WO2016052008A1 - 液圧緩衝器 - Google Patents

液圧緩衝器 Download PDF

Info

Publication number
WO2016052008A1
WO2016052008A1 PCT/JP2015/073862 JP2015073862W WO2016052008A1 WO 2016052008 A1 WO2016052008 A1 WO 2016052008A1 JP 2015073862 W JP2015073862 W JP 2015073862W WO 2016052008 A1 WO2016052008 A1 WO 2016052008A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner cylinder
end plate
cylinder
hydraulic shock
fitting portion
Prior art date
Application number
PCT/JP2015/073862
Other languages
English (en)
French (fr)
Inventor
柴原 和晶
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201580050644.4A priority Critical patent/CN106715953B/zh
Priority to GB1704079.1A priority patent/GB2544245B/en
Priority to JP2016551638A priority patent/JP6250185B2/ja
Publication of WO2016052008A1 publication Critical patent/WO2016052008A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • F16F9/3242Constructional features of cylinders of cylinder ends, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • F16F9/3257Constructional features of cylinders in twin-tube type devices

Definitions

  • the present invention relates to a double-cylinder horizontal hydraulic shock absorber used for railway vehicles and the like.
  • the double-cylinder horizontal hydraulic shock absorber described in Patent Document 1 is configured to discharge air staying in the upper corner of the liquid chamber to the lower portion of the reservoir through an annular passage and an orifice. Yes.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a double-cylinder horizontal hydraulic shock absorber that can more easily configure an air vent structure.
  • a hydraulic shock absorber is an annular reservoir in which both ends of an outer cylinder and an inner cylinder arranged concentrically are closed by end plates, and a liquid and a gas are sealed between the two.
  • An annular passage is formed in the fitting portion between one end of the inner cylinder and the end plate, and the gas staying in the corner of the liquid chamber in the inner cylinder on the upper side in the attached state is formed in the annular shape.
  • a multi-cylinder horizontal hydraulic shock absorber that escapes to the reservoir through a passage and an orifice for generating a damping force
  • the end plate includes an inner fitting portion that is fitted inside the inner cylinder, An outer fitting portion that is fitted to the outside of the cylinder, and a gap between the outer fitting portion and the outer side of the inner cylinder is defined between the inner fitting portion and the inner side of the inner cylinder.
  • the annular passage is made larger than the gap between the upper corner of the liquid chamber in the inner cylinder and the annular shape on the end plate or the inner cylinder.
  • the communicating passage communicating the road is formed.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • a double-cylinder horizontal hydraulic shock absorber 1 (hereinafter referred to as “hydraulic shock absorber 1”) disposed substantially horizontally as a left-right motion damper between a vehicle body and a carriage of a railway vehicle will be described.
  • hydraulic shock absorber 1 disposed substantially horizontally as a left-right motion damper between a vehicle body and a carriage of a railway vehicle.
  • the vertical direction and the horizontal direction in FIG. 1 are defined as the vertical direction and the horizontal direction of the hydraulic shock absorber 1 in the attached state.
  • the hydraulic shock absorber 1 has an outer cylinder 2 and an inner cylinder 3 that are arranged concentrically, that is, share an axis.
  • the left end and the right end of the outer cylinder 2 and the inner cylinder 3 are closed by the end plate 4 and the end plate 5.
  • an annular reservoir 6 is formed between the outer cylinder 2 and the inner cylinder 3.
  • the end plate 5 is divided into an end plate 7 that closes the right end of the outer cylinder 2 and an end plate 8 that closes the right end of the inner cylinder 3.
  • a bracket 9 connected to the vehicle body side of the railway vehicle is fixed to the end plate 7.
  • the end plate 5 is configured such that the shaft portion 10 formed on the right end side of the end plate 8 is fitted into the recess 11 formed on the end surface on the opposite side (left side) with respect to the bracket 9 of the end plate 7.
  • the end plate 7 and the end plate 8 are integrated.
  • a spigot joint portion 29 is formed between the outer periphery of the end plate 7 and the right end of the outer cylinder 2.
  • the piston 12 is slidably fitted inside the inner cylinder 3.
  • the inside of the inner cylinder 3 is divided into a first liquid chamber 13A and a second liquid chamber 13B by the piston 12 to the left and right. Hydraulic fluid is sealed in the first liquid chamber 13A and the second liquid chamber 13B.
  • the reservoir 6 is filled with hydraulic fluid and air.
  • the piston 12 is connected to the right end of the piston rod 14.
  • the left end side of the piston rod 14 passes through the first liquid chamber 13 ⁇ / b> A and the end plate 4 and extends to the outside of the inner cylinder 3.
  • a bracket 15 connected to the carriage side of the railway vehicle is fixed.
  • a cylindrical cover 16 that covers the piston rod 14 extending from the end plate 4 is attached to the bracket 15.
  • a contraction-side relief valve 17 is provided to release the fluid pressure in the second fluid chamber 13B to the first fluid chamber 13A. Further, the piston 12 is prevented from moving the hydraulic fluid from the first fluid chamber 13A to the second fluid chamber 13B during the extension stroke of the piston rod 14, and the fluid pressure in the first fluid chamber 13A reaches a constant pressure. Sometimes, an extension-side relief valve 18 is provided to release the fluid pressure in the first fluid chamber 13A to the second fluid chamber 13B.
  • the end plate 8 is provided with a relief valve 19 that opens according to the fluid pressure in the second fluid chamber 13B and releases the fluid pressure in the second fluid chamber 13B to the reservoir 6. Further, the end plate 8 is provided with a check valve 20 that allows only the flow of the working fluid from the reservoir 6 to the second fluid chamber 13B.
  • the end plate 8 is a cast iron part formed in a substantially cap shape.
  • the shaft portion 10 described above is formed at the right end of the end plate 8.
  • an annular outer fitting portion 21 constituting a part of the side wall of the end plate 8 is formed.
  • the outer peripheral surface 22 ⁇ / b> A of the right end portion 22 of the inner cylinder 3 is fitted to the inner peripheral surface 21 ⁇ / b> B of the outer fitting portion 21.
  • an annular seal groove 23 is formed on the inner peripheral surface 21B of the outer fitting portion 21, and the space between the inner cylinder 3 and the end plate 8 is sealed by a seal member 24 attached to the seal groove 23.
  • the inner cylinder 3 is in contact with the bottom 25 of the end plate 8 at the right end (the end surface of the right end 22).
  • the outer diameter of the inner cylinder 3 is formed with a general tolerance, and the outer fitting portion 21 of the end plate 8 and the right end portion 22 of the inner cylinder 3 are fitted with a predetermined fitting tolerance.
  • the end plate 4 is a cast iron part formed in a substantially cylindrical shape.
  • the outer peripheral surface 26 on the bracket 15 side (left side) of the end plate 4 is fitted into an end plate fitting portion 28 formed inside the left end portion 27 of the outer cylinder 2.
  • the end plate fitting portion 28 is formed by machining the inside of the left end portion 27 of the outer cylinder 2.
  • the outer cylinder 2 and the end plate 4 are fitted with a predetermined fitting tolerance.
  • the end plate 8 and the end plate 4 may be sintered parts instead of the cast iron parts.
  • Part 32 is provided on the right end side of the end plate 4, that is, on the side opposite to the bracket 15 side.
  • the distal end of the left end portion 33 of the inner cylinder 3 is inserted into an annular groove 34 formed between the inner fitting portion 31 and the outer fitting portion 32 of the end plate 4.
  • the outer fitting portion 32 of the end plate 4 extends rightward with respect to the inner fitting portion 31.
  • the outer peripheral surface 33 ⁇ / b> A of the left end portion 33 of the inner cylinder 3 is covered with the outer fitting portion 32.
  • the tip of the left end 33 of the inner cylinder 3 is abutted against the bottom of the groove 34 of the end plate 4. Thereby, the inner cylinder 3 and the end plate 4 are relatively positioned in the axial direction (left-right direction).
  • the clearance gap between the outer fitting part 32 of the end plate 4 and the outer side of the inner cylinder 3, ie, the inner peripheral surface 32B of the outer fitting part 32, and the left end part 33 of the inner cylinder 3 is provided.
  • a gap between the outer peripheral surface 33A is a gap between the inner fitting portion 31 of the end plate 4 and the inner side of the inner cylinder 3, that is, the outer peripheral surface 31A of the inner fitting portion 31 and the left end portion 33 of the inner cylinder 3. Is set larger than the gap between the inner peripheral surface 33B of the first and second inner peripheral surfaces 33B.
  • the inner fitting part 31 and the inner side of the inner cylinder 3 are fitted by intermediate fitting, and the outer fitting part 32 and the outer side of the inner cylinder 3 are fitted by clearance fitting.
  • the clearance gap between the outer fitting part 32 and the outer side of the inner cylinder 3 can be made larger than the clearance gap between the inner fitting part 31 and the inner side of the inner cylinder 3.
  • the hydraulic shock absorber 1 is configured with an air vent structure for discharging the air staying in the upper corner portion 35 of the first liquid chamber 13A to the reservoir 6.
  • the clearance gap between the above-mentioned outer fitting part 32 and the outer side of the inner cylinder 3 functions as the annular channel
  • the air vent structure includes a communication passage 37 for communicating the annular passage 36 with the upper corner portion 35 of the first liquid chamber 13A.
  • the communication path 37 is formed by cutting out the upper part of the inner fitting portion 31 of the end plate 4.
  • the communication path 37 is formed by notching the upper part (uppermost position) of the groove 34 formed in the end plate 4 to the left side and the lower side.
  • the right end of the annular passage 36 is defined by a seal member 38.
  • the seal member 38 is mounted in a seal groove 39 formed on the inner peripheral surface 32B of the outer fitting portion 32 of the end plate 4.
  • the air vent structure has a lower region at the left end of the reservoir 6, in other words, a region surrounding the outer peripheral surface 32A of the outer fitting portion 32 in the reservoir 6, and a lower portion (lowermost position) of the annular passage 36. And a flow path 40 that communicates with each other.
  • the flow path 40 is formed below the outer fitting portion 32 of the end plate 4.
  • the flow path 40 is provided with an orifice 41 whose upper end opens to the lower part of the annular passage 36.
  • the air vent structure allows the upper corner 35 of the first liquid chamber 13A to be located in the lower region of the left end of the reservoir 6 via the communication passage 37, the annular passage 36, the orifice 41, and the flow path 40. Configured to communicate.
  • the corner 35 is desirably on the upper side, and more desirably on the uppermost position in a state where the hydraulic shock absorber 1 is attached.
  • the corner 35 may be provided on the upper side of the intermediate position. Even in that case, air can be discharged by the pressure of the first liquid chamber 13A and the second liquid chamber 13B.
  • a left end portion of the end plate 4, that is, a portion fitted to the end plate fitting portion 28 of the outer cylinder 2, and a right end portion of the end plate 4, that is, the inner fitting portion 31 and the outer fitting portion 32 are formed.
  • An intermediate portion 42 having a certain gap between the inner peripheral surface 2 ⁇ / b> B of the outer cylinder 2 is formed between the two portions.
  • a step portion 43 formed between the intermediate portion 42 and a portion fitted to the end plate fitting portion 28 of the outer cylinder 2 is formed between the inner peripheral surface 2B of the outer cylinder 2 and the end plate fitting portion 28.
  • a notch 45 is formed in the upper portion of the intermediate portion 42 (position at 12 o'clock in the left-right direction).
  • the notch 45 is formed in the left end portion 27 of the outer cylinder 2.
  • the caulking portion 46 is engaged.
  • the rotation prevention structure which prevents the relative movement of the end plate 4 around the axis line with respect to the outer cylinder 2 is configured.
  • a convex portion may be formed on the inner periphery of the outer cylinder 2.
  • the piston rod 14 of the hydraulic shock absorber 1 arranged in the lateral direction expands and contracts.
  • the hydraulic fluid in the first liquid chamber 13A flows through the extension-side relief valve 18 of the piston 12 and flows into the second liquid chamber 13B.
  • the hydraulic fluid in the first liquid chamber 13 ⁇ / b> A is discharged to the reservoir 6 via the communication path 37, the annular path 36, the orifice 41, and the flow path 40.
  • the hydraulic fluid in the first liquid chamber 13A passes through the relief valve 18 and the orifice 41, thereby generating an expansion-side damping force.
  • the hydraulic fluid in the second fluid chamber 13B flows through the contraction-side relief valve 17 of the piston 12 and flows into the first fluid chamber 13A.
  • the volume of hydraulic fluid in which the piston rod 14 has entered the first liquid chamber 13A is discharged from the second liquid chamber 13B to the reservoir 6 through the relief valve 19 of the end plate 8.
  • the hydraulic fluid in the second liquid chamber 13B passes through the relief valve 17 and the relief valve 19 to generate a contraction-side damping force.
  • the air vent structure is configured by communicating the annular passage 36 with the upper corner 35 which is the uppermost position of the first liquid chamber 13A, the piston rod 14 is expanded and contracted (vibrated) with a relatively small amplitude. ), The air staying in the upper corner portion 35 of the first fluid chamber 13A passes through the communication passage 37, the annular passage 36, the orifice 41, and the passage 40 together with the working fluid. Thus, it can be reliably discharged to the reservoir 6. Further, the air staying in the upper corner portion 35 of the first liquid chamber 13A passes through the communication passage 37 and smoothly moves to the uppermost portion of the annular passage 36 positioned at a higher position.
  • the left end portion 33 of the inner cylinder 3 can be obtained by fitting the end plate 4 only outside the inner cylinder 3 without fitting the end plate 4 inside the inner cylinder 3.
  • the outer diameter of the inner cylinder 3 needs to be formed with a tighter tolerance than the general tolerance.
  • the selection of a thick material (inner cylinder 3) is a factor that increases the manufacturing cost.
  • the inner fitting portion 31 of the end plate 4 is fitted inside the inner cylinder 3 and the left end portion 33 of the inner cylinder 3 is closed. Since the tolerance remains a general tolerance and does not need to be tightened, the manufacturing cost can be reduced with respect to the above-described conventional hydraulic shock absorber.
  • the inner fitting portion 31 of the end plate 4 is fitted inside the inner cylinder 3 to close the left end portion 33 of the inner cylinder 3.
  • An annular clearance formed between the outer side of the inner cylinder 3 (the inner periphery 33B of the left end portion 33) can be used as the annular passage 36 of the air vent structure, and the air vent structure is more easily configured. can do.
  • the caulking portion 46 formed by caulking the side wall of the outer cylinder 2 is engaged with the notch 45 formed at the uppermost portion of the intermediate portion 42 of the end plate 4. The relative movement (rotation) around the axis with respect to the outer cylinder 2 can be prevented, and the hydraulic shock absorber 1 is disposed upside down at the time of attachment to the railway vehicle. In other words, the communication path 37 and the orifice 41 Can be prevented from being placed upside down.
  • 1st Embodiment is not limited above, For example, it can comprise as follows.
  • the end plate 4 and the end plate 8 were shape
  • the air vent structure was comprised by forming the communicating path 37 in the end plate 4, for example, the notch (slit) formed in the upper part (uppermost position) of the left end of the inner cylinder 3 is comprised. By using the communication passage 37, an air vent structure can be configured.
  • the communication path 37 is formed by cutting out the inner fitting portion 31 of the end plate 4.
  • the communication path 37 is formed simultaneously with the molding of the end plate 4, but the upper side of the first liquid chamber 13A.
  • the corner 35 and the annular passage 36 are communicated to form an air vent structure, but as shown in FIG. 3, a drill hole is drilled diagonally left upward toward the upper portion of the groove 34 of the end plate 4.
  • the communication path 37 can be formed.
  • the uppermost part of the communication path 37 (see FIG. 3) formed by the drill hole is at a higher position than the uppermost part of the communication path 37 (see FIG. 2) formed by the notch. It is possible to more reliably prevent the air that has passed through and reaches the upper portion of the annular passage 36 from returning to the first liquid chamber 13A.
  • the air vent structure is configured using the gap between the inner tube 3 as the annular passage 36, when the variation in the outer diameter of the inner cylinder 3 is relatively large, as shown in FIG.
  • the air bleeding structure can be configured so as to secure a flow path by forming an auxiliary annular groove 47 on the inner peripheral surface 32B of the fitting portion 32.
  • the cross-sectional area of the auxiliary annular groove can be made smaller than the cross-sectional area of the annular groove of the prior art air vent structure configured to ensure the flow path with only the annular groove.
  • the end plate 4 (outer fitting portion 32) can be prevented from being enlarged in the axial direction (left-right direction).
  • an inner fitting portion 51 that is fitted inside the inner cylinder 3 and an outer fitting that is fitted outside the inner cylinder 3.
  • Part 52 is provided on the left end side of the end plate 8, that is, on the opposite side to the shaft portion 10, an inner fitting portion 51 that is fitted inside the inner cylinder 3 and an outer fitting that is fitted outside the inner cylinder 3.
  • Part 52 is provided on the left end side of the end plate 8, that is, on the opposite side to the shaft portion 10.
  • the distal end of the right end portion 22 of the inner cylinder 3 is inserted into an annular groove 54 formed between the inner fitting portion 51 and the outer fitting portion 52 of the end plate 8.
  • the outer fitting portion 52 of the end plate 8 extends leftward with respect to the inner fitting portion 51.
  • the outer peripheral surface 22 ⁇ / b> A of the right end portion 22 of the inner cylinder 3 is covered with the outer fitting portion 52.
  • the tip of the right end 22 of the inner cylinder 3 is abutted against the bottom of the groove 54 of the end plate 8.
  • the inner fitting part 51 and the inner side of the inner cylinder 3 are fitted by intermediate fitting, and the outer fitting part 52 and the outer side of the inner cylinder 3 are fitted by clearance fitting. Thereby, the clearance gap between the outer fitting part 52 and the outer side of the inner cylinder 3 can be made larger than the clearance gap between the inner fitting part 51 and the inner cylinder 3 side.
  • the air vent structure includes a communication passage 57 for communicating the annular passage 56 with the upper corner 55 of the second liquid chamber 13B.
  • the communication path 57 is formed by cutting out the upper part of the inner fitting part 51 of the end plate 8.
  • the communication path 57 is formed by notching the upper part (uppermost position) of the groove 54 formed in the end plate 8 to the right side and the lower side.
  • the left end of the annular passage 56 is defined by a seal member 58.
  • the seal member 58 is mounted in a seal groove 59 formed on the inner peripheral surface 52B of the outer fitting portion 52 of the end plate 8.
  • the air bleed structure has a lower region at the right end of the reservoir 6, in other words, a region surrounding the outer peripheral surface 52A of the outer fitting portion 52 in the reservoir 6, and a lower portion (lowermost position) of the annular passage 56. And a flow path 60 that communicates with each other.
  • the flow path 60 is formed below the outer fitting portion 52 of the end plate 8.
  • the flow path 40 is provided with an orifice 61 whose upper end opens to the lower part of the annular passage 56.
  • the air vent structure allows the upper corner 55 of the second liquid chamber 13B to be moved to the lower region of the right end of the reservoir 6 via the communication path 57, the annular path 56, the orifice 61, and the flow path 60. Configured to communicate.
  • the seal member 81 is mounted in a seal groove 80 formed on the inner peripheral surface 52B of the outer fitting portion 52. By providing the backup seal in this way, it can be used for a high-pressure hydraulic shock absorber.
  • the piston rod 14 of the hydraulic shock absorber 1 arranged in the lateral direction is expanded and contracted.
  • the hydraulic fluid in the second liquid chamber 13B flows through the contraction-side relief valve 17 of the piston 12 and flows into the first liquid chamber 13A.
  • the air stays in the upper corner 55 of the second liquid chamber 13B, the air passes to the reservoir 6 through the communication path 57, the annular path 56, the orifice 61, and the flow path 60 together with the working liquid. Discharged.
  • the air vent structure of the second embodiment can be used in combination with the air vent structure of the first embodiment, but naturally, the air vent structure of the second embodiment is applied alone to provide a hydraulic shock absorber. 1 can be configured.
  • 1 hydraulic shock absorber 2 outer cylinder, 3 inner cylinder, 4,5 end plate, 6 reservoir, 13A, 13B liquid chamber, 31 inner fitting part, 32 outer fitting part, 33 left end part (one end part of inner cylinder) ), 35 upper corner, 36 annular passage, 37 communication passage, 41 orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Actuator (AREA)

Abstract

【課題】エア抜き構造をより簡単に構成することが可能な複筒式横置き液圧緩衝器を提供する。 【解決手段】第1液室(13A)の上側隅部(35)に滞留したエアを、作動液とともに連通路(37)、環状通路(36)、オリフィス(41)および流路(40)を経由してリザーバ(6)へ排出するように構成されたエア抜き構造において、内筒(3)の内側に端板(4)の内側嵌合部(31)を嵌合させて内筒(3)の左端部(33)を閉鎖した。これにより、端板(4)の外側嵌合部(32)と内筒(3)の外側との間に形成された環形状の隙間をエア抜き構造の環状通路(36)とすることが可能であり、エア抜き構造をより簡単に構成することができる。

Description

液圧緩衝器
 本発明は、鉄道車両等に使用される複筒式横置き液圧緩衝器に関する。
 例えば、特許文献1に記載された複筒式横置き液圧緩衝器は、液室の上側隅部に滞留したエアを、環状通路およびオリフィスを介してリザーバの下部へ排出するように構成されている。
特開2009-243634号公報
 前述の液圧緩衝器では、端板に内筒の外側(外周面)が嵌合されることから、通常、一般公差である内筒の外径精度を高める、すなわち、内筒の外周を機械加工(仕上げ加工)する必要がある。
 そこで本発明は、上記事情に鑑みてなされたもので、エア抜き構造をより簡単に構成することが可能な複筒式横置き液圧緩衝器を提供することを課題としてなされたものである。
 上記課題を解決するために、本発明の液圧緩衝器は、同心に配置した外筒および内筒の両端を端板によって閉鎖して、両者の間を液体と気体とを封入した環状のリザーバとして構成し、前記内筒の一端部と前記端板との嵌合部に環状通路を形成し、取付状態で上部側となる前記内筒内の液室の隅部に滞留した気体を前記環状通路および減衰力発生用オリフィスを介して前記リザーバへ逃がす複筒式横置液圧緩衝器であって、前記端板は、前記内筒の内側に嵌合される内側嵌合部と、前記内筒の外側に嵌合される外側嵌合部と、を有し、前記外側嵌合部と前記内筒の外側との間の隙間を、前記内側嵌合部と前記内筒の内側との間の隙間よりも大きくして前記環状通路とし、前記端板または前記内筒に、前記内筒内の液室の上側隅部と前記環状通路とを連通する連通路が形成されることを特徴とする。
 本発明によれば、複筒式横置き液圧緩衝器のエア抜き構造をより簡単に構成することができる。
第1実施形態の液圧緩衝器の概略構造を説明するための軸平面による断面図である。 図1における要部拡大図である。 第1実施形態の変形例を示す図である。 第1実施形態の他の変形例を示す図である。 第2実施形態の要部拡大図である。
(第1実施形態)
 本発明の第1実施形態を図1、図2を参照して説明する。ここでは、鉄道車両の車体と台車との間に左右動ダンパとして略水平に配置される複筒式横置き液圧緩衝器1(以下「液圧緩衝器1」という)を説明する。なお、以下の説明において、便宜上、図1における上下方向および左右方向をそのまま、取付状態における液圧緩衝器1の上下方向および左右方向と定義する。
 図1に示されるように、液圧緩衝器1は、同心に配置した、すなわち、軸線を共有する外筒2および内筒3を有する。外筒2と内筒3との左端および右端は、端板4および端板5によって閉鎖される。これにより、外筒2と内筒3との間には、環形状のリザーバ6が形成される。端板5は、外筒2の右端を閉鎖する端板7と内筒3の右端を閉塞する端板8とに分割して構成される。端板7には、鉄道車両の車体側に連結されるブラケット9が固定される。端板5は、端板8の右端側に形成された軸部10が、端板7のブラケット9に対して反対側(左側)の端面に形成された凹部11に嵌合されることにより、端板7と端板8とが一体化される。なお、端板7の外周と外筒2の右端との間には、インロー結合部29が形成される。
 内筒3の内側には、ピストン12が摺動可能に嵌合される。内筒3の内部は、ピストン12によって第1液室13Aと第2液室13Bとに左右に分画される。第1液室13Aおよび第2液室13Bには、作動液が封入される。なお、リザーバ6には、作動液とエアとが封入される。ピストン12には、ピストンロッド14の右端が連結される。ピストンロッド14の左端側は、第1液室13Aおよび端板4を通過して内筒3の外部へ延出される。ピストンロッド14の左端には、鉄道車両の台車側に連結されるブラケット15が固定される。ブラケット15には、端板4から延出するピストンロッド14を覆う筒形状のカバー16が取り付けられる。
 ピストン12には、ピストンロッド14の縮み行程時に、第2液室13Bから第1液室13Aへの作動液の移動を阻止し、第2液室13Bの液圧が一定圧力に達したときに、第2液室13Bの液圧を第1液室13Aへ逃がす縮み側リリーフ弁17が設けられる。また、ピストン12には、ピストンロッド14の伸び行程時に、第1液室13Aから第2液室13Bへの作動液の移動を阻止し、第1液室13Aの液圧が一定圧力に達したときに、第1液室13Aの液圧を第2液室13Bへ逃がす伸び側リリーフ弁18が設けられる。さらに、端板8には、第2液室13Bの液圧に応じて開弁し、第2液室13Bの液圧をリザーバ6へ逃がすリリーフ弁19が設けられる。また、端板8には、リザーバ6から第2液室13Bへの作動液の流通のみを許容するチェック弁20が設けられる。
 第1実施形態において、端板8は、略キャップ形に形成された鋳鉄部品である。端板8の右端には、前述の軸部10が形成される。端板8の軸部10に対して反対側には、端板8の側壁の一部を構成する円環形の外側嵌合部21が形成される。外側嵌合部21の内周面21Bには、内筒3の右端部22の外周面22Aが嵌合される。また、外側嵌合部21の内周面21Bには、環形状のシール溝23が形成され、該シール溝23に装着されたシール部材24によって内筒3と端板8との間がシールされる。なお、内筒3は、右端(右端部22端面)が端板8の底部25に当接される。また、内筒3の外径は一般公差で形成されており、端板8の外側嵌合部21と内筒3の右端部22とは、予め定められた嵌め合い公差で嵌合される。
 一方、第1実施形態において、端板4は、略円筒形に形成された鋳鉄部品である。図2に示されるように、端板4は、ブラケット15側(左側)の外周面26が、外筒2の左端部27の内側に形成された端板嵌合部28に嵌合される。なお、端板嵌合部28は、外筒2の左端部27の内側を機械加工することにより形成される。また、外筒2と端板4とは、予め定められた嵌め合い公差で嵌合される。なお、端板8および端板4を鋳鉄部品で構成するのに変えて、焼結部品としてもよい。
 端板4の右端側、すなわち、ブラケット15側に対して反対側には、内筒3の内側に嵌合される内側嵌合部31と、内筒3の外側に嵌合される外側嵌合部32と、が設けられる。換言すると、内筒3の左端部33の先端は、端板4の内側嵌合部31と外側嵌合部32との間に形成された環形状の溝34に差し込まれる。なお、端板4の外側嵌合部32は、内側嵌合部31に対して右方向へ延出されている。このように、内筒3の左端部33の外周面33Aは、外側嵌合部32によって覆われる。また、内筒3の左端部33の先端は、端板4の溝34の底部に突き当てられる。これにより、内筒3と端板4とは、軸線方向(左右方向)に相対位置決めされる。
 そして、第1実施形態では、端板4の外側嵌合部32と内筒3の外側との間の隙間、すなわち、外側嵌合部32の内周面32Bと内筒3の左端部33の外周面33Aとの間の隙間が、端板4の内側嵌合部31と内筒3の内側との間の隙間、すなわち、内側嵌合部31の外周面31Aと内筒3の左端部33の内周面33Bとの間の隙間、よりも大きく設定される。例えば、内側嵌合部31と内筒3の内側とを中間嵌めによって嵌合し、外側嵌合部32と内筒3の外側とをすきま嵌めによって嵌合する。これにより、外側嵌合部32と内筒3の外側との間の隙間を、内側嵌合部31と内筒3の内側との隙間よりも大きくすることができる。
 また、液圧緩衝器1には、第1液室13Aの上側隅部35に滞留したエアをリザーバ6へ排出するためのエア抜き構造が構成される。第1実施形態では、前述の外側嵌合部32と内筒3の外側との間の隙間が、エア抜き構造の一部を構成する環状通路36として機能する。エア抜き構造は、環状通路36を第1液室13Aの上側隅部35に連通するための連通路37を含む。第1実施形態において、連通路37は、端板4の内側嵌合部31の上部を切欠くことで形成される。換言すると、連通路37は、端板4に形成された溝34の上部(最上位置)を左側および下側に切欠くことで形成される。なお、環状通路36の右端は、シール部材38によって画定される。また、シール部材38は、端板4の外側嵌合部32の内周面32Bに形成されたシール溝39に装着される。
 第1実施形態において、エア抜き構造は、リザーバ6の左端の下側領域、換言すると、リザーバ6における外側嵌合部32の外周面32Aを取り囲む領域と、環状通路36の下部(最下位置)と、を連通する流路40を含む。流路40は、端板4の外側嵌合部32の下部に形成される。流路40には、上端が環状通路36の下部に開口するオリフィス41が設けられる。このように、エア抜き構造は、第1液室13Aの上側隅部35を、連通路37、環状通路36、オリフィス41、および流路40を経由して、リザーバ6の左端の下側領域に連通するように構成される。ここで、隅部35は、上側であることが望ましく、さらには液圧緩衝器1が取り付けられた状態で最も上側となる位置であることが望ましい。しかし、上側として記載したように、必ず上である必要はなく、例えば中間位置よりも上側に隅部35を設ければよい。その場合であっても第1液室13A、第2液室13Bの圧力によりエアを排出することができる。
 端板4の左端部、すなわち、外筒2の端板嵌合部28に嵌合された部分と、端板4の右端部、すなわち、内側嵌合部31および外側嵌合部32が形成された部分と、の間には、外筒2の内周面2Bとの間に一定の隙間を有する中間部42が形成される。中間部42は、外筒2の端板嵌合部28に嵌合される部分との間に形成される段部43が、外筒2の内周面2Bと端板嵌合部28との間に形成された段部44に干渉することで、内筒3の左端部33の先端を端板4の溝34の底部に突き当てることができないことがないように形成される。なお、端板4には、中間部42の上部(左右方向の視線で12時の位置)に切欠き45が形成されており、該切欠き45には、外筒2の左端部27に形成したかしめ部46が係合される。これにより、端板4の外筒2に対する軸線回りの相対移動を阻止する回り止め構造が構成される。また、回り止め構造として、かしめ部46を形成する構成に変えて、外筒2の内周に凸部を形成するようにしてもよい。
 次に、第1実施形態の作用を説明する。
 鉄道車両の車体と台車とが水平方向へ相対移動すると、横向きに配置された液圧緩衝器1のピストンロッド14が伸縮する。ピストンロッド14の伸び行程時には、第1液室13Aの作動液が、ピストン12の伸び側リリーフ弁18を通過して第2液室13Bへ流動する。並行して、第1液室13Aの作動液は、連通路37、環状通路36、オリフィス41および流路40を経由してリザーバ6へ排出される。このように、第1液室13Aの作動液がリリーフ弁18ならびにオリフィス41を通過することで、伸び側の減衰力が発生する。
 前述のピストンロッド14の伸び行程において、第1液室13Aの上側隅部35にエアが滞留していた場合、該エアは、作動液とともに連通路37、環状通路36、オリフィス41および流路40を経由してリザーバ6へ排出される。なお、ピストンロッド14の伸び行程時には、ピストンロッド14が第1液室13Aから退出した体積分の作動液が、リザーバ6から端板8のチェック弁20を介して第2液室13Bへ導入される。
 一方、ピストンロッド14の縮み行程時には、第2液室13Bの作動液が、ピストン12の縮み側リリーフ弁17を通過して第1液室13Aへ流動する。並行して、ピストンロッド14が第1液室13Aへ進入した体積分の作動液が、第2液室13Bから端板8のリリーフ弁19を介してリザーバ6へ排出される。このように、第2液室13Bの作動液がリリーフ弁17ならびにリリーフ弁19を通過することで、縮み側の減衰力が発生する。
 第1実施形態によれば、環状通路36を第1液室13Aの最上位置である上側隅部35に連通してエア抜き構造を構成したので、ピストンロッド14が比較的小さい振幅で伸縮(振動)する液圧緩衝器1の挙動であっても、第1液室13Aの上側隅部35に滞留したエアを、作動液とともに連通路37、環状通路36、オリフィス41および流路40を経由してリザーバ6へ確実に排出することができる。また、第1液室13Aの上側隅部35に滞留したエアは、連通路37を通過してより高い位置に位置する環状通路36の最上部に円滑に移動するので、連通路37を通過して環状通路36の上部に到達したエアが第1液室13Aに戻ることを防止することができる。このように、小さい振幅の入力に対しても確実に緩衝することが可能であり、複筒式横置き液圧緩衝器1の信頼性を向上させることができる。
 また、従来技術の液圧緩衝器、すなわち、内筒3の内側に端板4を嵌合させることなく、内筒3の外側にのみ端板4を嵌合させて内筒3の左端部33を閉鎖する液圧緩衝器では、内筒3の外径を一般公差よりも厳格な公差に形成する必要があることから、内筒3の外周面3Aが機械加工され、機械加工代を考慮して肉厚の素材(内筒3)を選定することも相俟って製造コストが増大する要因になっていた。
 これに対して、第1実施形態では、内筒3の内側に端板4の内側嵌合部31を嵌合させて内筒3の左端部33を閉鎖したので、内筒3の外径の公差は一般公差のままで厳格化する必要がないので、前述した従来技術の液圧緩衝器に対して製造コストを削減することができる。
 また、第1実施形態では、内筒3の内側に端板4の内側嵌合部31を嵌合させて内筒3の左端部33を閉鎖したので、端板4の外側嵌合部32と内筒3の外側(左端部33の内周33B)との間に形成された環形状の隙間をエア抜き構造の環状通路36として利用することが可能であり、エア抜き構造をより簡単に構成することができる。
 さらに、第1実施形態では、端板4の中間部42の最上部に形成した切欠き45に、外筒2の側壁をかしめて形成したかしめ部46を係合させたので、端板4の外筒2に対する軸線回りの相対移動(回転)を防止することができるとともに、鉄道車両への取り付け時に、液圧緩衝器1が上下反対に配置される、換言すると、連通路37とオリフィス41とが上下反対に配置されることを防止することができる。
 なお、第1実施形態は上記に限定されるものではなく、例えば、次のように構成することができる。
 第1実施形態では、端板4および端板8をダイカストなどの鋳鉄によって成形したが、例えば、焼結や切削によって成形することができる。
 また、第1実施形態では、連通路37を端板4に形成することでエア抜き構造を構成したが、例えば、内筒3の左端の上部(最上位置)に形成した切欠き(スリット)を連通路37とすることでエア抜き構造を構成することができる。
 第1実施形態では、端板4の内側嵌合部31を切欠いて連通路37を形成した、換言すると、端板4の成形と同時に連通路37を成形したが、第1液室13Aの上側隅部35と環状通路36とを連通させてエア抜き構造を構成したが、図3に示されるように、端板4の溝34の上部に向けて左斜め上方向へドリル穴を穿設することで、連通路37を形成することができる。
 この場合、ドリル穴によって形成された連通路37(図3参照)の最上部が、切欠きによって形成された連通路37(図2参照)の最上部よりも高い位置にあるので、連通路37を通過して環状通路36の上部に到達したエアが第1液室13Aに戻ることをより確実に防ぐことができる。
 第1実施形態では、端板4の外側嵌合部32と内筒3の外側との間の隙間、すなわち、外側嵌合部32の内周面32Bと内筒3の左端部33の外周面33Aとの間の隙間を、環状通路36として利用してエア抜き構造を構成したが、内筒3の外径のばらつきが比較的大きい場合、図4に示されるように、端板4の外側嵌合部32の内周面32Bに、補助的な環状溝47を形成して流路を確保するようにエア抜き構造を構成することができる。
 この場合、補助的な環状溝の断面積は、環状溝のみで流路を確保するように構成された従来技術のエア抜き構造の環状溝の断面積と比較して小さくすることが可能であり、端板4(外側嵌合部32)が軸線方向(左右方向)へ大型化するのを防ぐことができる。
(第2実施形態)
 本発明の第2実施形態を図5を参照して説明する。なお、第1実施形態に対して同一又は相当の構成要素については、同一の名称及び符号を付与するとともに詳細な説明を省略する。
 第2実施形態は、第1実施形態において内筒3の左端部33と該左端部33を閉鎖する端板4との間に構成されるエア抜き構造を、内筒3の右端部22と該右端部22を閉鎖する端板8との間に適用したものである。
 端板8の左端側、すなわち、軸部10に対して反対側には、内筒3の内側に嵌合される内側嵌合部51と、内筒3の外側に嵌合される外側嵌合部52と、が設けられる。換言すると、内筒3の右端部22の先端は、端板8の内側嵌合部51と外側嵌合部52との間に形成された環形状の溝54に差し込まれる。なお、端板8の外側嵌合部52は、内側嵌合部51に対して左方向へ延出されている。このように、内筒3の右端部22の外周面22Aは、外側嵌合部52によって覆われる。また、内筒3の右端部22の先端は、端板8の溝54の底部に突き当てられる。これにより、内筒3と端板8、延いては内筒3と外筒2とが軸線方向(左右方向)に相対位置決めされる。
 端板8の外側嵌合部52と内筒3の外側との間の隙間、すなわち、外側嵌合部52の内周面52Bと内筒3の右端部22の外周面22Aとの間の隙間が、端板8の内側嵌合部51と内筒3の内側との間の隙間、すなわち、内側嵌合部51の外周面51Aと内筒3の右端部22の内周面22Bとの間の隙間よりも大きく設定される。例えば、内側嵌合部51と内筒3の内側とを中間嵌めによって嵌合し、外側嵌合部52と内筒3の外側とをすきま嵌めによって嵌合する。これにより、外側嵌合部52と内筒3の外側との間の隙間を、内側嵌合部51と内筒3の内側との隙間よりも大きくすることができる。
 そして、第2実施形態では、前述の外側嵌合部52と内筒3の外側との間の隙間が、エア抜き構造の一部を構成する環状通路56として機能する。第2実施形態において、エア抜き構造は、環状通路56を第2液室13Bの上側隅部55に連通するための連通路57を含む。連通路57は、端板8の内側嵌合部51の上部を切欠くことで形成される。換言すると、連通路57は、端板8に形成された溝54の上部(最上位置)を右側および下側に切欠くことで形成される。なお、環状通路56の左端は、シール部材58によって画定される。また、シール部材58は、端板8の外側嵌合部52の内周面52Bに形成されたシール溝59に装着される。
 第2実施形態において、エア抜き構造は、リザーバ6の右端の下側領域、換言すると、リザーバ6における外側嵌合部52の外周面52Aを取り囲む領域と、環状通路56の下部(最下位置)と、を連通する流路60を含む。流路60は、端板8の外側嵌合部52の下部に形成される。流路40には、上端が環状通路56の下部に開口するオリフィス61が設けられる。このように、エア抜き構造は、第2液室13Bの上側隅部55を、連通路57、環状通路56、オリフィス61、および流路60を経由して、リザーバ6の右端の下側領域に連通するように構成される。また、シール部材81は、外側嵌合部52の内周面52Bに形成されたシール溝80に装着される。このようにバックアップシールを設けたことで、高圧の液圧緩衝器にも用いることができる。
 次に、第2実施形態の作用を説明する。
 鉄道車両の車体と台車とが水平方向へ相対移動すると、横向きに配置された液圧緩衝器1のピストンロッド14が伸縮される。ピストンロッド14の縮み行程時には、第2液室13Bの作動液が、ピストン12の縮み側リリーフ弁17を通過して第1液室13Aへ流動する。このとき、第2液室13Bの上側隅部55にエアが滞留していた場合、該エアは、作動液とともに連通路57、環状通路56、オリフィス61および流路60を経由してリザーバ6へ排出される。
 第2実施形態によれば、第1実施形態と同等の効果を得ることができる。
 なお、第2実施形態のエア抜き構造は、第1実施形態のエア抜き構造と併用することが可能であるが、当然、第2実施形態のエア抜き構造を単独で適用して液圧緩衝器1を構成することができる。
1 液圧緩衝器、2 外筒、3 内筒、4,5 端板、6 リザーバ、13A,13B 液室、31 内側嵌合部、32 外側嵌合部、33 左端部(内筒の一端部)、35 上側隅部、36 環状通路、37 連通路、41 オリフィス

Claims (4)

  1.  同心に配置した外筒および内筒の両端を端板によって閉鎖して、両者の間を液体と気体とを封入した環状のリザーバとして構成し、前記内筒の一端部と前記端板との嵌合部に環状通路を形成し、取付状態で上部側となる前記内筒内の液室の隅部に滞留した気体を前記環状通路および減衰力発生用オリフィスを介して前記リザーバへ逃がす複筒式横置液圧緩衝器であって、
     前記端板は、前記内筒の内側に嵌合される内側嵌合部と、前記内筒の外側に嵌合される外側嵌合部と、を有し、
     前記外側嵌合部と前記内筒の外側との間の隙間を、前記内側嵌合部と前記内筒の内側との間の隙間よりも大きくして前記環状通路とし、
     前記端板または前記内筒に、前記内筒内の液室の上側隅部と前記環状通路とを連通する連通路が形成されることを特徴とする液圧緩衝器。
  2.  前記連通路は、鋳造または焼結によって前記端板に形成されることを特徴とする請求項1に記載の液圧緩衝器。
  3.  前記連通路は、前記端板に形成されて前記内筒の軸線に対して斜めに形成された穴であることを特徴とする請求項1または2に記載の液圧緩衝器。
  4.  前記外側嵌合部に、前記連通路に連通する環状溝が形成されることを特徴とする請求項1ないし3のいずれか1項に記載の液圧緩衝器。
PCT/JP2015/073862 2014-09-30 2015-08-25 液圧緩衝器 WO2016052008A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580050644.4A CN106715953B (zh) 2014-09-30 2015-08-25 液压缓冲器
GB1704079.1A GB2544245B (en) 2014-09-30 2015-08-25 Hydraulic damper
JP2016551638A JP6250185B2 (ja) 2014-09-30 2015-08-25 液圧緩衝器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201647 2014-09-30
JP2014201647 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052008A1 true WO2016052008A1 (ja) 2016-04-07

Family

ID=55630054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073862 WO2016052008A1 (ja) 2014-09-30 2015-08-25 液圧緩衝器

Country Status (4)

Country Link
JP (1) JP6250185B2 (ja)
CN (1) CN106715953B (ja)
GB (1) GB2544245B (ja)
WO (1) WO2016052008A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067885B2 (ja) 2017-09-27 2022-05-16 Kybモーターサイクルサスペンション株式会社 フロントフォーク、及びフロントフォークの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861416A (ja) * 1994-08-23 1996-03-08 Kayaba Ind Co Ltd オイルダンパにおけるエア抜き構造
JPH11344068A (ja) * 1998-05-29 1999-12-14 Kayaba Ind Co Ltd オイルダンパ
JP2009243634A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 液圧緩衝器
JP2011007287A (ja) * 2009-06-26 2011-01-13 Hitachi Automotive Systems Ltd 横置きシリンダ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793273B (zh) * 2009-01-30 2017-05-17 日立汽车系统株式会社 缸装置
CN101857039B (zh) * 2009-04-10 2012-07-25 萱场工业株式会社 铁道车辆用线性减震器
JP2011052732A (ja) * 2009-08-31 2011-03-17 Hitachi Automotive Systems Ltd シリンダ装置
CN202326886U (zh) * 2011-11-10 2012-07-11 浙江森森汽车零部件有限公司 双筒液压减振器自排气装置
CN102606667B (zh) * 2012-04-01 2014-10-08 常州朗锐凯迩必减振技术有限公司 机车车辆用横向减振器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861416A (ja) * 1994-08-23 1996-03-08 Kayaba Ind Co Ltd オイルダンパにおけるエア抜き構造
JPH11344068A (ja) * 1998-05-29 1999-12-14 Kayaba Ind Co Ltd オイルダンパ
JP2009243634A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 液圧緩衝器
JP2011007287A (ja) * 2009-06-26 2011-01-13 Hitachi Automotive Systems Ltd 横置きシリンダ装置

Also Published As

Publication number Publication date
GB201704079D0 (en) 2017-04-26
JP6250185B2 (ja) 2017-12-20
GB2544245A (en) 2017-05-10
GB2544245B (en) 2020-06-24
CN106715953B (zh) 2019-03-15
JPWO2016052008A1 (ja) 2017-04-27
CN106715953A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5961124B2 (ja) 懸架装置
JP5126509B2 (ja) 液圧緩衝器
JP5957514B2 (ja) ショックアブソーバ
JP5403755B2 (ja) 緩衝器
JP6250185B2 (ja) 液圧緩衝器
JP4895974B2 (ja) 複筒型緩衝器
WO2018021125A1 (ja) 緩衝器
JP5212812B2 (ja) 液圧緩衝器
WO2017022494A1 (ja) シリンダ装置
JP5132266B2 (ja) 複筒型緩衝器
JP6343213B2 (ja) フロントフォーク
JP6914415B2 (ja) 緩衝器
JP5292501B2 (ja) 複筒型緩衝器
JP2016194338A (ja) 油圧緩衝器
JP6810603B2 (ja) シリンダ装置
JP6555968B2 (ja) 緩衝器及び緩衝器の製造方法
JP6335667B2 (ja) ショックアブソーバ
JP6484088B2 (ja) フロントフォーク
JP6329401B2 (ja) フロントフォーク
JP5775328B2 (ja) 油圧緩衝器
JP6349153B2 (ja) 緩衝器
JP6037724B2 (ja) シリンダ装置
JP4477991B2 (ja) 車両用の油圧緩衝器
JP6454239B2 (ja) 単筒式ショックアブソーバ
JP2005249135A (ja) 二輪車等のフロントフォーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551638

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201704079

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150825

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847224

Country of ref document: EP

Kind code of ref document: A1