in the second direction (Z) matches the second target position when the displacement of the end section in the first direction (X, Y) becomes an antinode of the vibration waveform at the specified timing during vibration.
  2. The conveyance method according to claim 1, wherein
    the end section is provided with an imaging means (56), and the vibration waveform of the end section in the first direction (X, Y) is measured based on multiple images obtained by the imaging means (56) performing imaging multiple times after the performing of the first direction (X, Y) movement control.
  3. The conveyance method according to claim 1 , wherein
    the end section is provided with an acceleration sensor (55), and the vibration waveform of the end section in the first direction (X, Y) is measured based on an acceleration detected by the acceleration sensor (55).
  4. The conveyance method according to claim 1, wherein
    the vibration waveform of the end section in the first direction (X, Y) is predicted based on a control instruction signal used when the robot (40) is controlled by the first direction movement control.
  5. A conveyance device (30) for conveying and loading a target object to a specified location position, the conveyance device (30) comprising:
    a robot (40) provided with an end section able to hold the target object and move in a first direction (X, Y) and a second direction (Z);
    a target position acquiring means (70) configured to acquire a first target position that is a target position in the first direction (X, Y), and a second target position that is a target position in the second direction (Z) as the specified target positions;
    a first direction movement control means (71) configured to perform first direction movement control on the robot (40) such that the position of the robot (40) in the first direction (X, Y) matches the first target position;
    a vibration waveform acquiring means (71) configured to acquire a vibration waveform of the end section in the first direction (X, Y) after the first direction movement control has been performed, the vibration waveform acquiring means (71) is configured to predict or measure the vibration waveform of the end section in the first direction (X, Y) after the first direction movement control has been performed; and
    a second direction movement control means 71) configured to load the target object by performing second direction movement control that controls the robot (40) such that the position of the end section in the second direction (Z) matches the second target position at a specified timing during vibration, based on the acquired vibration waveform of the end section in the first direction (X, Y)
    characterized in that:
    the first direction movement control is configured to control the robot (40) such that after the target position in the first direction (X, Y) is reached, the position of the end section in the first direction (X, Y) matches a position deviated from the first target position by the amplitude of the vibration waveform that was predicted or measured, and
    the second direction movement control is configured to control the robot (40) such that the position of the end section in the second direction (Z) matches the second target position when the displacement of the end section in the first direction (X, Y) becomes an antinode of the vibration waveform at the specified timing during vibration.
EP14903589.1A 2014-10-10 2014-10-10 Transfer method and transfer apparatus Active EP3205457B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077165 WO2016056117A1 (en) 2014-10-10 2014-10-10 Transfer method and transfer apparatus

Publications (3)

Publication Number Publication Date
EP3205457A1 EP3205457A1 (en) 2017-08-16
EP3205457A4 EP3205457A4 (en) 2018-08-08
EP3205457B1 true EP3205457B1 (en) 2020-07-08

Family

ID=55652773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14903589.1A Active EP3205457B1 (en) 2014-10-10 2014-10-10 Transfer method and transfer apparatus

Country Status (5)

Country Link
US (1) US10456911B2 (en)
EP (1) EP3205457B1 (en)
JP (1) JP6472813B2 (en)
CN (1) CN107073716B (en)
WO (1) WO2016056117A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688172B2 (en) * 2016-06-24 2020-04-28 東京エレクトロン株式会社 Substrate processing system and method
JP7305258B2 (en) * 2018-07-18 2023-07-10 株式会社ディスコ Conveyor system
WO2020152865A1 (en) * 2019-01-25 2020-07-30 タカノ株式会社 Image inspection device
CN113277314B (en) * 2021-05-21 2022-07-26 盐城工学院 Panel offset adjusting device and method based on FPGA image detection control

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909331B2 (en) * 1992-12-02 1999-06-23 三菱重工業株式会社 Hanging load landing control method
JP3030555B1 (en) 1999-06-22 2000-04-10 株式会社ユーシン精機 Molded product removal device
JP2001092511A (en) * 1999-09-17 2001-04-06 Kawasaki Heavy Ind Ltd Control gain adjusting device for robot or the like
JP4390415B2 (en) * 1999-12-16 2009-12-24 パナソニック株式会社 Robot positioning control method and positioning control device
JP3947384B2 (en) * 2001-10-31 2007-07-18 Juki株式会社 Component mounting method and apparatus
US6983199B2 (en) * 2003-04-30 2006-01-03 General Electric Company Vibration measurement and recording system and method
JP5803189B2 (en) * 2011-03-23 2015-11-04 セイコーエプソン株式会社 Robot equipment
JP5962020B2 (en) * 2012-01-17 2016-08-03 セイコーエプソン株式会社 Robot control apparatus, robot system, robot, and robot control method
JP5832388B2 (en) 2012-07-09 2015-12-16 本田技研工業株式会社 Working method and working device
JP5932578B2 (en) * 2012-09-06 2016-06-08 三菱電機株式会社 Vibration suppression method, vibration suppression device, and industrial machine device having vibration suppression function
CN104669244A (en) * 2013-12-02 2015-06-03 精工爱普生株式会社 Robot
JP2017087301A (en) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 Robot, control device and robot system
US10245724B2 (en) * 2016-06-09 2019-04-02 Shmuel Ur Innovation Ltd. System, method and product for utilizing prediction models of an environment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3205457A4 (en) 2018-08-08
CN107073716B (en) 2020-03-10
US10456911B2 (en) 2019-10-29
JPWO2016056117A1 (en) 2017-07-20
US20170305012A1 (en) 2017-10-26
EP3205457A1 (en) 2017-08-16
JP6472813B2 (en) 2019-02-20
CN107073716A (en) 2017-08-18
WO2016056117A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US10232512B2 (en) Coordinate system setting method, coordinate system setting apparatus, and robot system provided with coordinate system setting apparatus
JP6005299B2 (en) Robot system and control method of robot system
EP3205457B1 (en) Transfer method and transfer apparatus
US11305432B2 (en) Work machine and pick-up position selection method
US11173608B2 (en) Work robot and work position correction method
US9887111B2 (en) Die mounting system and die mounting method
CN114286740B (en) Work robot and work system
JP2016215319A (en) Robot system and robot device
JP7130831B2 (en) Three-dimensional mounting device and three-dimensional mounting method
JP6299769B2 (en) Robot system
JP2020055059A (en) Work system
US20150056045A1 (en) Process station for a machine as well as control device and control method for controlling a movement in a process of a machine
CN111278612B (en) Component transfer device
EP3713386B1 (en) Calculation device
CN113727817B (en) Controller for controlling a power supply
JP3927664B2 (en) Component mounting apparatus and method
JP6716969B2 (en) Mounting device
EP3996484A1 (en) Component mounting machine
US10032650B2 (en) Die mounting system and die mounting method
JP2004130463A (en) Transfer equipment and work positioning method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014067618

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B25J0013000000

Ipc: B25J0009160000

A4 Supplementary search report drawn up and despatched

Effective date: 20180706

RIC1 Information provided on ipc code assigned before grant

Ipc: G05D 19/02 20060101ALN20180702BHEP

Ipc: B25J 9/16 20060101AFI20180702BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUJI CORPORATION

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAGATA, RYO

Inventor name: FUJITA, MASATOSHI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190624

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1287955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014067618

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1287955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014067618

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210409

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 10