WO2016052561A1 - 酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池 - Google Patents

酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池 Download PDF

Info

Publication number
WO2016052561A1
WO2016052561A1 PCT/JP2015/077606 JP2015077606W WO2016052561A1 WO 2016052561 A1 WO2016052561 A1 WO 2016052561A1 JP 2015077606 W JP2015077606 W JP 2015077606W WO 2016052561 A1 WO2016052561 A1 WO 2016052561A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
titanium
dye
present
Prior art date
Application number
PCT/JP2015/077606
Other languages
English (en)
French (fr)
Inventor
鉄平 八久保
高野 真悟
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN201580052114.3A priority Critical patent/CN107074581B/zh
Priority to KR1020177009216A priority patent/KR102374217B1/ko
Priority to JP2016552096A priority patent/JP6705381B2/ja
Priority to EP15846539.3A priority patent/EP3202716A4/en
Priority to US15/515,053 priority patent/US10892107B2/en
Publication of WO2016052561A1 publication Critical patent/WO2016052561A1/ja
Priority to US16/277,150 priority patent/US20190371532A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing titanium oxide particles, titanium oxide particles produced by the production method, a dispersion of titanium oxide particles using the titanium oxide particles, a titanium oxide paste, a titanium oxide film, and a dye-sensitized solar. Related to batteries.
  • Titanium oxide particles are used in various fields. For example, they are used as materials for capacitors, materials for sensors utilizing the properties of n-type semiconductors, pigments, optical materials, catalysts, chemically active materials, and materials for photo semiconductor porous films of dye-sensitized solar cells.
  • the titanium oxide particles are generally produced by a sulfuric acid method or a chlorine method.
  • sulfuric acid method titanium oxide ore is dissolved in concentrated sulfuric acid and separated into titanium sulfate and iron sulfate, and then the titanium sulfate is hydrolyzed, dried and fired to produce titanium oxide particles.
  • the chlorine method to prepare a TiCl 4 by processing the titanium material with chlorine gas, evaporated TiCl 4, by oxidation, to produce the titanium oxide particles.
  • titanium oxide particles having a narrower particle size distribution and excellent crystallinity than titanium oxide produced by the sulfuric acid method and the chlorine method.
  • a method for producing such titanium oxide particles for producing such titanium oxide particles for example, a method for producing titanium oxide particles described in Patent Document 1 is known as a prior art. According to this production method, a hydrolysis product of titanium alkoxide or titanium metal salt is used as a starting material, and an alkaline aqueous solution containing tetramethylammonium hydroxide (TMAH), water, and a diol or triol are added to the starting material. Then, a mixed solution is prepared by mixing, and titanium oxide particles can be produced by hydrothermally treating the mixed solution.
  • TMAH tetramethylammonium hydroxide
  • TMAH used in the method for producing titanium oxide fine particles described in Patent Document 1 was newly designated as a poison by the partial amendment of the poison and deleterious substances designation ordinance enforced on July 25, 2013. For this reason, in order to use TMAH, it is necessary to notify a poison manufacturing facility, and the mixed solution containing TMAH and TMAH must be locked and stored. Therefore, when titanium oxide particles are produced using TMAH, there are problems that the production of titanium oxide particles becomes very troublesome because of restrictions on the production of titanium oxide particles.
  • the present invention has been made in order to solve the above-described problems, and includes a method for producing titanium oxide particles capable of producing titanium oxide particles having excellent characteristics without using TMAH, and a method for producing the same. It is an object of the present invention to provide manufactured titanium oxide particles, a dispersion of titanium oxide particles using the titanium oxide particles, a titanium oxide paste, a titanium oxide film, and a dye-sensitized solar cell having high photoelectric conversion efficiency.
  • the present inventors have obtained titanium oxide particles having characteristics equivalent to or better than those of titanium oxide particles produced using TMAH by using a compound having a five-membered ring containing nitrogen.
  • the present invention has been completed by finding that it can be produced. That is, the present invention is as follows. [1] A step of mixing a hydrolysis product of titanium alkoxide or titanium metal salt with a compound having a 5-membered ring containing nitrogen to produce a mixed solution, and heating and pressurizing the mixed solution to form fine titanium oxide particles The manufacturing method of the titanium oxide particle including the process to produce
  • PDI cumulant polydispersity index
  • the titanium oxide paste according to [6] including 3 ppm or more of the compound having a 5-membered ring containing nitrogen.
  • a dye-sensitized solar cell including a conductive substrate, a photo semiconductor electrode carrying a sensitizing dye, a counter electrode, and an electrolyte, wherein the photo semiconductor electrode has the titanium oxide film according to [8].
  • a titanium oxide particle manufacturing method capable of manufacturing titanium oxide particles having excellent characteristics without using TMAH, the titanium oxide particles manufactured by the manufacturing method, and the titanium oxide particles
  • the dispersion solution of titanium oxide particles, the titanium oxide paste, the titanium oxide film, and the dye-sensitized solar cell having high photoelectric conversion efficiency can be provided.
  • the method for producing titanium oxide particles of the present invention comprises a step (A) of mixing a hydrolysis product of titanium alkoxide or titanium metal salt with a compound having a five-membered ring containing nitrogen to produce a mixed solution, and mixing A step (B) in which the solution is heated and pressurized to form titanium oxide fine particles; Thereby, even if it does not use TMAH, the titanium oxide particle which has the outstanding characteristic can be manufactured.
  • Step (A) a hydrolysis product of titanium alkoxide or titanium metal salt and a compound having a 5-membered ring containing nitrogen are mixed to prepare a mixed solution.
  • titanium alkoxide and titanium metal salt examples include tetraethoxytitanium, tetraisopropoxytitanium, tetranormalpropoxytitanium, and tetranormalbutoxytitanium. From the viewpoint of controllability of hydrolysis rate and availability, preferred titanium alkoxides are tetraisopropoxy titanium and tetranormal butoxy titanium, and more preferred titanium alkoxide is tetraisopropoxy titanium.
  • titanium metal salt used in the step (A) examples include titanium tetrachloride and titanium sulfate.
  • the hydrolysis product used in the step (A) is not particularly limited as long as it is a product generated by hydrolysis of the titanium alkoxide or titanium metal salt.
  • the hydrolysis product is a hydrous titanium cake-like substance called metatitanic acid or orthotitanic acid.
  • the cake-like substance contains alcohols, hydrochloric acid, and sulfuric acid generated during the hydrolysis process. Since these substances become inhibitory substances during crystal growth, it is preferable to use pure water and wash using a method such as decantation, Nutsche method, or ultrafiltration method.
  • the compound having a 5-membered ring containing nitrogen used in the step (A) has a function as a catalyst for hydrothermal synthesis.
  • Examples of the compound having a 5-membered ring containing nitrogen used in the step (A) include pyrrole, imidazole, indole, purine, pyrrolidine, pyrazole, triazole, tetrazole, isothiazole, isoxazole, furazane, carbazole and 1,5- And diazabicyclo- [4.3.0] -5-nonene.
  • a preferable compound having a 5-membered ring containing nitrogen is one in which the number of nitrogen contained in the 5-membered ring is 1. It is a compound having a member ring.
  • Examples of such a compound having a 5-membered ring containing nitrogen include pyrrole, indole, pyrrolidine, isothiazole, isoxazole, furazane, carbazole and 1,5-diazabicyclo- [4.3.0] -5-nonene. Etc.
  • a more preferable compound having a 5-membered ring containing nitrogen is a compound in which the 5-membered ring is a saturated heterocyclic ring.
  • the compound having a 5-membered ring containing nitrogen include pyrrolidine and 1,5-diazabicyclo- [4.3.0] -5-nonene. These can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the compound having a 5-membered ring containing nitrogen is preferably 0.01 to 1.0 mol, more preferably 0.1 to 0.7 mol, relative to 1 mol of titanium atom in the hydrolysis product. More preferably, it is 0.1 to 0.5 mol.
  • water may be appropriately added to a compound having a 5-membered ring containing nitrogen and a hydrolysis product of titanium alkoxide or titanium metal salt, if desired, for concentration adjustment and the like.
  • examples of the water used in the step (A) include deionized water, distilled water, and pure water.
  • the mixing method of mixing the hydrolysis product of titanium alkoxide or titanium metal salt with the compound having a 5-membered ring containing nitrogen is not particularly limited as long as a uniform mixed solution can be produced.
  • the raw materials can be mixed using a stirrer, a bead mill, a ball mill, an attritor, a dissolver, and the like.
  • the pH of the mixed solution is preferably 9 to 13, and more preferably 11 to 13.
  • the average particle diameter of the obtained titanium oxide particles can be controlled.
  • the pH of the mixed solution is smaller than 9, the catalytic action for nucleation of a compound having a 5-membered ring containing nitrogen may be reduced.
  • the nucleation rate of the particle nuclei generated in the mixed solution in the step (B) may be reduced, and the number of particle nuclei generated in the mixed solution may be reduced. Therefore, the particle diameter of each particle becomes large, and the average particle diameter of the obtained titanium oxide particles may become too large.
  • the nucleation rate of the particle nuclei generated in the mixed solution in the step (B) increases, and the number of particle nuclei generated in the mixed solution increases too much. May end up. Thereby, the particle diameter of each particle
  • the pH of the mixed solution is higher than 13, the dispersibility of the mixed solution may change, and the particle size distribution width of the titanium oxide particles generated in the step (B) may become too large.
  • the concentration of titanium in the mixed solution is preferably a titanium atom concentration of 0.05 to 3.0 mol / kg, more preferably 0.5 to 2.5 mol / kg. If the concentration of titanium in the mixed solution is less than 0.05 mol / kg, the nucleation rate of the nuclei of the particles generated in the mixed solution in step (B) becomes slow, and the nuclei of the particles generated in the mixed solution The number may decrease. Therefore, the particle diameter of each particle becomes large, and the average particle diameter of the obtained titanium oxide particles may become too large.
  • the concentration of titanium in the mixed solution is higher than 3.0 mol / kg
  • the nucleation rate of the nuclei of the particles generated in the mixed solution in the step (B) is increased, and the particles generated in the mixed solution The number of nuclei may become too large. Thereby, the particle diameter of each particle
  • concentration of the titanium in a mixed solution is larger than 3.0 mol / kg, the dispersibility of a mixed solution will change and the particle size distribution width of the titanium oxide particle produced
  • the molar ratio of the titanium atom in the mixed solution to the compound having a 5-membered ring containing nitrogen is preferably in the range of 1.00: 0.01 to 1.00: 1.00, more preferably 1.00. : 0.10 to 1.00: 0.70.
  • the particle size distribution width is narrow, and the crystallinity Can be synthesized.
  • Step (B) the mixed solution is heated and pressurized to produce fine titanium oxide particles.
  • Step (B) is preferably carried out using a high-temperature and high-pressure vessel (autoclave).
  • step (B) fine titanium oxide particles are generated by a hydrothermal reaction of the mixed solution. After the reaction by heating and pressurization is completed, a dispersion solution in which titanium oxide fine particles are dispersed in the solution is obtained.
  • the heating temperature in the step (B) is preferably 150 to 350 ° C, more preferably 150 to 210 ° C.
  • the pressure in a process (B) is a pressure when heating a mixed solution to the said temperature in an airtight container.
  • the mixed solution is heated and pressurized while stirring the mixed solution.
  • the stirring speed is, for example, about 100 to 300 rpm, preferably 200 rpm.
  • the heating time at the above heating temperature in the step (B) is preferably 3 to 12 hours, more preferably 4 to 9 hours. If the heating time is shorter than 3 hours, the entire reaction may not be completed. If the heating time is longer than 12 hours, the heating may be continued for a long time after the reaction of the mixed solution is completed. In addition, after completion
  • the dispersion solution containing the titanium oxide particles after the completion of the reaction may be used as it is, or may be collected from the dispersion solution by solid-liquid separation and dried, and used as titanium oxide particles.
  • the form may be used.
  • Dispersion solution containing titanium oxide particles obtained by the production method of the present invention and titanium oxide particles obtained by drying this dispersion solution are used as titanium oxide particles for semiconductor layers and insulating layers of dye-sensitized solar cells. It may be used as photocatalyst particles for photocatalysts.
  • titanium oxide particles and titanium oxide particle dispersion By the above-described method for producing titanium oxide particles of the present invention, for example, titanium oxide particles containing an anatase single phase having an average particle diameter of 5 to 100 nm and a dispersion solution of titanium oxide particles containing the same can be obtained.
  • titanium oxide particles are obtained as a dispersion solution of titanium oxide particles.
  • the particle size distribution width of the titanium oxide particles in the dispersion solution is, for example, 20 to 92 nm, and the 90% cumulative strength particle size distribution diameter D90 of the titanium oxide particles is, for example, 58 nm or less.
  • the particle size distribution width of the titanium oxide particles is 18 to 52 nm
  • the 90% cumulative strength particle size distribution diameter D90 of the titanium oxide particles is 42 nm or less
  • the titanium oxide particles The particle size distribution width of the particles can be 13 to 41 nm
  • the 90% cumulative strength particle size distribution diameter D90 of the titanium oxide particles can be 32 nm or less. Therefore, titanium oxide particles having a very narrow particle size distribution width can be obtained by the method for producing titanium oxide particles of the present invention.
  • the cumulant polydispersity index (PDI) measured in accordance with JIS Z8828 of the titanium oxide particles in the titanium oxide particle dispersion solution of the present invention is preferably 0.50 or less, more preferably 0.30 or less. .
  • PDI is an abbreviation for Polydispersity index. The smaller the value, the better the monodispersity.
  • the PDI of the titanium oxide particles is 0.50 or less, the particle size distribution width is narrow, and high photoelectric conversion efficiency is obtained when used as a semiconductor electrode of a dye-sensitized solar cell.
  • the smaller the value of PDI the better.
  • the lower limit is not particularly limited, but PDI may be 0.01 or more, 0.10 or more, 0.15 or more, or the like.
  • the average particle diameter (50% cumulative strength particle size distribution diameter D50) of the dispersion of titanium oxide particles obtained by the method for producing titanium oxide particles of the present invention is preferably 10 to 100 nm, more preferably 15 to 80 nm. .
  • the average particle diameter of the titanium oxide particles is less than 10 nm, the dispersibility cannot be maintained when blended in the paste, and when it exceeds 100 nm, the dye is sufficiently adsorbed when used as a semiconductor electrode of a dye-sensitized solar cell. Can not.
  • the BET specific surface area of the titanium oxide particles is preferably 40 to 150 m 2 / g, more preferably 50 to 100 m 2 / g.
  • the BET specific surface area of the titanium oxide particles is less than 40 m 2 / g, when used as a semiconductor electrode of a dye-sensitized solar cell, may not be sufficiently adsorbed dye, it exceeds 150 meters 2 / g, the paste When blended, dispersibility may not be maintained.
  • D XRD (100) / D XRD (001) of the titanium oxide particles is preferably 0.2 to 1.0, more preferably 0.4 to 0.8, and still more preferably 0.5 to 0. .8.
  • the titanium oxide particles D XRD (100) / D XRD (001) are 0.2 to 1.0, high photoelectric conversion efficiency can be obtained when used as a semiconductor electrode of a dye-sensitized solar cell.
  • D XRD (100) / D XRD (001) is calculated from the half-value width of the (100) plane with respect to the Scherrer diameter calculated from the half-width of the diffraction peak of the (001) plane in the X-ray diffraction pattern of the titanium oxide particles. Is the ratio of the Scherrer diameter.
  • titanium oxide particles having a narrow particle size distribution, a stable shape, and excellent crystallinity can be obtained.
  • the titanium oxide particles are in a dispersion state.
  • the titanium oxide particles may be used separately from the dispersion solution. Moreover, you may use a titanium oxide particle in the state of a dispersion solution. Since the dispersion of the titanium oxide particles produced after the step (B) is highly transparent, the transparency of the coating film produced using this dispersion is also high. Due to the high transparency of the dispersion solution, the titanium oxide particles produced by the method for producing titanium oxide particles of the present invention are a photocatalyst, a transparent superhydrophilic film, and a photosemiconductor porous film of a dye-sensitized solar cell. Particularly suitable for applications.
  • the dispersion of titanium oxide particles produced after the step (B) may be used by substituting water with another solvent in order to improve compatibility with the binder described later.
  • Another solvent is not particularly limited as long as it is compatible with the binder and can maintain the characteristics of the titanium oxide particles and the dispersion solution even when the solvent is replaced with water.
  • alcohols are preferable, and methanol and ethanol are particularly preferable.
  • the dispersion solution of titanium oxide particles of the present invention contains a compound having a 5-membered ring containing nitrogen, and is a Scherrer calculated from the half-value width of the (001) plane diffraction peak in the X-ray diffraction pattern of the titanium oxide particles.
  • the cumulant polydispersity index (PDI) measured according to JIS Z8828 of the titanium oxide particles is 0.50 or less.
  • the compound having a 5-membered ring containing nitrogen is preferably 0.01 to 1.0 mol, more preferably 0.001 mol per 1 mol of titanium atom in the hydrolysis product. 1 to 0.7 mol, more preferably 0.1 to 0.5 mol is added. Therefore, the content of the compound having a 5-membered ring containing nitrogen in the dispersion of the titanium oxide particles of the present invention is preferably 0.01 to 1.0 mol, more preferably 0 to 1 mol of titanium atom. 0.1 to 0.7 mol, more preferably 0.1 to 0.5 mol.
  • the dispersion of titanium oxide particles of the present invention is a dispersion of titanium oxide particles containing a compound having a 5-membered ring containing nitrogen, and is a half of the diffraction peak on the (001) plane in the X-ray diffraction pattern of the titanium oxide particles.
  • Ratio of the Scherrer diameter (D XRD (100) ) calculated from the half-value width of the diffraction peak of the (100) plane to the Scherrer diameter (D XRD (001) ) calculated from the value width (D XRD (100) / D XRD (001) ) Is 0.2 to 1.0, and the cumulant polydispersity index of titanium oxide particles measured in accordance with JIS Z8828 is 0.50 or less.
  • the titanium oxide paste of the present invention contains at least one of the titanium oxide particles produced by the production method of the present invention and the dispersion solution of the titanium oxide particles of the present invention, a solvent, and a binder.
  • the solvent include terpineol, butyl carbitol, butyl carbitol acetate, acetate, toluene, various alcohols such as methanol and ethanol, and xylene.
  • the binder include ethyl cellulose, polyvinyl butyral, methacrylic resin, and butyl methacrylate.
  • the titanium oxide paste may further contain additives such as a dispersant, an activator and a plasticizer.
  • the titanium oxide paste of this invention may be produced using the titanium oxide particle of the state of the above-mentioned dispersion solution.
  • the titanium oxide particles of the present invention are produced using a compound having a five-membered ring, when washing or the like is not sufficient, the titanium oxide paste of the present invention, in other words, the titanium oxide particles, It is a titanium oxide paste containing a solvent, a binder, and a compound having a five-membered ring containing nitrogen.
  • the compound having a 5-membered ring is preferably completely removed, but it requires enormous labor and cost and is difficult with the current technology.
  • the titanium oxide paste of the present invention preferably contains 3 ppm or more of a compound having a 5-membered ring.
  • the titanium oxide paste of the present invention preferably contains 3 to 100 ppm of a compound having a 5-membered ring, more preferably 3 to 50 ppm, and even more preferably 3 to 30 ppm.
  • the titanium oxide film of the present invention can be obtained by applying and baking the titanium paste of the present invention.
  • the method of applying the titanium oxide paste include spin coating, dip coating, bar coating, spraying, blade coating, slit die coating, gravure coating, reverse coating, screen printing, and printing transfer method. And an ink jet method.
  • the applied titanium oxide paste is baked after being dried as desired. Thereby, the titanium oxide film of the present invention is formed.
  • the firing temperature is not particularly limited as long as the titanium oxide particles are bonded to each other to form a titanium oxide porous body.
  • the dye-sensitized solar cell of the present invention includes a conductive substrate, a photo semiconductor electrode carrying a sensitizing dye, a counter electrode, and an electrolyte, and the photo semiconductor electrode has the titanium oxide film of the present invention.
  • the dye-sensitized solar cell is composed of a photo-semiconductor electrode composed of a semiconductor fine particle-containing layer adsorbing a dye formed on a conductive substrate, an electrolyte, and a counter electrode.
  • a photo-semiconductor electrode composed of a semiconductor fine particle-containing layer adsorbing a dye formed on a conductive substrate, an electrolyte, and a counter electrode.
  • the average particle size, crystallinity, particle size distribution, purity, and crystal plane of the titanium oxide particles are the solar conversion efficiency of the dye-sensitized solar cells. Greatly affects.
  • the titanium oxide film of the present invention uses titanium oxide particles produced by the method for producing titanium oxide particles of the present invention, the particle size of the titanium oxide particles is small, the crystallinity and purity are high, and the particle size distribution is narrow. . Therefore, by using the titanium oxide particles produced by the method for producing titanium oxide particles of the present invention for use in a photo-semiconductor electrode of a dye-sensitized solar cell, the solar conversion efficiency of the dye-sensitized solar cell can be increased. it can. Moreover, when the titanium oxide film of the present invention is used for an optical semiconductor electrode application of a dye-sensitized solar cell, the transparency of the optical semiconductor electrode can be increased and the amount of the dye carried on the optical semiconductor electrode is increased. Can do.
  • the method for producing a dye-sensitized solar cell includes a step of producing a conductive substrate, a step of forming a photo semiconductor electrode, a step of supporting a dye on the semiconductor electrode, a step of arranging a counter electrode, and a step of injecting an electrolyte.
  • a transparent substrate is prepared, a transparent conductive layer is formed thereon, and a conductive substrate is produced.
  • the transparent conductive layer can be formed using a known film forming technique such as sputtering, CVD, or coating.
  • the commercially available transparent substrate in which the transparent conductive layer was formed can also be used as a transparent conductive substrate.
  • the transparent conductive layer examples include a tin-doped indium oxide (ITO) layer, a fluorine-doped tin oxide (FTO) layer, an antimony-doped tin oxide (ATO) / ITO composite layer, a tin oxide layer, a zinc oxide layer, and TiO 2 / Ag / There is a TiO 2 composite layer.
  • a metal grid wiring such as Ag and Cu may be further provided on the conductive substrate.
  • the titanium oxide film of the present invention is formed by screen printing the titanium oxide paste of the present invention on the transparent conductive substrate described above, drying, and baking. This titanium oxide film becomes an optical semiconductor electrode.
  • the firing temperature of the titanium oxide paste of the present invention is preferably 250 to 600 ° C, more preferably 400 to 550 ° C.
  • the firing temperature of the titanium oxide paste is lower than 250 ° C.
  • a good bond between the titanium oxide particles cannot be obtained, and thus the resistance of the optical semiconductor electrode may be increased.
  • the firing temperature of the titanium oxide paste is lower than 600 ° C., the grain growth of the titanium oxide particles increases, and the specific surface area of the optical semiconductor electrode may become too small.
  • a sensitizing dye is dissolved in a predetermined solvent to prepare a sensitizing dye solution.
  • the solvent used for preparing the sensitizing dye solution include alcohols such as methanol, ethanol, 2 propanol, 1 butanol and t-butanol, and nitriles such as acetonitrile, methoxyacetonitrile, propionitrile and 3 methoxypropionitrile. Or a mixed solvent thereof.
  • a metal complex dye or an organic dye can be used as the sensitizing dye used for preparing the sensitizing dye solution.
  • the metal complex dye include metal complex salts containing metal phthalocyanine, chlorophyll, hemin and at least one selected from the group consisting of ruthenium, osmium, iron and zinc.
  • a preferred metal complex dye is a ruthenium metal complex.
  • Preferred ruthenium metal complexes include, for example, ruthenium bipyridine complexes and ruthenium terpyridine complexes.
  • organic dyes examples include coumarin derivative dyes, polyene dyes, merocyanine dyes, azo dyes, quinone dyes, squarylium dyes, cyanine dyes, styryl dyes, and xanthene dyes.
  • a preferred organic dye is a coumarin derivative-based dye.
  • the conductive substrate on which the photo semiconductor electrode is formed is dipped in a sensitizing dye solution, whereby the sensitizing dye is supported on the photo semiconductor electrode.
  • a counter electrode is disposed at a position facing the optical semiconductor electrode.
  • the counter electrode includes, for example, a metal electrode such as Al and SUS, a substrate made of glass and plastic, and Pt, C, Ni, Cr, stainless steel, fluorine-doped tin oxide and ITO formed on the substrate. Examples thereof include a conductive substrate electrode composed of a conductive layer.
  • a dye-sensitized solar cell can be obtained by injecting an electrolyte between the optical semiconductor electrode and the counter electrode and interposing the electrolyte between the optical semiconductor electrode and the counter electrode.
  • a solid electrolyte and a liquid electrolyte can be used as the electrolyte of the dye-sensitized solar cell.
  • Examples of the electrolyte of the dye-sensitized solar cell include an iodine-based electrolyte, a bromine-based electrolyte, a selenium-based electrolyte, and a sulfur-based electrolyte.
  • a preferable electrolyte is an iodine-based electrolyte
  • the preferable iodine-based electrolyte is at least one selected from the group consisting of I 2 , LiI, and dimethylpropylimidazolium iodide, such as acetonitrile, methoxyacetonitrile, propylene carbonate, and ethylene carbonate. It is a solution obtained by dissolving in an organic solvent.
  • a partition wall is provided between the optical semiconductor electrode and the counter electrode, and then the electrolyte is injected into the space between the optical semiconductor electrode and the counter electrode.
  • a dye-sensitized solar cell can be produced using the titanium oxide film of the present invention.
  • the titanium oxide film of the present invention as an optical semiconductor electrode, a dye-sensitized solar cell having a sufficiently high photoelectric conversion rate can be obtained.
  • Example 1 1 L of pure water was put into a 2 L beaker and 1 mol of tetraisopropoxy titanium (manufactured by Nippon Soda Co., Ltd., product name: A-1) was added dropwise with stirring to obtain a white suspension. This white suspension was filtered to obtain a hydrolysis product of titanium alkoxide.
  • the hydrolysis product in an amount of 1 mol of titanium atom, pyrrolidine (manufactured by Kanto Chemical Co., Inc.) in an amount of 0.15 mol with respect to 1 mol of titanium atom in the hydrolysis product, and water Pure water in an amount such that the total amount of decomposition products, pyrrolidine and pure water was 1 kg was charged into an autoclave (model number: SR-200, manufactured by Ueda Giken Co., Ltd.) and mixed to prepare a mixed solution. Then, the mixed solution was heated at a heating temperature of 210 ° C. in an autoclave for 4 hours and 30 minutes to prepare a dispersion solution of titanium oxide particles of Example 1. Since the autoclave is sealed, the mixed solution is pressurized by heating the mixed solution to a heating temperature of 210 ° C. in the autoclave.
  • Example 2 instead of pyrrolidine, 1,5-diazabicyclo- [4.3.0. ] A dispersion solution of titanium oxide particles of Example 2 was prepared in the same manner as Example 1 except that 5-nonene (manufactured by Tokyo Chemical Industry Co., Ltd.) was blended.
  • Example 3 A dispersion of titanium oxide particles of Example 3 was prepared in the same manner as in Example 1 except that the heating temperature was changed from 210 ° C to 230 ° C.
  • Example 4 A dispersion of titanium oxide particles of Example 4 was prepared in the same manner as in Example 1 except that the amount of pyrrolidine was changed to 0.19 mol with respect to 1 mol of titanium atom in the hydrolysis product. Produced.
  • Example 5 instead of pyrrolidine, 1,5-diazabicyclo- [4.3.0.4] in an amount of 0.19 mol per 1 mol of titanium atom in the hydrolysis product. ]
  • a dispersion of titanium oxide particles of Example 5 was prepared in the same manner as Example 1 except that 5-nonene (manufactured by Tokyo Chemical Industry Co., Ltd.) was blended.
  • Example 6 The dispersion solution of titanium oxide particles of Example 6 was changed in the same manner as in Example 1 except that the amount of pyrrolidine was changed to 0.12 mol with respect to 1 mol of titanium atom in the hydrolysis product. Produced.
  • Comparative Example 1 A dispersion of titanium oxide particles of Comparative Example 1 was prepared in the same manner as in Example 1, except that 25 wt% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Industry Co., Ltd.) was blended instead of pyrrolidine. .
  • Comparative Example 2 A dispersion of titanium oxide particles of Comparative Example 2 was prepared in the same manner as in Example 1 except that triethanolamine (manufactured by Kanto Chemical Co., Inc.) was added instead of pyrrolidine. However, titanium oxide aggregated and settled, and the titanium oxide particle dispersion solution of Comparative Example 2 could not disperse titanium oxide particles well.
  • Comparative Example 3 A dispersion of titanium oxide particles of Comparative Example 3 was prepared in the same manner as in Example 1 except that ethanolamine (manufactured by Kanto Chemical Co., Inc.) was added instead of pyrrolidine. However, titanium oxide aggregated and settled, and the titanium oxide particle dispersion solution of Comparative Example 3 could not disperse titanium oxide particles well.
  • Comparative Example 4 A dispersion of titanium oxide particles of Comparative Example 4 was prepared in the same manner as in Example 1 except that diethanolamine (manufactured by Kanto Chemical Co., Inc.) was added instead of pyrrolidine. However, titanium oxide aggregated and settled, and the titanium oxide particle dispersion solution of Comparative Example 4 could not disperse titanium oxide particles well.
  • diethanolamine manufactured by Kanto Chemical Co., Inc.
  • Comparative Example 5 A dispersion of titanium oxide particles of Comparative Example 5 was prepared in the same manner as in Example 1 except that diethylenetriamine (manufactured by Kanto Chemical Co., Inc.) was added instead of pyrrolidine. However, titanium oxide aggregated and settled, and the titanium oxide particle dispersion solution of Comparative Example 5 could not disperse titanium oxide particles well.
  • diethylenetriamine manufactured by Kanto Chemical Co., Inc.
  • Comparative Example 6 A dispersion of titanium oxide particles of Comparative Example 5 was prepared in the same manner as in Example 1 except that morpholine (manufactured by Kanto Chemical Co., Inc.) was added instead of pyrrolidine. However, titanium oxide aggregated and settled, and the titanium oxide particle dispersion solution of Comparative Example 6 could not disperse titanium oxide particles well.
  • morpholine manufactured by Kanto Chemical Co., Inc.
  • the titanium oxide particle dispersion was filtered to separate the titanium oxide particles from the dispersion. And after washing
  • the BET specific surface area of the dried titanium oxide particles was measured using a specific surface area meter (manufactured by Nippon Bell Co., Ltd., model number: BELSORP-mini).
  • Average particle diameter of titanium oxide particles, 90% cumulative strength particle size distribution diameter D90 ( ⁇ m) The average particle diameter (50% cumulative strength particle size distribution diameter) and 90% cumulative strength particle size distribution diameter D90 of the titanium oxide particles in the dispersion solution of titanium oxide particles were measured using a particle size distribution meter (manufactured by Horiba, Ltd., model number: SZ-100). ).
  • PDI of dispersion of titanium oxide particles The cumulant polydispersity index (PDI) of the titanium oxide particles in the dispersion of the titanium oxide particles was measured with a particle size distribution analyzer model number SZ-100 (manufactured by Horiba, Ltd.).
  • the titanium oxide particle dispersion was filtered to separate the titanium oxide particles from the dispersion. And after washing
  • the crystal phase of the dried titanium oxide particles and the X-ray diffraction pattern D XRD (100) / D XRD (001) were examined using an X-ray diffractometer (Spectris, model number: X'Pert PRO).
  • D XRD (100) / D XRD (001) is the Scherrer calculated from the half-value width of the diffraction peak of the (100) plane with respect to the Scherrer diameter calculated from the half-value width of the diffraction peak of the (001) plane in the X-ray diffraction pattern of the titanium oxide particles. It is the ratio of diameters.
  • Dye-sensitized solar cells were produced using the dispersions of titanium oxide particles of Examples 1 to 6 and Comparative Example 1, and the photoelectric conversion efficiency of the dye-sensitized solar cells was measured.
  • the dye-sensitized solar cell was produced as follows. Since the titanium oxide particles of Comparative Examples 2 to 6 were poorly dispersed and a titanium oxide paste was not obtained, a dye-sensitized solar cell was prepared using the dispersion solution of the titanium oxide particles of Comparative Examples 2 to 6. I could't. ⁇ Production of titanium oxide paste> The solvent of the titanium oxide particle dispersions of Examples 1 to 6 and Comparative Example 1 was replaced with ethanol to prepare alcohol dispersions.
  • Alcohol dispersion solution weighed to 26 parts by mass as titanium dioxide as an alcohol dispersion solution, 8 parts by mass of ethyl cellulose (manufactured by Dow Chemical Co., Ltd., trade name: etosel), and terpineol (manufactured by Kanto Chemical Co., Inc.) 66 parts by mass were mixed to prepare a mixed solution.
  • the mixed solution from which excess ethanol was removed was kneaded using a three roll mill (manufactured by EXAKT, model number: M-50) to obtain a titanium oxide paste.
  • a titanium oxide paste was applied to a substrate with a transparent conductive film (manufactured by Nippon Sheet Glass Co., Ltd.) by screen printing so that the size was 5 mm ⁇ 5 mm and the film thickness after firing was 7 ⁇ m. And the apply
  • the substrate with the titanium oxide film (titanium oxide porous body) thus obtained was placed in 10 mL of a Ru metal complex dye (Black Dye dye) solution (manufactured by DYESOL) at a concentration of 3 ⁇ 10 ⁇ 4 mol / L.
  • the sensitizing dye was supported on a titanium oxide film (titanium oxide porous body) by immersion for 24 hours.
  • a substrate with a titanium oxide film (titanium oxide porous body) and a counter electrode substrate with a platinum film formed on the surface thereof are placed in a container for a dye-sensitized solar cell so as to face each other, and between the substrates Liquid electrolyte (Iodine salt of 1,2-dimethyl-3-propylimidazolium (Kanto Chemical Co., Ltd.) 0.6M, Lithium iodide (Kanto Chemical Co.) 0.1M, Iodine (Kanto Chemical Co., Ltd.) Manufactured liquid) 0.05M, tertiary-butylpyridine (manufactured by Kanto Chemical Co., Inc.) 0.5M added to acetonitrile (manufactured by Kanto Chemical Co., Inc.), and the container was sealed, and dye sensitization was performed. A solar cell was produced.
  • Liquid electrolyte Iodine salt of 1,2-dimethyl-3-propylim
  • Table 1 shows the evaluation results of the titanium oxide dispersions of Examples 1 to 6 and Comparative Examples 1 to 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の酸化チタン粒子の製造方法は、チタンアルコキシド又はチタン金属塩の加水分解生成物と窒素を含む5員環を有する化合物とを混合して混合溶液を作製する工程、及び混合溶液を加熱及び加圧して酸化チタン微粒子を生成させる工程を含む。本発明の酸化チタン粒子は本発明の酸化チタン粒子の製造方法によって製造される。本発明の酸化チタン粒子の分散溶液は本発明の酸化チタン粒子を含む。本発明の酸化チタンペーストは本発明の酸化チタン粒子と溶媒とバインダとを含む。本発明の酸化チタン膜は、本発明の酸化チタンペーストを塗布し、焼成することにより得られる。本発明の色素増感太陽電池は、導電性基板、増感色素を担持した光半導体電極、対向電極及び電解質を含み、光半導体電極は本発明の酸化チタン膜を有する。

Description

酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池
 本発明は、酸化チタン粒子の製造方法と、その製造方法により製造された酸化チタン粒子と、その酸化チタン粒子を用いた酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池とに関する。
 酸化チタン粒子は様々な分野で利用されている。たとえば、コンデンサの材料、n型半導体の性質を利用したセンサの材料、顔料、光学材料、触媒、化学活性材料及び色素増感太陽電池の光半導体多孔質膜の材料などに使用されている。酸化チタン粒子は、一般に硫酸法又は塩素法により製造される。硫酸法では、チタン鉄鉱を濃硫酸で溶解して硫酸チタンと硫酸鉄とに分離した後、硫酸チタンを加水分解し、乾燥し、焼成することにより酸化チタン粒子を製造する。一方、塩素法では、チタン原料を塩素ガスで処理してTiClを作製し、TiClを蒸発させ、酸化することにより、酸化チタン粒子を製造する。
 しかし、酸化チタンの用途によっては、硫酸法及び塩素法で作製された酸化チタンよりもさらに狭小な粒度分布を有し、結晶性の優れた酸化チタン粒子が必要な場合がある。そのような酸化チタン粒子を製造する酸化チタン微粒子の製造方法として、たとえば、特許文献1に記載の酸化チタン粒子の製造方法が従来技術として知られている。この製造方法によれば、チタンアルコキシド又はチタン金属塩の加水分解生成物を出発原料として使用し、その出発原料に、テトラメチルアンモニウムヒドロキシド(TMAH)を含むアルカリ水溶液、水及びジオールもしくはトリオールを添加し混合して混合溶液を作製し、この混合溶液を水熱処理することにより酸化チタン粒子を製造することができる。
特開2007-176753号公報
 特許文献1に記載の酸化チタン微粒子の製造方法で使用するTMAHは、2013年7月25日施行の毒物及び劇物指定令の一部改正で、新しく毒物に指定された。このため、TMAHを使用するためには、毒物製造設備の届け出が必要になり、TMAH及びTMAHを含んだ混合溶液などは施錠して保管しなければならない。したがって、TMAHを使用して酸化チタン粒子を製造すると、酸化チタン粒子の製造に対する制約が多くなり、酸化チタン粒子の製造が非常に面倒になるという問題が生ずる。
 本発明は、上記の課題を解決するためになされたものであって、TMAHを使用しなくても、優れた特性を有する酸化チタン粒子を製造できる酸化チタン粒子の製造方法と、その製造方法により製造された酸化チタン粒子と、その酸化チタン粒子を用いた酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び光電変換効率が高い色素増感太陽電池とを提供することを目的とする。
 本発明者らは、鋭意研究を行った結果、窒素を含む5員環を有する化合物を用いることにより、TMAHを使用して製造した酸化チタン粒子の特性と同等以上の特性を有する酸化チタン粒子を製造できることを見出し、本発明を完成させた。すなわち、本発明は以下のとおりである。
[1]チタンアルコキシド又はチタン金属塩の加水分解生成物と、窒素を含む5員環を有する化合物とを混合して混合溶液を作製する工程、及び混合溶液を加熱及び加圧して酸化チタン微粒子を生成させる工程を含む酸化チタン粒子の製造方法。
[2]窒素を含む5員環を有する化合物は、ピロール、イミダゾール、インドール、プリン、ピロリジン、ピラゾール、トリアゾール、テトラゾール、イソチアゾール、イソオキサゾール、フラザン、カルバゾール及び1,5-ジアザビシクロ-[4.3.0]-5-ノネンからなる群から選択される少なくとも1種である上記[1]に記載の酸化チタン粒子の製造方法。
[3]上記[1]又は[2]に記載の酸化チタン粒子の製造方法によって製造された酸化チタン粒子。
[4]窒素を含む5員環を有する化合物を含有する酸化チタン粒子の分散溶液であって、前記酸化チタン粒子のX線回折パターンにおける(001)面の回折ピークの半値幅から算出するシェラー径(DXRD(001))に対する、(100)面の回折ピーク半値幅から算出するシェラー径(DXRD(100))の比(DXRD(100)/DXRD(001))が、0.2~1.0であり、JIS Z8828に準拠して測定した前記酸化チタン粒子のキュムラント多分散指数(PDI)が0.50以下である酸化チタン粒子の分散溶液。
[5]上記[1]又は[2]に記載の酸化チタン粒子の製造方法によって製造された酸化チタン粒子及び上記[4]に記載の酸化チタン粒子の分散溶液の少なくとも一方と、溶媒と、バインダと、を含む酸化チタンペースト。
[6]酸化チタン粒子と、溶媒と、バインダと、窒素を含む5員環を有する化合物とを含む酸化チタンペースト。
[7]上記窒素を含む5員環を有する化合物を3ppm以上含む上記[6]に記載の酸化チタンペースト。
[8]上記[5]~[7]のいずれかに記載の酸化チタンペーストを塗布し、焼成することにより得られる酸化チタン膜。
[9]導電性基板、増感色素を担持した光半導体電極、対向電極及び電解質を含み、光半導体電極は、上記[8]に記載の酸化チタン膜を有する色素増感太陽電池。
 本発明によれば、TMAHを使用しなくても、優れた特性を有する酸化チタン粒子を製造できる酸化チタン粒子の製造方法と、その製造方法により製造された酸化チタン粒子と、その酸化チタン粒子を用いた酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び光電変換効率が高い色素増感太陽電池とを提供することができる。
[酸化チタン粒子の製造方法]
 本発明の酸化チタン粒子の製造方法は、チタンアルコキシド又はチタン金属塩の加水分解生成物と、窒素を含む5員環を有する化合物とを混合して混合溶液を作製する工程(A)、及び混合溶液を加熱及び加圧して酸化チタン微粒子を生成させる工程(B)を含む。これにより、TMAHを使用しなくても、優れた特性を有する酸化チタン粒子を製造できる。
(工程(A))
 工程(A)では、チタンアルコキシド又はチタン金属塩の加水分解生成物と、窒素を含む5員環を有する化合物とを混合して混合溶液を作製する。
(チタンアルコキシド及びチタン金属塩)
 工程(A)で用いるチタンアルコキシドには、たとえば、テトラエトキシチタン、テトライソプロポキシチタン、テトラノルマルプロポキシチタン及びテトラノルマルブトキシチタンなどが挙げられる。加水分解速度の制御性及び入手容易性の観点から、好ましいチタンアルコキシドは、テトライソプロポキシチタン及びテトラノルマルブトキシチタンであり、より好ましいチタンアルコキシドはテトライソプロポキシチタンである。工程(A)で用いるチタン金属塩には、たとえば、四塩化チタン及び硫酸チタンなどが挙げられる。
(加水分解生成物)
 工程(A)で使用される加水分解生成物は、上記チタンアルコキシド又はチタン金属塩が加水分解して生成した生成物であれば特に限定されない。たとえば、加水分解生成物は、メタチタン酸やオルトチタン酸と呼ばれる含水酸化チタンのケーキ状物質である。そのケーキ状物質の内部には加水分解の過程で生成されたアルコール類や塩酸、硫酸が含有されている。これらの物質は結晶成長の際に阻害物質となるため、純水を用いデカンテーション、ヌッチェ法、限外濾過法などの方法を用い洗浄することが好ましい。
(窒素を含む5員環を有する化合物)
 工程(A)で用いる窒素を含む5員環を有する化合物は、水熱合成の触媒としての機能を有する。工程(A)で用いる窒素を含む5員環を有する化合物には、たとえば、ピロール、イミダゾール、インドール、プリン、ピロリジン、ピラゾール、トリアゾール、テトラゾール、イソチアゾール、イソオキサゾール、フラザン、カルバゾール及び1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどが挙げられる。狭小な粒度分布を有し、結晶性の優れた酸化チタン粒子を製造できることから、好ましい窒素を含む5員環を有する化合物は、5員環が含む窒素の数は1である、窒素を含む5員環を有する化合物である。そのような窒素を含む5員環を有する化合物には、たとえば、ピロール、インドール、ピロリジン、イソチアゾール、イソオキサゾール、フラザン、カルバゾール及び1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどが挙げられる。また、狭小な粒度分布を有し、結晶性の優れた酸化チタン粒子を製造できることから、より好ましい窒素を含む5員環を有する化合物は、5員環が飽和複素環である化合物である。そのような窒素を含む5員環を有する化合物には、たとえば、ピロリジン及び1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどが挙げられる。これらは、1種を単独で、または2種以上を組み合わせて使用することができる。
 窒素を含む5員環を有する化合物の配合量は、加水分解生成物中のチタン原子1molに対して、好ましくは0.01~1.0molであり、より好ましくは0.1~0.7molであり、さらに好ましくは0.1~0.5molである。
(水)
 工程(A)では、所望により、濃度調整等のために、チタンアルコキシド又はチタン金属塩の加水分解生成物及び窒素を含む5員環を有する化合物に適宜水を添加してもよい。
 工程(A)で用いる水には、たとえば脱イオン水、蒸留水及び純水などが挙げられる。
(混合)
 チタンアルコキシド又はチタン金属塩の加水分解生成物と、窒素を含む5員環を有する化合物とを混合する混合方法は、均一な混合溶液を作製できれば、特に限定されない。たとえば、上記原料を攪拌機、ビーズミル、ボールミル、アトライター及びディゾルバーなどを使用して混合することができる。
(pH)
 混合溶液のpHは、好ましくは9~13であり、より好ましくは11~13である。混合溶液のpHを変えることにより、得られる酸化チタン粒子の平均粒径を制御することができる。混合溶液のpHが9よりも小さい場合、窒素を含む5員環を有する化合物の核形成への触媒作用が小さくなる場合がある。これにより、工程(B)で混合溶液中に生成する粒子の核の核生成速度が遅くなり、混合溶液中に生成する粒子の核の数が少なくなる場合がある。そのため、個々の粒子の粒子径は大きくなり、得られる酸化チタン粒子の平均粒径が大きくなりすぎてしまう場合がある。一方、混合溶液のpHが13よりも大きいと、工程(B)で混合溶液中に生成する粒子の核の核生成速度が速くなり、混合溶液中に生成する粒子の核の数が多くなりすぎてしまう場合がある。これにより、個々の粒子の粒子径は小さくなり、得られる酸化チタン粒子の平均粒径が小さくなりすぎてしまう場合がある。また、混合溶液のpHが13よりも大きいと、混合溶液の分散性が変化し、工程(B)で生成する酸化チタン粒子の粒度分布幅が大きくなりすぎてしまう場合がある。
(混合溶液中のチタンの濃度)
 混合溶液中におけるチタンの濃度は、チタン原子濃度で、好ましくは0.05~3.0mol/kgであり、より好ましくは0.5~2.5mol/kgである。混合溶液中におけるチタンの濃度が0.05mol/kgよりも小さいと、工程(B)で混合溶液中に生成する粒子の核の核生成速度が遅くなり、混合溶液中に生成する粒子の核の数が少なくなる場合がある。そのため、個々の粒子の粒子径は大きくなり、得られる酸化チタン粒子の平均粒径が大きくなりすぎてしまう場合がある。一方、混合溶液中におけるチタンの濃度が3.0mol/kgよりも大きいと、工程(B)で混合溶液中に生成する粒子の核の核生成速度が速くなり、混合溶液中に生成する粒子の核の数が多くなりすぎてしまう場合がある。これにより、個々の粒子の粒子径は小さくなり、得られる酸化チタン粒子の平均粒径が小さくなりすぎてしまう場合がある。また、混合溶液中におけるチタンの濃度が3.0mol/kgよりも大きいと、混合溶液の分散性が変化し、工程(B)で生成する酸化チタン粒子の粒度分布幅が大きくなりすぎてしまう場合がある。
(混合溶液中のチタン原子と窒素を含む5員環を有する化合物とのモル比)
 混合溶液中のチタン原子と窒素を含む5員環を有する化合物とのモル比は、好ましくは1.00:0.01~1.00:1.00の範囲であり、より好ましくは1.00:0.10~1.00:0.70の範囲である。混合溶液中のチタン原子と窒素を含む5員環を有する化合物とのモル比が1.00:0.01~1.00:1.00の範囲であると、粒度分布幅が狭く、結晶性の優れた酸化チタン粒子が合成できる。
(工程(B))
 工程(B)では、混合溶液を加熱及び加圧して酸化チタン微粒子を生成させる。工程(B)は、好ましくは高温高圧容器(オートクレーブ)を使用して実施される。工程(B)では、混合溶液の水熱反応により酸化チタン微粒子を生成させる。加熱及び加圧による反応が完了したあとは、酸化チタン微粒子が溶液中に分散した分散溶液が得られる。
(加熱及び加圧)
 工程(B)における加熱温度は、好ましくは150~350℃であり、より好ましくは150~210℃である。また、工程(B)における圧力は、密閉容器において混合溶液を上記温度に加熱したときの圧力である。工程(B)における加熱温度及び圧力が上述の範囲であると、上記加水分解生成物を混合溶液中の水に溶解させることができるとともに、酸化チタン粒子の核を生成させ、その核を成長させて酸化チタン粒子を生成させることができる。室温から加熱温度まで混合溶液を昇温させるときの昇温時間は、好ましくは1~3時間である。
(攪拌)
 工程(B)では、好ましくは、混合溶液を攪拌しながら混合溶液を加熱及び加圧する。攪拌速度は、たとえば、100~300rpm程度で、好ましくは200rpmである。
(加熱時間)
  工程(B)における上記加熱温度での加熱時間は、好ましくは3~12時間であり、より好ましくは4~9時間である。加熱時間が3時間よりも短いと、反応がすべて終わらない場合があり、加熱時間が12時間より長いと、混合溶液の反応が完了した後も加熱を長時間続けてしまう場合がある。
 なお、反応完了後、酸化チタン微粒子が溶液中に分散した分散溶液が得られるが、所望により、不純物除去等のために、得られた酸化チタン粒子を純水等で洗浄してもよい。
 反応完了後の酸化チタン粒子を含む分散溶液は、そのまま用いられてもよく、分散溶液から固液分離などで回収して乾燥し、酸化チタン粒子として用いられてもよく、用途に応じて所望の形態にすればよい。
 本発明の製造方法で得られた酸化チタン粒子を含む分散溶液や、この分散溶液を乾燥して得られる酸化チタン粒子は、色素増感太陽電池の半導体層や絶縁層用の酸化チタン粒子として用いられてもよく、光触媒用の光触媒粒子として用いられてもよい。
(酸化チタン粒子及び酸化チタン粒子の分散溶液)
 以上の本発明の酸化チタン粒子の製造方法によって、たとえば、平均粒径が5~100nmであるアナターゼ単相を含む酸化チタン粒子及びそれを含有する酸化チタン粒子の分散溶液を得ることができる。
(酸化チタン粒子の分散溶液の粒度分布)
 工程(B)で混合溶液が水熱反応すると、酸化チタン粒子は、酸化チタン粒子の分散溶液として得られる。その分散溶液中の酸化チタン粒子の粒度分布幅は、たとえば、20~92nmであり、酸化チタン粒子の90%累積強度粒度分布径D90は、たとえば、58nm以下である。また、工程(A)及び工程(B)の条件によっては、酸化チタン粒子の粒度分布幅を18~52nmとし、酸化チタン粒子の90%累積強度粒度分布径D90を42nm以下にし、さらに、酸化チタン粒子の粒度分布幅を13~41nmとし、酸化チタン粒子の90%累積強度粒度分布径D90を32nm以下にすることができる。したがって、本発明の酸化チタン粒子の製造方法によって、極めて狭小な粒度分布幅を有する酸化チタン粒子を得ることができる。
(酸化チタン粒子の分散溶液のPDI)
 本発明の酸化チタン粒子分散溶液中における酸化チタン粒子の、JIS Z8828に準拠して測定したキュムラント多分散指数(PDI)は、好ましくは0.50以下であり、より好ましくは0.30以下である。PDIは、Polydispersity indexの略で、値が小さいほど単分散性が良いことを意味する。酸化チタン粒子のPDIが0.50以下であると、粒度分布幅が狭く、色素増感太陽電池の半導体電極として用いた場合に、高い光電変換効率が得られる。
 PDIは値が小さいほど好ましいので下限値は特に限定されないが、PDIは0.01以上や、0.10以上や、0.15以上等であってもよい。
(酸化チタン粒子の分散溶液の平均粒径)
 本発明の酸化チタン粒子の製造方法で得られる酸化チタン粒子の分散溶液の平均粒径(50%累積強度粒度分布径D50)は、好ましくは10~100nmであり、より好ましくは15~80nmである。酸化チタン粒子の平均粒径が10nm未満であると、ペーストに配合した時に分散性を維持できず、100nmを超えると、色素増感太陽電池の半導体電極として用いた場合に、色素を十分に吸着できない。
(酸化チタン粒子のBET比表面積)
 酸化チタン粒子のBET比表面積は、好ましくは40~150m/gであり、より好ましくは50~100m/gである。酸化チタン粒子のBET比表面積が40m/g未満であると、色素増感太陽電池の半導体電極として用いた場合、色素を十分に吸着できない場合があり、150m/gを超えると、ペーストに配合した時に分散性を維持できない場合がある。
(酸化チタン粒子のDXRD(100)/DXRD(001)
 酸化チタン粒子のDXRD(100)/DXRD(001)は、好ましくは0.2~1.0であり、より好ましくは0.4~0.8であり、さらに好ましくは0.5~0.8である。酸化チタン粒子DXRD(100)/DXRD(001)が0.2~1.0であると、色素増感太陽電池の半導体電極として用いた場合、高い光電変換効率が得られる。なお、DXRD(100)/DXRD(001)は、酸化チタン粒子のX線回折パターンにおける(001)面の回折ピーク半値幅から算出するシェラー径に対する(100)面の回折ピーク半値幅から算出するシェラー径の比である。
 したがって、本発明の酸化チタン粒子の製造方法によって、狭小な粒度分布を有するとともに形状が安定し、結晶性に優れた酸化チタン粒子を得られる。
 上述したように、工程(B)の後、酸化チタン粒子は分散溶液の状態になる。酸化チタン粒子は、分散溶液から分離して使用してもよい。また、酸化チタン粒子を分散溶液の状態で使用してもよい。工程(B)の後に生成される酸化チタン粒子の分散溶液の透明性は高いので、この分散溶液を用いて作製した塗布膜の透明性も高くなる。このような分散溶液の透明性の高さから、本発明の酸化チタン粒子の製造方法によって製造された酸化チタン粒子は、光触媒、透明性超親水膜及び色素増感太陽電池の光半導体多孔質膜の用途に特に適している。
 工程(B)の後に生成される酸化チタン粒子の分散溶液は、後述するバインダとの相溶性を向上させるために、水を別の溶媒に置換して用いてもよい。
 別の溶媒としては、バインダとの相溶性がよく、水と置換されても、上記酸化チタン粒子の特性及び分散溶液の特性を維持できる溶媒であれば特に限定されない。このような溶媒としては、アルコール類が好ましく、メタノールやエタノールが特に好ましい。
 すなわち、本発明の酸化チタン粒子の分散溶液は、窒素を含む5員環を有する化合物を含有し、前記酸化チタン粒子のX線回折パターンにおける(001)面の回折ピークの半値幅から算出するシェラー径(DXRD(001))に対する、(100)面の回折ピーク半値幅から算出するシェラー径(DXRD(100))の比(DXRD(100)/DXRD(001))が、0.2~1.0であり、前記酸化チタン粒子のJIS Z8828に準拠して測定したキュムラント多分散指数(PDI)が0.50以下である。
 本発明の酸化チタン粒子の製造方法では、窒素を含む5員環を有する化合物は、加水分解生成物中のチタン原子1molに対して、好ましくは0.01~1.0mol、より好ましくは0.1~0.7mol、さらに好ましくは0.1~0.5mol配合される。そのため、本発明の酸化チタン粒子の分散溶液中の窒素を含む5員環を有する化合物の含有量は、チタン原子1molに対して、好ましくは0.01~1.0molであり、より好ましくは0.1~0.7molであり、さらに好ましくは0.1~0.5molである。
[酸化チタン粒子の分散溶液]
 本発明の酸化チタン粒子の分散溶液は、窒素を含む5員環を有する化合物を含有する酸化チタン粒子の分散溶液であり、酸化チタン粒子のX線回折パターンにおける(001)面の回折ピークの半値幅から算出するシェラー径(DXRD(001))に対する、(100)面の回折ピーク半値幅から算出するシェラー径(DXRD(100))の比(DXRD(100)/DXRD(001))が、0.2~1.0であり、酸化チタン粒子の、JIS Z8828に準拠して測定したキュムラント多分散指数が0.50以下である。
 なお、窒素を含む5員環を有する化合物、シェラー径(DXRD(100))の比(DXRD(100)/DXRD(001))及び酸化チタン粒子のキュムラント多分散指数については、本発明の酸化チタン粒子の製造方法で説明したものと同じであるので、説明を省略する。
[酸化チタンペースト]
 本発明の酸化チタンペーストは、本発明の製造方法によって製造された酸化チタン粒子及び本発明の酸化チタン粒子の分散溶液の少なくとも一方と、溶媒と、バインダとを含む。溶媒には、ターピネオール、ブチルカルビトール、ブチルカルビトールアセテート、アセテート、トルエン、メタノールやエタノール等の各種アルコール及びキシレンなどが挙げられる。また、バインダには、たとえばエチルセルロース、ポリビニルブチラール、メタクリル樹脂及びブチルメタクリレートなどが挙げられる。酸化チタンペーストは、分散剤、活性剤及び可塑剤などの添加剤をさらに含んでもよい。なお、上述の分散溶液の状態の酸化チタン粒子を使用して本発明の酸化チタンペーストを作製してもよい。
 また、本発明の酸化チタン粒子は、5員環を有する化合物を用いて製造されるため、洗浄等が十分でない場合には、本発明の酸化チタンペーストは、換言すれば、酸化チタン粒子と、溶媒と、バインダと、窒素を含む5員環を有する化合物とを含む酸化チタンペーストである。
 5員環を有する化合物は完全に除去されているのが好ましいが、莫大な手間とコストがかかり、現在の技術では困難である。そのため、実用上は本発明の酸化チタンペーストには、5員環を有する化合物が3ppm以上含有されていることが好ましい。本発明の酸化チタンペーストは、5員環を有する化合物が3~100ppm含有されていることが好ましく、3~50ppm含有されていることがより好ましく、3~30ppm含有されていることがさらに好ましい。
[酸化チタン膜]
 本発明の酸化チタン膜は、本発明のチタンペーストを塗布し、焼成することにより得られる。酸化チタンペーストを塗布する方法には、たとえば、スピンコート法、ディップコート法、バーコート法、スプレー法、ブレードコート法、スリットダイコート法、グラビアコート法、リバースコート法、スクリーン印刷法、印刷転写法及びインクジェット法などが挙げられる。塗布した酸化チタンペーストは、所望により乾燥した後、焼成される。これにより、本発明の酸化チタン膜が形成する。焼成温度は、酸化チタン粒子同士が結合して酸化チタン多孔質体が形成するような温度であれば特に限定されない。
[色素増感太陽電池]
 本発明の色素増感太陽電池は、導電性基板、増感色素を担持した光半導体電極、対向電極及び電解質を含み、光半導体電極は、本発明の酸化チタン膜を有する。
 色素増感太陽電池は、導電性基板上に形成された色素を吸着した半導体微粒子含有層からなる光半導体電極、電解質及び対向電極から構成される。特にNature(第353巻、737~740頁、1991年)及び米国特許4927721号等には、色素によって増感された半導体微粒子を用いた光電変換素子及び太陽電池、ならびにこれを作製するための材料及び製造技術が開示されている。色素増感太陽電池の光半導体電極用途に酸化チタン粒子を使用する場合、酸化チタン粒子の平均粒径、結晶性、粒度分布、純度及び結晶面などが、色素増感太陽電池の太陽光変換効率に大きく影響する。
 本発明の酸化チタン膜は、本発明の酸化チタン粒子の製造方法により製造された酸化チタン粒子を用いているので、酸化チタン粒子の粒子径が小さく、結晶性及び純度が高く、粒度分布が狭い。したがって、本発明の酸化チタン粒子の製造方法により製造された酸化チタン粒子を色素増感太陽電池の光半導体電極用途に使用することによって、色素増感太陽電池の太陽光変換効率を高くすることができる。また、本発明の酸化チタン膜を色素増感太陽電池の光半導体電極用途に使用した場合、光半導体電極の透明性を増大させることができるとともに、光半導体電極に担持させる色素の量を増やすことができる。
 以下、本発明の酸化チタン膜を光半導体電極として用いた場合の色素増感太陽電池の作製方法の一例を示す。色素増感太陽電池の作製方法は、導電性基板を作製する工程、光半導体電極を形成する工程、半導体電極に色素を担持させる工程、対向電極を配置する工程及び電解質を注入する工程を含む。
(導電性基板を作製する工程)
 透明基板を準備し、この上に透明導電層を形成して、導電性基板を作製する。透明導電層はスパッタリング法、CVD法及び塗布法など公知の成膜技術を用いて形成することができる。また、透明導電層が形成された市販の透明基板を透明導電性基板として使用することもできる。透明導電層には、たとえば、スズドープ酸化インジウム(ITO)層、フッ素ドープ酸化スズ(FTO)層、アンチモンドープ酸化スズ(ATO)/ITO複合層、酸化スズ層、酸化亜鉛層及びTiO/Ag/TiO複合層などがある。また、導電性基板の電気伝導性を向上させるために、Ag及びCuなどの金属格子配線を導電性基板にさらに設けてもよい。
(光半導体電極を形成する工程)
 本発明の酸化チタンペーストを上述の透明導電性基板上にスクリーン印刷し、乾燥し、焼成することによって、本発明の酸化チタン膜を形成する。この酸化チタン膜が光半導体電極となる。
 本発明の酸化チタンペーストの焼成温度は、好ましくは250~600℃であり、より好ましくは400~550℃である。酸化チタンペーストの焼成温度が250℃よりも低いと、酸化チタン粒子間の良好な結合が得られないため、光半導体電極の抵抗が高くなる場合がある。また、酸化チタンペーストの焼成温度が600℃よりも低いと、酸化チタン粒子の粒成長が大きくなり、光半導体電極の比表面積が小さくなりすぎてしまう場合がある。
(半導体電極に色素を担持させる工程)
 所定の溶媒中に増感色素を溶解させて増感色素溶液を作製する。増感色素溶液の作製に用いる溶媒には、たとえば、メタノール、エタノール、2プロパノール、1ブタノール及びt-ブタノールなどのアルコール類、アセトニトリル、メトキシアセトニトリル、プロピオニトリル及び3メトキシプロピオニトリルなどのニトリル類、又はこれらの混合溶媒が挙げられる。
 増感色素溶液の作製に用いる増感色素として、金属錯体系色素及び有機色素などを使用することができる。金属錯体色素には、金属フタロシアニン、クロロフィル、ヘミンならびにルテニウム、オスミウム、鉄及び亜鉛からなる群から選択される少なくとも1種を含有する金属錯塩などが挙げられる。好ましい金属錯体色素はルテニウム金属錯体である。好ましいルテニウム金属錯体には、たとえば、ルテニウムビピリジン錯体及びルテニウムターピリジン錯体が挙げられる。有機色素には、クマリン誘導体系色素、ポリエン系色素、メロシアニン系色素、アゾ系色素、キノン系色素、スクアリリウム系色素、シアニン系色素、スチリル系色素及びキサンテン系色素などが挙げられる。好ましい有機色素はクマリン誘導体系色素である。
 光半導体電極を形成した導電性基板を増感色素溶液に浸漬することにより、光半導体電極に増感色素を担持させる。
(対向電極を配置する工程)
 光半導体電極に対向する位置に対向電極を配置する。対向電極には、たとえば、Al及びSUSなどの金属電極、ならびにガラス及びプラスチックなどから構成される基板と、その基板上に形成されたPt、C、Ni、Cr、ステンレス、フッ素ドープ酸化スズ及びITOなどの導電層とから構成される導電性基板電極などが挙げられる。
(電解質を注入する工程)
 光半導体電極と対向電極との間に電解質を注入して、光半導体電極と対向電極との間に電解質を介在させることによって色素増感太陽電池を得ることができる。色素増感太陽電池の電解質として、固体電解質及び液体電解質を使用することができる。色素増感太陽電池の電解質には、たとえば、ヨウ素系電解質、臭素系電解質、セレン系電解質及び硫黄系電解質などが挙げられる。好ましい電解質はヨウ素系電解質であり、好ましいヨウ素系電解質は、I、LiI及びジメチルプロピルイミダゾリウムヨージドからなる群より選択される少なくとも1種をアセトニトリル、メトキシアセトニトリル、プロピレンカーボネート及びエチレンカボネートなどの有機溶剤に溶かすことにより得られる溶液である。なお、液体電解質を用いる場合は、光半導体電極と対向電極との間に隔壁を設けた後、光半導体電極と対向電極との間の空間内に電解質を注入する。
 たとえば、以上のようにして、本発明の酸化チタン膜を用いて色素増感太陽電池を作製することができる。本発明の酸化チタン膜を光半導体電極として用いることによって、十分に高い光電変換率を有する色素増感太陽電池を得ることができる。
 以下、実施例により本発明をさらに詳細に説明する。なお、実施例は、本発明を限定するものではない。
[試料の作製]
 以下のようにして、実施例1~6及び比較例1~6の酸化チタン粒子の分散溶液を作製した。
(実施例1)
 容量2Lのビーカーに純水1Lを投入し、攪拌しながらテトライソプロポキシチタン(日本曹達(株)製、品名:A-1)を1mol滴下し、白色懸濁液を得た。この白色懸濁液をろ過してチタンアルコキシドの加水分解生成物を得た。次いで、チタン原子の含有量が1molになる量の上記加水分解生成物、加水分解生成物中のチタン原子1molに対して0.15molになる量のピロリジン(関東化学(株)製)、ならびに加水分解生成物、ピロリジン及び純水の合計量が1kgになるような量の純水をオートクレーブ(植田技研社製、型番:SR-200)に投入し、混合して混合溶液を作製した。そして、オートクレーブの中で210℃の加熱温度で混合溶液を4時間30分間加熱して、実施例1の酸化チタン粒子の分散溶液を作製した。なお、オートクレーブの中は密閉されているので、オートクレーブの中で混合溶液を210℃の加熱温度に加熱することによって、混合溶液は加圧される。
(実施例2)
 ピロリジンの代わりに、1,5-ジアザビシクロ-[4.3.0.]-5-ノネン(東京化成工業(株)製)を配合した以外は、実施例1と同様にして実施例2の酸化チタン粒子の分散溶液を作製した。
(実施例3)
 加熱温度を210℃から230℃に変更した以外は、実施例1と同様にして実施例3の酸化チタン粒子の分散溶液を作製した。
(実施例4)
 加水分解生成物中のチタン原子1molに対して0.19molとなるような配合量にピロリジンの配合量を変更した以外は、実施例1と同様にして実施例4の酸化チタン粒子の分散溶液を作製した。
(実施例5)
 ピロリジンの代わりに、加水分解生成物中のチタン原子1molに対して0.19molとなるような配合量の1,5-ジアザビシクロ-[4.3.0.]-5-ノネン(東京化成工業(株)製)を配合した以外は、実施例1と同様にして実施例5の酸化チタン粒子の分散溶液を作製した。
(実施例6)
 加水分解生成物中のチタン原子1molに対して0.12molとなるような配合量にピロリジンの配合量を変更した以外は、実施例1と同様にして実施例6の酸化チタン粒子の分散溶液を作製した。
(比較例1)
 ピロリジンの代わりに、25wt%のテトラメチルアンモニウム=ヒドロキシド水溶液(多摩化学工業(株)製)を配合した以外は、実施例1と同様にして比較例1の酸化チタン粒子の分散溶液を作製した。
(比較例2)
 ピロリジンの代わりに、トリエタノールアミン(関東化学(株)製)を配合した以外は、実施例1と同様にして比較例2の酸化チタン粒子の分散溶液を作製した。しかし、酸化チタンは凝集沈降し、比較例2の酸化チタン粒子の分散溶液では、酸化チタン粒子を良好に分散させることはできなかった。
(比較例3)
 ピロリジンの代わりに、エタノールアミン(関東化学(株)製)を配合した以外は、実施例1と同様にして比較例3の酸化チタン粒子の分散溶液を作製した。しかし、酸化チタンは凝集沈降し、比較例3の酸化チタン粒子の分散溶液では、酸化チタン粒子を良好に分散させることはできなかった。
(比較例4)
 ピロリジンの代わりに、ジエタノールアミン(関東化学(株)製)を配合した以外は、実施例1と同様にして比較例4の酸化チタン粒子の分散溶液を作製した。しかし、酸化チタンは凝集沈降し、比較例4の酸化チタン粒子の分散溶液では、酸化チタン粒子を良好に分散させることはできなかった。
(比較例5)
 ピロリジンの代わりに、ジエチレントリアミン(関東化学(株)製)を配合した以外は、実施例1と同様にして比較例5の酸化チタン粒子の分散溶液を作製した。しかし、酸化チタンは凝集沈降し、比較例5の酸化チタン粒子の分散溶液では、酸化チタン粒子を良好に分散させることはできなかった。
(比較例6)
 ピロリジンの代わりに、モルホリン(関東化学(株)製)を配合した以外は、実施例1と同様にして比較例5の酸化チタン粒子の分散溶液を作製した。しかし、酸化チタンは凝集沈降し、比較例6の酸化チタン粒子の分散溶液では、酸化チタン粒子を良好に分散させることはできなかった。
[試料の評価]
 以下のようにして、実施例1~6及び比較例1~6の酸化チタン粒子の分散溶液を評価した。
(酸化チタン粒子のBET比表面積)
 酸化チタン粒子の分散溶液をろ過して酸化チタン粒子を分散溶液から分離させた。そして、酸化チタン粒子を純水で洗浄した後、200℃の温度で酸化チタン粒子を乾燥した。乾燥した酸化チタン粒子のBET比表面積を、比表面積計(日本ベル(株)製、型番:BELSORP-mini)を使用して測定した。
(酸化チタン粒子の平均粒径、90%累積強度粒度分布径D90(μm))
 酸化チタン粒子の分散溶液における酸化チタン粒子の平均粒径(50%累積強度粒度分布径)及び90%累積強度粒度分布径D90を、粒度分布計((株)堀場製作所製、型番:SZ-100)を使用して測定した。
(酸化チタン粒子の分散溶液のPDI)
 酸化チタン粒子の分散溶液における酸化チタン粒子のキュムラント多分散指数(PDI)を、粒度分布計 型番SZ-100((株)堀場製作所製)で測定した。
(酸化チタン粒子の結晶相の同定及びDXRD(100)/DXRD(001)
 酸化チタン粒子の分散溶液をろ過して酸化チタン粒子を分散溶液から分離させた。そして、酸化チタン粒子を純水で洗浄した後、200℃の温度で酸化チタン粒子を乾燥した。乾燥した酸化チタン粒子の結晶相及びX線回折パターンのDXRD(100)/DXRD(001)を、X線回折装置(スペクトリス社製、型番:X’Pert PRO)を使用して調べた。DXRD(100)/DXRD(001)は、酸化チタン粒子のX線回折パターンにおける(001)面の回折ピーク半値幅から算出するシェラー径に対する(100)面の回折ピーク半値幅から算出するシェラー径の比である。
(色素増感太陽電池の光電変換効率の測定)
 実施例1~6及び比較例1の酸化チタン粒子の分散溶液を用いて色素増感太陽電池を作製し、色素増感太陽電池の光電変換効率を測定した。色素増感太陽電池は以下のように作製した。なお、比較例2~6の酸化チタン粒子は分散が不良で酸化チタンペーストが得られなかったので、比較例2~6の酸化チタン粒子の分散溶液を用いて色素増感太陽電池を作製することはできなかった。
<酸化チタンペーストの作製>
 実施例1~6及び比較例1の酸化チタン粒子の分散溶液の溶媒をエタノールで置換し、アルコール分散溶液を作製した。アルコール分散溶液を酸化チタンとして26質量部となるように秤量したアルコール分散溶液と、エチルセルロース(ダウ・ケミカル社製、商品名:エトセル)を8質量部、及びターピネオール(関東化学(株)製)を66質量部混合し混合溶液を作製した。エバポレータ(東京理化器械(株)製、型番:N-1110)を使用して余分なエタノールを混合溶液から除去した。余分なエタノールを除去した混合溶液を、3本ロールミル(EXAKT社製、型番:M-50)を使用して混錬して酸化チタンペーストを得た。
<酸化チタンペーストを使用した色素増感太陽電池の作製>
 透明導電膜付き基板(日本板硝子(株)製)に、スクリーン印刷法で、5mm×5mmの大きさ及び焼成後の膜厚が7μmになるように酸化チタンペーストを塗布した。そして、塗布した酸化チタンペーストを焼成して、酸化チタン膜(酸化チタン多孔質体)を透明導電膜付き基板上に形成し、酸化チタン膜(酸化チタン多孔質体)付き基板を作製した。このようにして得られた酸化チタン膜(酸化チタン多孔質体)付き基板を、3×10-4mol/Lの濃度のRu金属錯体色素(Black Dye色素)溶液(DYESOL社製)10mL中に24時間浸漬して増感色素を酸化チタン膜(酸化チタン多孔質体)に担持させた。次いで、酸化チタン膜(酸化チタン多孔質体)付き基板と、表面に白金膜が形成された対極基板と、相互に対向するように、色素増感太陽電池用の容器に配置し、基板間に液体電解質(1,2-ジメチル-3-プロピルイミダゾリウムのヨウ素塩(関東化学(株)製)0.6M、ヨウ化リチウム(関東化学(株))0.1M、ヨウ素(関東化学(株)製)0.05M、タ-シャリ-ブチルピリジン(関東化学(株)製)0.5Mをアセトニトリル(関東化学社製)に加えて作製した液体電解質)を注入、容器を密封して色素増感太陽電池を作製した。
<光電変換効率の測定>
 ソ-ラ-シミュレ-タ-(山下電装(株)製、型番:YSS-100AAH)を用いて、色素増感太陽電池に、擬似太陽光を照射し、電流電圧測定装置(エーディーシー社製、型番:6243)にてI-V特性を測定することによって光電変換効率を求めた。ただし、色素増感太陽電池の作製によるI-V特性の測定はバラつきが大きいため、リファレンスとして比較例1の酸化チタンの分散溶液で作製した光半導体電極を用いた色素増感太陽電池の光電変換特性で規格化して実施例1~6及び比較例1の酸化チタンの分散溶液で作製した光半導体電極を用いた色素増感太陽電池の光電変換効率を求めた。
[評価結果]
 実施例1~6及び比較例1~6の酸化チタンの分散溶液の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
※1 DBN:1,5-ジアザビシクロ-[4.3.0.]-5-ノネン
※2 TMAH:25wt%のテトラメチルアンモニウム=ヒドロキシド水溶液
※3 TEA:トリエタノールアミン
※4 DEA:ジエタノールアミン
※5 DETA:ジエチレントリアミン
[結果]
 実施例1~6の評価結果と比較例1の評価結果とを比較することにより、本発明によれば、TMAHを使用しなくても、優れた特性を有する酸化チタン粒子を製造できることがわかった。また、実施例1~6の評価結果と比較例2~6の評価結果とを比較することにより、窒素を含む5員環を有する化合物は、他のアミン化合物に比べて、水熱合成により酸化チタン粒子を生成させるための触媒として優れていることがわかった。さらに、実施例1~6の評価結果と比較例1~6の評価結果とを比較することにより、本発明の酸化チタン粒子の製造方法により製造された酸化チタン粒子(酸化チタン粒子の分散溶液)を用いることにより、光電変換効率が良好な色素増感太陽電池を得られることがわかった。
<酸化チタンペーストに含まれる窒素を含む5員環を有する化合物(ピロリジン)の量>
 実施例4、6、比較例1の酸化チタンペーストに含有されるピロリジンの量を測定した。
 各実施例、比較例で得られた酸化チタンペーストを酸溶液で抽出し、キャピラリー電気泳動法にて測定した。その結果、実施例4の酸化チタンペーストには20ppm、実施例6の酸化チタンペーストには11ppmのピロリジンが検出され、比較例1の酸化チタンペーストは検出下限以下であり、ピロリジンは検出されなかった。
 この評価結果より、実施例4、6の酸化チタンペーストには、触媒として使用した窒素を含む5員環を有する化合物が微量残留していることが確認された。

Claims (9)

  1.  チタンアルコキシド又はチタン金属塩の加水分解生成物と、窒素を含む5員環を有する化合物とを混合して混合溶液を作製する工程、及び
     前記混合溶液を加熱及び加圧して酸化チタン微粒子を生成させる工程を含む酸化チタン粒子の製造方法。
  2.  前記窒素を含む5員環を有する化合物は、ピロール、イミダゾール、インドール、プリン、ピロリジン、ピラゾール、トリアゾール、テトラゾール、イソチアゾール、イソオキサゾール、フラザン、カルバゾール及び1,5-ジアザビシクロ-[4.3.0]-5-ノネンからなる群から選択される少なくとも1種である請求項1に記載の酸化チタン粒子の製造方法。
  3.  請求項1又は2に記載の酸化チタン粒子の製造方法によって製造された酸化チタン粒子。
  4.  窒素を含む5員環を有する化合物を含有する酸化チタン粒子の分散溶液であって、前記酸化チタン粒子のX線回折パターンにおける(001)面の回折ピークの半値幅から算出するシェラー径(DXRD(001))に対する、(100)面の回折ピーク半値幅から算出するシェラー径(DXRD(100))の比(DXRD(100)/DXRD(001))が、0.2~1.0であり、JIS Z8828に準拠して測定した前記酸化チタン粒子のキュムラント多分散指数(PDI)が0.50以下である酸化チタン粒子の分散溶液。
  5.  請求項1又は2に記載の酸化チタン粒子の製造方法によって製造された酸化チタン粒子及び請求項4に記載の酸化チタン粒子の分散溶液の少なくとも一方と、溶媒と、バインダと、を含む酸化チタンペースト。
  6.  酸化チタン粒子と、溶媒と、バインダと、窒素を含む5員環を有する化合物とを含む酸化チタンペースト。
  7.  前記窒素を含む5員環を有する化合物を3ppm以上含む請求項6に記載の酸化チタンペースト。
  8.  請求項5~7のいずれか1項に記載の酸化チタンペーストを塗布し、焼成することにより得られる酸化チタン膜。
  9.  導電性基板、増感色素を担持した光半導体電極、対向電極及び電解質を含み、
     前記光半導体電極は、請求項8記載の酸化チタン膜を有する色素増感太陽電池。
PCT/JP2015/077606 2014-09-30 2015-09-29 酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池 WO2016052561A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580052114.3A CN107074581B (zh) 2014-09-30 2015-09-29 氧化钛粒子的制造方法、氧化钛粒子、氧化钛粒子的分散溶液、氧化钛浆料、氧化钛膜及染料敏化太阳能电池
KR1020177009216A KR102374217B1 (ko) 2014-09-30 2015-09-29 산화 타이타늄 입자의 제조 방법, 산화 타이타늄 입자, 산화 타이타늄 입자의 분산 용액, 산화 타이타늄 페이스트, 산화 타이타늄막 및 색소 증감 태양 전지
JP2016552096A JP6705381B2 (ja) 2014-09-30 2015-09-29 酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池
EP15846539.3A EP3202716A4 (en) 2014-09-30 2015-09-29 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film and dye-sensitized solar cell
US15/515,053 US10892107B2 (en) 2014-09-30 2015-09-29 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell
US16/277,150 US20190371532A1 (en) 2014-09-30 2019-02-15 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014201782 2014-09-30
JP2014-201782 2014-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/515,053 A-371-Of-International US10892107B2 (en) 2014-09-30 2015-09-29 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell
US16/277,150 Division US20190371532A1 (en) 2014-09-30 2019-02-15 Method for producing titanium oxide particles, titanium oxide particles, dispersion solution of titanium oxide particles, titanium oxide paste, titanium oxide film, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
WO2016052561A1 true WO2016052561A1 (ja) 2016-04-07

Family

ID=55630586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077606 WO2016052561A1 (ja) 2014-09-30 2015-09-29 酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池

Country Status (6)

Country Link
US (2) US10892107B2 (ja)
EP (1) EP3202716A4 (ja)
JP (2) JP6705381B2 (ja)
KR (1) KR102374217B1 (ja)
CN (1) CN107074581B (ja)
WO (1) WO2016052561A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186201A (ja) * 2016-04-06 2017-10-12 住友大阪セメント株式会社 酸化チタンペースト、酸化チタン膜及び色素増感太陽電池
WO2019131833A1 (ja) * 2017-12-28 2019-07-04 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料
WO2021002466A1 (ja) * 2019-07-03 2021-01-07 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733608A4 (en) * 2017-12-28 2021-09-29 Sumitomo Osaka Cement Co., Ltd. TITANIUM OXIDE POWDER AND DISPERSION LIQUID AND COSMETIC USE OF THE ABOVE POWDER
JP6988471B2 (ja) * 2017-12-28 2022-01-05 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料
RU2693177C1 (ru) * 2018-04-02 2019-07-01 Елена Николаевна Лапшина Способ получения диоксида титана спецмарок и особой чистоты с регулируемой удельной поверхностью
WO2020170917A1 (ja) * 2019-02-19 2020-08-27 昭和電工株式会社 酸化チタン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176753A (ja) * 2005-12-28 2007-07-12 Sumitomo Osaka Cement Co Ltd 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
JP2008095015A (ja) * 2006-10-13 2008-04-24 Sumitomo Osaka Cement Co Ltd 導電性被膜形成用塗布液と導電性被膜の形成方法及び導電性被膜
JP2012059467A (ja) * 2010-09-07 2012-03-22 Toshiba Corp 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
WO2012060280A1 (ja) * 2010-11-05 2012-05-10 東洋インキScホールディングス株式会社 金属酸化物半導体粒子分散体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161573A (ja) 2002-11-15 2004-06-10 Nippon Parkerizing Co Ltd 酸化チタンゾル、酸化チタン塗膜およびその形成方法
JP4382608B2 (ja) * 2004-03-15 2009-12-16 住友大阪セメント株式会社 色素増感型太陽電池
SG127749A1 (en) * 2005-05-11 2006-12-29 Agency Science Tech & Res Method and solution for forming anatase titanium dioxide, and titanium dioxide particles, colloidal dispersion and film
CN102689917B (zh) * 2012-06-13 2014-05-07 青岛科技大学 由硫酸钛制备硫酸钡多孔微球和二氧化钛纳米粒子的方法
CN103523826A (zh) 2013-10-16 2014-01-22 黑龙江大学 锡掺杂二氧化钛的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176753A (ja) * 2005-12-28 2007-07-12 Sumitomo Osaka Cement Co Ltd 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
JP2008095015A (ja) * 2006-10-13 2008-04-24 Sumitomo Osaka Cement Co Ltd 導電性被膜形成用塗布液と導電性被膜の形成方法及び導電性被膜
JP2012059467A (ja) * 2010-09-07 2012-03-22 Toshiba Corp 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
WO2012060280A1 (ja) * 2010-11-05 2012-05-10 東洋インキScホールディングス株式会社 金属酸化物半導体粒子分散体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202716A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186201A (ja) * 2016-04-06 2017-10-12 住友大阪セメント株式会社 酸化チタンペースト、酸化チタン膜及び色素増感太陽電池
WO2019131833A1 (ja) * 2017-12-28 2019-07-04 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料
JP2019119626A (ja) * 2017-12-28 2019-07-22 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料
WO2021002466A1 (ja) * 2019-07-03 2021-01-07 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料
JP2021011395A (ja) * 2019-07-03 2021-02-04 住友大阪セメント株式会社 酸化チタン粉体、並びに、それを用いた分散液および化粧料

Also Published As

Publication number Publication date
JP6705381B2 (ja) 2020-06-03
KR102374217B1 (ko) 2022-03-14
JP6977793B2 (ja) 2021-12-08
US20190371532A1 (en) 2019-12-05
US10892107B2 (en) 2021-01-12
KR20170063679A (ko) 2017-06-08
CN107074581B (zh) 2020-01-10
EP3202716A1 (en) 2017-08-09
JPWO2016052561A1 (ja) 2017-07-13
JP2020074467A (ja) 2020-05-14
EP3202716A4 (en) 2018-05-02
US20170221640A1 (en) 2017-08-03
CN107074581A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6977793B2 (ja) 酸化チタンペースト、酸化チタン膜及び色素増感太陽電池
JP4676877B2 (ja) 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
De Marco et al. Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency
Baek et al. Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell
Ke et al. Template-free solvothermal fabrication of hierarchical TiO 2 hollow microspheres for efficient dye-sensitized solar cells
Lekphet et al. Morphology control studies of TiO2 microstructures via surfactant-assisted hydrothermal process for dye-sensitized solar cell applications
Shen et al. Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells
Alizadeh et al. Unveiling the influence of SmFeO3-TiO2 nanocomposites as high performance photoanodes of dye-sensitized solar cells
Kumar et al. Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications
Roy et al. Polyaniline-layered rutile TiO2 nanorods as alternative photoanode in dye-sensitized solar cells
Mir et al. Effect of tertiary amines on the synthesis and photovoltaic properties of TiO2 nanoparticles in dye sensitized solar cells
KR101236969B1 (ko) 염료감응 태양 전지용 티타니아 나노 분말의 제조 방법, 티타니아 나노 분산액의 제조 방법 및 광촉매
Manseki et al. Size-controlled synthesis of anisotropic TiO 2 single nanocrystals using microwave irradiation and their application for dye-sensitized solar cells
CN103124774B (zh) 金属络合物色素、光电转换元件及光电化学电池
Fasolini et al. Increased efficiency and stability of Dye-Sensitized Solar Cells (DSSC) photoanode by intercalation of Eosin Y into Zn/Al layered double hydroxide
Narabe et al. A biphasic sol–gel route to synthesize anatase TiO2 particles under controlled conditions and their DSSC application
Nam et al. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods
JP4382873B1 (ja) 酸化チタン粒子
Tehare et al. Effect of a deposition container on the nanostructural growth and DSSC application of rutile TiO 2
JP2013203579A (ja) 高導電性酸化チタン構造体
JP6226013B2 (ja) 酸化チタンペースト、酸化チタン膜及び色素増感太陽電池
JP2011116646A (ja) 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子分散液
Lekphet et al. Effect of Ammonium Salts on the Hydrothermal Synthesis of TiO2 Nanocubes for Dye-Sensitized Solar Cells
JP4107499B2 (ja) 酸化チタン粒子の製造方法
Shahiduzzaman et al. Paste aging spontaneously tunes TiO2 nanoparticles into reproducible electrosprayed photoelectrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15515053

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015846539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009216

Country of ref document: KR

Kind code of ref document: A