WO2012042641A1 - 太陽熱利用コンバインドサイクルプラント - Google Patents

太陽熱利用コンバインドサイクルプラント Download PDF

Info

Publication number
WO2012042641A1
WO2012042641A1 PCT/JP2010/067099 JP2010067099W WO2012042641A1 WO 2012042641 A1 WO2012042641 A1 WO 2012042641A1 JP 2010067099 W JP2010067099 W JP 2010067099W WO 2012042641 A1 WO2012042641 A1 WO 2012042641A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
hot water
flow rate
heat
pressure
Prior art date
Application number
PCT/JP2010/067099
Other languages
English (en)
French (fr)
Inventor
矢敷 達朗
吉田 卓弥
幸徳 片桐
泰浩 吉田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012536086A priority Critical patent/JP5422747B2/ja
Priority to PCT/JP2010/067099 priority patent/WO2012042641A1/ja
Publication of WO2012042641A1 publication Critical patent/WO2012042641A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle plant using solar heat equipped with a solar collector that obtains thermal energy from sunlight.
  • a combination of a gas turbine that uses fossil resources such as natural gas, oil, and coal seam gas as fuel, and a steam turbine that is driven by steam generated using the exhaust gas from the gas turbine as a heat source there is a cycle power plant (hereinafter referred to as a combined cycle plant), which has become the mainstream of recent thermal power plants because of its superiority in efficiency and start-up performance.
  • a spray device is provided upstream of the compressor, and the spray device sprays droplets on the intake air supplied to the compressor inlet.
  • a technique for improving both the power generation output and the thermal efficiency in the combined plant by lowering the temperature of the intake air entering the compressor and evaporating the droplets while flowing in the compressor.
  • a single-shaft type in which a gas turbine and a steam turbine are coupled by a single shaft.
  • the gas turbine is accelerated to generate gas turbine exhaust gas, and steam is generated using the exhaust gas as a heat source.
  • the steam turbine cannot be ventilated until the steam conditions are satisfied. Therefore, in a single-shaft combined cycle plant, wind damage (power loss due to friction and agitation of air inside the steam turbine) occurs due to rotation of the steam turbine rotor blades until steam is passed through the steam turbine.
  • the inside of the steam turbine may be remarkably heated by the frictional heat of the windage.
  • Patent Document 2 discloses a final paragraph of a steam turbine low-pressure section by supplying low-pressure steam from a low-pressure drum of an exhaust heat recovery boiler to a steam turbine low-pressure section.
  • Patent Document 3 discloses a technique for cooling the final stage of the steam turbine low-pressure section by generating low-pressure steam with an auxiliary boiler in the power plant and supplying the low-pressure steam to the steam turbine low-pressure section. Yes.
  • the present invention has been made in view of the above, and can be activated in a short time without increasing the CO2 emission amount, and can perform high-efficiency operation even when the atmospheric temperature of the operating environment fluctuates. It aims at providing a combined cycle plant using solar heat.
  • the present invention includes a compressor that pressurizes supplied air to generate combustion air, a combustor that mixes and burns the combustion air and gas turbine fuel, and A gas turbine driven by the combustion gas obtained by the combustor, an exhaust heat recovery boiler that generates steam using the exhaust gas of the gas turbine as a heat source, and a gas turbine coupled to the gas turbine in a single shaft and obtained by the exhaust heat recovery boiler A steam turbine driven by the generated steam, a heat collector that generates hot water from the supplied makeup water using solar thermal energy, and a spray device that sprays the hot water into the air supplied to the compressor And a heat accumulator that generates cooling steam for storing at least a part of hot water from the heat collector and supplying the hot water to the steam turbine.
  • the present invention it is possible to start up in a short time without increasing the CO2 emission amount, and it is possible to perform high-efficiency operation even when the atmospheric temperature of the operating environment fluctuates.
  • FIG. 1 is a diagram schematically showing an overall configuration of a combined cycle plant using solar heat according to an embodiment of the present invention.
  • a combined cycle plant using solar heat includes a compressor 1 that pressurizes supplied air 80 to generate combustion air, a combustor 3 that mixes combustion air and gas turbine fuel 81, and burns the mixture.
  • the gas turbine 2 driven by the combustion gas obtained in the combustor 3, the exhaust heat recovery boiler 5 that generates steam using the exhaust gas 82 of the gas turbine 2 as a heat source, and the exhaust gas coupled to the gas turbine 2 in one shaft.
  • Steam turbine 8 driven by steam obtained by the recovery boiler 5, a heat collector 21 that generates hot water from supplied makeup water using solar thermal energy, and air supplied to the compressor 1 with hot water
  • the spraying device 20 sprays in 80, and the heat storage device 19 that generates cooling steam for storing at least a part of the hot water from the heat collector 21 and supplying it to the steam turbine 8.
  • An intake duct 4 is provided on the upstream side of the compressor 1, and air 80 under atmospheric conditions is guided to the compressor 1 through the intake duct 4 and pressurized.
  • Compressed air (combustion air) generated by being compressed by the compressor 1 is sent to the combustor 3.
  • combustion air and gas turbine fuel 81 are mixed and burned to generate high-temperature and high-pressure combustion gas, and this combustion gas flows into the gas turbine 2.
  • the gas turbine 2 is driven by the combustion gas from the combustor 3, and the compressor 1, the steam turbine 8, and the generator 13 coupled to one shaft by the gas turbine 2 and the shaft 14 are driven.
  • the exhaust gas 82 that has worked in the gas turbine 2 is sent to the exhaust heat recovery boiler 5.
  • the exhaust heat recovery boiler 5 generates steam for driving the steam turbine 8 using the exhaust gas 82 from the gas turbine 2 as a heat source.
  • the high-pressure steam generator 6 that generates high-pressure steam and the low-pressure steam are generated.
  • a low-pressure steam generator 7 to be generated.
  • the steam turbine 8 includes a high-pressure turbine 9 driven by high-pressure steam and a low-pressure turbine 10 driven by low-pressure steam.
  • the steam generated by the high-pressure steam generator 6 is a high-pressure main steam pipe 30 and
  • the steam that is supplied to the high-pressure turbine 9 through the high-pressure steam control valve 50 and is generated by the low-pressure steam generator 6 is supplied to the low-pressure turbine 10 through the low-pressure main steam pipe 31 and the low-pressure steam control valve 51.
  • the steam discharged for driving the steam turbine 8 is condensed in the condenser 11 to become water, and is returned to the exhaust heat recovery boiler 5 through the condensate pump 12 and the water supply pipe 32.
  • the heat collector 21 includes a light collecting plate 18 that condenses sunlight, and a heat collecting tube 17 that is irradiated with sunlight condensed by the light collecting plate 18.
  • makeup water is pressurized (suppressed) from the water tank 15 through the water pump 16 and the makeup water amount adjustment valve 52, and sunlight that is condensed and irradiated by the light collector 18 (that is, High pressure hot water (hereinafter referred to as hot water) is generated by being heated by solar thermal energy.
  • the hot water generated by the heat collector 21 is sent to the outlet pipe 33.
  • the pipe 33 is connected to a switching valve 53 that selectively switches the supply destination of hot water from the heat collector 21 from the spray device 20 and the heat accumulator 19.
  • any method may be used.
  • the switching valve 53 switches the flow of hot water from the pipe 33 to either the pipe 38 side or the pipe 34 side.
  • a system on the pipe 38 side (hereinafter referred to as a first system) is connected to the spray device 20 provided in the intake duct 4 of the compressor 1 via the pipe 38, the hot water flow rate adjustment valve 54, and the pipe 39. Yes.
  • a system on the pipe 34 side (hereinafter referred to as a second system) is connected to the heat accumulator 19 through the pipe 34. That is, the switching valve 53 switches the flow of hot water from the pipe 33 to either the pipe 38 side or the pipe 34 side, so that the supply destination of the hot water from the heat collector 21 is changed from the spray device 20 and the heat accumulator 19. Selectively switch.
  • the spraying device 20 sprays hot water into the air 80 supplied to the compressor 1.
  • the spraying device 20 is pressurized by the action of the water supply pump 16 from the high-pressure nozzle installed therein, and the flow rate is adjusted by the hot water flow rate adjustment valve 54.
  • the warm water is sprayed toward the intake duct 4 and the compressor 1.
  • the hot water atomized by the high-pressure nozzle of the spraying device 20 boils under reduced pressure in the intake duct 4 and inside the compressor 1, and the intake air (air 80 and combustion air) is cooled by the latent heat of vaporization.
  • the intake air is cooled, its density increases and the mass flow rate of the air passing through the compressor 1 increases.
  • the output of the gas turbine 2 acts to increase. In other words, it is possible to increase the power generation output without increasing the fuel, and relatively reduce the power generation output even when the atmospheric temperature of the operating environment fluctuates (when the air temperature under atmospheric conditions increases). High-efficiency operation can be performed with suppression.
  • the heat accumulator 19 generates cooling steam for storing and keeping warm water from the heat collector 21 and supplying it to the steam turbine 8. Hot water from the heat collector 21 flows into the sealed space of the heat accumulator 19 and is stored in an equilibrium state between the gas phase (steam) and the liquid phase (warm water).
  • a pipe 37 whose one end is open to the atmosphere is connected to the gas phase portion of the heat accumulator 19.
  • the pipe 37 is provided with a relief valve 56 for controlling the opening and closing of the pipe 37. By controlling the opening and closing of the relief valve 56, the sealing of the steam inside the heat accumulator 19 and the release to the atmosphere are controlled. be able to.
  • the gas phase portion of the heat accumulator 19 includes a low-pressure main steam pipe 31 that supplies steam generated by the low-pressure steam generator 6 to the low-pressure turbine 10 via the pipe 35, the cooling steam flow control valve 55, and the pipe 36. It is connected to the.
  • the steam (cooling steam) ventilated in the pipe 35 is adjusted in flow rate by the low-pressure steam control valve 55, joins the low-pressure main steam pipe 31 through the pipe 36, and flows into the low-pressure turbine 10. Since this steam is for cooling the inside of the low-pressure turbine 10, it is hereinafter referred to as cooling steam.
  • the solar heat combined cycle plant of the present embodiment configured as described above is provided with various sensors 60 to 64 as a detection system and various control means 70 to 74 as a control system.
  • Supplied water amount control means 71 controls the opening of the replenished water amount adjustment valve.
  • the piping 33 at the outlet of the heat collector 21 is provided with a hot water temperature sensor 60 that detects the temperature of hot water sent from the heat collector 21.
  • the makeup water amount control means 71 controls the opening degree of the makeup water amount adjustment valve based on the detection result from the hot water temperature sensor 60 and adjusts the flow rate of makeup water supplied to the heat collector 21, thereby collecting heat. Control is performed so that the temperature of the hot water delivered from the vessel 21 follows a preset temperature.
  • the supply destination control means 70 controls the operation of the switching valve 53 to selectively select the supply destination of the hot water from the heat collector 21 from the first system on the spray device 20 side and the second system on the heat accumulator 19 side. To switch to.
  • the system selection means 70 controls the switching valve 53 so as to select the first system as a hot water supply destination during load operation and to select the second system at other times.
  • the hot water flow rate control means 72 controls the opening degree of the hot water flow rate adjustment valve 54.
  • the piping 33 at the outlet of the heat collector 21 is provided with a hot water pressure sensor 62 that detects the pressure of hot water sent from the heat collector 21.
  • the hot water flow rate control valve 72 controls the opening degree of the hot water flow rate adjustment valve 54 based on the detection result from the hot water pressure sensor 62 and adjusts the flow rate of the hot water supplied to the spraying device 20, thereby collecting the heat collector 21. Control is performed so that the pressure of hot water delivered from the vehicle follows a predetermined set value.
  • the vapor pressure control means 73 controls the opening degree of the relief valve 56.
  • the heat accumulator 21 is provided with a steam pressure sensor 61 for detecting the internal pressure.
  • the steam pressure control means 73 controls the opening degree of the relief valve 56 based on the detection result from the hot water temperature sensor 60 that detects the temperature of the hot water sent from the heat collector 21 and the steam pressure sensor 61. Control is performed so that the pressure inside the heat accumulator 19 becomes the saturation pressure of the warm water flowing in from the heat collector 21 and stored.
  • the cooling steam flow control means 74 controls the opening degree of the cooling steam flow control valve 55.
  • a cooling steam flow sensor 63 that detects the flow rate of the cooling steam is provided in the pipe 36 that is a supply path of the cooling steam from the heat accumulator 19 to the low-pressure turbine 10.
  • a steam flow sensor 64 is provided in the low-pressure main steam pipe 31 that is a steam supply path from the low-pressure steam generator 7 to the low-pressure turbine 10.
  • the cooling steam flow control means 74 controls the steam (steam and steam) flowing into the low-pressure turbine 10 by controlling the opening degree of the cooling steam flow control valve 55 based on the detection results from the cooling steam flow sensor 63 and the steam flow sensor 64. The total amount of (cooling steam) is adjusted (detailed later).
  • the makeup water amount control means 71, the hot water flow rate control means 72, and the steam pressure control means 73 are based on the temperature of the hot water (high pressure hot water) supplied to the heat accumulator 19 or the spray device 20. It constitutes a means for managing pressure. Management during load operation and other cases is performed as follows.
  • the first system is selected by the switching valve 53, and the high-pressure hot water in the heat collecting pipe 17 is supplied to the spraying device 20.
  • the set temperature of the makeup water amount control means 71 and the hot water flow rate control are performed so that the high-pressure hot water delivered from the heat collecting pipe 17 becomes compressed water (for example, temperature: 100 ° C. to 200 ° C., pressure: about several MPa).
  • the set pressure of the means 72 is set.
  • the second system is selected by the switching valve 53, and the high-pressure hot water in the heat collecting pipe 17 is supplied to the heat accumulator 19.
  • the replenishing water amount control means 71 so that the hot water (high pressure hot water) delivered from the heat collecting pipe 17 becomes saturated water (for example, temperature: 120 ° C. to 150 ° C., pressure: about 0.2 to 0.5 MPa).
  • the set pressure of the vapor pressure control means 73 are set.
  • FIG. 2 is a diagram showing the relationship between the shaft rotational speed and the steam flow rate at each part at the time of start-up of the solar heat combined cycle plant according to the embodiment of the present invention along the time course.
  • line 90 is the rotational speed of the shaft 14 (shaft rotational speed)
  • line 91 is the steam flow rate of the regenerator 19
  • line 92 is the steam flow rate of the low-pressure steam generator 7
  • line 93 is the low-pressure turbine 10.
  • Each inflow steam flow is shown with time.
  • the switching valve 53 is switched to the second system side by the supply destination control means 70, and the hot water from the heat collector 21 is sent to the heat accumulator 19.
  • the cooling steam flow rate control means 74 causes the low-pressure main steam pipe 31.
  • the opening degree of the cooling steam flow rate adjusting valve 55 is adjusted so that the total amount of steam flowing into the low-pressure turbine 10 from the pipe 36 becomes the required amount Vs.
  • the flow rate of the exhaust gas 82 from the gas turbine 2 is not sufficient, and the amount of steam generated by the low-pressure steam generator 7 is small, so that the steam is controlled not to be sent out.
  • the cooling steam flow rate control means 74 adjusts the opening so that the amount of steam passing through the cooling steam flow rate adjusting valve 55 becomes the required amount Vs, and the cooling steam from the heat accumulator 19 passes through the pipes 35 and 36 and the low pressure main steam pipe. 31 and flows into the low-pressure turbine 10.
  • the cooling steam flow rate control means 74 decreases the opening degree of the cooling steam flow rate adjustment valve 55 so that the total amount of steam flowing into the low pressure turbine 10 from the low pressure main steam pipe 31 and the pipe 36 becomes the required amount Vs. Therefore, the steam flow rate supplied from the heat accumulator 19 decreases.
  • the hot water flow rate control means 72 controls the opening degree of the hot water flow rate adjustment valve 54 based on the detection result from the hot water pressure sensor 62 and adjusts the flow rate of the hot water supplied to the spray device 20, thereby collecting the heat collector 21. Control is performed so that the pressure of hot water delivered from the vehicle follows a predetermined set value.
  • the spraying device 20 sprays the hot water pressurized by the action of the water supply pump 16 and the flow rate of which is adjusted by the hot water flow rate adjustment valve 54 from the high-pressure nozzle installed therein toward the intake duct 4 and the compressor 1.
  • the hot water atomized by the high-pressure nozzle of the spraying device 20 boils under reduced pressure in the intake duct 4 and inside the compressor 1, and the intake air (air 80 and combustion air) is cooled by the latent heat of vaporization.
  • the intake air air 80 and combustion air
  • the output of the gas turbine 2 acts to increase. In other words, it is possible to increase the power generation output without increasing the fuel, and relatively reduce the power generation output even when the atmospheric temperature of the operating environment fluctuates (when the air temperature under atmospheric conditions increases). High-efficiency operation can be performed with suppression.
  • high-pressure hot water obtained by the heat collector 21 that obtains thermal energy from sunlight is fed into the air supplied to the compressor 1 via the intake duct 4 by the spray device 20.
  • Configured to spray Since the droplet size after spraying is made finer by spraying high-pressure hot water than when spraying water, it is difficult for drainage to occur inside the compressor 1, and the spray amount of intake air can be increased. Therefore, even when the atmospheric temperature of the operating environment fluctuates, the combined cycle plant can be operated with high efficiency without increasing the CO2 emission amount.
  • a single-shaft type in which a gas turbine and a steam turbine are coupled by a single shaft.
  • the gas turbine is accelerated to generate gas turbine exhaust gas, and steam is generated using the exhaust gas as a heat source.
  • the steam turbine cannot be ventilated until the steam conditions are satisfied. Therefore, in a single-shaft combined cycle plant, wind damage (power loss due to friction and agitation of air inside the steam turbine) occurs due to rotation of the steam turbine rotor blades until steam is passed through the steam turbine.
  • the inside of the steam turbine may be remarkably heated by the frictional heat of the windage.
  • Conventional technologies include supplying low-pressure steam from the low-pressure drum of the exhaust heat recovery boiler to the low-pressure part of the steam turbine to cool the final stage of the low-pressure part of the steam turbine, or generating low-pressure steam with an auxiliary boiler in the power plant In some cases, the low pressure steam is supplied to the steam turbine low pressure section to cool the final stage of the steam turbine low pressure section.
  • the high-pressure hot water obtained by the heat collector 21 that obtains thermal energy from sunlight is stored in the heat accumulator 19 to generate cooling steam to be supplied to the steam turbine,
  • This cooling system is configured to be supplied to the low-pressure turbine 10. Since the high temperature hot water can be stored in the heat accumulator 19 during the plant stoppage period, it is not necessary to wait for the generation of steam from the exhaust heat recovery boiler 5 at the time when the cooling steam needs to be supplied to the steam turbine 8 at the time of startup. The supply of cooling steam from the heat accumulator 19 can be started. Therefore, the combined cycle plant can be started up in a short time without increasing the CO2 emission amount.
  • the embodiment of the present invention it is possible to start up in a short time without increasing the CO2 emission amount, and it is possible to perform high-efficiency operation even when the atmospheric temperature of the operating environment fluctuates.
  • high-pressure hot water obtained by the heat collector 21 that obtains thermal energy from sunlight is used to start up in a short time without increasing the CO2 emission amount at startup, and to perform high-efficiency operation during load operation. Therefore, the heat energy obtained from sunlight can be used efficiently without wasting it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 圧縮機1で得られた燃焼用空気とガスタービン燃料81とを混合して燃焼する燃焼器3で得られた燃焼ガスにより駆動されるガスタービン2と、ガスタービン2の排ガス82を熱源として蒸気を生成する排熱回収ボイラ5と、ガスタービン2と1軸に結合され排熱回収ボイラ5で得られた蒸気により駆動される蒸気タービン8とを備えたコンバインドサイクルプラントにおいて、集熱器21により補給水から太陽の熱エネルギーを用いて温水を生成し蓄熱器19および噴霧装置20に送出する。噴霧装置20では集熱器21からの温水を圧縮機1に供給される空気中に噴霧し、蓄熱器19では温水を貯留して冷却蒸気を生成し蒸気タービン8に供給する。これにより、CO2排出量を増加させずに短時間で起動でき、かつ、運用する環境の大気温度が変動する場合においても高効率運転を行うことができる太陽熱利用コンバインドサイクルプラントを提供することができる。

Description

太陽熱利用コンバインドサイクルプラント
 本発明は、太陽光から熱エネルギーを得る太陽光集熱器を備えた太陽熱利用コンバインドサイクルプラントに関する。
 産業用電力を支える発電プラントのひとつに、天然ガスや石油、炭層ガスといった化石資源を燃料とするガスタービンと、ガスタービンの排ガスを熱源として発生させた蒸気により駆動する蒸気タービンとを組み合わせたコンバインドサイクル発電プラント(以下、コンバインドサイクルプラントと称する)があり、効率や起動性能の優位性から近年の火力系発電プラントの主流となっている。
 このようなコンバインドサイクルプラントにおいては、夏季など大気温度が上昇する時期、或いは、低緯度地域など年間を通じて大気温度が高い地域などのように大気温度が高い状態で運用する場合、大気温度が低い場合と比べてガスタービンに圧縮空気を供給する圧縮機の空気供給量が相対的に少なくなり、発電出力が低くなることが知られている。
 そこで、発電出力の改善を目的とする従来技術として、例えば、特許文献1には、圧縮機の上流に噴霧装置を設け、この噴霧装置によって、圧縮機入口に供給される吸気に液滴を噴霧し、圧縮機に入る吸気の温度を低下させると共に、液滴を圧縮機内流下中に気化させることにより、コンバインドプラントにおける発電出力の向上と熱効率の向上の双方を図る技術が開示されている。
 また、コンバインドサイクルプラントにおいては、ガスタービンと蒸気タービンとを単一軸で結合させた1軸型のものがある。コンバインドサイクルプラントを起動させる場合には、まず、ガスタービンを昇速してガスタービン排ガスを発生させ、その排ガスを熱源として蒸気を発生させるが、蒸気の条件が整うまでは蒸気タービンに通気できない。したがって、1軸型のコンバインドサイクルプラントにおいて、蒸気タービンに蒸気が通気されるまでの間は、蒸気タービン動翼の回転により風損(蒸気タービン内部の空気の摩擦・撹拌による動力損失)が発生してしまい、特に、最終段部の動翼が1m以上と長翼化している蒸気タービン低圧部においては、その風損の摩擦熱によって蒸気タービン内部が著しく加熱される恐れがある。
 このような風損による加熱を抑える従来技術として、例えば、特許文献2には、排熱回収ボイラの低圧ドラムから蒸気タービン低圧部に低圧蒸気を供給することにより、蒸気タービン低圧部の最終段落部を冷却する技術が開示されている。また、特許文献3には、発電所内の補助ボイラによって低圧蒸気を生成し、この低圧蒸気を蒸気タービン低圧部に供給することにより、蒸気タービン低圧部の最終段落部を冷却する技術が開示されている。
特開平10-246127号公報 特公平6-78724号公報 特開平9-170407号公報
 しかしながら、特許文献1記載の従来技術においては、圧縮機入口に供給される吸気に液滴を噴霧するものであるため、噴霧装置から過剰の液滴が噴霧された場合には、圧縮機の内部で蒸発しきれない液滴がドレン化してしまい発電出力増加の効果が得られないことが懸念される。
 また、特許文献2記載の従来技術においては、排熱回収ボイラの低圧ドラムから蒸気タービン冷却用の蒸気が発生するまでに時間を要し、この間、風損が発生しないように回転軸の回転数を低くしておかなければならず、短時間で起動を完了できるというコンバインドサイクルプラントの利点が損なわれてしまう問題がある。また、特許文献3に記載の従来技術の場合、起動時間の問題は生じないが、蒸気タービン冷却用の蒸気生成のために、発電所内の補助ボイラで別途燃料を燃焼させる必要があり、プラント起動時のCO2排出量が増加するという問題が新たに生じる。
 本発明は、上記に鑑みてなされたものであり、CO2排出量を増加させずに短時間で起動でき、かつ、運用する環境の大気温度が変動する場合においても高効率運転を行うことができる太陽熱利用コンバインドサイクルプラントを提供することを目的とする。
 上記目的を達成するために、本発明は、供給される空気を加圧して燃焼用空気を生成する圧縮機と、前記燃焼用空気とガスタービン燃料とを混合して燃焼する燃焼器と、前記燃焼器で得られた燃焼ガスにより駆動されるガスタービンと、前記ガスタービンの排ガスを熱源として蒸気を生成する排熱回収ボイラと、前記ガスタービンと1軸に結合され前記排熱回収ボイラで得られた蒸気により駆動される蒸気タービンと、供給される補給水から太陽の熱エネルギーを用いて温水を生成する集熱器と、前記温水を前記圧縮機に供給される空気中に噴霧する噴霧装置と、前記集熱器からの温水の少なくとも一部を貯留して前記蒸気タービンに供給するための冷却蒸気を生成する蓄熱器とを備えたものとする。
 本発明によれば、CO2排出量を増加させずに短時間で起動でき、かつ、運用する環境の大気温度が変動する場合においても高効率運転を行うことができる。
本発明の一実施の形態に係る太陽熱利用コンバインドサイクルプラントの全体構成を概略的に示す図である。 本発明の一実施の形態に係る太陽熱利用コンバインドサイクルプラントの起動時の軸回転数と各部蒸気流量との関係を時間経過に沿って示す図である。
 以下、本発明の実施の形態を図面を用いて説明する。
 図1は、本発明の一実施の形態に係る太陽熱利用コンバインドサイクルプラントの全体構成を概略的に示す図である。
 図1において、太陽熱利用コンバインドサイクルプラントは、供給される空気80を加圧して燃焼用空気を生成する圧縮機1と、燃焼用空気とガスタービン燃料81とを混合して燃焼する燃焼器3と、燃焼器3で得られた燃焼ガスにより駆動されるガスタービン2と、ガスタービン2の排ガス82を熱源として蒸気を生成する排熱回収ボイラ5と、ガスタービン2と1軸に結合され排熱回収ボイラ5で得られた蒸気により駆動される蒸気タービン8と、供給される補給水から太陽の熱エネルギーを用いて温水を生成する集熱器21と、温水を圧縮機1に供給される空気80中に噴霧する噴霧装置20と、集熱器21からの温水の少なくとも一部を貯留して蒸気タービン8に供給するための冷却蒸気を生成する蓄熱器19とから概略構成されている。
 圧縮機1の上流側には吸気ダクト4が設けられており、この吸気ダクト4を介して大気条件の空気80が圧縮機1に導かれて加圧される。圧縮機1で加圧され生成された圧縮空気(燃焼用空気)は燃焼器3に送られる。燃焼器3では、燃焼用空気とガスタービン燃料81とが混合・燃焼されて高温・高圧の燃焼ガスが生成され、この燃焼ガスがガスタービン2に流入する。ガスタービン2は、燃焼器3からの燃焼ガスによって駆動され、このガスタービン2と軸14により1軸に結合された圧縮機1、蒸気タービン8、及び発電機13が駆動される。ガスタービン2で仕事をした排ガス82は排熱回収ボイラ5に送られる。
 排熱回収ボイラ5は、ガスタービン2からの排ガス82を熱源として蒸気タービン8を駆動するための蒸気を生成するものであり、高圧の蒸気を生成する高圧蒸気発生器6と、低圧の蒸気を生成する低圧蒸気発生器7とから構成されている。蒸気タービン8は、高圧の蒸気で駆動される高圧タービン9と、低圧の蒸気で駆動される低圧タービン10とから構成されており、高圧蒸気発生器6で発生した蒸気は高圧主蒸気配管30及び高圧蒸気加減弁50を介して高圧タービン9に供給され、低圧蒸気発生器6で発生した蒸気は低圧主蒸気配管31及び低圧蒸気加減弁51を介して低圧タービン10に供給される。蒸気タービン8の駆動に用いられ排出された蒸気は復水器11で凝縮されて水となり、復水ポンプ12及び給水管32を介して排熱回収ボイラ5に戻される。
 集熱器21は、太陽光を集光する集光板18と、集光板18によって集光された太陽光が照射される集熱管17とから構成されている。集熱管17内には水タンク15から送水ポンプ16及び補給水量調整弁52を介して補給水が加圧供給(圧送)されており、集光板18によって集光され照射される太陽光(すなわち、太陽の熱エネルギー)により加熱されて高圧温水(以下、温水と称する)が生成される。集熱器21で生成された温水は出口の配管33に送出される。配管33は、集熱器21からの温水の供給先を噴霧装置20と蓄熱器19とから選択的に切り替える切替弁53に接続されている。なお、集熱器には平板型集熱器、真空管型集熱器、集光型集熱器などの方式が提案されているが、本実施の形態においてはどの方式を用いても良い。
 切替弁53は、配管33からの温水の流れを配管38側と配管34側の何れかに切り替えるものである。配管38側の系統(以下、第1系統と称する)は、配管38、温水流量調整弁54、及び、配管39を介して圧縮機1の吸気ダクト4に設けられた噴霧装置20に接続されている。また、配管34側の系統(以下、第2系統と称する)は、配管34を介して蓄熱器19に接続されている。つまり、切替弁53は、配管33からの温水の流れを配管38側と配管34側の何れかに切り替えることにより、集熱器21からの温水の供給先を噴霧装置20と蓄熱器19とから選択的に切り替える。
 噴霧装置20は、温水を圧縮機1に供給される空気80中に噴霧するものであり、内部に設置した高圧ノズルから、送水ポンプ16の作用により加圧され温水流量調整弁54で流量調整された温水を吸気ダクト4及び圧縮機1に向けて噴霧する。噴霧装置20の高圧ノズルによって微粒化された温水は、吸気ダクト4中及び圧縮機1の内部で減圧沸騰し、その気化潜熱によって吸気空気(空気80や燃焼用空気)が冷却される。吸気空気は冷却されるとその密度が増大し、圧縮機1を通過する空気の質量流量が増大するので、結果としてガスタービン2の出力が増加するよう作用する。つまり、燃料を増加することなく発電出力を高めることが可能となり、相対的には、運用する環境の大気温度が変動する場合(大気条件の空気温度が高くなる場合)においても発電出力の低下を抑制して高効率運転を行うことができる。
 蓄熱器19は、集熱器21からの温水を貯留および保温して蒸気タービン8に供給するための冷却蒸気を生成するものである。集熱器21からの温水は、蓄熱器19の密閉空間に流入し、気相(蒸気)と液相(温水)の平衡状態で貯留される。蓄熱器19の気相部には、一端が大気開放された配管37が接続されている。配管37には、配管37の開閉を制御する逃し弁56が設けられており、この逃し弁56の開閉を制御することにより、蓄熱器19内部の蒸気の密閉と大気中への放出を制御することができる。また、蓄熱器19の気相部は、配管35、冷却蒸気流量制御弁55、及び、配管36を介して、低圧蒸気発生器6で発生した蒸気を低圧タービン10に供給する低圧主蒸気配管31に接続されている。配管35に通気された蒸気(冷却蒸気)は、低圧蒸気加減弁55で流量調整され、配管36を経て低圧主蒸気配管31に合流し、低圧タービン10に流入する。この蒸気は低圧タービン10の内部を冷却するためのものであるので、以降、冷却蒸気と称する。
 このように構成された本実施の形態の太陽熱利用コンバインドサイクルプラントには、検出系として各種センサ60~64が設けられ、制御系として各種制御手段70~74が備えられている。
 補給水量制御手段71は、補給水量調整弁の開度を制御するものである。集熱器21の出口の配管33には、集熱器21から送出される温水の温度を検出する温水温度センサ60が設けられている。補給水量制御手段71は、温水温度センサ60からの検出結果に基づいて前記補給水量調整弁の開度を制御し、集熱器21に供給される補給水の流量を調整することにより、集熱器21から送出される温水の温度が予め定めた設定温度に追従するよう制御する。
 供給先制御手段70は、切替弁53の動作を制御することにより、集熱器21からの温水の供給先を噴霧装置20側の第1系統と蓄熱器19側の第2系統とから選択的に切り替えるものである。系統選択手段70は、温水の供給先として、負荷運用時には第1系統を選択し、それ以外のときは第2系統を選択するように切替弁53を制御する。
 温水流量制御手段72は、温水流量調整弁54の開度を制御するものである。集熱器21の出口の配管33には、集熱器21から送出される温水の圧力を検出する温水圧力センサ62が設けられている。温水流量制御弁72は、温水圧力センサ62からの検出結果に基づいて温水流量調整弁54の開度を制御し、噴霧装置20に供給される温水の流量を調整することにより、集熱器21から送出される温水の圧力が予め定めた設定値に追従するよう制御する。
 蒸気圧制御手段73は、逃し弁56の開度を制御するものである。蓄熱器21には内部の圧力を検出する蒸気圧力センサ61が設けられている。蒸気圧制御手段73は、集熱器21から送出される温水の温度を検出する温水温度センサ60、及び、蒸気圧力センサ61からの検出結果に基づいて逃し弁56の開度を制御することにより、蓄熱器19内部の圧力が、集熱器21から流入して貯留される温水の飽和圧力となるように制御する。
 冷却蒸気流量制御手段74は、冷却蒸気流量制御弁55の開度を制御するものである。蓄熱器19から低圧タービン10への冷却蒸気の供給路である配管36には、冷却蒸気の流量を検出する冷却蒸気流量センサ63が設けられている。また、低圧蒸気発生器7から低圧タービン10への蒸気の供給路である低圧主蒸気配管31には、蒸気流量センサ64が設けられている。冷却蒸気流量制御手段74は、冷却蒸気流量センサ63及び蒸気流量センサ64からの検出結果に基づいて冷却蒸気流量制御弁55の開度を制御することにより、低圧タービン10に流入する蒸気(蒸気および冷却蒸気)の総量を調整する(後に詳述)。
 以上のように構成した本実施の形態において、補給水量制御手段71、温水流量制御手段72、及び蒸気圧制御手段73は、蓄熱器19あるいは噴霧装置20に供給する温水(高圧温水)の温度と圧力を管理する手段を構成している。負荷運転時およびそれ以外の場合の管理は次のように行われる。
 負荷運用時は、切り替え弁53で第1系統が選択され、集熱管17の高圧温水が噴霧装置20に供給される。この場合、集熱管17から送出される高圧温水が圧縮水(例えば、温度:100℃~200℃、圧力:数MPa程度)となるように、補給水量制御手段71の設定温度と、温水流量制御手段72の設定圧力が設定される。
 負荷運用時以外(プラント停止期間中も含む)は、切り替え弁53で第2系統が選択され、集熱管17の高圧温水が蓄熱器19に供給される。この場合、集熱管17から送出される温水(高圧温水)が飽和水(例えば、温度:120℃~150℃、圧力:0.2~0.5MPa程度)となるように、補給水量制御手段71の設定温度と、蒸気圧制御手段73の設定圧力が設定される。
 以上のように構成した本実施の動作を図面を参照しつつ説明する。
 (1)プラント停止時
  プラント停止時は供給先制御手段70により切替弁53は第2系統側に切り替えられ、集熱器21からの温水は蓄熱器19に送られる。蓄熱器19で貯留された温水は、蒸気圧制御手段73による逃し弁56の開度の制御により、飽和圧力となるように調整される。
 (2)起動時
  図2は、本発明の一実施の形態に係る太陽熱利用コンバインドサイクルプラントの起動時の軸回転数と各部蒸気流量との関係を時間経過に沿って示す図である。図2において、線90は軸14の回転数(軸回転数)、線91は蓄熱器19の送出蒸気流量、線92は低圧蒸気発生器7の送出蒸気流量、線93は低圧タービン10への流入蒸気流量をそれぞれ時間経過とともに示している。
 起動時、供給先制御手段70により切替弁53は第2系統側に切り替えられ、集熱器21からの温水は蓄熱器19に送られる。
 ガスタービン2が起動されると、圧縮機1の回転数増加やタービン燃料81の供給量調整により、軸14の回転数が徐々に増加してく。このとき、蓄熱器19および低圧蒸気発生器7からの蒸気は送出しないように、すなわち、低圧タービン10に流入しないように制御される。
 軸14の回転数が蒸気タービン8に冷却蒸気の供給を必要とする所定の回転数(例えば、定格回転数の60%)に到達したとき、冷却蒸気流量制御手段74は、低圧主蒸気配管31と配管36とから低圧タービン10に流入する蒸気の総量が要求量Vsとなるように冷却蒸気流量調整弁55の開度を調整する。このとき、ガスタービン2からの排ガス82の流量は十分ではなく、低圧蒸気発生器7で発生する蒸気量が少ないため、蒸気を送出しないよう制御されている。したがって、冷却蒸気流量制御手段74は、冷却蒸気流量調整弁55を通る蒸気量が要求量Vsとなるよう開度を調整し、蓄熱器19から冷却蒸気が配管35,36を経て低圧主蒸気配管31に合流し、低圧タービン10に流入する。
 ガスタービン2が併入運転に入ると、排熱回収ボイラ5に流入する排ガス82の流量が増え、低圧蒸気発生器7で発生する蒸気流量も増えるため、低圧主蒸気配管31から低圧タービン10に送出される蒸気の流量も増加する。このとき、冷却蒸気流量制御手段74は、低圧主蒸気配管31と配管36とから低圧タービン10に流入する蒸気の総量が要求量Vsとなるように冷却蒸気流量調整弁55の開度を減少させるので、蓄熱器19から供給される蒸気流量は減少する。
 その後、冷却蒸気は全て低圧蒸気発生器7から供給され、その時点で冷却蒸気流量調整弁55は全閉される。
 (3)負荷運転時
  負荷運転時、供給先制御手段70により切替弁53は第1系統側に切り替えられ、集熱器21からの温水は噴霧装置20に送られる。
 温水流量制御手段72は、温水圧力センサ62からの検出結果に基づいて温水流量調整弁54の開度を制御し、噴霧装置20に供給される温水の流量を調整することにより、集熱器21から送出される温水の圧力が予め定めた設定値に追従するよう制御する。噴霧装置20は、内部に設置した高圧ノズルから、送水ポンプ16の作用により加圧され温水流量調整弁54で流量調整された温水を吸気ダクト4及び圧縮機1に向けて噴霧する。噴霧装置20の高圧ノズルによって微粒化された温水は、吸気ダクト4中及び圧縮機1の内部で減圧沸騰し、その気化潜熱によって吸気空気(空気80や燃焼用空気)が冷却される。吸気空気は冷却されるとその密度が増大し、圧縮機1を通過する空気の質量流量が増大するので、結果としてガスタービン2の出力が増加するよう作用する。つまり、燃料を増加することなく発電出力を高めることが可能となり、相対的には、運用する環境の大気温度が変動する場合(大気条件の空気温度が高くなる場合)においても発電出力の低下を抑制して高効率運転を行うことができる。
 以上のように構成した本実施の形態における効果を説明する。
 コンバインドサイクルプラントにおいては、夏季など大気温度が上昇する時期、或いは、低緯度地域など年間を通じて大気温度が高い地域などのように大気温度が高い状態で運用する場合、大気温度が低い場合と比べてガスタービンに圧縮空気を供給する圧縮機の空気供給量が相対的に少なくなり、発電出力が低くなることが知られている。従来技術としては、圧縮機の上流に噴霧装置を設け、この噴霧装置によって、圧縮機入口に供給される吸気に液滴を噴霧し、圧縮機に入る吸気の温度を低下させると共に、液滴を圧縮機内流下中に気化させることにより、コンバインドプラントにおける発電出力の向上と熱効率の向上の双方を図るものもある。しかしながら、上記従来技術においては、圧縮機入口に供給される吸気に液滴を噴霧するものであるため、噴霧装置から過剰の液滴が噴霧された場合には、圧縮機の内部で蒸発しきれない液滴がドレン化してしまい発電出力増加の効果が得られないことが懸念される。
 これに対し、本実施の形態においては、太陽光から熱エネルギーを得る集熱器21で得られた高圧の温水を噴霧装置20により吸気ダクト4を介して圧縮機1に供給される空気中に噴霧するよう構成した。噴霧後の液滴サイズは、水を噴霧する場合よりも高圧温水を噴霧した方がより微細化されるので、圧縮機1内部でドレンが生じにくく、吸気空気の噴霧量を増やすことができ、したがって、運用する環境の大気温度が変動する場合においてもCO2排出量を増加させずにコンバインドサイクルプラントの高効率運転を行うことができる。
 また、コンバインドサイクルプラントにおいては、ガスタービンと蒸気タービンとを単一軸で結合させた1軸型のものがある。コンバインドサイクルプラントを起動させる場合には、まず、ガスタービンを昇速してガスタービン排ガスを発生させ、その排ガスを熱源として蒸気を発生させるが、蒸気の条件が整うまでは蒸気タービンに通気できない。したがって、1軸型のコンバインドサイクルプラントにおいて、蒸気タービンに蒸気が通気されるまでの間は、蒸気タービン動翼の回転により風損(蒸気タービン内部の空気の摩擦・撹拌による動力損失)が発生してしまい、特に、最終段部の動翼が1m以上と長翼化している蒸気タービン低圧部においては、その風損の摩擦熱によって蒸気タービン内部が著しく加熱される恐れがある。従来技術としては、排熱回収ボイラの低圧ドラムから蒸気タービン低圧部に低圧蒸気を供給することにより、蒸気タービン低圧部の最終段落部を冷却するものや、発電所内の補助ボイラによって低圧蒸気を生成し、この低圧蒸気を蒸気タービン低圧部に供給することにより、蒸気タービン低圧部の最終段落部を冷却するものがある。しかしながら、前者の従来技術においては、排熱回収ボイラの低圧ドラムから蒸気タービン冷却用の蒸気が発生するまでに時間を要し、この間、風損が発生しないように回転軸の回転数を低くしておかなければならず、短時間で起動を完了できるというコンバインドサイクルプラントの利点が損なわれてしまう問題がある。また、後者の従来技術においては起動時間の問題は生じないが、蒸気タービン冷却用の蒸気生成のために、発電所内の補助ボイラで別途燃料を燃焼させる必要があり、プラント起動時のCO2排出量が増加するという問題が新たに生じる。
 これに対し、本実施の形態においては、太陽光から熱エネルギーを得る集熱器21で得られた高圧の温水を蓄熱器19で貯留し、蒸気タービンに供給するための冷却蒸気を生成し、この冷却上記を低圧タービン10に供給するよう構成した。蓄熱器19にはプラント停止期間中に高圧温水を蓄えることができるため、起動時において蒸気タービン8に冷却蒸気の供給を必要とするタイミングで、排熱回収ボイラ5からの蒸気発生を待つことなく、蓄熱器19から冷却蒸気の供給を開始することができる。したがって、コンバインドサイクルプラントを、CO2排出量を増加させずに短時間で起動することができる。
 したがって、本発明の実施の形態によれば、CO2排出量を増加させずに短時間で起動でき、かつ、運用する環境の大気温度が変動する場合においても高効率運転を行うことができる。
 また、太陽光から熱エネルギーを得る集熱器21で得られた高圧の温水を、起動時にはCO2排出量を増加させずに短時間で起動させることに用い、負荷運転時には高効率運転を行うことに用いるので、太陽光から得られる熱エネルギーを無駄にすることなく、効率良く利用することができる。
1 圧縮機
2 ガスタービン
3 燃焼器
4 吸気ダクト
5 排熱回収ボイラ
6 高圧蒸気発生器
7 低圧蒸気発生器
8 蒸気タービン
9 高圧タービン
10 低圧タービン
11 復水器
12 給水ポンプ
13 発電機
14 軸
15 水タンク
16 送水ポンプ
17 集熱管
18 集光板
19 蓄熱器
20 噴霧装置
21 集熱器
30 高圧主蒸気配管
31 低圧主蒸気配管
32 給水管
33~39 配管
50 高圧蒸気加減弁
51 低圧蒸気加減弁
52 補給水量調整弁
53 切替弁
54 温水流量調整弁
55 冷却蒸気流量調整弁
56 逃し弁
60 温水温度センサ
61 蒸気圧力センサ
62 温水圧力センサ
63 冷却蒸気流量センサ
64 蒸気流量センサ
70 供給先制御手段
71 補給水量制御手段
72 温水流量制御手段
73 蒸気圧制御手段
74 冷却蒸気流量制御手段
80 空気
81 燃料
82 排ガス

Claims (2)

  1.  供給される空気を加圧して燃焼用空気を生成する圧縮機(1)と、
     前記燃焼用空気とガスタービン燃料とを混合して燃焼する燃焼器(3)と、
     前記燃焼器で得られた燃焼ガスにより駆動されるガスタービン(2)と、
     前記ガスタービンの排ガスを熱源として蒸気を生成する排熱回収ボイラ(5)と、
     前記ガスタービンと1軸に結合され前記排熱回収ボイラで得られた蒸気により駆動される蒸気タービン(8)と、
     供給される補給水から太陽の熱エネルギーを用いて温水を生成する集熱器(21)と、
     前記温水を前記圧縮機に供給される空気中に噴霧する噴霧装置(20)と、
     前記集熱器からの温水の少なくとも一部を貯留して前記蒸気タービンに供給するための冷却蒸気を生成する蓄熱器(19)と
    を備えたことを特徴とする太陽熱利用コンバインドサイクルプラント。
  2.  請求項1記載の太陽熱利用コンバインドサイクルプラントにおいて、
     前記集熱器(21)に供給される補給水の流量を調整する補給水量調整弁(52)と、前記集熱器の出口に設けられ、前記温水の温度を検出する温水温度センサ(60)と、前記温水温度センサからの検出結果に基づいて前記補給水量調整弁の開度を制御する補給水量制御手段(71)と、
     前記集熱器からの温水の供給先を前記噴霧装置(20)と前記蓄熱器(19)とから選択的に切り替える切替弁(53)、及びその切替弁の動作を制御する供給先制御手段(70)と、
     前記噴霧装置の入口に設けられ前記噴霧装置に供給される温水の流量を調整する温水流量調整弁(54)と、前記集熱器の出口に設けられ前記温水の圧力を検出する温水圧力センサ(62)と、前記温水圧力センサからの検出結果に基づいて前記温水流量調整弁の開度を制御する温水流量制御手段(72)と、
     前記蓄熱器内部の蒸気を外部に排出するための逃し弁(56)と、前記蓄熱器内部の圧力を検出する蒸気圧力センサ(61)と、前記蒸気圧力センサ及び前記温水温度センサからの検出結果に基づいて前記逃し弁の開度を制御する蒸気圧制御手段(73)と、
     前記蓄熱器から前記蒸気タービン(8)への冷却蒸気の供給路に設けられ前記冷却蒸気の流量を制御する冷却蒸気流量制御弁(55)と、前記冷却蒸気の供給路に設けられ前記冷却蒸気の流量を検出する冷却蒸気流量センサ(63)と、前記排熱回収ボイラ(5)から前記蒸気タービン(8)に供給される蒸気の流量を検出する蒸気流量センサ(64)と、前記冷却蒸気流量センサ及び前記蒸気流量センサからの検出結果に基づいて前記冷却蒸気流量制御弁の開度を制御する冷却蒸気流量制御手段(74)と
    を備えたことを特徴とする太陽熱利用コンバインドサイクルプラント。
PCT/JP2010/067099 2010-09-30 2010-09-30 太陽熱利用コンバインドサイクルプラント WO2012042641A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012536086A JP5422747B2 (ja) 2010-09-30 2010-09-30 太陽熱利用コンバインドサイクルプラント
PCT/JP2010/067099 WO2012042641A1 (ja) 2010-09-30 2010-09-30 太陽熱利用コンバインドサイクルプラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067099 WO2012042641A1 (ja) 2010-09-30 2010-09-30 太陽熱利用コンバインドサイクルプラント

Publications (1)

Publication Number Publication Date
WO2012042641A1 true WO2012042641A1 (ja) 2012-04-05

Family

ID=45892145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067099 WO2012042641A1 (ja) 2010-09-30 2010-09-30 太陽熱利用コンバインドサイクルプラント

Country Status (2)

Country Link
JP (1) JP5422747B2 (ja)
WO (1) WO2012042641A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102913404A (zh) * 2012-10-16 2013-02-06 杨世松 储能式多元能增力型风光磁发电站及其应用
CN103411307A (zh) * 2013-08-25 2013-11-27 昆山升东物资有限公司 一种热能高速运动装置
WO2015117821A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Energiespeicher zur zwischenspeicherung elektrischer energie
US9359953B2 (en) 2010-09-30 2016-06-07 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power plant with solar assisted cooling of compressor inlet air
CN113847587A (zh) * 2021-09-18 2021-12-28 江西国泰七零九科技有限公司 炸药生产用多种清洁能源组合供热供汽系统及运行控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140405A (ja) * 1988-08-23 1990-05-30 Toshiba Corp 蒸気―ガス複合サイクル発電プラントの運転方法およびその発電プラント
WO1998048159A1 (fr) * 1997-04-22 1998-10-29 Hitachi, Ltd. Installation de type turbine a gaz
JPH11336510A (ja) * 1998-05-22 1999-12-07 Mitsubishi Heavy Ind Ltd 一軸コンバインドプラント起動システム
JP2000345857A (ja) * 1999-06-04 2000-12-12 Heishoku Boku 低温蒸気利用リパワリングシステム
JP2001214757A (ja) * 2000-01-27 2001-08-10 Hitachi Ltd ガスタービン設備
JP2010144725A (ja) * 2008-12-22 2010-07-01 General Electric Co <Ge> 太陽熱加熱システムを使用した燃料加熱のためのシステムおよび方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140405A (ja) * 1988-08-23 1990-05-30 Toshiba Corp 蒸気―ガス複合サイクル発電プラントの運転方法およびその発電プラント
WO1998048159A1 (fr) * 1997-04-22 1998-10-29 Hitachi, Ltd. Installation de type turbine a gaz
JPH11336510A (ja) * 1998-05-22 1999-12-07 Mitsubishi Heavy Ind Ltd 一軸コンバインドプラント起動システム
JP2000345857A (ja) * 1999-06-04 2000-12-12 Heishoku Boku 低温蒸気利用リパワリングシステム
JP2001214757A (ja) * 2000-01-27 2001-08-10 Hitachi Ltd ガスタービン設備
JP2010144725A (ja) * 2008-12-22 2010-07-01 General Electric Co <Ge> 太陽熱加熱システムを使用した燃料加熱のためのシステムおよび方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359953B2 (en) 2010-09-30 2016-06-07 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power plant with solar assisted cooling of compressor inlet air
CN102913404A (zh) * 2012-10-16 2013-02-06 杨世松 储能式多元能增力型风光磁发电站及其应用
CN103411307A (zh) * 2013-08-25 2013-11-27 昆山升东物资有限公司 一种热能高速运动装置
WO2015117821A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Energiespeicher zur zwischenspeicherung elektrischer energie
CN113847587A (zh) * 2021-09-18 2021-12-28 江西国泰七零九科技有限公司 炸药生产用多种清洁能源组合供热供汽系统及运行控制方法
CN113847587B (zh) * 2021-09-18 2024-04-30 江西国泰七零九科技有限公司 炸药生产用多种清洁能源组合供热供汽系统及运行控制方法

Also Published As

Publication number Publication date
JPWO2012042641A1 (ja) 2014-02-03
JP5422747B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
US8166747B2 (en) Gas turbine engine
JP5154822B2 (ja) ガスタービン吸気調整システム及び方法
JP5399565B2 (ja) 太陽熱利用コンバインドサイクル発電プラント
EP2535542B1 (en) Systems and methods for improving the efficiency of a combined cycle power plant
RU2562686C2 (ru) Способ работы энергоустановки в резервном режиме (варианты) и энергоустановка
RU2352859C2 (ru) Парогенератор на отходящем тепле
RU2516068C2 (ru) Газотурбинная установка, утилизационный парогенератор и способ эксплуатации утилизационного парогенератора
JP5422747B2 (ja) 太陽熱利用コンバインドサイクルプラント
JP2009185813A (ja) 発電プラントの起動のための装置及び方法
KR101825283B1 (ko) 복합 화력 발전소 작동 방법
JP2010209808A (ja) 2軸ガスタービン
KR20140088145A (ko) 주파수 지원을 위한 가스 및 증기 터빈 설비의 작동 방법
JP2015094248A (ja) 高湿分利用ガスタービンシステム
JP5427953B2 (ja) 太陽熱利用ガスタービンシステム
JP5909429B2 (ja) 湿分利用ガスタービンシステム
US20130199196A1 (en) System and method for gas turbine part load efficiency improvement
JP3212311U (ja) 発電プラント
KR101613227B1 (ko) 선박의 폐열을 이용한 전력 생산 장치 및 방법
JP2014202151A (ja) コンバインドサイクル発電プラントおよびその運転方法
JP5422746B2 (ja) 太陽熱利用ガスタービンプラント
CN104594964A (zh) 一种新型单轴天然气联合循环供热机组系统
JP4120699B2 (ja) ガスタービン発電設備及び空気増湿装置
JP2019173697A (ja) コンバインドサイクル発電プラント及びその運転方法
US20150121871A1 (en) Forced cooling in steam turbine plants
GB2445486A (en) Gas turbine engine exhaust plume suppression

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012536086

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857854

Country of ref document: EP

Kind code of ref document: A1