WO2016051758A1 - ガスタービン - Google Patents

ガスタービン Download PDF

Info

Publication number
WO2016051758A1
WO2016051758A1 PCT/JP2015/004909 JP2015004909W WO2016051758A1 WO 2016051758 A1 WO2016051758 A1 WO 2016051758A1 JP 2015004909 W JP2015004909 W JP 2015004909W WO 2016051758 A1 WO2016051758 A1 WO 2016051758A1
Authority
WO
WIPO (PCT)
Prior art keywords
water vapor
air
supplied
combustor
hydrogen gas
Prior art date
Application number
PCT/JP2015/004909
Other languages
English (en)
French (fr)
Inventor
和英 袴田
山下 誠二
剛生 小田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US15/515,113 priority Critical patent/US20170211473A1/en
Priority to AU2015326220A priority patent/AU2015326220B2/en
Priority to DE112015004432.9T priority patent/DE112015004432B4/de
Publication of WO2016051758A1 publication Critical patent/WO2016051758A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • F23L7/005Evaporated water; Steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a gas turbine using hydrogen gas as fuel.
  • a gas turbine using hydrogen gas as a fuel has an advantage that the exhaust gas is clean because carbon dioxide and carbon monoxide due to combustion are not discharged (see Patent Document 1).
  • total water vapor amount In addition to the above problems in the boiler, if the amount of water vapor in the combustion chamber is too small, the combustion temperature cannot be kept sufficiently low, so the amount of NOx generated increases, and the amount of water vapor in the combustion chamber is too large There is also a concern that combustion efficiency will decrease.
  • the amount of water vapor that is supplied to the combustor out of the amount of water vapor in the combustion chamber (total water vapor amount) varies depending on the season and climate. It is not easy to adjust the amount of water vapor in the combustion chamber.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to strictly control the amount of water vapor in a combustion chamber in a gas turbine supplied with hydrogen gas as a fuel.
  • a gas turbine according to an embodiment of the present invention is a gas turbine using hydrogen gas as a fuel, having a fuel injection nozzle and having a combustion chamber formed therein, and supplying steam to the combustor.
  • a water vapor supply unit that lowers the combustion temperature, and an air drying device that removes water vapor from the air supplied to the combustor and puts the air into a dry state.
  • the air supplied to the combustor since the air supplied to the combustor is in a dry state, the amount of water vapor contained in the air is not considered (that is, the air supplied to the combustor does not contain water vapor). Assuming) the total water vapor volume can be adjusted. Therefore, adjustment of the total water vapor amount becomes easy.
  • the air drying device includes an exchange unit that takes heat of the air supplied to the combustor by the hydrogen gas, cools the air, and condenses and removes water vapor contained in the air. You may have.
  • low-temperature hydrogen gas can be used effectively, and there is no need to obtain a cold heat source from the outside of the gas turbine.
  • the water vapor supply unit includes a water vapor generating device that heats water supplied to the water vapor supply unit and generates water vapor supplied to the combustor, and supplies the water vapor supply unit to the water vapor supply unit. At least a part of the water to be generated may be condensed water generated from the air cooled by the hydrogen gas in the heat exchange unit.
  • the condensed water generated in the heat exchange part can be used effectively.
  • the amount of water vapor in the combustion chamber can be strict.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to an embodiment.
  • FIG. 1 is a schematic configuration diagram of the gas turbine 100. Broken lines in the figure indicate fuel (hydrogen gas) flow paths, solid lines indicate air flow paths, alternate long and short dash lines indicate combustion gas and exhaust gas flow paths, and dotted lines indicate water and water vapor. The flow path is shown.
  • fuel hydrogen gas
  • solid lines indicate air flow paths
  • alternate long and short dash lines indicate combustion gas and exhaust gas flow paths
  • dotted lines indicate water and water vapor. The flow path is shown.
  • the gas turbine 100 according to the present embodiment is a gas turbine for power generation that drives a generator 101, and the exhaust heat is used for steam turbine power generation. That is, the gas turbine 100 constitutes a part of a combined cycle power generation system. Further, the gas turbine 100 according to the present embodiment uses hydrogen gas as a fuel, and the gas turbine 100 is supplied with low-temperature hydrogen gas. In addition, "low temperature” here means 0 degrees C or less, for example.
  • the gas turbine 100 includes a compressor 10, a combustor 20, a turbine 30, a water vapor supply unit 40, an air drying device 50, and a heating device 60.
  • a compressor 10 As shown in FIG. 1, the gas turbine 100 includes a compressor 10, a combustor 20, a turbine 30, a water vapor supply unit 40, an air drying device 50, and a heating device 60.
  • a combustor 20 As shown in FIG. 1, the gas turbine 100 includes a compressor 10, a combustor 20, a turbine 30, a water vapor supply unit 40, an air drying device 50, and a heating device 60.
  • the compressor 10 is configured to compress air (outside air) that has passed through an air drying device 50 described later and supply the compressed air to the combustor 20.
  • a generator 101 is connected to the compressor 10, and the generator 101 rotates as the compressor 10 rotates, thereby generating power.
  • the combustor 20 includes a housing 21, a combustion cylinder 22, and a fuel injection nozzle 23.
  • the combustor 20 of this embodiment is a backflow can type in which air and combustion gas flow in the reverse direction, a structure other than the backflow can type may be adopted.
  • the housing 21 has a cylindrical shape, and a combustion cylinder 22 is disposed therein.
  • the combustion cylinder 22 also has a cylindrical shape, and a combustion chamber 24 is formed inside.
  • the fuel injection nozzle 23 penetrates the housing 21 and the combustion cylinder 22 and is configured to inject hydrogen gas into the combustion chamber 24.
  • An annular air passage 25 is formed between the housing 21 and the combustion cylinder 22, and the air compressed by the compressor 10 flows through the air passage 25 toward the left side of the drawing.
  • the air that has passed through the air passage 25 is supplied to the combustion chamber 24 through an air hole 26 formed around the fuel injection nozzle 23 in the combustion cylinder 22.
  • combustion gas is generated by burning hydrogen gas and air. The generated combustion gas flows in the combustion chamber 24 toward the right side of the drawing.
  • the turbine 30 is supplied with high-temperature and high-pressure combustion gas generated by the combustor 20.
  • the turbine 30 is rotated by the energy of the combustion gas.
  • the turbine 30 is connected to the compressor 10 via a connecting shaft 31, and the compressor 10 rotates as the turbine 30 rotates.
  • the combustion gas that has passed through the turbine 30, that is, the exhaust gas, is supplied to the steam turbine power generation boiler 102. A part of the exhaust gas is supplied to the heating device 60.
  • the water vapor supply unit 40 is a unit that supplies water vapor to the combustor 20 to lower the combustion temperature.
  • the water vapor supply unit 40 includes a flow rate adjustment valve 41, a water supply pump 42, and a water vapor generation device 43.
  • the flow rate adjustment valve 41 is a valve that adjusts the amount of water supplied to the water vapor supply unit 40. That is, the flow rate adjustment valve 41 can adjust the amount of water vapor supplied to the combustor 20.
  • the water supply pump 42 is a pump that is located downstream of the flow rate adjustment valve 41 and that supplies the water supplied to the water vapor supply unit 40 to the water vapor generation device 43.
  • the water vapor generating device 43 is a device that generates water vapor by heating the supplied water.
  • the heat source of the steam generator 43 is not particularly limited, but exhaust gas discharged from the gas turbine 100 may be used.
  • the water vapor supply unit 40 of this embodiment supplies the generated water vapor to the fuel injection nozzle 23. That is, the water vapor is supplied to the combustion chamber 24 through the fuel injection nozzle 23. Thereby, water vapor is supplied to the combustion chamber 24 in a state of being mixed with hydrogen gas.
  • the water vapor supply unit 40 supplies water vapor directly to the fuel injection nozzle 23, but it may supply water vapor on the hydrogen gas flow path and upstream of the fuel injection nozzle 23.
  • water is supplied from the water supply tank 44, the air drying device 50, and the heating device 60 to the water vapor supply unit 40.
  • the water supplied from the air drying device 50 and the heating device 60 will be described later.
  • water is supplied to the water vapor supply unit 40 from all of the water supply tank 44, the air drying device 50, and the heating device 60, but water may be supplied from only some of them. .
  • water may be supplied to the water vapor supply unit 40 only from the heating device 60.
  • the air drying device 50 is a device for drying the air supplied to the combustor 20.
  • the air drying device 50 of the present embodiment is located upstream of the compressor 10 on the air flow path. Therefore, the air drying device 50 supplies the air (outside air) taken from the outside to the compressor 10 in a dry state.
  • the dried air is compressed by the compressor 10 and then supplied to the combustor 20.
  • the dried air is compressed, but the compressed air may be dried. That is, the air drying device 50 may be installed downstream of the compressor 10 on the air flow path. However, the load of the compressor 10 can be reduced by drying the air supplied to the compressor 10 like this embodiment.
  • the air drying device 50 of the present embodiment dries air using hydrogen gas.
  • the air drying device 50 includes a first heat exchange unit 51 that performs heat exchange between hydrogen gas and air.
  • a first heat exchange unit 51 that performs heat exchange between hydrogen gas and air.
  • ⁇ 20 ° C. hydrogen gas and room temperature air are supplied to the first heat exchanging section 51, and the hydrogen gas takes the heat of the air and cools the air to 5 ° C.
  • water vapor contained in the air is condensed and removed, and the air becomes dry.
  • this condensed water is supplied to the water vapor supply unit 40.
  • the temperature of the hydrogen gas is desirably -20 ° C to 0 ° C.
  • the air supplied to the combustor 20 is in a dry state as described above, so that the amount of water vapor contained in the air is not considered (that is, the air supplied to the combustor 20 is Assuming no water vapor is included), the total amount of water vapor can be adjusted. That is, the total water vapor amount can be adjusted only by opening control of the flow rate adjustment valve 41 determined by the operating state of the gas turbine 100, and the total water vapor amount can be easily adjusted.
  • the heating device 60 is a device that heats the hydrogen gas supplied to the fuel injection nozzle 23 and heats the fuel injection nozzle 23 via the hydrogen gas.
  • the heating device 60 is positioned downstream of the air drying device 50 on the hydrogen gas flow path. That is, the hydrogen gas that has passed through the air drying device 50 flows into the heating device 60.
  • the heating device 60 of the present embodiment heats hydrogen gas using exhaust gas.
  • the heating device 60 includes a second heat exchange unit 61 that performs heat exchange between hydrogen gas and exhaust gas. In the second heat exchange unit 61, the heat of the exhaust gas is supplied to the hydrogen gas, and the hydrogen gas is heated. Therefore, the heat of the exhaust gas can be used effectively, and it is not necessary to obtain the heat source of the heating device 60 from the outside of the gas turbine.
  • the hydrogen gas is heated to a temperature that does not condense when the water vapor supplied from the water vapor supply unit 40 comes into contact with the hydrogen gas or comes into contact with the fuel injection nozzle 23.
  • the temperature of the hydrogen gas is set to be equal to or higher than the supply temperature of the water vapor supplied from the water vapor supply unit 40 and equal to or lower than the temperature obtained by adding 10 ° C. to the supply temperature of the water vapor.
  • the heating device 60 heats the hydrogen gas so that it is 220 ° C. or higher and 230 ° C. or lower.
  • the steam generator 43 of the steam supply unit 40 and the heat source of the heating device 60 are the same, the temperature of the steam supplied from the steam supply unit 40 and the temperature of the hydrogen gas supplied to the fuel injection nozzle 23 should be the same. Can do.
  • the temperature of the hydrogen gas As described above, by setting the temperature of the hydrogen gas to be equal to or higher than the temperature of the water vapor supplied from the water vapor supply unit 40, the hydrogen gas or the water vapor touching the fuel injection nozzle 23 is not condensed. However, if the hydrogen gas is heated too much, the exhaust heat of the gas turbine 100 may be wasted. For this reason, it is desirable that the temperature of the hydrogen gas be equal to or lower than the temperature obtained by adding 10 ° C. to the temperature of the water vapor supplied from the water vapor supply unit 40.
  • the gas turbine 100 of the present embodiment uses hydrogen gas as fuel, water is generated when the hydrogen gas burns, and the exhaust gas contains a lot of water vapor. Therefore, a large amount of condensed water is generated from the exhaust gas whose temperature has decreased due to heat exchange in the second heat exchange section 61.
  • the condensed water generated from the second heat exchange unit 61 is supplied to the steam supply unit 40 as described above. Thereby, the condensed water generated from the 2nd heat exchange part 61 can be used effectively.
  • the exhaust gas includes carbon dioxide, carbon monoxide, and the like.
  • the gas turbine 100 using hydrogen gas as a fuel as in the present embodiment the exhaust gas contains almost no carbon dioxide or carbon monoxide. Therefore, the condensed water generated from the second heat exchange unit 61 of the present embodiment has almost no impurities such as carbon dioxide dissolved therein, and even if it is used as water vapor to be supplied to the combustor 20, the combustor 20 is adversely affected. There is nothing.
  • the first heat exchange unit 51 of the air drying device 50 and the second heat exchange unit 61 of the heating device 60 both increase the temperature of the hydrogen gas by heat exchange. Therefore, it is conceivable that the positions of the air drying device 50 and the heating device 60 are changed, and the heating device 60 is arranged upstream of the air drying device 50 on the hydrogen gas flow path.
  • the temperature of the hydrogen gas flowing into the air drying device 50 is too high (in the above example, the temperature of the hydrogen gas is 220 ° C.) and the air is cooled (in the above example, The temperature of the air after cooling cannot be 5 ° C). Therefore, the heating device 60 is disposed downstream of the air drying device 50 on the hydrogen gas flow path.
  • the air drying device 50 dries air by heat exchange, but air may be dried by a method other than heat exchange.
  • the heating device 60 also heats the hydrogen gas by heat exchange, but the hydrogen gas may be dried by a method other than heat exchange.
  • water vapor supply unit 40 supplies water vapor to the combustion chamber 24 via the fuel injection nozzle 23
  • water vapor may be supplied to the combustion chamber 24 without using the fuel injection nozzle 23.
  • water vapor may be supplied to the air supplied to the combustion chamber 24 (water is sprayed), thereby supplying water vapor to the combustion chamber 24.
  • the amount of water vapor in the combustion chamber can be strict. Therefore, it is useful in the technical field of gas turbines using hydrogen gas as fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 本発明に係るガスタービン(100)は、水素ガスを燃料とするガスタービン(100)であって、燃料噴射ノズル(23)を有し、内部に燃焼室(24)が形成された燃焼器(20)と、燃焼器(20)に水蒸気を供給して燃焼温度を低下させる水蒸気供給ユニット(40)と、燃焼器(20)に供給する空気から水蒸気を取り除いて当該空気を乾燥状態とする空気乾燥装置(50)と、を備える。

Description

ガスタービン
 本発明は、水素ガスを燃料とするガスタービンに関する。
 水素ガスを燃料とするガスタービンは、燃焼による二酸化炭素や一酸化炭素は排出されず、排気ガスがクリーンであるという利点がある(特許文献1参照)。
特表2010-535303号公報
 水素ガスを燃料とするガスタービンは、燃焼による化学反応によって水が発生するため、NOxの排出量を抑えるための水(水蒸気)を燃焼器にさらに供給することになれば、排気ガスには非常に多くの水蒸気が含まれることになる。この場合、排熱利用のためにガスタービンの排気ガスを蒸気タービン発電用のボイラに供給すると、水蒸気に起因するボイラの伝熱性能の低下や腐食の発生を招くおそれがある。
 このボイラにおける伝熱性能の低下や腐食の発生を抑えるには、燃焼室内の水蒸気量、すなわちNOxの排出量を低減するために燃焼器へ供給する水蒸気量と燃焼器へ供給する空気に含まれる水蒸気量を合わせた量(以下、「総水蒸気量」ともいう)を調整する必要がある。なお、上記のボイラにおける問題の他、燃焼室内の水蒸気量が少なすぎる場合は燃焼温度を十分に低く抑えることができないためNOxの発生量が増加し、また、燃焼室内の水蒸気量が多すぎる場合は燃焼効率が低下するという懸念もある。
 一方で、燃焼室内の水蒸気量(総水蒸気量)のうち燃焼器へ供給する空気は、空気中に含まれる水蒸気量が季節や気候によって異なるところ、その水蒸気量は測定が容易ではなく、当然ながら燃焼室内の水蒸気量の調整も容易ではない。
 本発明は、以上のような事情に鑑みてなされたものであり、水素ガスを燃料として供給されるガスタービンにおいて、燃焼室内の水蒸気量を厳密することを目的とする。
 本発明のある形態に係るガスタービンは、水素ガスを燃料とするガスタービンであって、燃料噴射ノズルを有し、内部に燃焼室が形成された燃焼器と、前記燃焼器に水蒸気を供給して燃焼温度を低下させる水蒸気供給ユニットと、前記燃焼器に供給する空気から水蒸気を取り除いて当該空気を乾燥状態とする空気乾燥装置と、を備えている。
 かかる構成によれば、燃焼器に供給する空気は乾燥状態であることから、この空気に含まれる水蒸気量を考慮することなく(すなわち、燃焼器に供給される空気には水蒸気は含まれないと想定して)、総水蒸気量を調整することができる。そのため、総水蒸気量の調整が容易となる。
 また、上記のガスタービンにおいて、前記空気乾燥装置は、前記水素ガスによって前記燃焼器に供給する空気の熱を奪って当該空気を冷却し、当該空気に含まれる水蒸気を凝縮させて取り除く交換部を有していてもよい。
 かかる構成によれば、低温の水素ガスを有効に利用することができるとともに、ガスタービンの外部から冷熱源を得る必要もない。
 また、上記のガスタービンにおいて、前記水蒸気供給ユニットは、当該水蒸気供給ユニットに供給される水を加熱して前記燃焼器に供給する水蒸気を生成する水蒸気生成装置を有し、前記水蒸気供給ユニットに供給される水の少なくとも一部は、前記熱交換部において前記水素ガスによって冷却された空気から発生した凝縮水であってもよい。
 かかる構成によれば、熱交換部で発生する凝縮水を有効に利用することができる。
 上述のとおり、上記のガスタービンによれば、燃焼室内の水蒸気量を厳密することができる。
図1は、実施形態に係るガスタービンの概略構成図である。
 以下、本発明の実施形態について図を参照しながら説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。
 図1は、ガスタービン100の概略構成図である。図中の破線は燃料(水素ガス)の流路を示しており、実線は空気の流路を示しており、一点鎖線は燃焼ガス及び排気ガスの流路を示しており、点線は水及び水蒸気の流路を示している。
 本実施形態に係るガスタービン100は、発電機101を駆動する発電用のガスタービンであり、その排熱は蒸気タービン発電に利用される。つまり、ガスタービン100は、コンバインドサイクル発電システムの一部を構成する。また、本実施形態に係るガスタービン100は水素ガスを燃料としており、ガスタービン100には低温の水素ガスが供給される。なお、ここでいう「低温」とは、例えば0゜C以下を意味する。
 図1に示すように、ガスタービン100は、圧縮機10と、燃焼器20と、タービン30と、水蒸気供給ユニット40と、空気乾燥装置50と、加熱装置60と、を備えている。以下、これらの各構成要素について順に説明する。
 圧縮機10は、後述する空気乾燥装置50を通過した空気(外気)を圧縮し、圧縮した空気を燃焼器20に供給するように構成されている。圧縮機10には発電機101が接続されており、圧縮機10の回転に伴って発電機101が回転し、これにより発電が行われる。
 燃焼器20は、ハウジング21と、燃焼筒22と、燃料噴射ノズル23とを有している。なお、本実施形態の燃焼器20は、空気と燃焼ガスが逆方向に流れる逆流缶型であるが、逆流缶型以外の構造を採用してもよい。ハウジング21は、円筒状の形状を有しており、その内部に燃焼筒22が配置されている。燃焼筒22も円筒状の形状を有しており、内部には燃焼室24が形成されている。燃料噴射ノズル23は、ハウジング21及び燃焼筒22を貫通し、燃焼室24に水素ガスを噴射するように構成されている。
 ハウジング21と燃焼筒22の間には環状の空気通路25が形成されており、圧縮機10で圧縮された空気は空気通路25を紙面左側に向かって流れる。空気通路25を通過した空気は、燃焼筒22のうち燃料噴射ノズル23の周辺に形成された空気孔26を介して燃焼室24に供給される。燃焼室24では、水素ガスと空気が燃焼することで燃焼ガスが生成される。生成された燃焼ガスは、燃焼室24内を紙面右側に向かって流れる。
 タービン30には、燃焼器20で生成された高温高圧の燃焼ガスが供給される。タービン30は、燃焼ガスのエネルギによって回転する。タービン30は連結軸31を介して圧縮機10と接続されており、タービン30が回転するのに伴って圧縮機10も回転する。タービン30を通過した燃焼ガス、すなわち排気ガスは蒸気タービン発電用のボイラ102に供給される。また、排気ガスの一部は、加熱装置60へ供給される。
 水蒸気供給ユニット40は、燃焼器20に水蒸気を供給して燃焼温度を低下させるユニットである。水蒸気供給ユニット40は、流量調整バルブ41と、送水ポンプ42と、水蒸気生成装置43と、を有している。流量調整バルブ41は、水蒸気供給ユニット40に供給される水の量を調整するバルブである。つまり、流量調整バルブ41は、燃焼器20に供給する水蒸気量を調整することができる。送水ポンプ42は、流量調整バルブ41の下流に位置し、水蒸気供給ユニット40に供給された水を水蒸気生成装置43に送るポンプである。水蒸気生成装置43は、供給された水を加熱して水蒸気を生成する装置である。なお、水蒸気生成装置43の熱源は特に限定されないが、ガスタービン100から排出される排気ガスを利用してもよい。
 本実施形態の水蒸気供給ユニット40は、生成した水蒸気を燃料噴射ノズル23に供給する。つまり、水蒸気は、燃料噴射ノズル23を介して燃焼室24に供給される。これにより、水蒸気は水素ガスと混合された状態で燃焼室24に供給される。このように、燃焼室24に供給する前に予め水蒸気を水素ガスと混合させることで、燃焼室24において燃焼が行われる燃焼エリアと水蒸気が供給されるエリアが一致することになる。そのため、水蒸気が燃焼エリア全体に分布し、NOxの発生を有効に抑えることができる。なお、本実施形態では、水蒸気供給ユニット40は燃料噴射ノズル23に直接水蒸気を供給しているが、水素ガスの流路上であって燃料噴射ノズル23の上流に水蒸気を供給してもよい。
 また、本実施形態では、給水タンク44、空気乾燥装置50、及び加熱装置60から水蒸気供給ユニット40へ水が供給される。このうち、空気乾燥装置50、及び加熱装置60から供給される水については後で説明する。なお、本実施形態では、水蒸気供給ユニット40へは、給水タンク44、空気乾燥装置50、及び加熱装置60の全てから水が供給されるが、これらの一部のみから水が供給されてもよい。例えば、加熱装置60のみから水蒸気供給ユニット40に水が供給されるようにしてもよい。
 空気乾燥装置50は、燃焼器20に供給する空気を乾燥状態にする装置である。本実施形態の空気乾燥装置50は、空気の流路上において圧縮機10の上流に位置している。そのため、空気乾燥装置50は、外部から取り込んだ空気(外気)を乾燥状態にして圧縮機10へ供給する。乾燥状態の空気は圧縮機10で圧縮された後、燃焼器20に供給される。なお、本実施形態では、乾燥させた空気を圧縮しているが、圧縮した空気を乾燥させてもよい。つまり、空気の流路上において、空気乾燥装置50を圧縮機10の下流に設置してもよい。ただし、本実施形態のように圧縮機10に供給する空気を乾燥させることで、圧縮機10の負荷を減らすことができる。
 本実施形態の空気乾燥装置50は、水素ガスを用いて空気を乾燥させている。具体的には、空気乾燥装置50は、水素ガスと空気の熱交換を行う第1熱交換部51を有している。例えば、第1熱交換部51に-20゜Cの水素ガスと常温の空気を供給し、水素ガスが空気の熱を奪って空気を5゜Cにまで冷却する。これにより、空気に含まれる水蒸気が凝縮して取り除かれ、空気は乾燥状態となる。また、空気からは凝縮水が発生するが、本実施形態では、この凝縮水を水蒸気供給ユニット40に供給している。なお、水素ガスと空気の熱交換によって空気を乾燥させる場合、水素ガスの温度は-20゜Cから0゜Cであることが望ましい。水素ガスの温度が-20゜Cよりも低くければ、空気の流路側に氷が発生して流路が詰まるおそれがあるからである。また、水素ガスの温度が0゜Cよりも高ければ、空気を十分に乾燥できないおそれがあるからである。
 ここで、水素ガスを燃料とするガスタービン100は、燃焼による化学反応によって水が発生するが、そのうえ上記のようにNOxの排出量を抑えるために燃焼器20に水蒸気を供給すれば、排気ガスには多量の水蒸気が含まれることになる。そのため、排気ガスが供給されるボイラ102には結露が発生し、ボイラ102の伝熱性能の低下や腐食の発生を招くおそれがある。これを防ぐためには、水蒸気供給ユニット40から燃焼器20へ供給する水蒸気量と燃焼器20へ供給する空気に含まれる水蒸気量を合わせた総水蒸気量を調整する必要がある。
 しかしながら、燃焼器20へ供給する空気に含まれる水蒸気量を測定するのは容易ではないことから、当然ながら総水蒸気量を調整することも容易ではない。そこで、本実施形態では、上記のように燃焼器20に供給する空気を乾燥状態とすることで、空気に含まれる水蒸気量を考慮することなく(すなわち、燃焼器20に供給される空気には水蒸気は含まれないと想定して)、総水蒸気量を調整することができる。つまり、ガスタービン100の運転状態によって決まる流量調整バルブ41の開度制御のみで、総水蒸気量を調整することができ、総水蒸気量の調整が容易となる。
 加熱装置60は、燃料噴射ノズル23に供給される水素ガスを加熱するとともに、水素ガスを介して燃料噴射ノズル23を加熱する装置である。加熱装置60は水素ガスの流路上において空気乾燥装置50の下流に位置している。つまり、空気乾燥装置50を通過した水素ガスが、加熱装置60に流入する。本実施形態の加熱装置60は、排気ガスを用いて水素ガスを加熱している。具体的には、加熱装置60は、水素ガスと排気ガスの熱交換を行う第2熱交換部61を有している。第2熱交換部61では、排気ガスの熱が水素ガスに供給され、水素ガスは加熱される。そのため、排気ガスの熱を有効に利用することができ、また、ガスタービンの外部から加熱装置60の熱源を得る必要もない。
 本実施形態では、水蒸気供給ユニット40から供給される水蒸気が水素ガスと接触したとき又は燃料噴射ノズル23と接触したときに凝縮しない温度にまで水素ガスを加熱する。具体的には、水素ガスの温度が水蒸気供給ユニット40から供給される水蒸気の供給温度以上であって、その水蒸気の供給温度に10゜Cを加えた温度以下となるようにする。例えば、水蒸気供給ユニット40から供給される水蒸気の温度が220゜Cであるとすると、加熱装置60は、220゜C以上で230゜C以下になるように水素ガスを加熱する。なお、水蒸気供給ユニット40の水蒸気生成装置43と加熱装置60の熱源が同じであれば、水蒸気供給ユニット40から供給される水蒸気と燃料噴射ノズル23に供給される水素ガスの温度を同じにすることができる。
 上記のとおり、水素ガスの温度を水蒸気供給ユニット40から供給される水蒸気の温度以上とすることで、水素ガス又は燃料噴射ノズル23に触れた水蒸気が凝縮することはない。ただし、水素ガスを加熱しすぎると、ガスタービン100の排熱が無駄に使われるおそれがある。そのため、水素ガスの温度は水蒸気供給ユニット40から供給される水蒸気の温度に10゜Cを加えた温度以下となるようにするのが望ましい。
 また、本実施形態のガスタービン100は水素ガスを燃料としていることから、水素ガスが燃焼することで水が生成され、排気ガスには多くの水蒸気が含まれている。そのため、第2熱交換部61での熱交換により温度が低下した排気ガスからは、多くの凝縮水が発生する。第2熱交換部61から発生した凝縮水は、前述のとおり水蒸気供給ユニット40に供給される。これにより、第2熱交換部61から発生した凝縮水を有効に利用することができる。
 なお、LNG(天然ガス)を燃料とするガスタービンでは、排気ガスに二酸化炭素や一酸化炭素などが含まれる。これに対し、本実施形態のように水素ガスを燃料とするガスタービン100では、排気ガスに二酸化炭素や一酸化炭素がほとんど含まれない。そのため、本実施形態の第2熱交換部61から発生する凝縮水は、二酸化炭素等の不純物がほとんど溶け込んでおらず、燃焼器20に供給する水蒸気として利用しても燃焼器20に悪影響を及ぼすことはない。
 なお、本実施形態では、空気乾燥装置50の第1熱交換部51と加熱装置60の第2熱交換部61は、いずれも熱交換によって水素ガスの温度を上昇させるものである。そのため、空気乾燥装置50と加熱装置60の位置を換え、水素ガスの流路上で加熱装置60を空気乾燥装置50よりも上流に配置することも考えられる。しかしながら、そのように配置すると、空気乾燥装置50に流入する水素ガスの温度が高すぎて(上記の例でいえば水素ガスの温度は220゜C)、空気を冷却(上記の例でいえば冷却後の空気の温度は5゜C)することができない。そのため、加熱装置60は、水素ガスの流路上で空気乾燥装置50よりも下流に配置されている。
 また、本実施形態では、空気乾燥装置50は熱交換によって空気を乾燥しているが、熱交換以外の方法で空気を乾燥させてもよい。同様に、加熱装置60も熱交換によって水素ガスを加熱しているが、熱交換以外の方法で水素ガスを乾燥させてもよい。
 以上が本実施形態の説明である。以上では、水蒸気供給ユニット40が、燃料噴射ノズル23を介して燃焼室24へ水蒸気を供給する場合について説明したが、燃料噴射ノズル23を介さずに燃焼室24へ水蒸気を供給してもよい。例えば、燃焼室24に供給される空気に水蒸気を投入し(水を噴霧し)、これにより燃焼室24へ水蒸気を供給してもよい。
 本発明によれば、水素ガスを燃料とするガスタービンにおいて、燃焼室内の水蒸気量を厳密することができる。よって、水素ガスを燃料とするガスタービンの技術分野において有益である。
20 燃焼器
23 燃料噴射ノズル
24 燃焼室
40 水蒸気供給ユニット
43 水蒸気生成装置
50 空気乾燥装置
51 第1熱交換部(熱交換部)
100 ガスタービン

Claims (3)

  1.  水素ガスを燃料とするガスタービンであって、
     燃料噴射ノズルを有し、内部に燃焼室が形成された燃焼器と、
     前記燃焼器に水蒸気を供給して燃焼温度を低下させる水蒸気供給ユニットと、
     前記燃焼器に供給する空気から水蒸気を取り除いて当該空気を乾燥状態とする空気乾燥装置と、を備えた、ガスタービン。
  2.  前記空気乾燥装置は、前記水素ガスによって前記燃焼器に供給する空気の熱を奪って当該空気を冷却し、当該空気に含まれる水蒸気を凝縮させて取り除く熱交換部を有する、請求項1に記載のガスタービン。
  3.  前記水蒸気供給ユニットは、当該水蒸気供給ユニットに供給される水を加熱して前記燃焼器に供給する水蒸気を生成する水蒸気生成装置を有し、
     前記水蒸気供給ユニットに供給される水の少なくとも一部は、前記熱交換部において前記水素ガスによって冷却された空気から発生した凝縮水である、請求項2に記載のガスタービン。
PCT/JP2015/004909 2014-09-29 2015-09-28 ガスタービン WO2016051758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/515,113 US20170211473A1 (en) 2014-09-29 2015-09-28 Gas turbine
AU2015326220A AU2015326220B2 (en) 2014-09-29 2015-09-28 Gas turbine
DE112015004432.9T DE112015004432B4 (de) 2014-09-29 2015-09-28 Gasturbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-198190 2014-09-29
JP2014198190A JP6417167B2 (ja) 2014-09-29 2014-09-29 ガスタービン

Publications (1)

Publication Number Publication Date
WO2016051758A1 true WO2016051758A1 (ja) 2016-04-07

Family

ID=55629826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004909 WO2016051758A1 (ja) 2014-09-29 2015-09-28 ガスタービン

Country Status (5)

Country Link
US (1) US20170211473A1 (ja)
JP (1) JP6417167B2 (ja)
AU (1) AU2015326220B2 (ja)
DE (1) DE112015004432B4 (ja)
WO (1) WO2016051758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361156A1 (en) * 2017-02-08 2018-08-15 Toyota Jidosha Kabushiki Kaisha Hydrogen gas burner device
CN114658548A (zh) * 2020-12-04 2022-06-24 通用电气公司 用氢气操作燃气涡轮发动机的方法和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103247A1 (de) 2021-02-11 2022-08-11 Vaillant Gmbh Verfahren und Anordnung zur Reduzierung einer Verbrennungstemperatur bei der Verbrennung von Wasserstoff und Luft in einem Heizgerät
EP4056903A1 (en) * 2021-03-07 2022-09-14 CPS-Holding Limited Hydrogen-fueled combustor for gas turbines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302144A (ja) * 1987-06-01 1988-12-09 Mitsubishi Heavy Ind Ltd タ−ビン式動力発生装置
JPH04334729A (ja) * 1991-05-08 1992-11-20 Toyo Eng Corp 発電方法
US7827794B1 (en) * 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
JP2013096324A (ja) * 2011-11-02 2013-05-20 Kawasaki Heavy Ind Ltd ガスタービンシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452541A (en) * 1961-02-09 1969-07-01 Marquardt Corp Liquid air jet propulsion engine and method of operating same
US3788066A (en) * 1970-05-05 1974-01-29 Brayton Cycle Improvement Ass Refrigerated intake brayton cycle system
US3877218A (en) * 1971-09-14 1975-04-15 William H Nebgen Brayton cycle system with refrigerated intake and condensed water injection
US4393649A (en) * 1979-07-23 1983-07-19 International Power Technology, Inc. Steam output control system
JPH066908B2 (ja) * 1986-11-25 1994-01-26 三菱重工業株式会社 熱併給発電設備
US5054279A (en) * 1987-11-30 1991-10-08 General Electric Company Water spray ejector system for steam injected engine
FR2628790A1 (fr) * 1988-03-16 1989-09-22 Snecma Propulseur combine turbofusee aerobie
GB2295858A (en) 1994-12-09 1996-06-12 Rolls Royce Plc Liquid hydrogen fuelled powerplant
JPH10121912A (ja) * 1996-10-21 1998-05-12 Mitsubishi Heavy Ind Ltd 燃焼タービンサイクルシステム
JP2001132475A (ja) * 1999-11-10 2001-05-15 Chiyoda Corp 蒸気・ガスタービン複合サイクルによる発電システム
US6644011B2 (en) * 2000-03-24 2003-11-11 Cheng Power Systems, Inc. Advanced Cheng Combined Cycle
US20080034727A1 (en) * 2004-05-19 2008-02-14 Fluor Technologies Corporation Triple Cycle Power Plant
EP1990578A1 (de) 2007-05-08 2008-11-12 ALSTOM Technology Ltd Gasturbine mit Wassereinspritzung
CA2813263A1 (en) * 2010-09-30 2012-04-05 General Electric Company Aircraft engine systems and methods for operating same
US10215412B2 (en) * 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
JP6244242B2 (ja) * 2014-03-26 2017-12-06 千代田化工建設株式会社 水素製造システム及び水素製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302144A (ja) * 1987-06-01 1988-12-09 Mitsubishi Heavy Ind Ltd タ−ビン式動力発生装置
JPH04334729A (ja) * 1991-05-08 1992-11-20 Toyo Eng Corp 発電方法
US7827794B1 (en) * 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
JP2013096324A (ja) * 2011-11-02 2013-05-20 Kawasaki Heavy Ind Ltd ガスタービンシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361156A1 (en) * 2017-02-08 2018-08-15 Toyota Jidosha Kabushiki Kaisha Hydrogen gas burner device
CN114658548A (zh) * 2020-12-04 2022-06-24 通用电气公司 用氢气操作燃气涡轮发动机的方法和设备

Also Published As

Publication number Publication date
JP2016070127A (ja) 2016-05-09
DE112015004432T5 (de) 2017-07-06
US20170211473A1 (en) 2017-07-27
AU2015326220A1 (en) 2017-04-27
JP6417167B2 (ja) 2018-10-31
AU2015326220B2 (en) 2018-06-14
DE112015004432B4 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
JP6245404B1 (ja) 燃焼装置および発電設備
WO2016051758A1 (ja) ガスタービン
JP2007032568A (ja) 複合サイクル発電プラント
JP4343188B2 (ja) 高湿分ガスタービン設備
RU2013149862A (ru) Газотурбинный узел и соответствующий способ работы
JP2011001954A (ja) 単純サイクルプラントにおけるタービン燃料を加熱するシステム及び方法
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP2012117517A (ja) 複合サイクル発電プラントの熱交換器
JP2013160233A (ja) ガスタービン入口空気加熱システム及び方法
KR20170114984A (ko) 환원제 증발을 위한 가스 터빈 가열 유체의 사용
JP6819323B2 (ja) 熱サイクル設備
JP5909429B2 (ja) 湿分利用ガスタービンシステム
WO2012114944A1 (ja) ボイラプラント
JP2010261456A (ja) ガスタービン用燃料を加熱するシステム及び方法
JP2013160227A (ja) ガスタービンのNOx排出の改良のためのシステム及び方法
US9416685B2 (en) Auxillary steam generation arrangement for a combined cycle power plant
JP4824098B2 (ja) 高湿分ガスタービン設備
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
WO2012042641A1 (ja) 太陽熱利用コンバインドサイクルプラント
JP2010159762A (ja) ピーカー・サイクル用のアンモニア噴射システム
JP2014074402A (ja) 発電装置の燃料加熱システム及び燃料加熱方法
WO2012162923A1 (zh) 燃气和蒸汽轮机系统
JP5013414B2 (ja) ガスタービンシステム及び発電システム
WO2012162922A1 (zh) 燃气和蒸汽轮机系统
JP2016070126A (ja) ガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515113

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004432

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2015326220

Country of ref document: AU

Date of ref document: 20150928

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15846574

Country of ref document: EP

Kind code of ref document: A1