WO2016051566A1 - 包装用ポリエチレン系熱収縮性多層フィルム、及び包装体とその包装方法。 - Google Patents
包装用ポリエチレン系熱収縮性多層フィルム、及び包装体とその包装方法。 Download PDFInfo
- Publication number
- WO2016051566A1 WO2016051566A1 PCT/JP2014/076376 JP2014076376W WO2016051566A1 WO 2016051566 A1 WO2016051566 A1 WO 2016051566A1 JP 2014076376 W JP2014076376 W JP 2014076376W WO 2016051566 A1 WO2016051566 A1 WO 2016051566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polyethylene
- pack
- packaging
- heat
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D75/00—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
- B65D75/002—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films
- B65D75/004—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films with auxiliary packaging elements, e.g. protective pads or frames, trays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
- B29C61/08—Making preforms having internal stresses, e.g. plastic memory by stretching tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B25/00—Packaging other articles presenting special problems
- B65B25/14—Packaging paper or like sheets, envelopes, or newspapers, in flat, folded, or rolled form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B43/00—Forming, feeding, opening or setting-up containers or receptacles in association with packaging
- B65B43/26—Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks
- B65B43/34—Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks by internal pressure
- B65B43/36—Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks by internal pressure applied pneumatically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B5/00—Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
- B65B5/04—Packaging single articles
- B65B5/045—Packaging single articles in bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B5/00—Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
- B65B5/06—Packaging groups of articles, the groups being treated as single articles
- B65B5/067—Packaging groups of articles, the groups being treated as single articles in bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B51/00—Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
- B65B51/02—Applying adhesives or sealing liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B53/00—Shrinking wrappers, containers, or container covers during or after packaging
- B65B53/02—Shrinking wrappers, containers, or container covers during or after packaging by heat
- B65B53/06—Shrinking wrappers, containers, or container covers during or after packaging by heat supplied by gases, e.g. hot-air jets
- B65B53/063—Tunnels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B61/00—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages
- B65B61/20—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for adding cards, coupons or other inserts to package contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B7/00—Closing containers or receptacles after filling
- B65B7/02—Closing containers or receptacles deformed by, or taking-up shape, of, contents, e.g. bags, sacks
- B65B7/06—Closing containers or receptacles deformed by, or taking-up shape, of, contents, e.g. bags, sacks by collapsing mouth portion, e.g. to form a single flap
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B9/00—Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
- B65B9/10—Enclosing successive articles, or quantities of material, in preformed tubular webs, or in webs formed into tubes around filling nozzles, e.g. extruded tubular webs
- B65B9/24—Enclosing successive articles, or quantities of material, in preformed tubular webs, or in webs formed into tubes around filling nozzles, e.g. extruded tubular webs the tubes being formed in situ by extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/02—Wrappers or flexible covers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D77/00—Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
- B65D77/003—Articles enclosed in rigid or semi-rigid containers, the whole being wrapped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/242—All polymers belonging to those covered by group B32B27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/746—Slipping, anti-blocking, low friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
- B32B2323/046—LDPE, i.e. low density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2553/00—Packaging equipment or accessories not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B2220/00—Specific aspects of the packaging operation
- B65B2220/16—Packaging contents into primary and secondary packaging
- B65B2220/18—Packaging contents into primary and secondary packaging the primary packaging being bags the subsequent secondary packaging being rigid containers, e.g. cardboard box
Definitions
- the present invention relates to a polyethylene heat-shrinkable multilayer film, a package, and a packaging method that are used for packaging that prevents damage and the like at the transportation stage when transporting daily necessities, sundries, magazines, cosmetics, and the like by mail order.
- Packed-in-box automatic wrapping is often performed in a sleeve wrapping form in which a product and a mount are supplied between two upper and lower films and only the front and back are sealed.
- a product and a mount are supplied between two upper and lower films and only the front and back are sealed.
- overlap packaging it is necessary to adjust the size of the temporary packaging bag before shrinkage for each product, but in the case of sleeve packaging, only the length of the MD needs to be adjusted. This is because continuous packaging is possible.
- a film produced by an inflation method using polyethylene as a main raw material is generally used.
- a film produced by the inflation method is stretched at a temperature equal to or higher than the melting point of the raw material. Therefore, since it shrinks at a high temperature, the tunnel temperature of shrink wrapping is high, and products that deteriorate with heat, such as thermal paper or chocolate, may not be wrapped.
- the film is remelted and contracted in the tunnel, transparency and gloss are inferior, and it is difficult to recognize products and shipping slips.
- it is soft and easy to stretch, and a thickness of 30 ⁇ m or more is necessary to obtain a sufficient binding force and strength, and it becomes a large amount of garbage after use.
- the above-described polyethylene-based heat-shrinkable film for overlap packaging uses, for example, a film produced by using a polyethylene as a main raw material by, for example, a tubular simultaneous biaxial stretching method or a sequential biaxial stretching. Since this film is stretched at a temperature lower than the melting point of the raw material, it shrinks at a temperature lower than the melting point, is excellent in transparency, gloss and mechanical strength, and is characterized by being relatively thin with a thickness of 30 ⁇ m or less. . However, when the sleeve wrapping form is wrapped with this film, the shrinkage rate of MD and TD is almost the same. Therefore, MD shrinks to the size of the mount according to the margin, but the shrinkage of TD is free.
- the packing form of the pack-in-box is mainly a method in which the backing sheet and the product are packaged with a film and then put into a cardboard as it is.
- a backing sheet is used as a bottom material of packaging, another corrugated cardboard sheet is used as a cover material, and both are bonded together with a hot melt adhesive (Patent Document 3).
- the bottom film must be directly drilled with a hot melt adhesive or through a hot air from a spot heater or a metal iron heated to a high temperature to make a hole, and the adhesive must be applied to the bottom corrugated cardboard. Don't be.
- a film manufactured by the above-described inflation method since the thickness is large and the thermal shrinkage is small, these methods cannot penetrate the film or open an appropriately sized hole, and the adhesive is used as a bottom material. In some cases, it could not be applied directly.
- the present invention does not damage the product due to tearing or loosening of the film during packaging or transportation of the product, and it is low temperature shrinkable during shrink wrapping, so the product does not expose the product to excessively high heat and consumes the shrink tunnel.
- the amount of electricity can be reduced, and since the film thickness is thin, the volume of dust can be reduced, and the bottom film melts and shrinks when the bottom and lid are bonded, making it easy to apply adhesive.
- An object of the present invention is to provide a polyethylene heat-shrinkable film for a pack-in-box, in which the packaged package is excellent in transparency and gloss, a pack-in-box package, and a packaging method thereof.
- the present inventors have found that a film satisfying such required characteristics can be obtained by specifying the raw material and layer structure of the film, and the stretching processing conditions. That is, the present invention (1) A polyethylene-based multilayer film is stretched at a stretching ratio of 3.0 times or more for both MD and TD by biaxial stretching, and then 1.2 to 2.0 times in MD at a temperature of 60 to 100 ° C. by a hot roll treatment. Polyethylene heat-shrinkable multilayer film for pack-in-box packaging obtained by stretching.
- the polyethylene-based multilayer film is composed of linear low-density polyethylene polymerized with a metallocene-based catalyst having a density of 0.910 to 0.920 g / cm 3 on at least one surface layer, and the core layer has a density of 0.915. consists of the composition of the ⁇ 0.925 g / cm linear low density polyethylene 50 to 100% by weight of 3, and the density 0.915 ⁇ 0.925 g / high pressure process of cm 3 low-density polyethylene 0-50 wt%
- the polyethylene heat-shrinkable multilayer film for pack-in-box packaging as described in (1) above.
- the polyethylene heat-shrinkable multilayer film for pack-in-box packaging according to any one of (4). (6) The friction coefficient of the film inner surface is 0.15 or more, the impact strength is 0.5 J or more, and the puncture strength is 4.0 N or more, (2) to (5) The polyethylene heat-shrinkable multilayer film for pack-in-box packaging according to one item.
- the polyethylene heat-shrinkable film for pack-in-box packaging according to the present invention, and the pack-in-box package and its packaging method improve the packing workability because continuous automatic packaging is possible, and cause the collapse of goods because the products can be sufficiently bound. It is suitable for transportation and the like. In addition, it has a higher display effect due to its better transparency and glossiness after shrink wrapping than conventional films produced by the inflation method, and it has a low-temperature shrinkage, which makes it possible to shrink shrink tunnels. Power consumption can be reduced, and the film can be thinned because it has sufficient strength. As a result, the amount of film discarded after packaging can be reduced, reducing the burden on the environment. is there.
- biaxial stretching is first performed on an unstretched polyethylene-based multilayer film.
- the stretching ratio of biaxially stretching MD and TD is preferably 3.0 times or more.
- the stretching temperature may be 10-30 ° C., preferably 10-20 ° C. lower than the melting point of polyethylene as a raw material.
- the draw ratio is less than 3.0 times and the draw temperature is 0 to 10 ° C. lower than the melting point of polyethylene, good transparency and gloss and sufficient film strength cannot be obtained.
- the stretching temperature is lower than the melting point of polyethylene by 30 ° C. or more, the lateral shrinkage rate becomes too large, which is not preferable.
- the obtained biaxially stretched film is uniaxially stretched only on MD.
- the film is stretched 1.2 to 2.0 times in the MD in the temperature range of 60 to 100 ° C. using a hot roll.
- the temperature at which the uniaxial stretching is performed is preferably 60 to 100 ° C, and more preferably 70 to 90 ° C. If the temperature is less than 60 ° C., uniaxial stretching becomes difficult due to an increase in the load of a motor such as a hot roll.
- the ratio of uniaxial stretching is preferably 1.2 to 2.0 times, and more preferably 1.2 to 1.5 times.
- the uniaxial stretching ratio is less than 1.1 times, the binding force at the time of pack-in-box packaging is insufficient.
- the uniaxial stretching ratio exceeds 2.0 times, the hot roll temperature must be set high in order to prevent film breakage on the hot roll and to prevent the roll motor load from rising, and sufficient shrinkage force cannot be obtained. The effect of the present invention is lost.
- the raw material used in the present invention is a polyethylene resin. Any polyethylene resin can be used without particular limitation. By using a polyethylene-based resin, a pack-in-box packaging film having sufficient strength such as tear resistance and excellent in MD shrinkage and cohesion by uniaxial stretching can be obtained.
- Such a film has a multilayer structure, and when the layer structure of the polyethylene film is specified, a film satisfying these required characteristics can be obtained.
- a polyethylene-based multilayer film is composed of a linear low-density polyethylene in which at least one surface layer is polymerized with a metallocene-based catalyst having a density of 0.910 to 0.920 g / cm 3 , and the core layer has a density of 0.915.
- linear low density polyethylene is used because of the strength and transparency of the film. Furthermore, a linear low density polyethylene which is a metallocene-based catalyst capable of obtaining a low temperature sealing property, a hot tack property, a blocking resistance and the like is used.
- the density of the linear low density polyethylene is preferably from 0.910 to 0.920 g / cm 3 . If the density is less than 0.910 g / cm 3 , blocking in the film state becomes remarkable, which is likely to cause troubles in the packaging process, and if it exceeds 0.920 g / cm 3 , low-temperature sealability cannot be obtained.
- linear low density polyethylene or a mixture of linear low density polyethylene and high pressure method low density polyethylene is used.
- the density of the linear low density polyethylene is preferably 0.915 to 0.925 g / cm 3 . If the density is less than 0.915 g / cm 3 , the heat resistance of the entire film is insufficient, so that the film is likely to be whitened or melted in a shrink tunnel during shrink wrapping. If the density exceeds 0.925 g / cm 3, it is difficult to obtain low-temperature shrinkability, and it is necessary to shrink-wrap at high temperatures. In this case, the possibility of damaging the product and the power consumption of the contracting tunnel increase, which is not preferable.
- the density of the high-pressure low density polyethylene is preferably 0.915 ⁇ 0.925g / cm 3, further more preferably 0.915 ⁇ 0.920g / cm 3.
- High pressure method low density polyethylene is mixed to improve the low temperature shrinkage, but if the density is less than 0.915 g / cm 3 , the heat resistance is remarkably lowered.
- the density exceeds 0.925 g / cm 3 , the mechanical strength of the film is remarkably lowered, so that the biaxial stretching cannot be uniformly stretched and the thickness accuracy is lowered.
- linear low density polyethylene and high pressure method low density polyethylene are mixed, a mixture of linear low density polyethylene 50 to 100% by weight and high pressure method low density polyethylene 0 to 50% by weight is preferred.
- the high-pressure method low-density polyethylene is mixed, it becomes easy to obtain a binding force after shrink wrapping, but when it exceeds 50 wt%, the mechanical strength of the film is remarkably lowered, which is not preferable.
- the MFR of the high-pressure low-density polyethylene is preferably 0.3 to 1.5 g / 10 min in order to obtain stability of stretched bubbles.
- additives such as a lubricant, an antiblocking agent, a tackifier, an antistatic agent, an antifogging agent and the like may be added to these polyethylene resins. If the coefficient is too low, the product will move easily due to vibrations, etc., so care must be taken.
- biaxial stretching method and roll uniaxial stretching method in the present invention will be described in detail below, but biaxial stretching in producing a film can be performed by a known method.
- the tubular stretching method is used. This will be specifically described.
- linear low-density polyethylene polymerized with a metallocene-based catalyst is both surface layers, linear low-density polyethylene, or a mixture of linear low-density polyethylene and high-pressure method low-density polyethylene is the core layer It is melt-kneaded by a machine, coextruded into a tubular shape from a three-layer annular die, and then rapidly cooled and solidified without stretching to produce a tubular unstretched film.
- the obtained tubular unstretched film is supplied to a tubular stretching apparatus as shown in FIG. 2, for example, and a temperature range in which high orientation is possible, for example, 20 ° C. below the melting point of the core layer, preferably 10 ° C.
- the film is stretched in the MD at the peripheral speed ratio between the two nip rolls, and at the same time, the gas pressure is applied to the inside of the tube to be expanded and stretched to TD to cause simultaneous biaxial orientation.
- both MD and TD are stretched to 3.0 times or more.
- the film is stretched 1.2 to 2.0 times in the MD between a heating roll at 60 to 100 ° C. and a cooling roll at 20 to 40 ° C., and then annealed.
- the combination of the heating roll and the cooling roll is not limited to one pair, and may be two or more pairs.
- the product thickness is adjusted by the thickness of the tubular unstretched film in consideration of the stretching ratio of tubular stretching and roll uniaxial stretching, and the final thickness is 25 ⁇ m or less.
- the thickness should be 25 ⁇ m or less, preferably 15 ⁇ m or more and 20 ⁇ m or less, and the dimensional change of MD when melted at 160 ° C. must be 90% or more.
- the film thickness exceeds 25 ⁇ m and the dimensional change at the time of melting is less than 90%, even if hot air is blown to the film with a spot heater, the time for melting the film becomes long and the holes The adhesive cannot be applied because it does not open.
- the temperature of the hot air of the spot heater, the temperature of the hot melt adhesive, and the temperature of the iron are higher than the melting point of the film, for example, 160 ° C. or higher.
- the film shrinks in volume, and an opening hole is formed in the penetrating portion, so that an adhesive can be directly applied to the bottom material.
- the performance of such a film is evaluated based on the ability to melt holes.
- the film of the present invention has a haze of 5% or less, a gloss of 120% or more, an MD with a heat shrinkage of 80 ° C. of 10 to 20%, a TD of less than 5%, and an MD with a heat shrinkage of 80 ° C. Is 0.40 N / cm or more and TD is less than 0.20 N / cm. Since the film is stretched at a temperature lower than the melting point of the raw material, good transparency and gloss can be obtained, which is superior to a film produced by a conventional inflation method.
- the heat shrinkage rate and heat shrinkage force are adjusted by the density and melting point of the core layer raw material, the temperature of tubular stretching and roll uniaxial stretching, and the stretching ratio.
- the MD uniaxial stretching temperature is 60 to 100 ° C. and the MD stretching ratio is 1. .2 to 2.0 times, the dimensional change of MD when melted at 160 ° C. is 90% or more, MD of heat shrinkage at 80 ° C.
- the film of the present invention is characterized in that the maximum value of hot tack strength measured at 100 to 130 ° C. is 2.5 N / inch or more, preferably 3.0 N / inch or more.
- the hot tack property is improved.
- the hot tack strength is less than 2.5 N / inch, when a package enters a shrink tunnel after sealing in automatic packaging, the seal is likely to come off, resulting in many defective packaging and stable continuous packaging. This is not possible and the workability is significantly reduced.
- the film of the present invention is characterized in that the friction coefficient of the film inner surface is 0.15 or more, the impact strength is 0.5 J or more, and the puncture strength is 4.0 N or more. If the friction coefficient on the inner surface of the film is less than 0.15 and slips easily, the product will be displaced and loosened even if the product is fixed with the film's binding force. This is because it is torn.
- the mount used for manufacturing the package of the present invention preferably has a shape having a notch at the end as shown in FIG. This is because when the film of the present invention shrinks in the shrink tunnel, it shrinks to MD first, the film end enters this notch, and then shrinks to TD, so that the product is more easily fixed. When there is no notch, the width of the film may be narrower than the width of the product due to the shrinkage of TD, and the entire product cannot be covered with the film, and the binding property may deteriorate.
- the hot tack seal strength which peels and changes with time is plotted on the order of 1/1000 seconds, and is measured at a seal strength of 0.25 seconds after the start of peeling. Furthermore, the seal strength at 0.25 seconds after the start of peeling was plotted against the temperature, and the maximum value was obtained.
- ⁇ Friction coefficient> Based on ASTM D 1894, the slipperiness of the film was measured.
- ⁇ Impact strength> It measured about MD and TD of the film based on JISP8134.
- ⁇ Puncture Strength> Based on JIS Z 1707, the puncture strength of the film was measured.
- ⁇ Heat resistance at the time of packaging> It was visually determined whether the film was whitened due to melting during heating. ⁇ : No whitening.
- ⁇ It looks white and cloudy as a whole. X: There is remarkable whitening locally, film strength is deteriorated or a hole is formed. ⁇ Finish at the time of packaging> The finished state of the top surface after packaging was visually evaluated. ⁇ : Good ⁇ : Fine wrinkles are observed on the top surface. X: There are wrinkles and turns on the top and other parts, or the film is loose. ⁇ Melting hole perforation> The state of the hole when hot air of 200 ° C. is applied to the film of the bottom material with a spot heater in the packing form in which the bottom material and the lid material are bonded together. ⁇ : A hole was formed in an appropriate shape and size, and the adhesive could be applied to the mount.
- ⁇ Some holes are opened, but the holes are not enlarged, and the adhesive cannot be applied to the mount.
- X Not penetrated. ⁇ Binding Immediately after Packaging> Evaluation was performed in a bundled state of an article to be packaged after packaging. ⁇ : Good. ⁇ : Small looseness. X: Looseness is large, or the package is falling from the film. ⁇ Bundling property after transportation> After the packaged packaged goods were transported, the binding state was evaluated. ⁇ : Good. ⁇ : Small looseness. X: Looseness is large, or the package is falling from the film. ⁇ Tear after transportation> After the packaged article was transported, the tear state was evaluated. ⁇ : No tearing of the film. ⁇ : There is a small tear in the film. X: The film has a big tear.
- species used for the Example and the comparative example is as follows.
- LL1 a linear low density polyethylene having a C6 comonomer polymerized with a metallocene catalyst and having a density of 0.913 g / cm 3
- LL2 a linear low density polyethylene having a C6 comonomer polymerized with a metallocene catalyst and having a density of 0.918 g / cm 3
- LL3 linear low density polyethylene with C8 comonomer polymerized with Ziegler catalyst, density 0.920 g / cm 3 LL4: linear low density polyethylene with C6 comonomer polymerized with Ziegler catalyst, density 0.920 g / cm 3 LL5: linear low density polyethylene with C6 comonomer polymerized with Ziegler catalyst, density 0.925 g / cm 3 LD1: High pressure method low density polyethylene, density 0.915 g / cm 3 LD2: high pressure method low density polyethylene
- Example 1 As shown in Table 1, a linear low density polyethylene resin polymerized with a metallocene catalyst having a density of 0.913 g / cm 3 is used as both surface layers, and a linear low density polyethylene resin 80 having a density of 0.920 g / cm 3 is used. High-pressure low-density polyethylene resin 20% by weight and density 0.924 g / cm 3 is used as a core layer and the temperature is set to 170 ° C. to 240 ° C. with three extruders (for core layer, innermost layer, outermost layer).
- the extrusion amount of each extruder was set so that the ratio of the thickness of the core layer to the thickness of all layers was 80%, and co-extruded downward from a three-layer annular die maintained at 240 ° C.
- the formed three-layered tube-shaped molten resin is cooled by passing the outer surface of a cylindrical cooling mandrel in which cooling water circulates inside while passing through a water tank, and the unstretched film is taken out. Obtained. This was carried out by adjusting the screw speed and take-off speed of the extruder so that the final film thickness was 10 ⁇ m.
- This tubular unstretched film is guided to the tubular biaxial stretching apparatus shown in FIG. 2, and stretched at 100 to 110 ° C.
- Example 2 As shown in Table 1, density 0.918 g / cm 3 of the metallocene catalyst in polymerized linear low density polyethylene resin as a both surface layers, density 0.925 g / cm 3 of linear low density polyethylene resin 50 An unstretched film was obtained in the same manner as in Example 1 except that 50% by weight of the high-pressure method low-density polyethylene resin having a weight percent of 0.915 g / cm 3 was used as the core layer. This tubular unstretched film was subjected to tubular biaxial stretching in the same manner as in Example 1, and then stretched 2.0 times between two rolls of a 100 ° C. heating roll and a 30 ° C.
- Example 3 As shown in Table 1, a linear low density polyethylene resin polymerized with a metallocene catalyst having a density of 0.913 g / cm 3 is used as both surface layers, and a linear low density polyethylene resin having a density of 0.920 g / cm 3 is obtained.
- an unstretched film was obtained in the same manner as in Example 1. This was carried out by adjusting the screw speed and take-up speed of the extruder so that the final film thickness was 15 ⁇ m. This tubular unstretched film is guided to the tubular biaxial stretching apparatus shown in FIG. 2 and stretched at 100 to 110 ° C. to MD 4.0 times to TD 4.0 times, and then cooled to 40 ° C.
- the resulting package had three comic books firmly fixed, no broken bags and no whitening of the film, and the shrinking tunnel temperature was relatively low and the shrinking finish was sufficient.
- hot air of 200 ° C. was applied to the bottom of the packaged product, a moderately sized hole was opened in the film, and the adhesive could be directly applied to the mount from the hole, and the lid could be firmly bonded. There was no loosening or tearing when the package was transported.
- Example 4 As shown in Table 1, a linear low density polyethylene resins polymerized with a metallocene catalyst density 0.918 g / cm 3 and both surface layers, density 0.925 g / cm 3 of linear low density polyethylene resin 80 An unstretched film was obtained in the same manner as in Example 1 except that 20% by weight of the high-pressure method low-density polyethylene resin having a weight percent of 0.920 g / cm 3 was used as the core layer. This was done by adjusting the screw speed and take-off speed of the extruder so that the final film thickness was 25 ⁇ m. A stretched film was obtained in the same manner as in Example 2 except that the tubular unstretched film was stretched 1.2 times with a hot roll apparatus.
- the properties of the stretched film were excellent in transparency and gloss, and extremely excellent in low-temperature shrinkage.
- three comic books were packaged in the packaging form shown in FIG. 1 by an automatic packaging machine. Automatic packaging was possible without any particular problems.
- the resulting package had three comic books firmly fixed, no broken bags and no whitening of the film, and the shrinking tunnel temperature was relatively low and the shrinking finish was sufficient. Even if the packaged product was transported in a cardboard box as it was, it did not come loose or torn.
- ⁇ Comparative Example 1> As shown in Table 1, a linear low density polyethylene resin polymerized with a Ziegler catalyst having a density of 0.920 g / cm 3 is used as both surface layers, and a linear low density polyethylene resin having a density of 0.920 g / cm 3 is obtained. A stretched film was obtained in the same manner as in Example 3 except that the core layer was used, and the draw ratio of the tubular simultaneous biaxial stretching was changed to 2.5 times MD to 2.5 times TD. As shown in Table 2, the properties of the stretched film were excellent in transparency and gloss, had sufficient shrinkage, but had low impact strength and puncture strength, and low hot tack strength. Using this film, three comic books were packaged in the packaging form shown in FIG. 1 by an automatic packaging machine.
- Example 2 A stretched film was obtained in the same manner as in Example 3, except that the film was stretched 1.5 times to MD with a 105 ° C. heat roll. As shown in Table 2, the stretched film had excellent transparency and gloss, but had a low MD shrinkage and shrinkage.
- three comic books were packaged in the packaging form shown in FIG. 1 by an automatic packaging machine. Automatic packaging was possible without any particular problems. The obtained packaged product was poor in shrinkage and looked bad, and the three books were not fixed enough. A hole was opened in the film by applying hot air of 200 ° C. to the bottom of the packaged product. However, since the hole was extremely small, the hot melt adhesive could not be applied to the mount, and the lid could not be bonded. When the packaged product was placed in a cardboard box as it was, the film was further loosened, the film was torn from the corners of the book, and the contents had come out of the film.
- Example 3 The process was the same as in Example 3 except that the MD was stretched 1.5 times to MD with a 50 ° C. hot roll, but the load on the drive motor of the hot roll was too large to obtain a stretched film.
- Example 4 A stretched film was obtained in the same manner as in Example 3 except that MD was stretched 1.0 times with a hot roll at 80 ° C. As shown in Table 2, the stretched film had excellent transparency and gloss, but had a low MD shrinkage and shrinkage. Using this film, three comic books were packaged in the packaging form shown in FIG. 1 by an automatic packaging machine. Automatic packaging was possible without any particular problems. The obtained packaged product was poor in shrinkage and looked bad, and the three books were not fixed enough. A hole is opened in the film by applying hot air of 200 ° C to the bottom of the package, but the hole is too small to apply a sufficient amount of hot melt adhesive to the backing sheet, and the lid can be firmly attached. There wasn't. When transported, there was no tearing, but there were also cases where the film further loosened and the contents came out of the film.
- Example 5 The process was the same as in Example 3 except that the roll was stretched 2.5 times to MD with a 100 ° C. hot roll. Cann't get.
- the polyethylene heat-shrinkable multilayer film for pack-in-box packaging of the present invention, the pack-in-box package, and its packaging method can be used for pack-in-box packaging for transportation purposes.
- it has low-temperature shrinkage, low power consumption of the shrink tunnel, it can be reduced in volume because it is a thin film, and it is easy to visually recognize the product because it is excellent in transparent glossiness. .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Wrappers (AREA)
Abstract
Description
ところで、パックインボックスの梱包形態は、台紙と商品をフィルムで包装した後、段ボールにそのまま入れて梱包する方法が主である。別の方法としては、台紙を梱包の底材とし、別の段ボールシートを蓋材として、両者をホットメルト接着剤で貼り合せて梱包する方法がある(特許文献3)。この方法は、底材のフィルムをホットメルト接着剤で直接、或いはスポットヒーターの熱風や高温に加熱した金属製コテにて貫通させて穴を開け、底材の段ボールに接着剤を塗布しなければならない。しかし、前述のインフレーション法で製造されたフィルムの場合、厚みが厚く、熱収縮が小さいため、これらの方法ではフィルムを貫通できない若しくは適度な大きさの穴が開かずに、接着剤を底材に直接塗布できないことがあった。
即ち、本発明は、
(1)ポリエチレン系多層フィルムを二軸延伸によりMD及びTD共に延伸倍率3.0倍以上で延伸した後、熱ロール処理により60~100℃の温度でMDに1.2~2.0倍に延伸して得られるパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
(2)前記ポリエチレン系多層フィルムが、少なくとも片方の表層が密度0.910~0.920g/cm3のメタロセン系触媒で重合された直鎖状低密度ポリエチレンからなり、芯層が密度0.915~0.925g/cm3の直鎖状低密度ポリエチレン50~100重量%と、密度0.915~0.925g/cm3の高圧法低密度ポリエチレン0~50重量%との組成物からなることを特徴とする前記(1)記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
(3)前記芯層に用いる高圧法低密度ポリエチレンのMFRが0.3~1.0g/10分であることを特徴とする前記(1)または(2)に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
(4)フィルム全体の厚みが25μm以下であり、160℃で溶融させた時のMDの寸法変化が90%以上であることを特徴とする前記(1)~(3)に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
(5)フィルムのヘーズが5%以下、グロスが120%以上であり、80℃の熱収縮率のMDが10~20%且つTDが5%未満であり、80℃の熱収縮力のMDが0.40N/cm以上且つTDが0.20N/cm未満であり、100~130℃で測定したホットタック強度の最大値が2.5N/インチ以上であることを特徴とする前記(2)~(4)のいずれか一項に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
(6)フィルム内面の摩擦係数が0.15以上であり、衝撃強度が0.5J以上であり、突刺強力が4.0N以上であることを特徴とする(2)~(5)のいずれか一項に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
(7)(1)~(6)のパックインボックス包装用ポリエチレン系熱収縮性多層フィルムを用いたパックインボックス包装体。
(8)(7)の包装体を製造するときに用いる台紙について、当該台紙の端部に切欠部を有する台紙を用いるパックインボックス包装体。
(9)(8)に記載した包装体を製造するパックインボックスの包装方法。
に係るものである。
本発明は、まず未延伸のポリエチレン系多層フィルムについて二軸延伸を行う。二軸延伸のMDおよびTDの延伸倍率はそれぞれ3.0倍以上が良い。延伸温度は原料であるポリエチレンの融点より10~30℃低い温度、好ましくは10~20℃低い温度が良い。延伸倍率が3.0倍未満、延伸温度がポリエチレンの融点から0~10℃低い温度であると、良好な透明性と光沢性、十分なフィルム強度が得られない。延伸温度がポリエチレンの融点から30℃以上低い温度であると横の収縮率が大きくなりすぎて好ましくない。
一軸延伸の倍率が1.1倍未満の場合パックインボックス包装時の結束力が不足する。一軸延伸倍率が2.0倍を超える場合は、熱ロール上のフィルム切れ防止やロールモーター負荷上昇を防止するために熱ロール温度を高く設定しなければならず、十分な収縮力が得られず本発明の効果を失ってしまう。
また、フィルム製造する際にチューブラー同時二軸延伸を行う場合は、延伸バブルの安定性を得るため、高圧法低密度ポリエチレンのMFRは0.3~1.5g/10分が好ましい。
チューブラー延伸工程の後に、60~100℃の加温ロールと20~40℃の冷却ロール間にてMDに1.2~2.0倍に延伸し、その後アニーリングを行う。加温ロールと冷却ロールの組み合わせは1対に限らず、2対以上になってもよい。製品厚みは、チューブラー延伸やロール一軸延伸の延伸倍率を考慮して、チューブ状未延伸フィルムの厚みで調整され、最終厚み25μm以下にする。
<厚み> JIS Z 1709に準拠して、フィルムの厚みを測定した。
<ヘーズ> JIS K 7105に準拠して、フィルムの透明性について測定した。
<グロス> JIS K 7105に準拠して、フィルムの光沢性について測定した。
<収縮率> JIS Z 1709に準拠して、フィルムのMD及びTDについて測定した。
<溶融時の寸法変化>
本発明のフィルムの融点は110~130℃であり、この温度より高温で十分に溶融した状態での寸法変化を160℃で測定。フィルムMD20cm、TD20cmに切り出し、160℃のオーブンに30分間保温して溶融させた後、MDの長さL1cmを測定。次式より、寸法変化を算出する。
寸法変化(%)=(20-L1)/20×100
<収縮力> ASTM D 2838に準拠して、フィルムのMD及びTDについて測定した。
<ホットタック強度>ASTM F-1921-98に基づき、THELLER社HOT TACK測定器を用いて測定した。0.5インチ幅のフラットヒートシールダイを使用し、温度を100~130℃で行い、試験片の幅は1.0インチとした。剥離させて時間とともに変化していくホットタックシール強度を1/1000秒のオーダーでプロットし、剥離開始後0.25秒のシール強度にて測定した。更に、剥離開始後0.25秒のシール強度を温度に対してプロットし、その最大値を求めた。
<摩擦係数>ASTM D 1894に準拠して、フィルムの滑り性について測定した。
<衝撃強度> JIS P 8134に準拠して、フィルムのMD及びTDについて測定した。
<突刺強力> JIS Z 1707に準拠して、フィルムの突刺強力について測定した。
<包装時の耐熱性> 加熱時にフィルムが溶融のため白化しているかどうかを目視で判断した。
○:白化無し。
△:全体的に白く曇ったように見える。
×:局部的に著しく白化が有り、フィルム強度が劣化若しくは穴が開いている。
<包装時の仕上がり> 包装後の天面の仕上がり状態を目視で評価した。
○:良好
△:天面に細かなシワが見られる。
×:天面やその他の箇所に皺やめくれがある、或いはフィルムに緩みがある。
<溶融穴あき性>底材と蓋材を貼り合せる梱包形態において、底材のフィルムに200℃の熱風をスポットヒーターで当てた時の穴の状態。
○:適度な形状と大きさに穴が開き、台紙に接着剤を塗布できた。
△:一部穴は開くが、穴が拡大せず、接着剤を台紙に塗布できない。
×:貫通しない。
<包装直後の結束性> 包装後の被包装物の結束状態で評価した。
○:良好。
△:ゆるみ小。
×:ゆるみ大、或いは被包装物がフィルムから落下している。
<輸送後の結束性> 包装した被包装物を輸送した後、結束状態を評価した。
○:良好。
△:ゆるみ小。
×:ゆるみ大、或いは被包装物がフィルムから落下している。
<輸送後の破れ> 包装した被包装物を輸送した後、破れ状態を評価した。
○:フィルムの破れなし。
△:フィルムに小さな破れがある。
×:フィルムに大きな破れがある。
LL1:メタロセン系触媒で重合された、C6コモノマーを有する直鎖状低密度ポリエチレンであり、密度0.913g/cm3
LL2:メタロセン系触媒で重合された、C6コモノマーを有する直鎖状低密度ポリエチレンであり、密度0.918g/cm3
LL3:チーグラー系触媒で重合された、C8コモノマーを有する直鎖状低密度ポリエチレンであり、密度0.920g/cm3
LL4:チーグラー系触媒で重合された、C6コモノマーを有する直鎖状低密度ポリエチレンであり、密度0.920g/cm3
LL5:チーグラー系触媒で重合された、C6コモノマーを有する直鎖状低密度ポリエチレンであり、密度0.925g/cm3
LD1:高圧法低密度ポリエチレンであり、密度0.915g/cm3
LD2:高圧法低密度ポリエチレンであり、密度0.924g/cm3
LD3:高圧法低密度ポリエチレンであり、密度0.920g/cm3
表1に示すように、密度0.913g/cm3のメタロセン系触媒で重合された直鎖状低密度ポリエチレン樹脂を両表層とし、密度0.920g/cm3の直鎖状低密度ポリエチレン樹脂80重量%と密度0.924g/cm3の高圧法低密度ポリエチレン樹脂20重量%を芯層として3台の押出機(芯層用、最内層用、最外層用)でそれぞれ170℃~240℃にて溶融混練し、全層の厚みに対する芯層の厚みの割合が80%になるように各押出機の押出量を設定し、240℃に保った3層環状ダイスより下向きに共押出した。形成された3層構成チューブ状溶融樹脂を、内側は冷却水が循環している円筒状冷却マンドレルの外表面を摺動させながら、外側は水槽を通すことにより冷却して引き取り、未延伸フィルムを得た。最終的に得られるフィルムの厚みが10μmになるように、押出機のスクリュー回転数及び引き取り速度を調整することにより行った。このチューブ状未延伸フィルムを図2に示したチューブラー二軸延伸装置に導き、100~110℃でMD3.0倍にTD3.0倍に延伸した後、40℃以下まで冷却し、2つに折りたたんだ。次いでこの延伸フィルムを熱ロール装置に導き、60℃加温ロールと30℃の冷却ロールの2つのロール間で1.2倍に延伸を行った後、更に30~40℃に適宜調整された熱ロールで数%程度の弛緩処理を施した。チューブラー二軸延伸中の延伸バブルの安定性は良好で、延伸点の上下動や延伸チューブの揺動もなく、また熱ロール一軸延伸ではネッキングなどの不均一延伸状態も観察されなかった。得られた延伸フィルムの特性は、表1に示したように、優れた透明性と光沢性を有し、極めて低温収縮性に優れるものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装は特にシール不良が発生することなく、収縮トンネル温度も比較的低温側で十分な収縮仕上り状態で、連続包装することができた。得られた包装品は、本3冊がしっかりと固定されていて、破袋やフィルムの白化もなく、透明感を有するものであった。包装品の底面に200℃の熱風を当てるとフィルムに適度な大きさの穴が開き、その穴から接着剤を台紙に直接塗布することができ、蓋材をしっかり貼り合せることができた。包装品を輸送しても、緩みや破れなどはなかった。
表1に示すように、密度0.918g/cm3のメタロセン系触媒で重合された直鎖状低密度ポリエチレン樹脂を両表層とし、密度0.925g/cm3の直鎖状低密度ポリエチレン樹脂50重量%と密度0.915g/cm3の高圧法低密度ポリエチレン樹脂50重量%を芯層として、実施例1と同様に未延伸フィルムを得た。このチューブ状未延伸フィルムを実施例1と同様にチューブラー二軸延伸を行い、次いで100℃加温ロールと30℃の冷却ロールの2つのロール間で2.0倍に延伸を行った後、更に30~70℃に適宜調整された熱ロールで数%程度の弛緩処理を施した。延伸中の延伸バブルの安定性は良好で、延伸点の上下動や延伸チューブの揺動もなく、又、ネッキングなどの不均一延伸状態も観察されなかった。得られた延伸フィルムの特性は、表1に示したように、優れた透明性と光沢性を有し、極めて低温収縮性に優れるものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装は特に問題なく、連続包装することができた。得られた包装品は、コミック本3冊がしっかりと固定されていて、破袋やフィルムの白化もなく、収縮トンネル温度も比較的低温側で十分な収縮仕上り状態であった。包装品の底面に200℃の熱風を当てるとフィルムに適度な大きさの穴が開き、その穴から接着剤を台紙に直接塗布することができ、蓋材をしっかり貼り合せることができた。包装品を輸送しても、緩みや破れなどはなかった。
表1に示すように、密度0.913g/cm3のメタロセン系触媒で重合された直鎖状低密度ポリエチレン樹脂を両表層とし、密度0.920g/cm3の直鎖状低密度ポリエチレン樹脂を芯層として、実施例1と同様にして未延伸フィルムを得た。最終的に得られるフィルムの厚みが15μmになるように、押出機のスクリュー回転数及び引き取り速度を調整することにより行った。このチューブ状未延伸フィルムを図2に示したチューブラー二軸延伸装置に導き、100~110℃でMD4.0倍にTD4.0倍に延伸した後、40℃以下まで冷却し、2つに折りたたんだ。次いでこの延伸フィルムを熱ロール装置に導き、80℃加温ロールと30℃の冷却ロールの2つのロール間で1.5倍に延伸を行った後、更に30~40℃に適宜調整された熱ロールで数%程度の弛緩処理を施した。延伸中の延伸バブルの安定性は良好で、延伸点の上下動や延伸チューブの揺動もなく、又、ネッキングなどの不均一延伸状態も観察されなかった。得られた延伸フィルムの特性は、表1に示したように、優れた透明性と光沢性を有し、極めて低温収縮性に優れるものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装は特に問題なく、連続包装することができた。得られた包装品は、コミック本3冊がしっかりと固定されていて、破袋やフィルムの白化もなく、収縮トンネル温度も比較的低温側で十分な収縮仕上り状態であった。包装品の底面に200℃の熱風を当てるとフィルムに適度な大きさの穴が開き、その穴から接着剤を台紙に直接塗布することができ、蓋材をしっかり貼り合せることができた。包装品を輸送しても、緩みや破れなどはなかった。
表1に示すように、密度0.918g/cm3のメタロセン系触媒で重合された直鎖状低密度ポリエチレン樹脂を両表層とし、密度0.925g/cm3の直鎖状低密度ポリエチレン樹脂80重量%と密度0.920g/cm3の高圧法低密度ポリエチレン樹脂20重量%を芯層として、実施例1と同様にして、未延伸フィルムを得た。最終的に得られるフィルムの厚みが25μmになるように、押出機のスクリュー回転数及び引き取り速度を調整することにより行った。このチューブ状未延伸フィルムを熱ロール装置で1.2倍に延伸を行った以外は、実施例2と同様に延伸フィルムを得た。延伸フィルムの特性は、表1に示したように、優れた透明性と光沢性を有し、極めて低温収縮性に優れるものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装は特に問題なく、連続包装することができた。得られた包装品は、コミック本3冊がしっかりと固定されていて、破袋やフィルムの白化もなく、収縮トンネル温度も比較的低温側で十分な収縮仕上り状態であった。包装品をそのまま段ボール箱に入れて輸送しても、緩みや破れなどはなかった。
表1に示すように、密度0.920g/cm3のチーグラー系触媒で重合された直鎖状低密度ポリエチレン樹脂を両表層とし、密度0.920g/cm3の直鎖状低密度ポリエチレン樹脂を芯層とし、チューブラー同時二軸延伸の延伸倍率をMD2.5倍にTD2.5倍にした以外は、実施例3と同様にして延伸フィルムを得た。延伸フィルムの特性は表2に示したように、優れた透明性と光沢性を有し、収縮力も十分であったが、衝撃強度や突刺強力が低く、ホットタック強度も低いものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装において、収縮トンネルに入る前はシールはできているが、収縮トンネル通過後にシール開いた状態になるものがあった。シールが開くことなく得られた包装品は、ややフィルムの収縮が不足していて見映えが悪い印象となった。包装品の底面に200℃の熱風を当ててフィルムに穴が開くが、穴が小さいためホットメルト接着剤を台紙に十分な量を塗布することができず、蓋材をしっかり貼り合せることができなかった。また、本3冊はしっかりと固定されていたが、包装品を輸送すると本の角からフィルムが破れていた。
105℃の熱ロールでMDに1.5倍に延伸にした以外は、実施例3と同様にして延伸フィルムを得た。延伸フィルムの特性は表2に示したように、優れた透明性と光沢性を有するものであったがMDの収縮率と収縮力が低いものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装は特に問題なく、連続包装することができた。得られた包装品は、収縮が不足していて見映えが悪く、本3冊の固定は十分でなかった。包装品の底面に200℃の熱風を当ててフィルムに穴が開くが、穴が極めて小さいためホットメルト接着剤を台紙に塗布することができず、蓋材を貼り合せることができなかった。包装品をそのまま段ボール箱に入れて輸送すると、フィルムが更に緩み、本の角からもフィルムが破れて、内容物がフィルムからでてしまっていた。
50℃の熱ロールでMDに1.5倍に延伸にした以外は、実施例3と同様にしたが、熱ロールの駆動モーター負荷が大きくなりすぎて、延伸フィルムを得ることができなかった。
80℃の熱ロールでMDに1.0倍に延伸にした以外は、実施例3と同様にして延伸フィルムを得た。延伸フィルムの特性は表2に示したように、優れた透明性と光沢性を有するものであったがMDの収縮率と収縮力が低いものであった。このフィルムを用いて自動包装機でコミック本3冊を図1に示した包装形態で包装した。自動包装は特に問題なく、連続包装することができた。得られた包装品は、収縮が不足していて見映えが悪く、本3冊の固定は十分でなかった。包装品の底面に200℃の熱風を当ててフィルムに穴が開くが、穴が小さいためホットメルト接着剤を台紙に十分な量を塗布することができず、蓋材をしっかり貼り合せることができなかった。輸送すると、破れはなかったが、更にフィルムが緩んで内容物がフィルムからでてしまうものもあった。
100℃の熱ロールでMDに2.5倍に延伸にした以外は、実施例3と同様にしたが、熱ロールの駆動モーター負荷が大きくなりすぎるとともに、フィルムが破断してしまい、延伸フィルムを得ることができなかった。
2 パックインボックス包装時の被包装物(商品)
3 パックインボックス包装時の段ボール
4 パックインボックス包装時のフィルムの溶断シール箇所
5 チューブラー延伸装置のニップロール
6 チューブラー延伸装置の予熱ヒーター
7 チューブラー延伸装置の主熱ヒーター
8 チューブラー延伸装置の冷却エアーリング
9 チューブラー延伸時のフィルム
Claims (8)
- ポリエチレン系多層フィルムを二軸延伸によりMD及びTD共に延伸倍率3.0倍以上で延伸した後、熱ロール処理により60~100℃の温度でMDに1.2~2.0倍に延伸して得られるパックインボックス包装用ポリエチレン系熱収縮性多層フィルムで、
前記ポリエチレン系多層フィルムが、少なくとも片方の表層が密度0.910~0.920g/cm3のメタロセン系触媒で重合された直鎖状低密度ポリエチレンからなり、芯層が密度0.915~0.925g/cm3の直鎖状低密度ポリエチレン50~100重量%と、密度0.915~0.925g/cm3の高圧法低密度ポリエチレン0~50重量%との組成物からなることを特徴とするパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。 - 前記芯層に用いる高圧法低密度ポリエチレンのMFRが0.3~1.0g/10分であることを特徴とする請求項1に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
- フィルム全体の厚みが25μm以下であり、160℃で溶融させた時のMDの寸法変化が90%以上であることを特徴とする請求項1~2に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
- フィルムのヘーズが5%以下、グロスが120%以上であり、80℃の熱収縮率のMDが10~20%且つTDが5%未満であり、80℃の熱収縮力のMDが0.40N/cm以上且つTDが0.20N/cm未満であり、110~120℃のホットタック強度が2.0N/インチ以上であることを特徴とする請求項2~3のいずれか一項に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
- フィルム内面の摩擦係数が0.15以上であり、衝撃強度が0.5J以上であり、突刺強力が4.0N以上であることを特徴とする請求項2~4のいずれか一項に記載のパックインボックス包装用ポリエチレン系熱収縮性多層フィルム。
- 請求項1~5のパックインボックス包装用ポリエチレン系熱収縮性多層フィルムを用いたパックインボックス包装体。
- 請求項6の包装体を製造するときに用いる台紙について、当該台紙の端部に切欠部を有する台紙を用いるパックインボックス包装体。
- 請求項7に記載した包装体を製造するパックインボックスの包装方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/509,947 US20170297312A1 (en) | 2014-10-02 | 2014-10-02 | Polyethylene-based thermally-shrinkable multilayer film for packaging, and package and packaging method therefor |
SG11201702062RA SG11201702062RA (en) | 2014-10-02 | 2014-10-02 | Polyethylene-type thermally shrinkable multi-layer film for packaging use, packaged product, and method for packaging said packaged product |
CN201480081579.7A CN106660348A (zh) | 2014-10-02 | 2014-10-02 | 包装用聚乙烯系热收缩性多层膜、包装体及其包装方法 |
PCT/JP2014/076376 WO2016051566A1 (ja) | 2014-10-02 | 2014-10-02 | 包装用ポリエチレン系熱収縮性多層フィルム、及び包装体とその包装方法。 |
EP14902907.6A EP3202570A4 (en) | 2014-10-02 | 2014-10-02 | Polyethylene-type thermally shrinkable multi-layer film for packaging use, packaged product, and method for packaging said packaged product |
TW104132306A TWI659851B (zh) | 2014-10-02 | 2015-10-01 | 包裝用聚乙烯系熱收縮性多層膜、包裝體及其包裝方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/076376 WO2016051566A1 (ja) | 2014-10-02 | 2014-10-02 | 包装用ポリエチレン系熱収縮性多層フィルム、及び包装体とその包装方法。 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051566A1 true WO2016051566A1 (ja) | 2016-04-07 |
Family
ID=55629655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076376 WO2016051566A1 (ja) | 2014-10-02 | 2014-10-02 | 包装用ポリエチレン系熱収縮性多層フィルム、及び包装体とその包装方法。 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170297312A1 (ja) |
EP (1) | EP3202570A4 (ja) |
CN (1) | CN106660348A (ja) |
SG (1) | SG11201702062RA (ja) |
TW (1) | TWI659851B (ja) |
WO (1) | WO2016051566A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109263212A (zh) * | 2018-10-09 | 2019-01-25 | 江阴升辉包装材料有限公司 | 一种适用于冷鲜鸡包装的pof收缩膜 |
US20220080703A1 (en) * | 2019-01-23 | 2022-03-17 | Sabic Global Technologies B.V. | Bi-directionally oriented multilayer film |
KR102429731B1 (ko) * | 2019-06-17 | 2022-08-05 | 다마폴리 가부시키가이샤 | 폴리에틸렌 필름 및 드라이 필름 레지스트 |
US11618602B1 (en) * | 2022-03-10 | 2023-04-04 | Henry G. Schirmer | Process for making pouches having strong transverse shrinkage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002370327A (ja) * | 2001-06-19 | 2002-12-24 | Okura Ind Co Ltd | ポリエチレン系多層熱収縮性フィルム |
JP2003523290A (ja) * | 1999-12-15 | 2003-08-05 | スポロス・エス・エイ | 多層熱収縮性フィルム |
JP2011116033A (ja) * | 2009-12-03 | 2011-06-16 | Kohjin Co Ltd | 集積包装用ポリエチレン系熱収縮性多層フィルム |
JP2013123820A (ja) * | 2011-12-13 | 2013-06-24 | Kohjin Holdings Co Ltd | パックインボックス包装用ポリエチレン系熱収縮性多層フィルム、及びパックインボックス包装体とその包装方法。 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8080294B2 (en) * | 2008-05-16 | 2011-12-20 | Exxonmobil Oil Corporation | Biaxially oriented LLDPE blends |
EP2635437A4 (en) * | 2010-11-05 | 2014-05-28 | Exxonmobil Chem Patents Inc | POLYMERIC FOILS AND METHOD FOR THE PRODUCTION THEREOF |
-
2014
- 2014-10-02 SG SG11201702062RA patent/SG11201702062RA/en unknown
- 2014-10-02 EP EP14902907.6A patent/EP3202570A4/en not_active Withdrawn
- 2014-10-02 CN CN201480081579.7A patent/CN106660348A/zh active Pending
- 2014-10-02 WO PCT/JP2014/076376 patent/WO2016051566A1/ja active Application Filing
- 2014-10-02 US US15/509,947 patent/US20170297312A1/en not_active Abandoned
-
2015
- 2015-10-01 TW TW104132306A patent/TWI659851B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003523290A (ja) * | 1999-12-15 | 2003-08-05 | スポロス・エス・エイ | 多層熱収縮性フィルム |
JP2002370327A (ja) * | 2001-06-19 | 2002-12-24 | Okura Ind Co Ltd | ポリエチレン系多層熱収縮性フィルム |
JP2011116033A (ja) * | 2009-12-03 | 2011-06-16 | Kohjin Co Ltd | 集積包装用ポリエチレン系熱収縮性多層フィルム |
JP2013123820A (ja) * | 2011-12-13 | 2013-06-24 | Kohjin Holdings Co Ltd | パックインボックス包装用ポリエチレン系熱収縮性多層フィルム、及びパックインボックス包装体とその包装方法。 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3202570A4 * |
Also Published As
Publication number | Publication date |
---|---|
TWI659851B (zh) | 2019-05-21 |
EP3202570A1 (en) | 2017-08-09 |
SG11201702062RA (en) | 2017-04-27 |
TW201618948A (zh) | 2016-06-01 |
EP3202570A4 (en) | 2018-05-16 |
CN106660348A (zh) | 2017-05-10 |
US20170297312A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100186871B1 (ko) | 폴리에틸렌계 이축연신 필름 | |
JP5893091B2 (ja) | ポリエチレン系架橋シュリンクフィルム | |
WO2016051566A1 (ja) | 包装用ポリエチレン系熱収縮性多層フィルム、及び包装体とその包装方法。 | |
JP6012064B2 (ja) | 集積包装用ポリエチレン系熱収縮性多層フィルム | |
US5306549A (en) | Biaxially stretched polyethylene film | |
JP6753987B1 (ja) | ポリオレフィン系多層シュリンクフィルム | |
JP3272554B2 (ja) | 多層ポリエチレン系ストレッチシュリンクフィルム及びその製造方法 | |
WO2013100141A1 (ja) | 筒状ストレッチラベル及びラベル付き容器 | |
JP5896714B2 (ja) | パックインボックス包装用ポリエチレン系熱収縮性多層フィルム、及びパックインボックス包装体とその包装方法。 | |
JP5722081B2 (ja) | 収縮仕上がり性に優れたポリエチレン系架橋シュリンクフィルム | |
JPH1058626A (ja) | 食品包装用ストレッチシュリンクフィルム及びその製造方法 | |
JP2007062797A (ja) | ポリエチレン系易開封性集積包装用シュリンクフィルム | |
JPH02258526A (ja) | 積層ポリオレフィン系熱収縮性フイルムによるオーバーラップ収縮包装方法 | |
JP2009143607A (ja) | 包装体 | |
JP2008105428A (ja) | ポリ乳酸系積層2軸延伸フィルム | |
JP2984611B2 (ja) | ポリプロピレン系複合フィルムおよびそれを用いた溶断製プラスチック袋 | |
JP3093449B2 (ja) | ポリオレフィン系熱収縮性多層フィルム及びこれを用いた収縮包装方法 | |
JP2011240619A (ja) | オーバーラップ包装用スチレン系熱収縮性フィルム | |
EP4249246A1 (en) | Laminate and packaging bag | |
JP2011116123A (ja) | 収縮仕上がり性に優れたポリオレフィン系熱収縮性フィルム | |
JPS6362390B2 (ja) | ||
JP2005324829A (ja) | 食品包装用ストレッチシュリンクフィルム | |
JP2006070131A (ja) | 印刷適性が優れた防曇性を有する収縮包装用フィルム | |
JP2007015210A (ja) | 食品包装用ストレッチシュリンクフィルム | |
JP2888855B2 (ja) | 熱収縮性フイルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14902907 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15509947 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014902907 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014902907 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |