WO2012162922A1 - 燃气和蒸汽轮机系统 - Google Patents

燃气和蒸汽轮机系统 Download PDF

Info

Publication number
WO2012162922A1
WO2012162922A1 PCT/CN2011/076608 CN2011076608W WO2012162922A1 WO 2012162922 A1 WO2012162922 A1 WO 2012162922A1 CN 2011076608 W CN2011076608 W CN 2011076608W WO 2012162922 A1 WO2012162922 A1 WO 2012162922A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
combustion chamber
steam turbine
water
Prior art date
Application number
PCT/CN2011/076608
Other languages
English (en)
French (fr)
Inventor
武桢
Original Assignee
马鞍山科达洁能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马鞍山科达洁能股份有限公司 filed Critical 马鞍山科达洁能股份有限公司
Publication of WO2012162922A1 publication Critical patent/WO2012162922A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Definitions

  • This invention relates to energy and power technologies, and more particularly to a gas and steam turbine system. Background technique
  • the gas turbine is a rotary impeller type heat engine that uses a continuously flowing gas as a working medium to drive the turbine to rotate at a high speed and convert the chemical energy of the fuel into kinetic energy.
  • a gas turbine includes a compressor, a combustor, a combustion chamber, and a turbine.
  • the compressor compresses the air into a high-pressure gas, and the high-pressure gas mixes with the fuel in the combustor to form an oil-air mixture, and is ignited by the ignition device to burn, and the high temperature generated by the combustion of the fuel
  • the high pressure gas drives the turbine to rotate, and the turbine rotates to drive the generator set to generate electricity.
  • the existing combustion chamber cooling method is air cooling, and the specific method is that a part of the high pressure gas pumped by the compressor is used for mixing combustion with the fuel, and a part is used for blowing to the combustion chamber, taking away part of the heat of the combustion chamber to realize the combustion chamber. Cooling. In practical applications, 25%-4% of the high-pressure gas pumped by the compressor mixes with the fuel to form an oil-air mixture and burns, and 60%-75% of the high-pressure gas flows between the outer walls of the combustion chamber. The outer wall of the combustion chamber is cooled, and then enters the combustion chamber to be mixed with high-temperature and high-pressure gas to reduce the temperature of the gas to 65 (TC - 1 000).
  • the invention provides a gas and steam turbine system for solving the defects in the prior art, which can save energy and reduce environmental pollution.
  • the present invention provides a gas and steam turbine system including a gas turbine, a steam turbine, a superheater, a waste heat boiler, and a steam drum;
  • the gas turbine includes a compressor, a combustion chamber, and a turbine that are sequentially connected;
  • the outer wall of the combustion chamber has a water-cooling wall, and the water-cooling wall has circulating cooling water to cool the combustion chamber;
  • the superheater is in communication with the steam drum to receive saturated steam in the steam drum,
  • a superheater is in communication with the steam turbine to provide superheated steam to the steam turbine;
  • the waste heat boiler is in communication with the steam drum to form a circulation loop.
  • the gas and steam turbine system further includes a condenser, a purifier, and a high pressure water pump that are sequentially connected; the condenser is in communication with the steam turbine, and the high pressure water pump is in communication with the water wall, the water cooling The wall is in communication with the drum to form a circulation loop.
  • the gas and steam turbine system further includes a pressurizing fan; the pressurizing fan is in communication with the flue gas exhaust pipe, and is installed at a rear end of the waste heat boiler, A pressure blower is in communication with the compressor to deliver flue gas to the compressor.
  • the gas and steam turbine system further includes a water collector; the water collector is mounted on the flue gas exhaust pipe and is installed at a rear end of the waste heat boiler, the water collector being in communication with the purifier
  • the steam in the flue gas is condensed and delivered to the purifier. It can recycle water vapor in the flue gas and save water resources.
  • the combustion chamber is at least two independent combustion chambers, each Each of the combustion chambers has a burner, and the outer wall of each combustion chamber is provided with a water wall.
  • the combustion chamber is one, and the combustion chamber has at least two burners.
  • the gas and steam turbine system provided by the present invention has an outer wall of the combustion chamber having a water-cooled wall having a circulating cooling water therein to cool the combustion chamber as compared with the prior art.
  • the cooling water in the water wall has a better cooling effect on the combustion chamber, and the amount of air that the compressor inputs into the combustion chamber can be reduced, thereby saving energy.
  • a boiler, the superheater being in communication with the steam turbine, providing superheated steam to the steam turbine to drive steam turbines to generate electricity, thereby improving energy utilization.
  • FIG. 1 is a schematic view of a gas and steam turbine system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a gas and steam turbine system according to a second embodiment of the present invention
  • And a schematic of the steam turbine system a schematic of the steam turbine system.
  • the connecting line between the components in Fig. 1-2 indicates the pipe communication, wherein the direction indicated by the arrow is the flow direction of the working medium.
  • Figure 1 is a schematic illustration of a gas and steam turbine system provided in accordance with a first embodiment of the present invention.
  • the gas and steam turbine system provided by the present invention comprises a gas turbine, a steam turbine 7, a superheater 4, a waste heat boiler 5 and a drum 6.
  • the gas turbine includes a compressor 1, a combustion chamber 2, and a turbine 3 that are sequentially connected.
  • the outer wall of the combustion chamber 2 has a water-cooling wall 21 having circulating cooling water therein to cool the combustion chamber 2.
  • the superheater 4 and the waste heat boiler 5 are sequentially installed on the flue gas discharge pipe of the turbine 3, and the flue gas discharged through the turbine 3 heats the superheater 4 and the waste heat boiler 5, and the superheater 4 communicates with the steam drum 6, and the saturation in the steam drum 6
  • the steam enters the superheater 4 through the pipeline, and the superheater 4 communicates with the steam turbine 7 to supply superheated steam to the steam turbine 7, thereby driving the blades of the steam turbine 7 to operate at a high speed;
  • the waste heat boiler 5 communicates with the steam drum 6 to form a circulation loop, waste heat
  • the boiler 5 heats the circulating water in the circulation loop to generate steam.
  • the gas and steam turbine system provided in this embodiment further includes a condenser 8, a purifier 9 and a high pressure water pump 10 which are sequentially connected; the condenser 8 is in communication with the steam turbine 7, and the high pressure water pump 10 is in communication with the water wall 21, and the water wall 21 It communicates with the drum 6 to form a circulation loop.
  • the combustion chamber 2 has two independent combustion chambers, each of which has a burner 22, and the outer wall of each combustion chamber 2 is provided with a water-cooling wall 21, and each of the water-cooling walls 21 of the combustion chamber is combined with a
  • the high pressure water pump 10 is in communication and is in communication with the drum 6.
  • the turbine 3 is coaxially coupled to the first genset 13 and the turbine 3 is driven to drive the first genset 13 to generate electricity at a high speed.
  • the steam turbine 7 is coaxially connected to the second generator set 14, and the steam turbine 7 drives the second generator set 14 to generate electricity at a high speed.
  • the compressor 1 continuously draws in air and compresses it, and delivers the compressed air to the combustor 22 in the combustion chamber 2 while delivering the fuel to the combustor 22 in the combustion chamber 2, after the fuel and air are thoroughly mixed. Combustion in the combustion chamber 2 produces high temperature and high pressure flue gas.
  • the high temperature and high pressure flue gas in the combustion chamber 2 flows from the air outlet of the combustion chamber 2 to the turbine 3,
  • the drive turbine 3 is operated at a high speed to drive the first generator set 13 coaxially connected to the turbine 3 to generate electricity.
  • the waste heat boiler 5 absorbs the heat of the flue gas discharged from the turbine 3, heats the circulating water inside thereof to generate a steam-water mixture, enters the steam drum 6 through the pipeline, and the steam-water mixture is separated into saturated steam and hot water in the steam drum 6, and the hot water passes through The pipe is returned to the waste heat boiler 5 for further heating.
  • the saturated steam enters the superheater 4 through the pipeline, and the superheater 4 absorbs the heat of the flue gas removed by the turbine 3, heats the saturated steam to form superheated steam, and the superheated steam enters the steam turbine 7 through the pipeline to push the vane of the steam turbine 7 to rotate, the steam turbine 7 drives the coaxially connected second genset 14 to generate electricity.
  • the steam from the steam turbine 7 enters the condenser 8 through the pipeline, and the condenser 8 cools the steam to form condensed water, and the condensed water enters the purifier 9 through the pipeline, and the purifier 9 purifies the internal water by oxygen, and passes through the high-pressure water pump 10
  • the cooling water is pumped into the water-cooling wall 21 of the combustion chamber 1, and the cooling water circulates in the water-cooling wall 21 to cool the combustion chamber 2.
  • the cooling water in the water wall 21 absorbs the heat of the combustion chamber 1 into a mixture of steam and water, enters the steam drum 6 through the pipe, and separates into saturated steam and hot water in the steam drum 6, and continues the above cycle.
  • the outer wall of the combustion chamber 2 has a water-cooling wall 21, and the water-cooling wall 21 has circulating cooling water therein to cool the combustion chamber 2.
  • the cooling water in the water wall 21 has a better cooling effect on the combustion chamber 1, and the amount of air that the compressor 1 is input into the combustion chamber 2 can be reduced, thereby saving energy.
  • the superheater 4 and the waste heat boiler 5 are sequentially installed on the flue gas discharge pipe of the turbine 3, the superheater 4 communicates with the steam turbine 7, and the steam turbine 7 is supplied with superheated steam to drive the steam turbine 7 to generate electricity, thereby improving energy utilization. rate.
  • Figure 2 is a schematic illustration of a gas and steam turbine system in accordance with a second embodiment of the present invention.
  • the structure of the gas and steam turbine system provided by the present invention is substantially the same as that of the gas and steam turbine system of the first embodiment, and the differences are as follows:
  • the gas and steam turbine system provided by this embodiment further includes a pressurized fan 11 .
  • the pressurizing fan 1 1 is connected to the flue gas discharge pipe, and is installed at the rear end of the waste heat boiler 5, and the pressurizing fan 1 1 is connected to the compressor 1 to deliver the flue gas to the compressor 1, which can reduce the flue gas pair Pollution of the atmospheric environment.
  • the gas and steam turbine system provided by this embodiment further includes a water collector 12.
  • the water collector 12 is installed on the flue gas discharge pipe, and is installed at the rear end of the waste heat boiler 5, and the water collector 12 communicates with the purifier 9, and condenses and delivers the steam in the flue gas to the purifier 9, which can be realized.
  • the recycling of water vapor saves water resources.
  • gas and steam turbine system of the present embodiment also has the technical effects of the gas and steam turbine system of the first embodiment described above, and will not be described herein.
  • Figure 3 is a schematic illustration of a gas and steam turbine system provided in accordance with a third embodiment of the present invention.
  • the structure of the gas and steam turbine system provided by the present invention is substantially the same as that of the gas and steam turbine system of the first embodiment, and the differences are as follows:
  • the combustion chamber 2 is a combustion chamber 2
  • the number of the burners 22 in the combustion chamber 2 may be one. It can be said that the specific structure of the combustion chamber 2 of the gas and steam turbine system provided by the present invention can be variously modified, and will not be fully exemplified herein.
  • gas and steam turbine system of the present embodiment also has the technical effects of the gas and steam turbine system of the first embodiment described above, and will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种燃气和蒸汽轮机系统,包括燃气轮机、蒸汽轮机(7)、过热器(4)、废热锅炉(5)和汽包(6);燃气轮机包括依次流体连通的压气机(1)、燃烧室(2)和涡轮机(3);燃烧室(2)的外壁具有水冷壁(21),水冷壁(21)内具有循环流动的冷却水以冷却燃烧室(2);过热器(4)和废热锅炉(5)依次安装在涡轮机(3)的烟气排放管道上,过热器(4)与汽包(6)流体连通,接收汽包(6)内的饱和蒸汽,过热器(4)与蒸汽轮机(7)流体连通,为蒸汽轮机(7)提供过热蒸汽;废热锅炉(5)与汽包(6)流体连通,构成流通环路。由于燃烧室(2)的外壁具有水冷壁(21),水冷壁(21)内具有循环流动的冷却水以冷却燃烧室(2),水冷壁(21)内的冷却水对燃烧室(2)的冷却效果更好,可以减少压气机(1)输入燃烧室(2)的空气量,进而能够节约能源。

Description

燃气和蒸汽轮机系统 技术领域
本发明涉及能源电力技术, 尤其是涉及一种燃气和蒸汽轮机系统。 背景技术
燃气轮机是以连续流动的气体为工质带动涡轮高速旋转,将燃料的化 学能转换为动能的内燃式动力机械, 是一种旋转叶轮式热力发动机。
通常, 燃气轮机包括压气机、 燃烧器、 燃烧室和涡轮机, 压气机将空 气压缩为高压气体, 高压气体在燃烧器内与燃料混合形成油气混合气, 经 点火装置点火后燃烧, 燃料燃烧生成的高温高压气体带动涡轮机旋转, 涡 轮机旋转驱动发电机组发电。
燃气轮机在工作过程中, 燃烧室内的燃料燃烧产生非常高的热量,因 此必须对燃烧室实施冷却, 以防止燃烧室因高温而导致损坏。
现有燃烧室冷却方法是风冷, 其具体方法是, 压气机泵出的高压气体 一部分用于与燃料混合燃烧, 一部分用于吹向燃烧室, 带走燃烧室的部分 热量, 实现对燃烧室的冷却。 在实际应用中, 压气机泵出的高压气体中, 有 25%-4 0%与燃料混合形成油气混合气并燃烧, 有 60%-75%的高压气体从 燃烧室的外壁间流过, 对燃烧室的外壁进行冷却, 然后进入燃烧室与高 温高压燃气掺混, 使燃气温度降低, 达到涡轮机工作要求的 65 (TC - 1 000
°c。
可以看出, 现有技术中, 通过压气机泵出的 60%-75%高压气体冷却燃 烧室, 因而需要较大的能量用于燃烧室的冷却, 因而浪费能源。
此外, 由于空气的比热较小, 采用风冷的方式冷却燃烧室的冷却效果 较差, 容易造成燃烧室的损坏。 另夕卜, 从涡轮机排出的烟气中的显热没有充分的利用, 且大部分烟气 排放到空气中, 造成能源的浪费和环境的污染。 发明内容
本发明提供一种燃气和蒸汽轮机系统, 用以解决现有技术中的缺陷, 能够节约能源, 减少环境污染。
本发明提供了一种燃气和蒸汽轮机系统, 包括燃气轮机、 蒸汽轮机、 过热器、 废热锅炉和汽包;
所述燃气轮机包括依次连通的压气机、 燃烧室和涡轮机;
所述燃烧室的外壁具有水冷壁, 所述水冷壁内具有循环流动的冷却 水, 冷却所述燃烧室; 述过热器与所述汽包连通, 接收所述汽包内的饱和蒸汽, 所述过热器与所 述蒸汽轮机连通, 为所述蒸汽轮机提供过热蒸汽; 所述废热锅炉与所述汽 包连通, 构成流通环路。
为了节约水资源, 该燃气和蒸汽轮机系统还包括依次连通的冷凝器、 净化器和高压水泵; 所述冷凝器与所述蒸汽轮机连通, 所述高压水泵与所 述水冷壁连通, 所述水冷壁与所述汽包连通, 形成流通环路。
为了减少烟气对大气环境的污染, 该燃气和蒸汽轮机系统还包括加压 风机; 所述加压风机与所述烟气排放管道连通, 且在安装在所述废热锅炉 的后端, 该加压风机与所述压气机连通, 将烟气输送给所述压气机。
另外, 该燃气和蒸汽轮机系统还包括水收集器; 所述水收集器安装在 烟气排放管道上, 且在安装在所述废热锅炉的后端, 该水收集器与所述净 化器连通, 将烟气中的蒸汽冷凝并输送给所述净化器。 可以对烟气中的水 蒸汽循环利用, 节约水资源。
在上述技术方案的基础上, 所述燃烧室为至少两个独立的燃烧室, 每 个燃烧室内均具有一个燃烧器, 每个燃烧室的外壁均安装有水冷壁。
在上述技术方案的基础上, 所述燃烧室为一个, 所述燃烧室内具有至 少两个燃烧器。
本发明提供的燃气和蒸汽轮机系统, 与现有技术相比, 所述燃烧室的 外壁具有水冷壁,所述水冷壁内具有循环流动的冷却水,冷却所述燃烧室。 水冷壁内的冷却水对燃烧室的冷却效果更好, 可以减少所述压气机输入所 述燃烧室的空气量, 进而能够节约能源。 锅炉, 所述过热器与所述蒸汽轮机连通, 为所述蒸汽轮机提供过热蒸汽驱 动蒸汽轮机发电, 能够提高能量的利用率。 附图说明
图 1为本发明第一实施例提供的燃气和蒸汽轮机系统的示意图; 图 2为本发明第二实施例提供的燃气和蒸汽轮机系统的示意图; 图 3为本发明第三实施例提供的燃气和蒸汽轮机系统的示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
首先需要说明的是, 附图 1 -2中的部件之间的连接线表示管道连通, 其中箭头的指示方向为工质的流动方向。
参照图 1 , 图 1为本发明第一实施例提供的燃气和蒸汽轮机系统的示 意图。 在本发明的第一实施例中, 本发明提供的燃气和蒸汽轮机系统包括燃 气轮机、 蒸汽轮机 7、 过热器 4、 废热锅炉 5和汽包 6。 其中, 燃气轮机包 括依次连通的压气机 1、 燃烧室 2和涡轮机 3。
燃烧室 2的外壁具有水冷壁 21 ,水冷壁 21内具有循环流动的冷却水, 冷却燃烧室 2。
过热器 4和废热锅炉 5依次安装在涡轮机 3的烟气排放管道上, 通过 涡轮机 3排出的烟气加热过热器 4和废热锅炉 5 ,过热器 4与汽包 6连通, 汽包 6内的饱和蒸汽通过管道进入过热器 4 ,过热器 4与蒸汽轮机 7连通, 为蒸汽轮机 7提供过热蒸汽, 进而推动蒸汽轮机 7的叶片高速运转; 废热 锅炉 5与汽包 6连通, 构成流通环路, 废热锅炉 5加热流通环路中的循环 水产生蒸汽。
此外, 本实施例提供的燃气和蒸汽轮机系统还包括依次连通的冷凝器 8、 净化器 9和高压水泵 10; 冷凝器 8与蒸汽轮机 7连通, 高压水泵 10 与水冷壁 21连通, 水冷壁 21与汽包 6连通, 形成流通环路。
具体地, 燃烧室 2具有两个独立的燃烧室, 每个燃烧室内均具有一个 燃烧器 22 , 每个燃烧室 2的外壁均安装有水冷壁 21 , 每个燃烧室的水冷 壁 21均与一个高压水泵 10连通, 且均与汽包 6连通。
另外, 在本实施例中, 涡轮机 3同轴连接有第一发电机组 1 3 , 涡轮机 3高速转动驱动第一发电机组 13发电。蒸汽轮机 7同轴连接有第二发电机 组 14 , 蒸汽轮机 7高速转动驱动第二发电机组 14发电。
下面具体说明本发明第一实施例提供的燃气和蒸汽轮机系统的工作 过程及工质循环过程:
一、 压气机 1连续地吸入空气并将其压缩, 将压缩后的空气输送给燃 烧室 2 内的燃烧器 22 , 同时将燃料输送给燃烧室 2内的燃烧器 22 , 燃料 与空气充分混合后在燃烧室 2内燃烧, 产生高温高压的烟气。
二、燃烧室 2内的高温高压的烟气从燃烧室 2的出气口流向涡轮机 3 , 驱动涡轮机 3 高速运转, 进而驱动与涡轮机 3 同轴连接的第一发电机组 1 3发电。
三、 废热锅炉 5吸收涡轮机 3排出的烟气的热量, 加热其内部的循环 水产生汽水混合物, 通过管道进入汽包 6 , 汽水混合物在汽包 6内分离成 饱和蒸汽和热水, 热水通过管道回流至废热锅炉 5内继续加热。
四、 饱和蒸汽通过管道进入过热器 4 , 过热器 4吸收涡轮机 3排除的 烟气的热量, 将饱和蒸汽加热形成过热蒸汽, 过热蒸汽通过管道进入蒸汽 轮机 7推动蒸汽轮机 7的叶片转动, 蒸汽轮机 7驱动同轴连接的第二发电 机组 14发电。
五、 从蒸汽轮机 7出来的蒸汽通过管道进入冷凝器 8 , 冷凝器 8将蒸 汽冷却形成冷凝水, 冷凝水通过管道进入净化器 9 , 净化器 9将内部的水 除氧净化, 通过高压水泵 10将冷却水泵入燃烧室 1的水冷壁 21内, 冷却 水在水冷壁 21内循环流动, 冷却燃烧室 2。
六, 水冷壁 21 内的冷却水吸收燃烧室 1的热量变成汽水混合物, 通 过管道进入汽包 6 , 在汽包 6内分离成饱和蒸汽和热水, 继续上述循环。
本实施例提供的燃气和蒸汽轮机系统, 燃烧室 2的外壁具有水冷壁 21 ,水冷壁 21内具有循环流动的冷却水,冷却燃烧室 2。与现有技术相比, 水冷壁 21内的冷却水对燃烧室 1的冷却效果更好, 可以减少压气机 1输 入燃烧室 2的空气量, 进而能够节约能源。
并且, 由于在涡轮机 3的烟气排放管道上依次安装有过热器 4和废热 锅炉 5 , 过热器 4与蒸汽轮机 7连通, 为蒸汽轮机 7提供过热蒸汽驱动蒸 汽轮机 7发电, 能够提高能量的利用率。
参考图 2 , 图 2为本发明第二实施例提供的燃气和蒸汽轮机系统的示 意图。
在第二实施例中, 本发明提供的燃气和蒸汽轮机系统的结构与第一实 施例中的燃气和蒸汽轮机系统的结构基本相同, 不同点如下所述: 本实施例提供的燃气和蒸汽轮机系统还包括加压风机 1 1。 加压风机 1 1与烟气排放管道连通, 且在安装在废热锅炉 5的后端, 并且, 加压风机 1 1与压气机 1连通, 将烟气输送给压气机 1 , 可以减少烟 气对大气环境的污染。
另外, 本实施例提供的燃气和蒸汽轮机系统还包括水收集器 12。 水收 集器 12安装在烟气排放管道上, 且在安装在废热锅炉 5的后端, 该水收 集器 12与净化器 9连通, 将烟气中的蒸汽冷凝并输送给净化器 9 , 可以实 现水汽的循环利用, 节约水资源。
显然, 本实施例中的燃气和蒸汽轮机系统还具有上述第一种实施例中 的燃气和蒸汽轮机系统的技术效果, 在此不再赘述。
参考图 3 , 图 3为本发明第三实施例提供的燃气和蒸汽轮机系统的示 意图。
在第三实施例中, 本发明提供的燃气和蒸汽轮机系统的结构与第一种 实施例中的燃气和蒸汽轮机系统的结构基本相同, 不同点如下所述: 燃烧室 2为一个, 燃烧室 2内具有至少两个燃烧器 22。
另外, 燃烧室 2内的燃烧器 22的数量也可以为一个, 可以说, 本发 明提供的燃气和蒸汽轮机系统的燃烧室 2的具体结构可以做多种改进, 在 此不再全部举例说明。
显然, 本实施例中的燃气和蒸汽轮机系统还具有上述第一种实施例中 的燃气和蒸汽轮机系统的技术效果, 在此也不再赘述。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种燃气和蒸汽轮机系统, 其特征在于, 包括燃气轮机、 蒸汽轮 机、 过热器、 废热锅炉和汽包;
所述燃气轮机包括依次连通的压气机、 燃烧室和涡轮机;
所述燃烧室的外壁具有水冷壁, 所述水冷壁内具有循环流动的冷却 水, 冷却所述燃烧室; 述过热器与所述汽包连通, 接收所述汽包内的饱和蒸汽, 所述过热器与所 述蒸汽轮机连通, 为所述蒸汽轮机提供过热蒸汽; 所述废热锅炉与所述汽 包连通, 构成流通环路。
2、 根据权利要求 1所述的燃气和蒸汽轮机系统, 其特征在于, 该燃 气和蒸汽轮机系统还包括依次连通的冷凝器、 净化器和高压水泵;
所述冷凝器与所述蒸汽轮机连通, 所述高压水泵与所述水冷壁连通, 所述水冷壁与所述汽包连通, 形成流通环路。
3、 根据权利要求 1或 2所述的燃气和蒸汽轮机系统, 其特征在于, 该燃气和蒸汽轮机系统还包括加压风机;
所述加压风机与所述烟气排放管道连通, 且在安装在所述废热锅炉的 后端, 该加压风机与所述压气机连通, 将烟气输送给所述压气机。
4、 根据权利要求 2所述的燃气和蒸汽轮机系统, 其特征在于, 该燃 气和蒸汽轮机系统还包括水收集器;
所述水收集器安装在烟气排放管道上, 且在安装在所述废热锅炉的后 端, 该水收集器与所述净化器连通, 将烟气中的蒸汽冷凝并输送给所述净 化器。
5、 根据权利要求 1或 2所述的燃气和蒸汽轮机系统, 其特征在于, 所述燃烧室为至少两个独立的燃烧室, 每个燃烧室内均具有一个燃烧器, 每个燃烧室的外壁均安装有水冷壁。
6、 根据权利要求 1或 2所述的燃气和蒸汽轮机系统, 其特征在于, 所述燃烧室为一个, 所述燃烧室内具有至少两个燃烧器。
PCT/CN2011/076608 2011-06-02 2011-06-30 燃气和蒸汽轮机系统 WO2012162922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110148301 2011-06-02
CN201110148301.5 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012162922A1 true WO2012162922A1 (zh) 2012-12-06

Family

ID=45103842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076608 WO2012162922A1 (zh) 2011-06-02 2011-06-30 燃气和蒸汽轮机系统

Country Status (2)

Country Link
CN (2) CN102278155A (zh)
WO (1) WO2012162922A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278155A (zh) * 2011-06-02 2011-12-14 马鞍山科达洁能股份有限公司 燃气和蒸汽轮机系统
WO2022193796A1 (zh) * 2021-03-19 2022-09-22 李华玉 双燃料联合循环动力装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424668A (en) * 1981-04-03 1984-01-10 Bbc Brown, Boveri & Company Limited Combined gas turbine and steam turbine power station
JPH05248260A (ja) * 1992-03-04 1993-09-24 Hitachi Ltd 石炭ガス化複合発電プラント
JP2000038903A (ja) * 1998-05-18 2000-02-08 Hiroyasu Tanigawa 制御装置を有する蒸気ガスタ―ビン合体機関
US6032456A (en) * 1995-04-07 2000-03-07 Lsr Technologies, Inc Power generating gasification cycle employing first and second heat exchangers
US6148602A (en) * 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
CN2517877Y (zh) * 2001-04-30 2002-10-23 欧光志 水冷式燃气轮机
JP2007270700A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 吸気冷却装置を備えたコンバインドサイクルプラント及びその運転方法,制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB800354A (en) * 1955-12-23 1958-08-27 Aerojet General Co Combustion chamber for gas generation provided with cooling means and a system for operating the same
JPH0718525B2 (ja) * 1987-05-06 1995-03-06 株式会社日立製作所 排ガスボイラ
US5794431A (en) * 1993-07-14 1998-08-18 Hitachi, Ltd. Exhaust recirculation type combined plant
RU2079684C1 (ru) * 1994-07-25 1997-05-20 Малое инновационное предприятие Научно-исследовательского института тепловых процессов "Теплоэн" Парогенератор
JPH08261463A (ja) * 1995-03-28 1996-10-11 Toshiba Corp ガスタービン燃焼器
EP1443275B1 (de) * 2003-01-29 2008-08-13 Siemens Aktiengesellschaft Brennkammer
EP2281147A1 (en) * 2008-03-19 2011-02-09 Vale Solu Es Em Energia S.A. Vitiated steam generator
CN102278155A (zh) * 2011-06-02 2011-12-14 马鞍山科达洁能股份有限公司 燃气和蒸汽轮机系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424668A (en) * 1981-04-03 1984-01-10 Bbc Brown, Boveri & Company Limited Combined gas turbine and steam turbine power station
JPH05248260A (ja) * 1992-03-04 1993-09-24 Hitachi Ltd 石炭ガス化複合発電プラント
US6032456A (en) * 1995-04-07 2000-03-07 Lsr Technologies, Inc Power generating gasification cycle employing first and second heat exchangers
JP2000038903A (ja) * 1998-05-18 2000-02-08 Hiroyasu Tanigawa 制御装置を有する蒸気ガスタ―ビン合体機関
US6148602A (en) * 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
CN2517877Y (zh) * 2001-04-30 2002-10-23 欧光志 水冷式燃气轮机
JP2007270700A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 吸気冷却装置を備えたコンバインドサイクルプラント及びその運転方法,制御方法

Also Published As

Publication number Publication date
CN202250397U (zh) 2012-05-30
CN102278155A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
CN104675521A (zh) 一种新型燃气-蒸汽联合循环冷热电联供系统
CN105485649B (zh) 一种高效余热回收综合利用系统
CN206785443U (zh) 一种高压天然气热电联供分布式能源系统
KR20090045392A (ko) 가스 터빈
JP2009185813A (ja) 発電プラントの起動のための装置及び方法
CN104654815B (zh) 马赛克陶瓷窑炉余热发电综合利用系统
JP2012117517A (ja) 複合サイクル発電プラントの熱交換器
RU2009139900A (ru) Способ выработки энергии с использованием газовой турбины, работающей на твердом топливе и использующей тепло отходящих газов, и оборудование для осуществления этого способа
CN103967544A (zh) 燃气-蒸汽联合循环发电机组余热利用系统
JP2013139784A (ja) ガスタービンエンジンを運転する方法および装置
JP5909429B2 (ja) 湿分利用ガスタービンシステム
WO2012162923A1 (zh) 燃气和蒸汽轮机系统
CN208040541U (zh) 燃气轮机循环烟气余热回收与进气冷却联合系统
CN207647562U (zh) 一种冷热、电、蒸汽联供系统
CN206129338U (zh) 一种燃气—蒸汽联合循环分布式供能系统
WO2012162922A1 (zh) 燃气和蒸汽轮机系统
CN102278205A (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环方法
RU2412359C1 (ru) Способ работы парогазовой установки
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
CN102094686A (zh) 发电用燃气蒸汽热气流联合循环装置
US20070044480A1 (en) Combined apparatus for fluid heating and electrical power generation
RU2008147392A (ru) Способ работы энергетической установки с газотурбинным блоком
CN204495082U (zh) 马赛克陶瓷窑炉余热发电综合利用系统
RU2309264C1 (ru) Способ получения энергии в парогазовой энергетической установке
JP2004019484A (ja) タービンシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866669

Country of ref document: EP

Kind code of ref document: A1