WO2016051273A1 - 積層体の製造方法 - Google Patents

積層体の製造方法 Download PDF

Info

Publication number
WO2016051273A1
WO2016051273A1 PCT/IB2015/002087 IB2015002087W WO2016051273A1 WO 2016051273 A1 WO2016051273 A1 WO 2016051273A1 IB 2015002087 W IB2015002087 W IB 2015002087W WO 2016051273 A1 WO2016051273 A1 WO 2016051273A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
support
resin composition
cured
curable resin
Prior art date
Application number
PCT/IB2015/002087
Other languages
English (en)
French (fr)
Inventor
奈津子 新藤
藤田 茂
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US15/514,493 priority Critical patent/US20180007800A1/en
Priority to KR1020177011414A priority patent/KR101958764B1/ko
Priority to CN201580064583.7A priority patent/CN107211540B/zh
Publication of WO2016051273A1 publication Critical patent/WO2016051273A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/005Punching of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4076Through-connections; Vertical interconnect access [VIA] connections by thin-film techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/042Punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • B32B2038/168Removing solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections

Definitions

  • the present invention relates to a method for producing a laminate including a conductor layer and a cured resin layer on a substrate.
  • circuit boards are being made multilayered.
  • an electrical insulation layer is laminated on an inner layer substrate composed of an electrical insulation layer and a conductor layer formed on the surface thereof, and a conductor layer is formed on the electrical insulation layer. Further, it is formed by repeatedly stacking these electrical insulating layers and forming the conductor layer.
  • a support base film having a release layer and at least one side or both sides on a patterned circuit board are disclosed.
  • a process of heating and pressurizing and laminating under a vacuum condition in a state where the resin composition layer of the adhesive film is directly covered on the pattern processed portion, and a process of thermosetting the resin composition with a supporting base film attached A step of drilling with a laser or a drill, a step of peeling the support base film, a step of roughening the surface of the resin composition, and then a step of forming a conductor layer by wet plating on the roughened surface.
  • the resin composition is thermally cured with a support such as a support base film, which causes foreign matters to adhere during the thermal curing of the resin composition, causing the foreign matters.
  • a support such as a support base film
  • the occurrence of defects such as disconnection and short circuit is prevented.
  • thermosetting a resin composition in the state with a support body, before peeling a support body it enables formation of a small diameter via hole by drilling with a laser or a drill. Yes.
  • An object of the present invention is to provide a laminate comprising a cured resin layer capable of forming a fine wiring and forming a small-diameter via hole excellent in conduction reliability and having a low surface roughness and high adhesion to a conductor layer. It is to provide a method for manufacturing.
  • the inventors of the present invention have made a curable resin composition with a support in a method for producing a laminate comprising a conductor layer and a cured resin layer on a substrate.
  • a via hole is formed by drilling the cured resin layer after curing from the support side, the resin residue in the formed via hole is removed, and then the support is peeled off.
  • a first step of obtaining a curable resin composition layer with a support by forming a curable resin composition layer comprising a thermosetting resin composition on the support, and the curable with support.
  • the composite body with a support which is composed of the base material and the curable resin composition layer with the support body, is formed.
  • the support which consists of a base material and the cured resin layer with a support body by heating about the 2nd process to obtain and making the said composite body, and making the said curable resin composition layer thermoset, and setting it as a cured resin layer.
  • a seventh step of forming a dry-plated conductor layer, and a method for producing a laminate comprising: [2] The method for producing a laminate according to [1], wherein the resin residue in the via hole is removed by plasma treatment in the fifth step, [3] The method for producing a laminate according to [1] or [2], wherein dry plating in the seventh step is performed by a sputtering method, [4] The method according to [1], further comprising an eighth step of forming a wet plating conductor layer
  • the manufacturing method of the present invention it is possible to form a small-sized via hole with excellent fine wiring and conduction reliability, and includes a cured resin layer having low surface roughness and high adhesion to the conductor layer.
  • a laminated body and a multilayer circuit board obtained using the same can be provided.
  • the method for producing a laminate of the present invention is a method for producing a laminate comprising a conductor layer and a cured resin layer on a substrate, (1) A first step of obtaining a curable resin composition layer with a support by forming a curable resin composition layer made of a thermosetting resin composition on the support, (2) By laminating the curable resin composition layer with a support on the base material on the curable resin composition layer forming surface side, from the base material and the curable resin composition layer with a support. A second step of obtaining a pre-cured composite with a support, (3) The composite is heated and the curable resin composition layer is thermally cured to form a cured resin layer, whereby the support is cured with a substrate and a cured resin layer with a support.
  • a third step of obtaining a complex (4) A fourth step of forming a via hole in the cured resin layer by drilling from the support side of the cured composite with support. (5) a fifth step of removing a resin residue in the via hole of the cured composite; (6) A sixth step of obtaining a cured composite comprising a substrate and a cured resin layer by peeling the support from the cured composite with the support, and (7) a seventh step of forming a dry plating conductor layer by dry plating on the inner wall surface of the via hole of the cured composite and the cured resin layer; and Is provided.
  • the 1st process of the manufacturing method of this invention is a process of obtaining the curable resin composition layer with a support body by forming the curable resin composition layer which consists of a thermosetting resin composition on a support body. .
  • a support body used at the 1st process of the manufacturing method of this invention Members, such as a film form and plate shape, can be mentioned, for example, a polyethylene terephthalate film, a polypropylene film, a polyethylene film, a polycarbonate film, Examples thereof include polymer films such as polyethylene naphthalate film, polyarylate film, nylon film, polytetrafluoroethylene film, and plate / film glass substrates.
  • a support having a release layer by a release treatment on the surface is preferable, and a polyethylene terephthalate having a release layer A film is preferred.
  • the thickness of the support used in the first step of the production method of the present invention is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, and still more preferably 20 to 60 ⁇ m.
  • a support having a thickness in the above range the workability of the curable resin composition layer with a support can be improved.
  • thermosetting resin composition for forming the curable resin composition layer usually contains a curable resin and a curing agent.
  • the curable resin is not particularly limited as long as it shows thermosetting property in combination with a curing agent and has electrical insulation properties.
  • epoxy resin, maleimide resin, (meth) acrylic resin, diallyl examples thereof include phthalate resin, triazine resin, alicyclic olefin polymer, aromatic polyether polymer, benzocyclobutene polymer, cyanate ester polymer, polyimide, and the like. These resins are used alone or in combination of two or more.
  • polyhydric epoxy compound (A) etc. which have a biphenyl structure and / or a condensed polycyclic structure can be used.
  • Polyhydric epoxy compound (A) having a biphenyl structure and / or a condensed polycyclic structure [hereinafter sometimes abbreviated as polyvalent epoxy compound (A). ] Is a compound having at least two epoxy groups (oxirane rings) in one molecule and at least one of a biphenyl structure and a condensed polycyclic structure.
  • the biphenyl structure refers to a structure in which two benzene rings are connected by a single bond. In the resulting cured resin, the biphenyl structure usually constitutes the main chain of the resin, but may be present in the side chain.
  • the condensed polycyclic structure refers to a structure in which two or more monocycles are condensed (condensed).
  • the ring constituting the condensed polycyclic structure may be an alicyclic ring or an aromatic ring, and may contain a hetero atom.
  • the number of condensed rings is not particularly limited, but from the viewpoint of increasing the heat resistance and mechanical strength of the resulting cured resin layer, it is preferably 2 or more rings, and practically, the upper limit is about 10 rings. is there.
  • Examples of such a condensed polycyclic structure include a dicyclopentadiene structure, a naphthalene structure, a fluorene structure, an anthracene structure, a phenanthrene structure, a triphenylene structure, a pyrene structure, and an ovalen structure.
  • the condensed polycyclic structure like the biphenyl structure described above, usually constitutes the main chain of the resin contained in the cured resin layer in the resulting cured resin layer, but may be present in the side chain.
  • the polyvalent epoxy compound (A) used in the present invention has a biphenyl structure, a condensed polycyclic structure, or both a biphenyl structure and a condensed polycyclic structure. From the viewpoint of enhancing mechanical strength, the polyvalent epoxy compound (A) preferably has a biphenyl structure, and more preferably has a biphenyl aralkyl structure.
  • a cured resin From the standpoint of improving the heat resistance and electrical properties of the layer, their blending ratio is a weight ratio (polyvalent epoxy compound having a biphenyl structure / polyvalent epoxy compound having a condensed polycyclic structure), usually 3/7 ⁇ 7/3 is preferred.
  • the polyvalent epoxy compound (A) used in the present invention is not limited as long as it has at least two epoxy groups in one molecule and has a biphenyl structure and / or a condensed polycyclic structure. From the viewpoint of excellent heat resistance and mechanical strength of the cured resin layer, a novolak epoxy compound having a biphenyl structure and / or a condensed polycyclic structure is preferable. Examples of novolak type epoxy compounds include phenol novolak type epoxy compounds and cresol novolac type epoxy compounds.
  • the epoxy equivalent is usually 100 to 1500 equivalents, preferably 150 to 500 equivalents, because good curing reactivity can be obtained.
  • the “epoxy equivalent” is the number of grams (g / eq) of an epoxy compound containing 1 gram equivalent of an epoxy group, and can be measured according to the method of JIS K 7236.
  • polyvalent epoxy compound (A) used by this invention can be suitably manufactured in accordance with a well-known method, it can also be obtained as a commercial item.
  • examples of commercially available polyepoxy compounds having a biphenyl structure (A) are novolak-type epoxy compounds having a biphenylaralkyl structure.
  • the polyhydric epoxy compound (A) which has a biphenyl structure and / or a condensed polycyclic structure, it is trivalent or more polyvalent glycidyl group containing epoxy other than the said phenol novolak-type epoxy compound.
  • Compound (B) may be used in combination, and by further using such a trivalent or higher polyvalent glycidyl group-containing epoxy compound (B), the heat resistance and electrical properties of the resulting cured resin layer are further improved. Is possible.
  • the trivalent or higher polyvalent glycidyl group-containing epoxy compound (B) other than the phenol novolac type epoxy compound a compound having an epoxy equivalent of 250 or less is preferable from the viewpoint of heat resistance and electrical characteristics of the obtained cured resin layer, and 220 or less.
  • the compound of is more preferable.
  • Examples thereof include an epoxy compound and a polyvalent glycidyl group-containing compound obtained by glycidylating a trivalent or higher compound having the phenol structure or aminophenyl structure in the same molecule.
  • a polyhydric phenol type epoxy compound which has the structure which glycidylated the hydroxyl group of the polyhydric phenol more than trivalence
  • the polyhydric hydroxyphenyl alkane type epoxy compound more than trivalence is preferable.
  • the polyvalent hydroxyphenylalkane type epoxy compound having a valence of 3 or more is a compound having a structure in which a hydroxyl group of an aliphatic hydrocarbon substituted with a 3 or more hydroxyphenyl group is glycidylated.
  • the trivalent or higher polyvalent glycidyl group-containing epoxy compound (B) used in the present invention can be suitably produced according to a known method, but is also available as a commercial product.
  • trishydroxyphenylmethane type epoxy compounds trade names “EPPN-503, EPPN-502H, EPPN-501H” (above, manufactured by Nippon Kayaku Co., Ltd.), trade names “TACTIX-742” (above) , Manufactured by Dow Chemical Company), “jER 1032H60” (manufactured by Mitsubishi Chemical Corporation), and the like.
  • a trade name “jER 1031S” (manufactured by Mitsubishi Chemical Corporation) and the like can be given.
  • a trade name “jER630” (Mitsubishi Chemical) is used as a trivalent glycidylamine type epoxy compound. Etc.).
  • the content ratio of the trivalent or higher polyvalent glycidyl group-containing epoxy compound (B) is not particularly limited, but the total number of epoxy compounds used is 100. Among the weight percentages, it is preferably 0.1 to 40% by weight, more preferably 1 to 30% by weight, and particularly preferably 3 to 25% by weight. Obtained by setting the content of the trivalent or higher polyvalent glycidyl group-containing epoxy compound (B) in the thermosetting resin composition in the above range in relation to the above-described polyvalent epoxy compound (A). The heat resistance, electrical characteristics, and adhesion to the conductor layer of the cured resin layer can be further improved.
  • the thermosetting resin composition used in the present invention may optionally include those epoxy compounds.
  • Other epoxy compounds other than those may be appropriately contained.
  • examples of such other epoxy compounds include phosphorus-containing epoxy compounds.
  • the phosphorus-containing epoxy compound an epoxy compound having a phosphaphenanthrene structure can be preferably exemplified. By further using such an epoxy compound having a phosphaphenanthrene structure, the heat resistance and electrical characteristics of the resulting cured resin layer are obtained. In addition, the adhesion to the conductor layer can be further improved.
  • the epoxy compound having a phosphaphenanthrene structure is not particularly limited as long as it is an epoxy compound having a phosphaphenanthrene structure represented by the following formula (1).
  • a biphenyl type epoxy compound having a phosphaphenanthrene structure examples thereof include a bisphenol type epoxy compound having a phosphaphenanthrene structure and a phenol novolak type epoxy compound having a phosphaphenanthrene structure.
  • thermosetting resin composition used by this invention contain a triazine structure containing phenol resin (C).
  • the triazine structure-containing phenol resin (C) is a condensation polymer of an aromatic hydroxy compound such as phenol, cresol and naphthol, a compound having a triazine ring such as melamine and benzoguanamine, and formaldehyde.
  • the triazine structure-containing phenol resin (C) typically has a structure represented by the following general formula (2).
  • R 1 and R 2 are a hydrogen atom or a methyl group, and p is an integer of 1 to 30. Also, R 1 and R 2 may be the same or different from each other.
  • the plurality of R 2 may be the same or different from each other, and in formula (2), at least one of the amino groups is an amino group.
  • the hydrogen atom contained therein may be substituted with another group (for example, an alkyl group or the like).
  • the triazine structure-containing phenol resin (C) acts as a curing agent for the epoxy compound due to the presence of the phenolic active hydroxyl group.
  • the cured resin layer obtained by containing the triazine structure-containing phenol resin (C) It exhibits excellent adhesion to the substrate.
  • the triazine structure-containing phenol resin (C) can be produced according to a known method, but is also available as a commercial product. Examples of such commercial products include trade names “LA7052, LA7054, LA3018, LA1356” (manufactured by DIC). These triazine structure-containing phenol resins (C) can be used alone or in admixture of two or more.
  • the blending amount of the triazine structure-containing phenol resin (C) in the thermosetting resin composition used in the present invention is preferably 1 to 60 parts by weight, more preferably 100 parts by weight based on the total of the epoxy compounds used.
  • the range is 2 to 50 parts by weight, more preferably 3 to 40 parts by weight, and particularly preferably 4 to 20 parts by weight.
  • the equivalent ratio of the epoxy compound to be used and the triazine structure-containing phenol resin (C) [the triazine structure-containing phenol resin (C relative to the total number of epoxy groups of the epoxy compound to be used) ) Of the total number of active hydroxyl groups (active hydroxyl group amount / epoxy group amount)] is preferably 0.01 to 0.6, more preferably 0.05 to 0.4, still more preferably 0.1 to The range is 0.3.
  • the equivalent ratio of the epoxy compound to be used and the triazine structure-containing phenol resin (C) can be determined from the total epoxy equivalent of the epoxy compound to be used and the total active hydroxyl group equivalent of the triazine structure-containing phenol resin (C).
  • thermosetting resin composition used in the present invention preferably contains an active ester compound (D) in addition to the above components.
  • the active ester compound (D) may be any compound having an active ester group, but in the present invention, a compound having at least two active ester groups in the molecule is preferable.
  • the active ester compound (D) acts as a curing agent for the epoxy compound used in the present invention in the same manner as the above-described triazine structure-containing phenol resin (C) by reacting the ester moiety with the epoxy group by heating.
  • the active ester compound (D) is obtained from a product obtained by reacting a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound from the viewpoint of enhancing the heat resistance of the resulting cured resin layer.
  • Active ester compounds are preferable, and active ester compounds obtained by reacting a carboxylic acid compound with one or more selected from the group consisting of a phenol compound, a naphthol compound and a thiol compound are more preferable.
  • An aromatic compound obtained from a reaction of an acid compound with an aromatic compound having a phenolic hydroxyl group and having at least two active ester groups in the molecule is particularly preferred.
  • the active ester compound (D) may be linear or multi-branched, and when the active ester compound (D) is derived from a compound having at least two carboxylic acids in the molecule, When the compound having at least two carboxylic acids in the molecule contains an aliphatic chain, the compatibility with the epoxy compound can be increased, and when it has an aromatic ring, the heat resistance is improved. Can be high.
  • carboxylic acid compound for forming the active ester compound (D) include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like. .
  • succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, and terephthalic acid are preferable, and phthalic acid, isophthalic acid, and terephthalic acid are more preferable, from the viewpoint of increasing the heat resistance of the resulting cured resin layer. More preferred are isophthalic acid and terephthalic acid.
  • thiocarboxylic acid compound for forming the active ester compound (D) include thioacetic acid and thiobenzoic acid.
  • hydroxy compound for forming the active ester compound (D) include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, and methylated bisphenol S.
  • 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, Dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyl diphenol, and phenol novolac are preferable, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyl diphenol, and phenol novolak are more preferable, More preferred are cyclopentadienyl diphenol and phenol novolac.
  • thiol compound for forming the active ester compound (D) include benzenedithiol and triazinedithiol.
  • the production method of the active ester compound (D) is not particularly limited, and can be produced by a known method. For example, it can be obtained by the condensation reaction of the carboxylic acid compound and / or thiocarboxylic acid compound and the hydroxy compound and / or thiol compound.
  • Examples of the active ester compound (D) include an aromatic compound having an active ester group disclosed in JP-A No. 2002-12650, a polyfunctional polyester disclosed in JP-A No. 2004-277460, and a commercially available product.
  • Product can be used.
  • Examples of commercially available products include trade names “EXB9451, EXB9460, EXB9460S, Epicron HPC-8000-65T” (manufactured by DIC, “Epicron” is a registered trademark), and trade name “DC808” (manufactured by Japan Epoxy Resin).
  • trade name “YLH1026” manufactured by Japan Epoxy Resin Co., Ltd.).
  • the blending amount of the active ester compound (D) in the thermosetting resin composition used in the present invention is preferably 10 to 150 parts by weight, more preferably 15 to 15 parts by weight with respect to a total of 100 parts by weight of the epoxy compound used.
  • the range is 130 parts by weight, more preferably 20 to 120 parts by weight.
  • the equivalent ratio of the epoxy compound to be used and the active ester compound (D) [the reactive group of the active ester (D) with respect to the total number of epoxy groups of the epoxy compound to be used
  • the ratio of the total number of (active ester group amount / epoxy group amount)] is preferably 0.5 to 1.1, more preferably 0.6 to 0.9, and still more preferably 0.65 to 0.85. Range.
  • the equivalent ratio of the epoxy compound to be used, the triazine structure-containing phenol resin (C) and the active ester compound (D) ⁇ of the triazine structure-containing phenol resin (C) The ratio of the total number of epoxy groups of the epoxy compound used to the total number of active hydroxyl groups and active ester groups of the active ester compound (D) [epoxy group amount / (active hydroxyl group amount + active ester group amount)] ⁇ is usually , Less than 1.1, preferably 0.6 to 0.99, more preferably 0.65 to 0.95.
  • the equivalent ratio of the epoxy compound used, the triazine structure-containing phenol resin (C) and the active ester compound (D) is the total epoxy equivalent of the epoxy compound used, the total active hydroxyl group equivalent of the triazine structure-containing phenol resin (C), and It can be determined from the total active ester equivalent of the active ester compound (D).
  • thermosetting resin composition used in the present invention may further contain other components as described below in addition to the above components.
  • the resulting cured resin layer can be made to have a low linear expansion.
  • a filler any of known inorganic fillers and organic fillers can be used, but inorganic fillers are preferred. Specific examples of inorganic fillers include calcium carbonate, magnesium carbonate, barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, calcium silicate, zirconium silicate, hydrated alumina, magnesium hydroxide, aluminum hydroxide , Barium sulfate, silica, talc, clay and the like.
  • the filler to be used may have been surface-treated with a silane coupling agent or the like in advance.
  • the content of the filler in the thermosetting resin composition used in the present invention is not particularly limited, but is usually 30 to 90% by weight in terms of solid content.
  • an alicyclic olefin polymer having a polar group can be blended with the thermosetting resin composition.
  • the polar group include a group having a structure capable of reacting with an epoxy group to form a covalent bond, and a group containing a hetero atom and having no reactivity with the epoxy group, and containing a hetero atom. And a group having no reactivity with an epoxy group is preferred.
  • Such an alicyclic olefin polymer does not have reactivity with an epoxy group, and therefore does not substantially contain a functional group having reactivity with an epoxy group.
  • substantially does not contain a functional group having reactivity with an epoxy group means that an alicyclic olefin polymer inhibits a functional group having reactivity with an epoxy group, and the expression of the effect of the present invention is inhibited. It means that it does not contain to the extent to be done.
  • the functional group having reactivity with an epoxy group include groups having a structure capable of reacting with an epoxy group to form a covalent bond, such as a primary amino group, a secondary amino group, a mercapto group, a carboxyl group, Examples include heteroatom-containing functional groups that react with epoxy groups to form covalent bonds, such as carboxylic anhydride groups, hydroxy groups, and epoxy groups.
  • the alicyclic olefin polymer includes, for example, an alicyclic olefin monomer (a) containing no hetero atom and containing an aromatic ring, and an alicyclic olefin monomer containing no hetero ring and containing a hetero atom.
  • Body (b) an alicyclic olefin monomer (c) containing both an aromatic ring and a heteroatom, and the alicyclic olefin monomer (a) not containing both an aromatic ring and a heteroatom It can be easily obtained by appropriately combining monomers (d) copolymerizable with ⁇ (c) and polymerizing according to a known method. The resulting polymer may be further hydrogenated.
  • the blending amount of the alicyclic olefin polymer having a polar group in the thermosetting resin composition used in the present invention is not particularly limited, but relative to 100 parts by weight of the total epoxy compound used.
  • the amount is usually 50 parts by weight or less, preferably 35 parts by weight or less.
  • the thermosetting resin composition may contain a curing accelerator.
  • the curing accelerator is not particularly limited, and examples thereof include aliphatic polyamines, aromatic polyamines, secondary amines, tertiary amines, acid anhydrides, imidazole derivatives, organic acid hydrazides, dicyandiamide and derivatives thereof, urea derivatives, and the like. Can be mentioned. Of these, imidazole derivatives are particularly preferable.
  • the imidazole derivative is not particularly limited as long as it is a compound having an imidazole skeleton, and examples thereof include 2-ethylimidazole, 2-ethyl-4-methylimidazole, bis-2-ethyl-4-methylimidazole, and 1-methyl.
  • Alkyl-substituted imidazole compounds such as 2-ethylimidazole, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-heptadecylimidazole; 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2- Aryl groups and aralkyl groups such as methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-phenylimidazole, benzimidazole, 2-ethyl-4-methyl-1- (2′-cyanoethyl) imidazole, etc. ring
  • imidazole compounds substituted with a hydrocarbon group containing a granulation and the like These can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the curing accelerator in the thermosetting resin composition used in the present invention is usually 0.1 to 10 parts by weight, preferably 0.5 to the total 100 parts by weight of the epoxy compound used. ⁇ 8 parts by weight.
  • thermosetting resin composition for the purpose of improving the flame retardancy of the resulting cured resin layer, for example, a resin for forming a general electric insulating film such as a halogen-based flame retardant or a phosphate ester-based flame retardant You may mix
  • thermosetting resin composition used in the present invention may further include a flame retardant aid, a heat resistance stabilizer, a weather resistance stabilizer, an anti-aging agent, an ultraviolet absorber (laser processability improver), and a leveling agent as desired.
  • a flame retardant aid such as antistatic agents, slip agents, antiblocking agents, antifogging agents, lubricants, dyes, natural oils, synthetic oils, waxes, emulsions, magnetic substances, dielectric property adjusting agents, toughening agents, etc. Also good.
  • thermosetting resin composition used in the present invention is not particularly limited, and the above-mentioned components may be mixed as they are, or mixed in a state dissolved or dispersed in an organic solvent. Alternatively, a composition in which a part of each of the above components is dissolved or dispersed in an organic solvent is prepared, and the remaining components may be mixed with the composition.
  • thermosetting resin composition in the first step of the production method of the present invention, by using the thermosetting resin composition described above, a curable resin composition layer composed of the thermosetting resin composition is formed on a support.
  • a curable resin composition layer with a support can be obtained.
  • the method for forming the curable resin composition layer comprising the thermosetting resin composition on the support is not particularly limited, but the support is obtained by adding an organic solvent to the thermosetting resin composition as desired. It is preferable to apply, spread, or cast the composition on the surface and then dry.
  • the thickness of the curable resin composition layer is not particularly limited, but is usually 5 to 50 ⁇ m, preferably 7 to 40 ⁇ m, more preferably 10 to 35 ⁇ m, and still more preferably 10 to 30 ⁇ m from the viewpoint of workability and the like. .
  • thermosetting resin composition examples include dip coating, roll coating, curtain coating, die coating, slit coating, and gravure coating.
  • the curable resin composition layer may be in a semi-cured state as well as when the thermosetting resin composition is uncured.
  • uncured is substantially cured when the curable resin composition layer is immersed in a solvent capable of dissolving the curable resin (for example, epoxy resin) used for the preparation of the thermosetting resin composition.
  • a solvent capable of dissolving the curable resin for example, epoxy resin
  • Semi-cured is a state in which the resin is cured halfway to the extent that it can be cured by further heating, and is preferably curable in a solvent capable of dissolving the curable resin used in the preparation of the thermosetting resin composition.
  • a part of the resin (specifically, an amount of 7% by weight or more and a part of which remains) is in a dissolved state or after the molded body is immersed in a solvent for 24 hours. Is a state where the volume becomes 200% or more (swelling ratio) of the volume before immersion.
  • the drying temperature is preferably a temperature at which the thermosetting resin composition is not cured, and may be set according to the type of curable resin to be used, but is usually 20 to 300 ° C., preferably 30 to 200 ° C. It is. If the drying temperature is too high, the curing reaction proceeds so much that the resulting curable resin composition layer may not be in an uncured or semi-cured state.
  • the drying time is usually 30 seconds to 1 hour, preferably 1 minute to 30 minutes.
  • the curable resin composition layer may have a structure of two or more layers.
  • a resin layer (hereinafter, the resin layer) formed using the above-described thermosetting resin composition (hereinafter, the thermosetting resin composition is referred to as a “first thermosetting resin composition”).
  • first resin composition formed using the above-described thermosetting resin composition
  • second thermosetting resin composition different from the first thermosetting resin composition on the support.
  • the curable resin composition layer may have a two-layer structure by forming a second resin layer different from the above and forming the first resin layer thereon using the first thermosetting resin composition.
  • the second resin layer is used as a layer to be plated for forming a conductor layer by electroless plating or the like
  • the first resin layer is used as an adhesive layer for adhering to a substrate. be able to.
  • thermosetting resin composition for forming a 2nd resin layer
  • curable resin different from a 1st thermosetting resin composition and a hardening
  • curing agent the thing containing the alicyclic olefin polymer which has a polar group as a curable resin from a viewpoint of improving the electrical property and heat resistance of a curable resin composition layer is preferable.
  • the alicyclic olefin polymer having a polar group is not particularly limited, and examples of the alicyclic structure include those having a cycloalkane structure or a cycloalkene structure. Those having a cycloalkane structure are preferred because of excellent mechanical strength and heat resistance.
  • the polar groups contained in the alicyclic olefin polymer include alcoholic hydroxyl groups, phenolic hydroxyl groups, carboxyl groups, alkoxyl groups, epoxy groups, glycidyl groups, oxycarbonyl groups, carbonyl groups, amino groups, carboxylic acid anhydrides. Physical group, sulfonic acid group, phosphoric acid group and the like. Among these, a carboxyl group, a carboxylic acid anhydride group, and a phenolic hydroxyl group are preferable, and a carboxylic acid anhydride group is more preferable.
  • curing agent contained in a 2nd thermosetting resin composition what is necessary is just to be able to form a crosslinked structure in the alicyclic olefin polymer which has a polar group by heating, It does not specifically limit,
  • blended with the resin composition for general electrical insulation film formation can be used.
  • the curing agent it is preferable to use a compound having two or more functional groups capable of reacting with the polar group of the alicyclic olefin polymer having the polar group to be used to form a bond.
  • a curing agent suitably used when using an alicyclic olefin polymer having a carboxyl group, a carboxylic anhydride group, or a phenolic hydroxyl group includes a polyvalent epoxy.
  • examples thereof include compounds, polyvalent isocyanate compounds, polyvalent amine compounds, polyvalent hydrazide compounds, aziridine compounds, basic metal oxides, and organometallic halides. These may be used alone or in combination of two or more. Moreover, you may use as a hardening
  • the curing agent the reactivity with the polar group of the alicyclic olefin polymer having a polar group is moderate, and the handling of the second thermosetting resin composition becomes easy.
  • a compound is preferable, and a glycidyl ether type epoxy compound or an alicyclic polyvalent epoxy compound is particularly preferably used.
  • the blending amount of the curing agent in the second thermosetting resin composition is preferably 1 to 100 parts by weight, more preferably 5 to 80 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer having a polar group. Parts, more preferably in the range of 10 to 50 parts by weight.
  • the second thermosetting resin composition may contain a hindered phenol compound or a hindered amine compound in addition to the above components.
  • the blending amount of the hindered phenol compound in the second thermosetting resin composition is not particularly limited, but is preferably 0.04 to 10 weights with respect to 100 parts by weight of the alicyclic olefin polymer having a polar group. Parts, more preferably 0.3 to 5 parts by weight, still more preferably 0.5 to 3 parts by weight.
  • the hindered amine compound is a compound having at least one 2,2,6,6-tetraalkylpiperidine group having a secondary amine or a tertiary amine at the 4-position in the molecule.
  • the carbon number of alkyl is usually 1-50.
  • a compound having at least one 2,2,6,6-tetramethylpiperidyl group having a secondary amine or a tertiary amine at the 4-position in the molecule is preferable.
  • the blending amount of the hindered amine compound is not particularly limited, but is usually 0.02 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the alicyclic olefin polymer having a polar group.
  • the amount is preferably 0.25 to 3 parts by weight.
  • the second thermosetting resin composition may contain a curing accelerator in addition to the above components.
  • a curing accelerator blended in a general resin composition for forming an electrical insulating film may be used.
  • a curing accelerator similar to the first thermosetting resin composition may be used. it can.
  • the blending amount of the curing accelerator in the second thermosetting resin composition may be appropriately selected according to the purpose of use, but is preferably based on 100 parts by weight of the alicyclic olefin polymer having a polar group. The amount is 0.001 to 30 parts by weight, more preferably 0.01 to 10 parts by weight, still more preferably 0.03 to 5 parts by weight.
  • the second thermosetting resin composition may contain a filler in addition to the above components.
  • a filler the thing similar to the filler used for a 1st thermosetting resin composition can be used.
  • the blending amount of the filler in the second thermosetting resin composition is usually 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 3 to 35% by weight in terms of solid content. is there.
  • the second thermosetting resin composition is a curing accelerator, a flame retardant, a flame retardant aid, a heat stabilizer, a weather stabilizer, aging, as with the first thermosetting resin composition.
  • the method for producing the second thermosetting resin composition is not particularly limited, and the above components may be mixed as they are, or may be mixed in a state dissolved or dispersed in an organic solvent. Then, a composition in which a part of each of the above components is dissolved or dispersed in an organic solvent is prepared, and the remaining components may be mixed with the composition.
  • the following two methods may be used. That is, (1) a second thermosetting resin composition is applied, spread, or cast on a support, dried as desired to form a second resin layer, and then a first thermosetting resin is formed thereon. A method of producing the first resin layer by further applying or casting the composition and drying it if desired, or (2) applying, spreading or dispersing the second thermosetting resin composition on the support. The second resin layer with a support obtained by casting and drying if desired, and the first thermosetting resin composition is applied, spread or cast on another support, and dried if desired. The first resin layer with a support is laminated, these molded bodies are integrated, and the support is manufactured by peeling the support on the first resin layer side. Among these production methods, the production method (1) is preferred because it is an easier process and is excellent in productivity.
  • the second thermosetting resin composition is formed when the second thermosetting resin composition is applied, dispersed or cast onto the support, and using the second thermosetting resin composition.
  • the first thermosetting resin composition is applied, spread or cast on the top, or in the production method of (2) above, the second thermosetting resin composition and the first thermosetting resin composition are used.
  • the second thermosetting resin composition or the first thermosetting resin composition is added with an organic solvent as desired. It is preferable to apply, spread or cast on the support.
  • the thicknesses of the second resin layer and the first resin layer in the production methods (1) and (2) are not particularly limited, but the thickness of the second resin layer is preferably 0.5 to 10 ⁇ m, more preferably Is 1 to 8 ⁇ m, more preferably 2 to 5 ⁇ m, and the thickness of the first resin layer is preferably 4 to 45 ⁇ m, more preferably 7 to 40 ⁇ m, and even more preferably 9 to 29 ⁇ m. preferable. If the thickness of the second resin layer is too thin, the formability of the conductor layer may be reduced when the second resin layer is used as a layer to be plated and the conductor layer is formed by dry plating. On the other hand, if the thickness of the second resin layer is too thick, the linear expansion of the cured resin layer may be increased. Moreover, if the thickness of the first resin layer is too thin, the wiring embedding property may be deteriorated.
  • thermosetting resin composition examples include dip coating, roll coating, curtain coating, die coating, slit coating, and gravure coating.
  • the drying temperature is preferably set to a temperature at which the second thermosetting resin composition and the first thermosetting resin composition are not cured, and is usually 20 to 300 ° C., preferably 30 to 200 ° C. .
  • the drying time is usually 30 seconds to 1 hour, preferably 1 minute to 30 minutes.
  • the curable resin composition layer with a support obtained in the first step described above is laminated on the base material on the curable resin composition layer forming surface side.
  • This is a step of obtaining a composite body with a support, which is composed of a base material and a curable resin composition layer with a support body.
  • the substrate is not particularly limited, and examples thereof include a substrate having a conductor layer on the surface.
  • the substrate having a conductor layer on the surface has a conductor layer on the surface of the electrically insulating substrate.
  • the electrically insulating substrate include known electrically insulating materials (for example, alicyclic olefin polymers, epoxy compounds, maleimides). Examples thereof include those formed by curing a resin composition containing a resin, (meth) acrylic resin, diallyl phthalate resin, triazine resin, polyphenylene ether, glass and the like.
  • the conductor layer is not particularly limited, but is usually a layer including wiring formed of a conductor such as a conductive metal, and may further include various circuits.
  • the configuration and thickness of the wiring and circuit are not particularly limited.
  • Specific examples of the substrate having a conductor layer on the surface include a printed wiring board and a silicon wafer substrate.
  • the thickness of the substrate having a conductor layer on the surface is usually 10 ⁇ m to 10 mm, preferably 20 ⁇ m to 5 mm, more preferably 30 ⁇ m to 2 mm.
  • the height (thickness) of the wiring in the substrate having the conductor layer on the surface is usually 3 to 35 ⁇ m.
  • the thickness of the curable resin composition layer and the height of the wiring on the substrate having the conductor layer on the surface is preferably 35 ⁇ m or less, and more preferably 3 to 30 ⁇ m.
  • the substrate having a conductor layer on the surface used in the present invention is preferably pretreated on the surface of the conductor layer in order to improve adhesion with the curable resin composition layer.
  • a pretreatment method a known technique can be used without any particular limitation.
  • an oxidation treatment method in which a strong alkali oxidizing solution is brought into contact with the surface of the conductor layer to form a copper oxide layer on the conductor surface and roughened, After oxidation with this method, reduce with sodium borohydride, formalin, etc., deposit and roughen the plating on the conductor layer, contact the organic acid with the conductor layer to elute the copper grain boundaries and roughen And a method of forming a primer layer with a thiol compound or a silane compound on the conductor layer.
  • the second step of the production method of the present invention as a method of laminating the curable resin composition layer with a support on the substrate on the curable resin composition layer forming surface side, for example, on a substrate, examples thereof include a method of thermocompression bonding the curable resin composition layer with a body to the curable resin composition layer forming surface side.
  • thermocompression bonding As a method of thermocompression bonding, a molded body with a support or a composite molded body is superposed so as to be in contact with the conductor layer of the substrate described above, and a pressure laminator, a press, a vacuum laminator, a vacuum press, a roll laminator or the like The method of carrying out thermocompression bonding (lamination) using is mentioned. By heating and pressurizing, bonding can be performed so that there is substantially no void at the interface between the conductor layer on the substrate surface and the molded body or composite molded body.
  • the molded body or composite molded body is usually laminated on the conductor layer of the substrate in an uncured or semi-cured state.
  • the temperature for the thermocompression bonding operation is usually 30 to 250 ° C., preferably 70 to 200 ° C.
  • the applied pressure is usually 10 kPa to 20 MPa, preferably 100 kPa to 10 MPa
  • the time is usually 30 seconds to 5 seconds.
  • the time is preferably 1 minute to 3 hours.
  • the thermocompression bonding is preferably performed under reduced pressure in order to improve the embedding property of the wiring pattern and suppress the generation of bubbles.
  • the pressure under reduced pressure for thermocompression bonding is usually 100 kPa to 1 Pa, preferably 40 kPa to 10 Pa.
  • the 3rd process of the manufacturing method of this invention heats about the composite body with a support body which consists of a base material and the curable resin composition layer with a support body obtained at the 2nd process mentioned above, and hardens
  • the heating temperature of the first heating in the third step may be appropriately set according to the curing temperature of the curable resin composition layer and the type of the support used, but is preferably 100 to 250 ° C., preferably 120 It is ⁇ 220 ° C, more preferably 150-210 ° C. Further, the heating time of the first heating in the third step is usually 0.1 to 3 hours, preferably 0.25 to 1.5 hours.
  • the heating method is not particularly limited, and may be performed using, for example, an electric oven. Moreover, it is preferable to perform thermosetting in air
  • the fourth step of the production method of the present invention is a step of forming a via hole in the cured resin layer by drilling from the support side of the cured composite with support obtained in the third step described above.
  • the method for forming the via hole is not particularly limited, but it can be formed by drilling from the support side by physical treatment such as drilling, laser, or plasma etching.
  • a laser method carbon dioxide laser, excimer laser, UV laser, UV-YAG laser, etc.
  • the via hole is formed in the cured resin layer by forming the via hole in the cured resin layer by leaving the support attached and performing the drilling from the support side (for example, the top diameter).
  • the diameter (diameter) is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, particularly preferably 10 to 30 ⁇ m), and a high aperture ratio (bottom diameter / top diameter).
  • the fifth step of the production method of the present invention is a step of removing the resin residue in the via hole of the cured composite after forming the via hole with the support attached.
  • the method of removing the resin residue in the via hole is not particularly limited, and the cured composite is brought into contact with a solution of an oxidizing compound such as permanganate (desmear liquid) with the support attached.
  • an oxidizing compound such as permanganate (desmear liquid) with the support attached.
  • the resin residue in the via hole is effectively prevented while preventing problems such as roughening. It can be removed appropriately. And by this, the cured resin layer after peeling the support can be made to have a low surface roughness, thereby having excellent electrical characteristics as an electrical insulating layer, By properly removing the resin residue in the via hole, the conduction reliability of the via hole can be improved.
  • Examples of the method for removing the resin residue in the via hole include a method in which the resin residue is brought into contact with the above-described oxidizing compound solution such as permanganate and a method in which plasma treatment is performed.
  • the method of performing the plasma treatment is preferable from the viewpoint that the treatment can be easily performed with the support attached.
  • a vacuum plasma apparatus for example, a vacuum plasma apparatus, an atmospheric pressure plasma apparatus, or the like can be used.
  • a known plasma such as a plasma using a reactive gas such as oxygen plasma, a plasma using an inert gas such as argon plasma or helium plasma, or a plasma of a mixed gas thereof may be used. it can. Among these, it is preferable to use oxygen plasma.
  • the treatment time for performing the plasma treatment is not particularly limited, but is preferably 1 second to 30 minutes, more preferably 10 seconds to 10 minutes.
  • the method of bringing into contact with a solution of an oxidizing compound such as permanganate is not particularly limited, but 60 to 80 adjusted to have a sodium permanganate concentration of 60 g / liter and a sodium hydroxide concentration of 28 g / liter.
  • examples include a method of immersing the cured composite after forming a via hole in an aqueous solution at 0 ° C. with the support attached, for 1 to 50 minutes, and a method of filling the via hole with such an aqueous solution. It is done.
  • the 6th process of the manufacturing method of this invention is a process of obtaining the hardening composite which consists of a base material and a cured resin layer by peeling a support body from the hardening composite body with a support body.
  • the method for peeling the support is not particularly limited.
  • the seventh step of the production method of the present invention is a dry plating on the inner wall surface of the via hole and the cured resin layer with respect to the cured composite composed of the base material and the cured resin layer obtained by peeling the support. This is a step of forming a dry plating conductor layer.
  • the fine conductor layer has high adhesion (adhesion between the cured resin layer and the conductor layer).
  • a conductive layer can be formed.
  • the dry plating is not particularly limited as long as it is a method in which water or a solvent is not substantially interposed, and examples thereof include a sputtering method, a vacuum deposition method, and an ion plating method.
  • the sputtering method is preferable because a finer conductor layer can be formed with higher adhesion.
  • a method of forming a dry plating conductor layer using a sputtering method for example, in a vacuum, Ar ions are collided with a sputtering target that is a raw material of the dry plating conductor layer, and energy is applied to form a sputtering target.
  • a sputtering target that is a raw material of the dry plating conductor layer
  • energy is applied to form a sputtering target.
  • Examples include a method of ejecting atoms and attaching them to the inner wall surface of the via hole and the cured resin layer.
  • the sputtering method include a DC magnetron method and an RF magnetron method, and any of them can be used.
  • the thickness of the inner wall surface of the via hole and the dry plating conductor layer formed on the cured resin layer is not particularly limited, but is preferably 50 to 500 nm, more preferably 100 to 300 nm.
  • the cured composite surface can be brought into contact with a rust inhibitor and subjected to rust prevention treatment.
  • the dry plating conductor layer can be heated in order to improve adhesion.
  • the heating temperature is usually 50 to 350 ° C, preferably 80 to 250 ° C. In this case, heating may be performed under a pressurized condition.
  • a pressurizing method at this time for example, a method using a physical pressurizing means such as a hot press machine or a pressurizing and heating roll machine can be cited.
  • the pressure to be applied is usually 0.1 to 20 MPa, preferably 0.5 to 10 MPa. If it is this range, the high adhesiveness of a dry-type plating conductor layer and an electrical-insulation layer is securable.
  • the plating by further performing wet plating on the dry plating conductor layer formed by dry plating in this way.
  • wet plating Electroplating is preferable from the point that plating can be grown simply and appropriately. And by such electrolytic plating, a conductor can be filled in the via hole, and thick plating can be performed on the cured resin layer.
  • a conductor pattern composed of a dry plating conductor layer and a wet plating conductor layer by growing the plating, then removing the resist, and further etching the dry plating conductor layer into a pattern by etching.
  • the conductor pattern formed by this method is usually composed of a patterned dry-plated conductor layer and a dry-plated conductor layer grown thereon.
  • the laminate obtained by the manufacturing method of the present invention is obtained through the first to seventh steps described above, it is possible to form a fine wiring and to form a small diameter via hole excellent in conduction reliability. It is possible to provide a cured resin layer having a low surface roughness and high adhesion to the conductor layer. Therefore, it can be suitably used as a multilayer circuit board by taking advantage of such characteristics.
  • the surface average roughness Ra of the cured resin layer (based on JIS B0601-2001) is preferably suppressed to 200 nm or less, more preferably 100 nm or less.
  • the surface ten-point average roughness Rzjis of the cured resin layer (according to JIS B0601-2001 appendix 1) is preferably 2000 nm or less, more preferably 1000 nm or less.
  • the laminate obtained by the production method of the present invention has a peel strength between the cured resin layer and the conductor layer (based on JIS C6481-1996), preferably 5 N / cm or more, more preferably 6 N / cm or more. Thus, a cured resin layer having a low surface roughness and high adhesion to the conductor layer is provided.
  • the laminate obtained by the production method of the present invention in this way as a base material used in the second step of the production method of the present invention described above, the above-described third to seventh steps are repeatedly performed. Further multilayering can be performed, whereby a desired multilayer circuit board can be obtained.
  • the wiring pattern is formed by etching the formed dry plating layer using SAC700W3C manufactured by JCU.
  • peel strength Adhesion between the cured resin layer and the conductor layer (peel strength)
  • the peel strength between the cured resin layer (electrical insulating layer) and the conductor layer (layer comprising a dry plating layer and an electrolytic copper plating film) was measured in accordance with JIS C6481-1996. The evaluation was based on the following criteria. A: Peel strength is 5 N / cm or more B: Peel strength is 4 N / cm or more and less than 5 N / cm C: Peel strength is less than 4 N / cm
  • Synthesis example 1 As the first stage of the polymerization, 35 mol parts of 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 0.9 mol parts of 1-hexene, 340 mol parts of anisole, and 4- 0.005 mol part of acetoxybenzylidene (dichloro) (4,5-dibromo-1,3-dimesityl-4-imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium (C1063, manufactured by Wako Pure Chemical Industries, Ltd.), nitrogen-substituted
  • the pressure-resistant glass reactor was charged, and a polymerization reaction was carried out at 80 ° C.
  • the weight average molecular weight of the alicyclic olefin polymer (1) was 60,000, the number average molecular weight was 30,000, and the molecular weight distribution was 2.
  • the hydrogenation rate was 95%, and the content of repeating units having a carboxylic anhydride group was 20 mol%.
  • the solid content concentration of the alicyclic olefin polymer (1) solution was 22%.
  • Example 1 (Preparation of first thermosetting resin composition) Biphenyl dimethylene skeleton novolak type epoxy resin (trade name “NC-3000L”, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 269) as a polyvalent epoxy compound (A) having a biphenyl structure, and a trivalent or higher polyvalent glycidyl As a group-containing epoxy compound (B), a tetrakishydroxyphenylethane type epoxy compound (trade name “jER 1031S”, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 200, softening point 90 ° C.) 50 parts, triazine structure-containing phenol resin (C) 30 parts of triazine structure-containing cresol novolak resin (trade name “Phenolite LA-3018-50P”, propylene glycol monomethyl ether solution with 50% non-volatile content, DIC, active hydroxyl group equivalent 154) (triazine structure-containing cresol novolak) 15 parts in terms of resin) Active ester compound (trade name “Epicl
  • thermosetting resin composition 454 parts of an alicyclic olefin polymer (1) solution obtained in Synthesis Example 1 [100 parts in terms of alicyclic olefin polymer (1)], a polyvalent epoxy having a dicyclopentadiene skeleton as a curing agent 36 parts of a compound (trade name “Epicron HP7200L”, manufactured by DIC, “Epicron” is a registered trademark), silica as an inorganic filler (trade name “Admafine SO-C1”, manufactured by Admatechs, average particle size 0.
  • the varnish of the second thermosetting resin composition obtained above was applied onto a polyethylene terephthalate film (support, thickness 50 ⁇ m) having a release layer on the surface using a wire bar, and then a nitrogen atmosphere Then, it was dried at 80 ° C. for 5 minutes to obtain a film with a support on which a 2 ⁇ m-thick second resin layer (layer to be plated) made of an uncured second thermosetting resin composition was formed.
  • the varnish of the first thermosetting resin composition obtained above is applied to the surface of the second resin layer formed of the second thermosetting resin composition of the film with a support, using a doctor blade (tester industry). And an auto film applicator (manufactured by Tester Sangyo Co., Ltd.), and then dried at 80 ° C. for 5 minutes in a nitrogen atmosphere to give a second resin layer and a first resin layer (total thickness of 20 ⁇ m) A curable resin composition layer with a support on which an adhesive layer was formed was obtained. The curable resin composition layer with the support was formed in the order of the support, the second resin layer made of the second thermosetting resin composition, and the first resin layer made of the first thermosetting resin composition. .
  • the surface of the core material obtained by impregnating glass fiber with a varnish containing a glass filler and a halogen-free epoxy compound was bonded with copper having a thickness of 18 ⁇ m, a thickness of 0.8 mm,
  • a conductor layer having a wiring width and distance between wirings of 50 ⁇ m, a thickness of 18 ⁇ m, and a microetched surface by contact with an organic acid is formed.
  • An inner layer substrate was obtained.
  • the curable resin composition layer with a support obtained above is cut into 150 mm square, and the surface on the side of the curable resin composition layer is on the inside with the support attached. Then, using a vacuum laminator equipped with heat resistant rubber press plates at the top and bottom, the pressure was reduced to 200 Pa, and heat pressing lamination was performed at a temperature of 110 ° C. and a pressure of 0.1 MPa for 60 seconds. Next, after standing at room temperature for 30 minutes, the curable resin composition layer is cured by heating (first heating) at 180 ° C. for 30 minutes, so that a cured resin layer (electrical insulating layer) is obtained. Formed.
  • the cured resin layers formed on both surfaces of the inner layer substrate were masked with a mask diameter of 0 with a support attached using a UV laser processing machine (product name “LUC-2K21”, manufactured by Hitachi Via Mechanics).
  • a via hole having an opening diameter of 25 ⁇ m was formed in the cured resin layer by irradiating a UV laser from the support side under the conditions of .8 mm, output 0.4 W, burst 100 shots.
  • a plasma generator product name “NM-FP1 A”, Panasonic Factory
  • Plasma treatment was performed from the support side using a solution manufactured by Solutions. The conditions at this time were an O 2 gas atmosphere, a processing time of 10 minutes, an output of 500 W, a gas pressure of 20 Pa, and a room temperature.
  • the support was peeled from the cured composite after the plasma treatment.
  • the desmear property was evaluated according to the method mentioned above about the hardening composite body after the plasma process (desmear process) which peeled the support body in this way.
  • electrolytic copper plating (conductor formed by wet plating) is performed in the via hole of the cured composite by performing electrolytic copper plating in a state where the cured composite subjected to the annealing treatment is masked with a predetermined pattern.
  • an electrolytic copper plating film (wet plating layer) having a thickness of 30 ⁇ m was formed in a predetermined pattern.
  • a portion of the dry plating layer on which the electrolytic copper plating film is not formed is removed by etching using SAC700W3C manufactured by JCU.
  • the via hole of the cured composite is filled with a conductor composed of a dry plating layer and electrolytic copper plating (wet plating), and the dry plating layer and electrolytic copper plating are applied on the cured resin layer (electrical insulating layer) of the cured composite.
  • a double-sided, two-layer multilayer printed wiring board on which a conductor layer made of a film (wet plating layer) was formed was obtained.
  • the measurement of the surface roughness of a cured resin layer and evaluation of the adhesiveness (peel strength) of a cured resin layer and a conductor layer were performed using the obtained multilayer printed wiring board. The results are shown in Table 1.
  • Comparative Example 1 After the curable resin composition layer with the support is bonded to both surfaces of the inner substrate, the support is peeled off, and the curable resin composition layer is cured, via holes are formed, and plasma is peeled off. Except having performed the desmear process by a process, it carried out similarly to Example 1, and obtained the hardening composite and the multilayer printed wiring board, and evaluated it similarly. The results are shown in Table 1.
  • Comparative Example 2 Instead of forming a dry plating layer by sputtering, an electroless plating layer is formed by electroless plating, and then an electrolytic copper plating film is formed on the electroless plating layer. A cured composite and a multilayer printed wiring board were obtained and evaluated in the same manner. The results are shown in Table 1. In addition, formation of the electroless-plating layer was performed by the method similar to Example 2 of international publication 2012/090980.
  • Comparative Example 3 After the curable resin composition layer with a support is bonded to both surfaces of the inner substrate, the support is peeled off, and the curable resin composition layer is cured and a via hole is formed in a state where the support is peeled off.
  • a cured composite and a multilayer printed wiring board were obtained in the same manner as in Comparative Example 2 except that the desmear treatment was carried out by a method using an aqueous solution of permanganate instead of the plasma treatment method. Was evaluated. The results are shown in Table 1.
  • the desmear process using the aqueous solution of permanganate was performed similarly to Example 2 of international publication 2012/090980.
  • the resin residue in the via hole is appropriately removed (excellent in desmearing property), thereby being excellent in conduction reliability and capable of forming fine wiring.
  • a laminate having a cured resin layer (electrical insulating layer) having a low surface roughness and excellent adhesion to the conductor layer was obtained (Example 1).
  • desmear treatment both plasma treatment and permanganate aqueous solution
  • the conductor layer formed directly on the cured resin layer was formed by electroless plating instead of the method of forming by dry plating, the adhesion between the cured resin layer and the conductor layer was inferior. (Comparative example 2).

Abstract

支持体付き硬化性樹脂組成物層を得る工程と、支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側にて、基材に積層させることで、基材と、支持体付き硬化性樹脂組成物層とからなる硬化前複合体を得る工程と、硬化前複合体について加熱を行い、硬化性樹脂組成物層を熱硬化させることで、基材と、支持体付き硬化樹脂層とからなる支持体付き硬化複合体を得る工程と、支持体付き硬化複合体の支持体側から穴開けを行うことで、硬化樹脂層にビアホールを形成する工程と、支持体付き硬化複合体のビアホール内の樹脂残渣を除去する工程と、支持体付き硬化複合体から支持体を剥離することで、基材及び硬化樹脂層からなる硬化複合体を得る工程と、硬化複合体のビアホールの内壁面、及び、硬化樹脂層上に、乾式めつきにより、乾式めつき導体層を形成する工程と、を有する積層体の製造方法を提供する。

Description

積層体の製造方法
 本発明は、基材上に導体層及び硬化樹脂層を備える積層体を製造する方法に関する。
 電子機器の小型化、多機能化、通信高速化などの追求に伴い、電子機器に用いられる回路基板のさらなる高密度化が要求されており、このような高密度化の要求に応えるために、回路基板の多層化が図られている。このような多層回路基板は、例えば、電気絶縁層とその表面に形成された導体層とからなる内層基板の上に、電気絶縁層を積層し、この電気絶縁層の上に導体層を形成させ、さらに、これら電気絶縁層の積層と、導体層の形成と、を繰り返し行なうことにより形成される。
 このような多層回路基板を形成するための積層体を製造する方法として、例えば、特許文献1では、離型層を有する支持ベースフィルムとそのパターン加工された回路基板上の片面又は両面上の少なくとも該パターン加工部分に、接着フィルムの樹脂組成物層を直接覆い重ねた状態で、真空条件下、加熱、加圧し積層する工程、支持ベースフィルムの付いた状態で該樹脂組成物を熱硬化する工程、レーザー又はドリルにより穴開けする工程、支持ベースフィルムを剥離する工程、樹脂組成物表面を粗化処理する工程、次いでその粗化表面に湿式めっきにより、導体層を形成する工程を必須とする多層プリント配線板の製造方法が開示されている。
 この特許文献1では、支持ベースフィルムなどの支持体が付いた状態で樹脂組成物を熱硬化させるものであり、これにより、樹脂組成物の熱硬化中に異物が付着してしまい、異物が原因となる断線やショート等の不良の発生を防止している。また、特許文献1では、支持体が付いた状態で樹脂組成物を熱硬化させた後、支持体を剥離する前に、レーザー又はドリルにより穴開けすることで、小径のビアホールの形成を可能としている。
特開2001−196743号公報
 しかしながら、上記特許文献1の技術では、導体層を形成する際に、樹脂層上に、直接、湿式めっきを行うことで、導体層を形成でするものであるため、微細な導体層(微細配線)を高い接着強度で形成することが困難であり、そのため、電子機器の小型化、多機能化、通信高速化などに十分に応えることができないものであった。
 本発明の目的は、微細配線化、及び導通信頼性に優れた小径のビアホールの形成が可能であり、かつ、表面粗度が低く、導体層に対する密着性の高い硬化樹脂層を備える積層体を製造するための方法を提供することにある。
 本発明者らは、上記目的を達成するために鋭意研究した結果、基材上に導体層及び硬化樹脂層を備える積層体を製造する方法において、支持体付きの状態にて、硬化性樹脂組成物層を加熱することで硬化させた後、支持体側から硬化後の硬化樹脂層について穴開けを行うことでビアホールを形成し、形成したビアホール内の樹脂残渣を除去し、次いで、支持体を剥離することにより得られる硬化複合体を得て、さらに、得られた硬化複合体について、乾式めっきにより導体層を形成することで、導通信頼性に優れた小径のビアホールの形成が可能であること、および、硬化樹脂層の表面粗度を低く保ちながら、微細な導体層を高い密着性にて形成できること、を見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、
〔1〕支持体上に、熱硬化性樹脂組成物からなる硬化性樹脂組成物層を形成することで、支持体付き硬化性樹脂組成物層を得る第1工程と、前記支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側にて、基材に積層させることで、基材と、支持体付き硬化性樹脂組成物層とからなる支持体付き硬化前複合体を得る第2工程と、前記複合体について加熱を行い、前記硬化性樹脂組成物層を熱硬化させることで、硬化樹脂層とすることで、基材と、支持体付き硬化樹脂層とからなる支持体付き硬化複合体を得る第3工程と、前記支持体付き硬化複合体の前記支持体側から穴開けを行うことで、前記硬化樹脂層にビアホールを形成する第4工程と、前記硬化複合体のビアホール内の樹脂残渣を除去する第5工程と、前記支持体付き硬化複合体から前記支持体を剥離することで、基材及び硬化樹脂層からなる硬化複合体を得る第6工程と、前記硬化複合体のビアホールの内壁面、及び、前記硬化樹脂層上に、乾式めっきにより、乾式めっき導体層を形成する第7工程と、を有することを特徴とする積層体の製造方法、
〔2〕前記第5工程における、ビアホール内の樹脂残渣の除去を、プラズマ処理により行うことを特徴とする前記〔1〕に記載の積層体の製造方法、
〔3〕前記第7工程における、乾式めっきを、スパッタリング法により行うことを特徴とする前記〔1〕または〔2〕に記載の積層体の製造方法、
〔4〕前記乾式めっき導体層上に、さらに湿式めっきを行うことで、前記乾式めっき導体層上に、湿式めっき導体層を形成する第8工程をさらに備えることを特徴とする前記〔1〕~〔3〕のいずれかに記載の積層体の製造方法、
〔5〕前記第8工程において、前記ビアホール内を、前記乾式めっき導体層上に形成した湿式めっき導体層で充填することを特徴とする前記〔4〕に記載の積層体の製造方法、
〔6〕前記〔1〕~〔5〕のいずれかの製造方法により得られる積層体、ならびに、
〔7〕前記〔6〕に記載の積層体からなる多層回路基板、
が提供される。
 本発明の製造方法によれば、微細配線化、及び導通信頼性に優れた小径のビアホールの形成が可能であり、かつ、表面粗度が低く、導体層に対する密着性の高い硬化樹脂層を備える積層体、ならびに、これを用いて得られる多層回路基板を提供することができる。
 本発明の積層体の製造方法は、基材上に導体層及び硬化樹脂層を備える積層体を製造する方法であり、
(1)支持体上に、熱硬化性樹脂組成物からなる硬化性樹脂組成物層を形成することで、支持体付き硬化性樹脂組成物層を得る第1工程、
(2)前記支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側にて、基材に積層させることで、基材と、支持体付き硬化性樹脂組成物層とからなる支持体付き硬化前複合体を得る第2工程、
(3)前記複合体について加熱を行い、前記硬化性樹脂組成物層を熱硬化させることで、硬化樹脂層とすることで、基材と、支持体付き硬化樹脂層とからなる支持体付き硬化複合体を得る第3工程、
(4)前記支持体付き硬化複合体の前記支持体側から穴開けを行うことで、前記硬化樹脂層にビアホールを形成する第4工程、
(5)前記硬化複合体のビアホール内の樹脂残渣を除去する第5工程、
(6)前記支持体付き硬化複合体から前記支持体を剥離することで、基材及び硬化樹脂層からなる硬化複合体を得る第6工程、ならびに、
(7)前記硬化複合体のビアホールの内壁面、及び、前記硬化樹脂層上に、乾式めっきにより、乾式めっき導体層を形成する第7工程、ならびに、
 を備える。
(第1工程)
 本発明の製造方法の第1工程は、支持体上に、熱硬化性樹脂組成物からなる硬化性樹脂組成物層を形成することで、支持体付き硬化性樹脂組成物層を得る工程である。
 本発明の製造方法の第1工程で用いる支持体としては、特に限定されないが、フィルム状や板状等の部材を挙げることができ、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリカーボネートフィルム、ポリエチレンナフタレートフィルム、ポリアリレートフィルム、ナイロンフィルム、ポリテトラフルオロエチレンフィルム等の高分子フィルムや、板状・フィルム状のガラス基材等が挙げられる。支持体としては、後述する第5工程において、硬化樹脂層からの剥離をより容易なものとするために、表面に離型処理による離型層を有するものが好ましく、離型層を有するポリエチレンテレフタレートフィルムが好ましい。
 本発明の製造方法の第1工程で用いる支持体の厚みは、特に限定されないが、好ましくは5~200μm、より好ましくは10~150μm、さらに好ましくは、20~60μmである。厚みが上記範囲にある支持体を用いることにより、支持体付き硬化性樹脂組成物層の作業性を良好なものとすることができる。
 また、硬化性樹脂組成物層を形成するための熱硬化性樹脂組成物は、通常、硬化性樹脂と、硬化剤とを含有するものである。硬化性樹脂としては、硬化剤と組み合わせることで熱硬化性を示し、かつ、電気絶縁性を有するものであれば、特に限定されないが、例えば、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、ポリイミドなどが挙げられる。これらの樹脂は、それぞれ単独で、又は2種以上を組合せて用いられる。
 以下においては、例えば、硬化性樹脂として、エポキシ樹脂を用いる場合を例示して説明する。
 エポキシ樹脂としては、特に限定されないが、例えば、ビフェニル構造及び/又は縮合多環構造を有する多価エポキシ化合物(A)などを用いることができる。ビフェニル構造及び/又は縮合多環構造を有する多価エポキシ化合物(A)〔以下、多価エポキシ化合物(A)と略記することがある。〕は、1分子中に少なくとも2つのエポキシ基(オキシラン環)を有し、かつビフェニル構造及び縮合多環構造の少なくとも一方を有する化合物である。
 前記ビフェニル構造とは、ベンゼン環が2つ単結合でつながった構造をいう。ビフェニル構造は、得られる硬化樹脂において、通常、当該樹脂の主鎖を構成するが、側鎖に存在していてもよい。
 また、前記縮合多環構造とは、2以上の単環が縮合(縮環)してなる構造をいう。縮合多環構造を構成する環は脂環であっても芳香環であってもよく、また、ヘテロ原子を含んだものであってもよい。縮合環数は特に限定されるものではないが、得られる硬化樹脂層の耐熱性や機械的強度を高める観点から、2環以上であるのが好ましく、実用上、その上限としては10環程度である。このような縮合多環構造としては、例えば、ジシクロペンタジエン構造、ナフタレン構造、フルオレン構造、アントラセン構造、フェナントレン構造、トリフェニレン構造、ピレン構造、オバレン構造などが挙げられる。縮合多環構造は、上述したビフェニル構造と同様に、得られる硬化樹脂層において、通常、硬化樹脂層中に含まれる樹脂の主鎖を構成するが、側鎖に存在していてもよい。
 本発明で用いられる多価エポキシ化合物(A)は、ビフェニル構造、縮合多環構造、あるいは、ビフェニル構造と縮合多環構造との両方を有するものであるが、得られる硬化樹脂層の耐熱性や機械的強度を高める観点から、多価エポキシ化合物(A)としてはビフェニル構造を有するものが好ましく、ビフェニルアラルキル構造を有するものがより好ましい。
 また、多価エポキシ化合物(A)として、ビフェニル構造を有するもの(ビフェニル構造と縮合多環構造との両方を有するものを含む。)と縮合多環構造を有するものとを併用する場合、硬化樹脂層の耐熱性や電気特性を向上させるという観点から、それらの配合割合は重量比(ビフェニル構造を有する多価エポキシ化合物/縮合多環構造を有する多価エポキシ化合物)で、通常、3/7~7/3が好適である。
 本発明で用いられる多価エポキシ化合物(A)は、1分子中に少なくとも2つのエポキシ基を有し、かつビフェニル構造及び/又は縮合多環構造を有する化合物であれば、その構造は限定されないが、硬化樹脂層の耐熱性や機械的強度が優れるとの観点から、ビフェニル構造及び/又は縮合多環構造を有するノボラック型エポキシ化合物が好ましい。ノボラック型エポキシ化合物としてはフェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物などが挙げられる。
 多価エポキシ化合物(A)としては、良好な硬化反応性が得られることから、そのエポキシ当量が、通常、100~1500当量、好ましくは150~500当量のものが好適である。なお、本明細書において「エポキシ当量」とは1グラム当量のエポキシ基を含むエポキシ化合物のグラム数(g/eq)であり、JIS K 7236の方法に従って測定することができる。
 本発明で用いられる多価エポキシ化合物(A)は、公知の方法に従って適宜製造可能であるが、市販品としても入手可能である。
 ビフェニル構造を有する多価エポキシ化合物(A)の市販品の例としては、ビフェニルアラルキル構造を有するノボラック型エポキシ化合物である、例えば、商品名「NC3000−FH、NC3000−H、NC3000、NC3000−L、NC3100」(以上、日本化薬社製);や、テトラメチルビフェニル構造を有するエポキシ化合物である、例えば、商品名「YX−4000」(以上、三菱化学社製);などが挙げられる。
 また、縮合多環構造を有する多価エポキシ化合物(A)の市販品の例としては、ジシクロペンタジエン構造を有するノボラック型エポキシ化合物である、例えば、商品名「エピクロンHP7200L、エピクロンHP7200、エピクロンHP7200H、エピクロンHP7200HH、エピクロンHP7200HHH」(以上、DIC社製、「エピクロン」は登録商標)、商品名「Tactix556、Tactix756」(以上、ハンツマン・アドバンスト・マテリアル社製、「Tactix」は登録商標)、商品名「XD−1000−1L、XD−1000−2L」(以上、日本化薬社製)などが挙げられる。
 以上の多価エポキシ化合物(A)は、それぞれ単独で、又は2種以上を混合して用いることができる。
 また、本発明においては、ビフェニル構造及び/又は縮合多環構造を有する多価エポキシ化合物(A)を使用する場合においては、前記フェノールノボラック型エポキシ化合物以外の3価以上の多価グリシジル基含有エポキシ化合物(B)を併用してもよく、このような3価以上の多価グリシジル基含有エポキシ化合物(B)をさらに用いることにより、得られる硬化樹脂層の耐熱性や電気特性をより向上させることが可能となる。
 フェノールノボラック型エポキシ化合物以外の3価以上の多価グリシジル基含有エポキシ化合物(B)としては、得られる硬化樹脂層の耐熱性や電気特性の観点でエポキシ当量が250以下の化合物が好ましく、220以下の化合物がより好ましい。
 具体的には3価以上の多価フェノールのヒドロシキル基をグリシジル化した構造を有する多価フェノール型エポキシ化合物や、2価以上の多価アミノフェニル基含有化合物のアミノ基をグリシジル化したグリシジルアミン型エポキシ化合物や、前記フェノール構造やアミノフェニル構造を同一分子内に有する3価以上の化合物をグリシジル化した多価グリシジル基含有化合物など、が挙げられる。
 3価以上の多価フェノールのヒドロシキル基をグリシジル化した構造を有する多価フェノール型エポキシ化合物としては、特に限定されないが、3価以上の多価ヒドロキシフェニルアルカン型エポキシ化合物が好ましい。ここで、3価以上の多価ヒドロキシフェニルアルカン型エポキシ化合物とは、3以上のヒドロキシフェニル基で置換された脂肪族炭化水素のヒドロキシル基をグリシジル化した構造を有する化合物である。
 本発明で用いられる3価以上の多価グリシジル基含有エポキシ化合物(B)は、公知の方法に従って適宜製造可能であるが、市販品としても入手可能である。
 例えば、トリスヒドロキシフェニルメタン型エポキシ化合物の市販品の例として、商品名「EPPN−503、EPPN−502H、EPPN−501H」(以上、日本化薬社製)、商品名「TACTIX−742」(以上、ダウ・ケミカル社製)、「jER 1032H60」(以上、三菱化学社製)等が挙げられる。また、テトラキスヒドロキシフェニルエタン型エポキシ化合物の市販品の例として、商品名「jER 1031S」(以上、三菱化学社製)等が挙げられる。グリシジルアミン型エポキシ化合物としては、4価のグリシジルアミン型エポキシ化合物として商品名「YH−434、YH−434L」(以上、新日鉄住金化学社製)、商品名「jER604」(以上、三菱化学社製)などが挙げられる。フェノール構造やアミノフェニル構造を同一分子内に有する3価以上の化合物をグリシジル化した多価グリシジル基含有化合物としては、3価のグリシジルアミン型エポキシ化合物としては商品名「jER630」(以上、三菱化学社製)などが挙げられる。
 3価以上の多価グリシジル基含有エポキシ化合物(B)を併用する場合における、3価以上の多価グリシジル基含有エポキシ化合物(B)の含有割合は、特に限定されないが、用いるエポキシ化合物の合計100重量%中、好ましくは0.1~40重量%、より好ましくは1~30重量%、特に好ましくは3~25重量%である。熱硬化性樹脂組成物中における、3価以上の多価グリシジル基含有エポキシ化合物(B)の含有量を、上述した多価エポキシ化合物(A)との関係で、上記範囲とすることにより、得られる硬化樹脂層の耐熱性、電気特性、及び導体層に対する密着性をより高めることができる。
 また、本発明で用いる熱硬化性樹脂組成物には、上述した多価エポキシ化合物(A)及び3価以上の多価グリシジル基含有エポキシ化合物(B)に加えて、所望により、それらのエポキシ化合物以外のその他のエポキシ化合物を適宜含有させてもよい。このようなその他のエポキシ化合物としては、例えば、リン含有エポキシ化合物を挙げることができる。リン含有エポキシ化合物としてはホスファフェナントレン構造を有するエポキシ化合物を好適に挙げることができ、このようなホスファフェナントレン構造を有するエポキシ化合物をさらに用いることにより、得られる硬化樹脂層の耐熱性、電気特性及び導体層に対する密着性のさらなる向上が可能となる。
 ホスファフェナントレン構造を有するエポキシ化合物としては、下記式(1)で示されるホスファフェナントレン構造を有するエポキシ化合物であればよく、特に限定されないが、例えば、ホスファフェナントレン構造を有するビフェニル型エポキシ化合物、ホスファフェナントレン構造を有するビスフェノール型エポキシ化合物、ホスファフェナントレン構造を有するフェノール系ノボラック型エポキシ化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 また、本発明で用いられる熱硬化性樹脂組成物には、トリアジン構造含有フェノール樹脂(C)を含有させてもよい。トリアジン構造含有フェノール樹脂(C)とは、フェノール、クレゾール及びナフトールなどの芳香族ヒドロキシ化合物と、メラミンやベンゾグアナミンなどのトリアジン環を有する化合物と、ホルムアルデヒドと、の縮合重合物である。トリアジン構造含有フェノール樹脂(C)は、典型的には、下記一般式(2)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000002
 (式(2)中、R、Rは水素原子又はメチル基であり、pは1~30の整数である。また、R、Rは、それぞれ同一であっても互いに異なっていてもよく、さらに、pが2以上の場合、複数のRは、それぞれ同一であっても互いに異なっていてもよい。また、式(2)中において、少なくとも一方のアミノ基については、アミノ基中に含有される水素原子が、他の基(例えば、アルキル基等)で置換されていてもよい。)
 トリアジン構造含有フェノール樹脂(C)は、フェノール性の活性水酸基の存在により、エポキシ化合物の硬化剤として作用し、特に、トリアジン構造含有フェノール樹脂(C)を含有することで、得られる硬化樹脂層は、基板に対し優れた密着性を示すものとなる。
 トリアジン構造含有フェノール樹脂(C)は、公知の方法に従い製造することができるが、市販品としても入手可能である。このような市販品の例としては、商品名「LA7052、LA7054、LA3018、LA1356」(以上、DIC社製)などが挙げられる。
 以上のトリアジン構造含有フェノール樹脂(C)は、それぞれ単独で、又は2種以上を混合して用いることができる。
 本発明で用いられる熱硬化性樹脂組成物中における、トリアジン構造含有フェノール樹脂(C)の配合量は、用いるエポキシ化合物の合計100重量部に対して、好ましくは1~60重量部、より好ましくは2~50重量部、さらに好ましくは3~40重量部、特に好ましくは4~20重量部の範囲である。
 また、本発明で用いられる熱硬化性樹脂組成物中、用いるエポキシ化合物とトリアジン構造含有フェノール樹脂(C)との当量比〔用いるエポキシ化合物のエポキシ基の合計数に対する、トリアジン構造含有フェノール樹脂(C)の活性水酸基量の合計数の比率(活性水酸基量/エポキシ基量)〕は、好ましくは0.01~0.6、より好ましくは0.05~0.4、さらに好ましくは0.1~0.3の範囲である。トリアジン構造含有フェノール樹脂(C)の配合量を上記範囲とすることにより、得られる硬化樹脂層の電気特性、及び耐熱性をより向上させることができる。なお、用いるエポキシ化合物とトリアジン構造含有フェノール樹脂(C)との当量比は、用いるエポキシ化合物の総エポキシ当量と、トリアジン構造含有フェノール樹脂(C)の総活性水酸基当量とから求めることができる。
 また、本発明で用いられる熱硬化性樹脂組成物は、上記各成分に加えて、活性エステル化合物(D)を含有していることが好ましい。活性エステル化合物(D)としては、活性エステル基を有するものであればよいが、本発明においては、分子内に少なくとも2つの活性エステル基を有する化合物が好ましい。活性エステル化合物(D)は、加熱によりエステル部位とエポキシ基が反応することで、上述したトリアジン構造含有フェノール樹脂(C)と同様に、本発明で用いられるエポキシ化合物の硬化剤として作用する。
 活性エステル化合物(D)としては、得られる硬化樹脂層の耐熱性を高めるなどの観点から、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物とを反応させたものから得られる活性エステル化合物が好ましく、カルボン酸化合物と、フェノール化合物、ナフトール化合物及びチオール化合物からなる群から選択される1種又は2種以上とを反応させたものから得られる活性エステル化合物がより好ましく、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させたものから得られ、かつ、分子内に少なくとも2つの活性エステル基を有する芳香族化合物が特に好ましい。活性エステル化合物(D)は、直鎖状又は多分岐状であってもよく、活性エステル化合物(D)が、少なくとも2つのカルボン酸を分子内に有する化合物に由来する場合を例示すると、このような少なくとも2つのカルボン酸を分子内に有する化合物が、脂肪族鎖を含む場合には、エポキシ化合物との相溶性を高くすることができ、また、芳香族環を有する場合には、耐熱性を高くすることができる。
 活性エステル化合物(D)を形成するためのカルボン酸化合物の具体例としては、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。これらのなかでも、得られる硬化樹脂層の耐熱性を高める観点より、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸が好ましく、フタル酸、イソフタル酸、テレフタル酸がより好ましく、イソフタル酸、テレフタル酸がさらに好ましい。
 活性エステル化合物(D)を形成するためのチオカルボン酸化合物の具体例としては、チオ酢酸、チオ安息香酸等が挙げられる。
 活性エステル化合物(D)を形成するためのヒドロキシ化合物の具体例としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。中でも、活性エステル化合物(D)の溶解性を向上させると共に、得られる硬化樹脂層の耐熱性を高める観点から、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエニルジフェノール、フェノールノボラックが好ましく、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエニルジフェノール、フェノールノボラックがより好ましく、ジシクロペンタジエニルジフェノール、フェノールノボラックがさらに好ましい。
 活性エステル化合物(D)を形成するためのチオール化合物の具体例としては、ベンゼンジチオール、トリアジンジチオール等が挙げられる。
 活性エステル化合物(D)の製造方法は特に限定されず、公知の方法により製造することができる。例えば、前記したカルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得ることができる。
 活性エステル化合物(D)として、例えば、特開2002−12650号公報に開示されている活性エステル基を持つ芳香族化合物及び特開2004−277460号公報に開示されている多官能性ポリエステルや、市販品を用いることができる。市販品としては、例えば、商品名「EXB9451、EXB9460、EXB9460S、エピクロン HPC−8000−65T」(以上、DIC社製、「エピクロン」は登録商標)、商品名「DC808」(ジャパンエポキシレジン社製)、商品名「YLH1026」(ジャパンエポキシレジン社製)などが挙げられる。
 本発明で用いられる熱硬化性樹脂組成物中における、活性エステル化合物(D)の配合量は、用いるエポキシ化合物の合計100重量部に対して、好ましくは10~150重量部、より好ましくは15~130重量部、さらに好ましくは20~120重量部の範囲である。
 また、本発明で用いられる熱硬化性樹脂組成物中、用いるエポキシ化合物と活性エステル化合物(D)との当量比〔用いるエポキシ化合物のエポキシ基の合計数に対する、活性エステル(D)の反応性基の合計数の比率(活性エステル基量/エポキシ基量)〕は、好ましくは、0.5~1.1、より好ましくは0.6~0.9、さらに好ましくは0.65~0.85の範囲である。
 また、本発明で用いられる熱硬化性樹脂組成物中、用いるエポキシ化合物と、トリアジン構造含有フェノール樹脂(C)及び活性エステル化合物(D)と、の当量比{トリアジン構造含有フェノール樹脂(C)の活性水酸基と活性エステル化合物(D)の活性エステル基との合計数に対する、用いるエポキシ化合物のエポキシ基の合計数の比率〔エポキシ基量/(活性水酸基量+活性エステル基量)〕}は、通常、1.1未満、好ましくは0.6~0.99、より好ましくは0.65~0.95の範囲である。上記当量比を上記範囲とすることにより、得られる硬化樹脂層において電気特性を良好に発揮させることができる。なお、用いるエポキシ化合物と、トリアジン構造含有フェノール樹脂(C)及び活性エステル化合物(D)と、の当量比は用いるエポキシ化合物の総エポキシ当量、トリアジン構造含有フェノール樹脂(C)の総活性水酸基当量及び活性エステル化合物(D)の総活性エステル当量とから求めることができる。
 本発明で用いられる熱硬化性樹脂組成物には、上記各成分に加えて、以下に記載するような、その他の成分をさらに含有させることができる。
 熱硬化性樹脂組成物に充填剤を配合することにより、得られる硬化樹脂層を低線膨張性のものとすることができる。当該充填剤としては、公知の無機充填剤及び有機充填剤のいずれをも用いることができるが、無機充填剤が好ましい。無機充填剤の具体例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、水和アルミナ、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、シリカ、タルク、クレーなどを挙げることができる。なお、用いる充填剤は、シランカップリング剤等で予め表面処理されたものであってもよい。本発明で用いられる熱硬化性樹脂組成物中の充填剤の含有量としては、特に限定されるものではないが、固形分換算で、通常、30~90重量%である。
 また、熱硬化性樹脂組成物に、極性基を有する脂環式オレフィン重合体を配合することができる。前記極性基としては、エポキシ基と反応して共有結合を形成可能な構造を有する基、及びヘテロ原子を含有し、かつエポキシ基に対する反応性を有さない基が挙げられ、ヘテロ原子を含有し、かつエポキシ基に対する反応性を有さない基が好ましい。このような脂環式オレフィン重合体はエポキシ基に対する反応性を有さないものであるが、そのため、エポキシ基に対する反応性を有する官能基を実質的に含有しないものである。ここで、「エポキシ基に対する反応性を有する官能基を実質的に含有しない」とは、脂環式オレフィン重合体が、エポキシ基に対する反応性を有する官能基を、本発明の効果の発現が阻害される程度には含有しないことを意味する。エポキシ基に対する反応性を有する官能基としては、エポキシ基と反応して共有結合を形成可能な構造を有する基が挙げられ、例えば、1級アミノ基、2級アミノ基、メルカプト基、カルボキシル基、カルボン酸無水物基、ヒドロキシ基、及びエポキシ基などの、エポキシ基と反応して共有結合を形成するヘテロ原子含有官能基が挙げられる。
 上記脂環式オレフィン重合体は、例えば、ヘテロ原子を含有せず芳香環を含有する脂環式オレフィン単量体(a)、芳香環を含有せずヘテロ原子を含有する脂環式オレフィン単量体(b)、芳香環とヘテロ原子とを共に含有する脂環式オレフィン単量体(c)、及び芳香環とヘテロ原子とを共に含有せず、前記脂環式オレフィン単量体(a)~(c)と共重合可能な単量体(d)を適宜組み合わせ、公知の方法に従って重合することで容易に得ることができる。得られる重合体には、さらに水素添加を行ってもよい。
 本発明で用いられる熱硬化性樹脂組成物中における、極性基を有する脂環式オレフィン重合体の配合量としては、特に限定されるものではないが、用いるエポキシ化合物の合計100重量部に対して、通常、50重量部以下、好ましくは35重量部以下である。
 熱硬化性樹脂組成物には、所望により、硬化促進剤を含有させてもよい。硬化促進剤としては特に限定されないが、例えば、脂肪族ポリアミン、芳香族ポリアミン、第2級アミン、第3級アミン、酸無水物、イミダゾール誘導体、有機酸ヒドラジド、ジシアンジアミド及びその誘導体、尿素誘導体などが挙げられる。中でも、イミダゾール誘導体が特に好ましい。
 イミダゾール誘導体としては、イミダゾール骨格を有する化合物であればよく、特に限定されないが、例えば、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、ビス−2−エチル−4−メチルイミダゾール、1−メチル−2−エチルイミダゾール、2−イソプロピルイミダゾール、2,4−ジメチルイミダゾール、2−ヘプタデシルイミダゾールなどのアルキル置換イミダゾール化合物;2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−エチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、ベンズイミダゾール、2−エチル−4−メチル−1−(2’−シアノエチル)イミダゾールなどのアリール基やアラルキル基などの環構造を含有する炭化水素基で置換されたイミダゾール化合物などが挙げられる。これらは1種を単独で、又は2種類以上を組み合わせて用いることができる。
 本発明で用いられる熱硬化性樹脂組成物中における、硬化促進剤の配合量としては、用いるエポキシ化合物の合計100重量部に対して、通常、0.1~10重量部、好ましくは0.5~8重量部である。
 さらに、熱硬化性樹脂組成物には、得られる硬化樹脂層の難燃性を向上させる目的で、例えば、ハロゲン系難燃剤やリン酸エステル系難燃剤などの一般の電気絶縁膜形成用の樹脂組成物に配合される難燃剤を適宜配合してもよい。
 また、本発明で用いられる熱硬化性樹脂組成物には、さらに所望により、難燃助剤、耐熱安定剤、耐候安定剤、老化防止剤、紫外線吸収剤(レーザー加工性向上剤)、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、天然油、合成油、ワックス、乳剤、磁性体、誘電特性調整剤、靭性剤などの公知の成分を適宜配合してもよい。
 本発明で用いられる熱硬化性樹脂組成物の調製方法としては、特に限定されるものではなく、上記各成分を、そのまま混合してもよいし、有機溶剤に溶解もしくは分散させた状態で混合してもよいし、上記各成分の一部を有機溶剤に溶解又は分散させた状態の組成物を調製し、当該組成物に残りの成分を混合してもよい。
 本発明の製造方法の第1工程においては、以上説明した熱硬化性樹脂組成物を用いて、該熱硬化性樹脂組成物からなる硬化性樹脂組成物層を、支持体上に形成することで、支持体付き硬化性樹脂組成物層を得ることができる。
 支持体上に、熱硬化性樹脂組成物からなる硬化性樹脂組成物層を形成する方法としては、特に限定されないが、熱硬化性樹脂組成物を、所望により有機溶剤を添加して、支持体に塗布、散布又は流延し、次いで乾燥する方法が好ましい。
 硬化性樹脂組成物層の厚さは、特に限定されないが、作業性などの観点から、通常、5~50μm、好ましくは7~40μm、より好ましくは10~35μm、さらに好ましくは10~30μmである。
 熱硬化性樹脂組成物を塗布する方法としては、ディップコート、ロールコート、カーテンコート、ダイコート、スリットコート、グラビアコートなどが挙げられる。
 なお、硬化性樹脂組成物層としては、熱硬化性樹脂組成物が未硬化である場合の他、半硬化の状態であってもよい。ここで未硬化とは、硬化性樹脂組成物層を、熱硬化性樹脂組成物の調製に用いた硬化性樹脂(例えば、エポキシ樹脂)を溶解可能な溶剤に浸けたときに、実質的に硬化性樹脂の全部が溶解する状態をいう。また、半硬化とは、さらに加熱すれば硬化しうる程度に途中まで硬化された状態であり、好ましくは、熱硬化性樹脂組成物の調製に用いた硬化性樹脂を溶解可能な溶剤に硬化性樹脂の一部(具体的には7重量%以上の量であり、かつ、一部が残存するような量)が溶解する状態であるか、又は、溶剤中に成形体を24時間浸漬した後の体積が、浸漬前の体積の200%以上(膨潤率)になる状態をいう。
 また、熱硬化性樹脂組成物を、支持体上に塗布した後、所望により、乾燥を行ってもよい。乾燥温度は、熱硬化性樹脂組成物が硬化しない程度の温度とすることが好ましく、用いる硬化性樹脂の種類に応じて設定すればよいが、通常、20~300℃、好ましくは30~200℃である。乾燥温度が高すぎると、硬化反応が進行しすぎて、得られる硬化性樹脂組成物層が未硬化あるいは半硬化の状態とならなくなるおそれがある。また、乾燥時間は、通常、30秒間~1時間、好ましくは1分間~30分間である。
 また、本発明の製造方法の第1工程においては、硬化性樹脂組成物層を、2層以上の構造としてもよい。例えば、上述した熱硬化性樹脂組成物(以下、該熱硬化性樹脂組成物を、「第1熱硬化性樹脂組成物」とする。)を用いて形成される樹脂層(以下、該樹脂層を、「第1樹脂層」とする。)を形成する前に、支持体上に、第1熱硬化性樹脂組成物とは異なる第2熱硬化性樹脂組成物を用いて、第1樹脂層とは異なる第2樹脂層を形成し、この上に、第1熱硬化性樹脂組成物を用いて第1樹脂層を形成することで、硬化性樹脂組成物層を2層構造としてもよい。なお、この場合において、例えば、第2樹脂層を、無電解めっきなどにより導体層を形成するための被めっき層として、また、第1樹脂層を、基材と接着するための接着層として用いることができる。
 第2樹脂層を形成するための第2熱硬化性樹脂組成物としては特に限定ないが、通常、第1熱硬化性樹脂組成物とは異なる硬化性樹脂と、硬化剤とを含有するものを用いることができるが、硬化性樹脂組成物層の電気特性及び耐熱性を向上させるという観点より、硬化性樹脂として、極性基を有する脂環式オレフィン重合体を含有するものが好ましい。
 極性基を有する脂環式オレフィン重合体としては、特に限定されず、脂環式構造として、シクロアルカン構造やシクロアルケン構造などを有するものが挙げられる。機械的強度や耐熱性などに優れることから、シクロアルカン構造を有するものが好ましい。また、脂環式オレフィン重合体に含有される極性基としては、アルコール性水酸基、フェノール性水酸基、カルボキシル基、アルコキシル基、エポキシ基、グリシジル基、オキシカルボニル基、カルボニル基、アミノ基、カルボン酸無水物基、スルホン酸基、リン酸基などが挙げられる。中でも、カルボキシル基、カルボン酸無水物基、及びフェノール性水酸基が好ましく、カルボン酸無水物基がより好ましい。
 また、第2熱硬化性樹脂組成物に含有させる硬化剤としては、加熱により極性基を有する脂環式オレフィン重合体に架橋構造を形成させることのできるものであればよく、特に限定されず、一般の電気絶縁膜形成用の樹脂組成物に配合される硬化剤を用いることができる。硬化剤としては、用いる極性基を有する脂環式オレフィン重合体の極性基と反応して結合を形成することができる官能基を2個以上有する化合物を用いるのが好ましい。
 例えば、極性基を有する脂環式オレフィン重合体として、カルボキシル基やカルボン酸無水物基、フェノール性水酸基を有する脂環式オレフィン重合体を用いる場合に好適に用いられる硬化剤としては、多価エポキシ化合物、多価イソシアナート化合物、多価アミン化合物、多価ヒドラジド化合物、アジリジン化合物、塩基性金属酸化物、有機金属ハロゲン化物などが挙げられる。これらは1種を単独で用いてもよいし2種以上を併用してもよい。また、これらの化合物と、過酸化物とを併用することで硬化剤として用いてもよい。
 中でも、硬化剤としては、極性基を有する脂環式オレフィン重合体が有する極性基との反応性が緩やかであり、第2熱硬化性樹脂組成物の扱いが容易になることから、多価エポキシ化合物が好ましく、グリシジルエーテル型エポキシ化合物や脂環式の多価エポキシ化合物が特に好ましく用いられる。
 第2熱硬化性樹脂組成物中における、硬化剤の配合量は、極性基を有する脂環式オレフィン重合体100重量部に対して、好ましくは1~100重量部、より好ましくは5~80重量部、さらに好ましくは10~50重量部の範囲である。硬化剤の配合量を上記範囲とすることにより、硬化樹脂層の機械的強度及び電気特性を良好なものとすることができる。
 また、第2熱硬化性樹脂組成物は、上記成分以外に、ヒンダードフェノール化合物やヒンダードアミン化合物を含有していてもよい。
 第2熱硬化性樹脂組成物中における、ヒンダードフェノール化合物の配合量は、特に限定されないが、極性基を有する脂環式オレフィン重合体100重量部に対して、好ましくは0.04~10重量部、より好ましくは0.3~5重量部、さらに好ましくは0.5~3重量部の範囲である。ヒンダードフェノール化合物の配合量を上記範囲とすることにより、硬化樹脂層の機械的強度を良好とすることができる。
 また、ヒンダードアミン化合物とは、4−位に2級アミン又は3級アミンを有する2,2,6,6−テトラアルキルピペリジン基を分子中に少なくとも一個有する化合物である。アルキルの炭素数としては、通常、1~50である。ヒンダードアミン化合物としては、4−位に2級アミン又は3級アミンを有する2,2,6,6−テトラメチルピペリジル基を分子中に少なくとも一個有する化合物が好ましい。なお、本発明においては、ヒンダードフェノール化合物と、ヒンダードアミン化合物とを併用することが好ましい。
 ヒンダードアミン化合物の配合量は、特に限定されないが、極性基を有する脂環式オレフィン重合体100重量部に対して、通常、0.02~10重量部、好ましくは0.2~5重量部、より好ましくは0.25~3重量部である。ヒンダードアミン化合物の配合量を上記範囲とすることにより、硬化樹脂層の機械的強度を良好とすることができる。
 また、第2熱硬化性樹脂組成物は、上記成分以外に、硬化促進剤を含有していてもよい。硬化促進剤としては、一般の電気絶縁膜形成用の樹脂組成物に配合される硬化促進剤を用いればよいが、例えば、第1熱硬化性樹脂組成物と同様の硬化促進剤を用いることができる。第2熱硬化性樹脂組成物中における、硬化促進剤の配合量は、使用目的に応じて適宜選択すればよいが、極性基を有する脂環式オレフィン重合体100重量部に対して、好ましくは0.001~30重量部、より好ましくは0.01~10重量部、さらに好ましくは0.03~5重量部である。
 さらに、第2熱硬化性樹脂組成物は、上記成分以外に、充填剤を含有していてもよい。充填剤としては、第1熱硬化性樹脂組成物に用いられる充填剤と同様のものを用いることができる。第2熱硬化性樹脂組成物中における、充填剤の配合量は、固形分換算で、通常、1~50重量%であり、好ましくは2~45重量%、より好ましくは3~35重量%である。
 また、第2熱硬化性樹脂組成物は、上記成分以外に、第1熱硬化性樹脂組成物と同様に、硬化促進剤、難燃剤、難燃助剤、耐熱安定剤、耐候安定剤、老化防止剤、紫外線吸収剤(レーザー加工性向上剤)、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、天然油、合成油、ワックス、乳剤、磁性体、誘電特性調整剤、靭性剤などの公知の成分を適宜配合してもよい。
 第2熱硬化性樹脂組成物の製造方法としては、特に限定されるものではなく、上記各成分を、そのまま混合してもよいし、有機溶剤に溶解若しくは分散させた状態で混合してもよいし、上記各成分の一部を有機溶剤に溶解若しくは分散させた状態の組成物を調製し、当該組成物に残りの成分を混合してもよい。
 本発明の製造方法の第1工程において、硬化性樹脂組成物層を、第1樹脂層と第2樹脂層との2層構成にする場合には、例えば、以下の2つの方法を用いればよい。すなわち、(1)第2熱硬化性樹脂組成物を支持体上に塗布、散布又は流延し、所望により乾燥させ第2樹脂層を形成し、次いで、その上に、第1熱硬化性樹脂組成物をさらに塗布又は流延し、所望により乾燥させることにより第1樹脂層を形成することにより製造する方法や、(2)第2熱硬化性樹脂組成物を支持体上に塗布、散布又は流延し、所望により乾燥させて得られた支持体付き第2樹脂層と、第1熱硬化性樹脂組成物を別の支持体上に塗布、散布又は流延し、所望により乾燥させて、支持体付き第1樹脂層と、を積層し、これらの成形体を一体化させ、第1樹脂層側の支持体を剥離することにより製造する方法、により製造することができる。これらの製造方法の内、より容易なプロセスであり生産性に優れることから、上記(1)の製造方法が好ましい。
 上述の(1)の製造方法において、第2熱硬化性樹脂組成物を支持体に塗布、散布又は流延する際、及び第2熱硬化性樹脂組成物を用いて形成された第2樹脂層上に第1熱硬化性樹脂組成物を塗布、散布又は流延する際、あるいは上述の(2)の製造方法において、第2熱硬化性樹脂組成物及び第1熱硬化性樹脂組成物を用いて、支持体付き第2樹脂層及び支持体付き第1樹脂層を得る際には、第2熱硬化性樹脂組成物又は第1熱硬化性樹脂組成物を、所望により有機溶剤を添加して、支持体に塗布、散布又は流延することが好ましい。
 上述の(1)、(2)の製造方法における、第2樹脂層及び第1樹脂層の厚みは、特に限定されないが、第2樹脂層の厚みが、好ましくは0.5~10μm、より好ましくは1~8μm、さらに好ましくは2~5μm、また、第1樹脂層の厚みが、好ましくは4~45μm、より好ましくは7~40μm、さらに好ましくは9~29μmとなるような厚みとすることが好ましい。第2樹脂層の厚みが薄すぎると、第2樹脂層を被めっき層として用い、乾式めっきにより導体層を形成した際における、導体層の形成性が低下してしまうおそれがある。一方、第2樹脂層の厚みが厚すぎると、硬化樹脂層の線膨張が大きくなるおそれがある。また、第1樹脂層の厚みが薄すぎると、配線埋め込み性が低下してしまう場合がある。
 第2熱硬化性樹脂組成物及び第1熱硬化性樹脂組成物を塗布する方法としては、ディップコート、ロールコート、カーテンコート、ダイコート、スリットコート、グラビアコートなどが挙げられる。
 また、乾燥温度は、第2熱硬化性樹脂組成物及び第1熱硬化性樹脂組成物が硬化しない程度の温度とすることが好ましく、通常、20~300℃、好ましくは30~200℃である。また、乾燥時間は、通常、30秒間~1時間、好ましくは1分間~30分間である。
(第2工程)
 本発明の製造方法の第2工程は、上述した第1工程で得られた支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側にて、基材に積層させることで、基材と、支持体付き硬化性樹脂組成物層とからなる支持体付き硬化前複合体を得る工程である。
 基材としては、特に限定されないが、例えば、表面に導体層を有する基板などが挙げられる。表面に導体層を有する基板は、電気絶縁性基板の表面に導体層を有するものであり、電気絶縁性基板としては、公知の電気絶縁材料(例えば、脂環式オレフィン重合体、エポキシ化合物、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、ポリフェニレンエーテル、ガラス等)を含有する樹脂組成物を硬化して形成されたものなどが挙げられる。また、導体層は、特に限定されないが、通常、導電性金属等の導電体により形成された配線を含む層であって、更に各種の回路を含んでいてもよい。配線や回路の構成、厚み等は、特に限定されない。表面に導体層を有する基板の具体例としては、プリント配線基板、シリコンウェーハ基板等を挙げることができる。表面に導体層を有する基板の厚みは、通常、10μm~10mm、好ましくは20μm~5mm、より好ましくは30μm~2mmである。なお、表面に導体層を有する基板における配線の高さ(厚み)は、通常、3~35μmである。また、硬化樹脂層とした際における、配線埋め込み性及び絶縁信頼性をより良好なものとするという観点より、硬化性樹脂組成物層の厚さと、表面に導体層を有する基板における配線の高さ(厚み)との差「硬化性樹脂組成物層の厚さ−配線の高さ(厚み)」は、35μm以下であることが好ましく、3~30μmであることがより好ましい。
 また、本発明で用いられる表面に導体層を有する基板は、硬化性樹脂組成物層との密着性を向上させるために、導体層表面に前処理が施されていることが好ましい。前処理の方法としては、公知の技術を、特に限定されず使用することができる。例えば、導体層が銅からなるものであれば、強アルカリ酸化性溶液を導体層表面に接触させて、導体表面に酸化銅の層を形成して粗化する酸化処理方法、導体層表面を先の方法で酸化した後に水素化ホウ素ナトリウム、ホルマリンなどで還元する方法、導体層にめっきを析出させて粗化する方法、導体層に有機酸を接触させて銅の粒界を溶出して粗化する方法、及び導体層にチオール化合物やシラン化合物などによりプライマー層を形成する方法等が挙げられる。これらのうち、微細な配線パターンの形状維持の容易性の観点から、導体層に有機酸を接触させて銅の粒界を溶出して粗化する方法、及び、チオール化合物やシラン化合物などによりプライマー層を形成する方法が好ましい。
 本発明の製造方法の第2工程において、支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側にて、基材に積層させる方法としては、例えば、基板上に、支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側を加熱圧着する方法などが挙げられる。
 加熱圧着の方法としては、支持体付きの成形体又は複合成形体を、上述した基板の導体層に接するように重ね合わせ、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータなどの加圧機を使用して加熱圧着(ラミネーション)する方法が挙げられる。加熱加圧することにより、基板表面の導体層と成形体又は複合成形体との界面に空隙が実質的に存在しないように結合させることができる。前記成形体又は複合成形体は、通常、未硬化又は半硬化の状態で基板の導体層に積層されることになる。
 加熱圧着操作の温度は、通常、30~250℃、好ましくは70~200℃であり、加える圧力は、通常、10kPa~20MPa、好ましくは100kPa~10MPaであり、時間は、通常、30秒~5時間、好ましくは1分~3時間である。また、加熱圧着は、配線パターンの埋め込み性を向上させ、気泡の発生を抑えるために減圧下で行うのが好ましい。加熱圧着を行う減圧下の圧力は、通常100kPa~1Pa、好ましくは40kPa~10Paである。
(第3工程)
 本発明の製造方法の第3工程は、上述した第2工程で得られた、基材と、支持体付き硬化性樹脂組成物層とからなる支持体付き硬化前複合体について加熱を行い、硬化性樹脂組成物層を熱硬化させることで、硬化樹脂層とする工程である。
 第3工程における第1の加熱の加熱温度は、硬化性樹脂組成物層の硬化温度や、用いる支持体の種類に応じて、適宜設定すればよいが、好ましくは100~250℃、好ましくは120~220℃、より好ましくは150~210℃である。また、第3工程における第1の加熱の加熱時間は、通常、0.1~3時間、好ましくは0.25~1.5時間である。加熱の方法は特に制限されず、例えば電気オーブンなどを用いて行えばよい。また、熱硬化は、生産性の観点より、大気下で行うことが好ましい。
(第4工程)
 本発明の製造方法の第4工程は、上述した第3工程で得られた支持体付き硬化複合体の支持体側から穴開けを行うことで、硬化樹脂層にビアホールを形成する工程である。
 第4工程において、ビアホールを形成する方法としては特に限定されないが、支持体側から、ドリル、レーザー、プラズマエッチングなどの物理的処理により穴開けを行うことにより形成することができる。これらの方法の中でもレーザーによる方法(炭酸ガスレーザー、エキシマレーザー、UVレーザー、UV−YAGレーザーなど)、すなわち、支持体側からレーザーを照射することで、ビアホールを形成する方法は、より微細なビアホールを硬化樹脂層の特性を低下させずに形成できるので好ましい。本発明の製造方法においては、支持体を付けたままの状態とし、かつ、支持体側から穴開けを行うことで、硬化樹脂層にビアホールを形成することにより、ビアホールを小径であり(例えば、トップ径(直径)が、好ましくは5~100μm、より好ましくは8~50μm、特に好ましくは10~30μmのもの)、高い開口率(底径/トップ径)にて形成することができる。
(第5工程)
 本発明の製造方法の第5工程は、支持体を付けた状態のまま、ビアホールを形成した後の硬化複合体のビアホール内の樹脂残渣を除去する工程である。
 ビアホール内の樹脂残渣を除去する方法としては、特に限定されず、硬化複合体を、支持体を付けた状態のまま、過マンガン酸塩などの酸化性化合物の溶液(デスミア液)に接触させる方法や、硬化複合体について、支持体を付けた状態のまま、ビアホールないにプラズマ処理を施す方法などが挙げられる。
 本発明の製造方法においては、支持体を付けた状態のまま、ビアホール内の樹脂残渣を除去する処理を行うため、ビアホール以外の部分、具体的には、支持体と接触している硬化樹脂層表面部分が、過マンガン酸塩などの酸化性化合物の溶液に接触したり、あるいは、プラズマ処理に晒されることにより、粗れてしまう等の不具合を有効に防止しながら、ビアホール内の樹脂残渣を適切に除去できるものである。そして、これにより、支持体を剥離した後の硬化樹脂層を、その表面粗度が低いものとすることができることにより、電気絶縁層としての電気特性に優れたものとすることができ、また、ビアホール内の樹脂残渣を適切に除去できることにより、ビアホールの導通信頼性を高めることができる。
 特に、過マンガン酸塩などの酸化性化合物の溶液に接触したり、あるいは、プラズマ処理に晒されると、硬化樹脂層表面が粗れてしまったり、さらに、プラズマ処理を用いた場合には、硬化樹脂層表面が酸化したり、樹脂自体が破壊されてしまい、硬化樹脂層の電気特性が大きく低下するという不具合がある。これに対し、本発明の製造方法においては、支持体を付けた状態のまま、ビアホール内の樹脂残渣を除去する処理を行うため、このような不具合の発生を有効に防止しながら、ビアホール内の樹脂残渣を適切に除去できるものである。
 ビアホール内の樹脂残渣を除去する方法としては、上述した過マンガン酸塩などの酸化性化合物の溶液に接触させる方法や、プラズマ処理を施す方法などが挙げられるが、表面粗度をより低く抑えることができるという点や、支持体を付けた状態のままの処理を簡便に行うことができるという点より、プラズマ処理を施す方法が好ましい。
 プラズマ処理の方法としては、たとえば、真空プラズマ装置や、常圧プラズマ装置などを用いて行うことができる。そして、プラズマとしては、酸素プラズマなどの反応性のガスを用いたプラズマや、アルゴンプラズマ、ヘリウムプラズマなどの不活性ガスを用いたプラズマ、これらの混合ガスのプラズマなど、公知のプラズマを用いることができる。これらのなかでも、酸素プラズマを用いることが好ましい。プラズマ処理を行う際の処理時間としては、特に限定されないが、好ましくは1秒~30分、より好ましくは10秒~10分である。
 また、過マンガン酸塩などの酸化性化合物の溶液に接触させる方法としては、特に限定されないが、過マンガン酸ナトリウム濃度60g/リットル、水酸化ナトリウム濃度28g/リットルになるように調整した60~80℃の水溶液に、ビアホールを形成した後の硬化複合体を、支持体が付いた状態のまま、1~50分間揺動浸漬する方法や、このような水溶液をビアホール内に充填する方法などが挙げられる。
(第6工程)
 本発明の製造方法の第6工程は、支持体付き硬化複合体から支持体を剥離することで、基材及び硬化樹脂層からなる硬化複合体を得る工程である。支持体を剥離する方法としては、特に限定されない。
(第7工程)
 本発明の製造方法の第7工程は、支持体を剥離することにより得られた、基材及び硬化樹脂層からなる硬化複合体について、ビアホールの内壁面、及び、硬化樹脂層上に、乾式めっきにより、乾式めっき導体層を形成する工程である。
 本発明の製造方法においては、乾式めっきにより導体層を形成することで、硬化樹脂層の表面粗度が低い場合でも、微細な導体層を高い密着性(硬化樹脂層と、導体層との密着性)にて導体層を形成することができる。
 なお、乾式めっきとしては、特に限定されず、水や溶剤などを実質的に介在させない方法であればよいが、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法などが挙げられる。これらのなかでも、より微細な導体層を、より高い密着性にて形成できるという点より、スパッタリング法が好ましい。
 スパッタリング法を用いて、乾式めっき導体層を形成する方法としては、例えば、真空中で、乾式めっき導体層の原料となるスパッタリングターゲットにArイオンを衝突させて、エネルギーを与え、スパッタリングターゲットを構成する原子を飛び出させ、ビアホールの内壁面、及び、硬化樹脂層に付着させる方法などが挙げられる。また、スパッタリング法としては、DCマグネトロン方式とRFマグネトロン方式とが挙げられるが、いずれも用いることが可能である。
 ビアホールの内壁面、及び、硬化樹脂層上に形成する乾式めっき導体層の厚みは、特に限定されないが、好ましくは50~500nm、より好ましくは100~300nmである。
 また、乾式めっき導体層を形成した後、硬化複合体表面を防錆剤と接触させて防錆処理を施すことができる。また、乾式めっき導体層を形成した後、密着性向上などのため、乾式めっき導体層を加熱することもできる。加熱温度は、通常、50~350℃、好ましくは80~250℃である。なお、この際において、加熱は加圧条件下で実施してもよい。このときの加圧方法としては、例えば、熱プレス機、加圧加熱ロール機などの物理的加圧手段を用いる方法が挙げられる。加える圧力は、通常、0.1~20MPa、好ましくは0.5~10MPaである。この範囲であれば、乾式めっき導体層と電気絶縁層との高い密着性が確保できる。
 そして、このようにして乾式めっきにより形成された乾式めっき導体層上に、さらに、湿式めっきを行うことで、めっきを成長させることが好ましい。湿式めっきとしては特に限定されないが、簡便かつ適切にめっきを成長させることができるという点より、電解めっきが好ましい。そして、このような電解めっきにより、ビアホールの内には導体を充填させることができ、硬化樹脂層上には、厚付けめっきを行うことができる。電解めっきにより、硬化樹脂層上に、厚付けめっきを行う際には、乾式めっきにより形成された乾式めっき導体層上にめっき用レジストパターンを形成し、更にその上に電解めっきを行うことで、めっきを成長させ、次いで、レジストを除去し、更にエッチングにより乾式めっき導体層をパターン状にエッチングすることで、乾式めっき導体層及び湿式めっき導体層からなる導体パターンを形成することが好ましい。そして、この方法により形成される導体パターンは、通常、パターン状の乾式めっき導体層と、その上に成長させた乾式めっき導体層とからなる。
 このようにして本発明の製造方法により得られる積層体は、上記した第1~第7工程を経て得られるものであるため、微細配線化、及び導通信頼性に優れた小径のビアホールの形成が可能であり、かつ、表面粗度が低く、導体層に対する密着性の高い硬化樹脂層を備えるものであり、そのため、このような特性を活かし、多層回路基板として、好適に用いることができる。具体的には、本発明の製造方法により得られる積層体は、硬化樹脂層の表面平均粗度Ra(JIS B0601−2001に準拠)が、好ましくは200nm以下、より好ましくは100nm以下に抑えられたものであり、また、硬化樹脂層の表面十点平均粗さRzjis(JIS B0601−2001付属書1に準拠)が、好ましくは2000nm以下、より好ましくは1000nm以下に抑えられたものであり、また、本発明の製造方法により得られる積層体は、硬化樹脂層と導体層との引き剥がし強さ(JIS C6481−1996に準拠)が、好ましくは5N/cm以上、より好ましくは6N/cm以上であり、このように表面粗度が低く、導体層に対する密着性の高い硬化樹脂層を備えるものである。
 また、このようにして本発明の製造方法により得られる積層体を、上述した本発明の製造方法の第2工程において用いる基材として使用し、上述した第3~第7工程を繰り返し行うことで、更なる多層化を行うことができ、これにより所望の多層回路基板とすることができる。
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」及び「%」は、特に断りのない限り、重量基準である。各種の物性については、以下の方法に従って評価した。
(1)デスミア性
 ビアホール形成後、デスミア処理(プラズマ処理によるデスミア処理、または過マンガン酸塩の水溶液によるデスミア処理)を行った後の硬化複合体について、デスミア処理後のビアホールを電子顕微鏡(倍率:1000倍)で観察し、ビアホール内の樹脂残渣の観察を行い、以下の基準で評価した。
 A:ビア底中心およびビア底周辺のいずれにも樹脂残り無し
 B:ビア底中心には樹脂残りが存在するが、ビア底周辺には樹脂残り無し
 C:ビア底全体に樹脂残りが存在
(2)微細配線形成性
 乾式めっき層を形成した硬化複合体について、形成された乾式めっき層に対し、JCU社製 SAC700W3Cを用いたエッチングを行うことで配線パターンを形成し、形成された配線パターンを下記の基準で評価した。
 A:2/2μmラインアンドスペース(L/S)の配線形成ができた。
 B:4/4μmラインアンドスペース(L/S)の配線形成ができた。
 C:6/6μmラインアンドスペース(L/S)の配線形成ができた。
(3)硬化樹脂層の表面粗度
 得られた多層プリント配線板の硬化樹脂層が露出した部分の表面を、表面形状測定装置(ビーコインスツルメンツ社製、WYKO NT1100)を用いて、測定範囲91μm×120μmにて、表面粗さ(算術平均粗さRa)を5箇所測定し、測定の結果得られた表面粗さの最大値を以下の基準で評価した。
 A:Raが100nm未満
 B:Raが100nm以上、200nm未満
 C:Raが200nm以上
(4)硬化樹脂層と導体層との密着性(ピール強度)
 得られた多層プリント配線板について、硬化樹脂層(電気絶縁層)と導体層(乾式めっき層及び電解銅めっき膜からなる層)との引き剥がし強さをJIS C6481−1996に準拠して測定し、以下の基準で評価した。
 A:ピール強度が5N/cm以上
 B:ピール強度が4N/cm以上、5N/cm未満
 C:ピール強度が4N/cm未満
合成例1
 重合1段目として5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エンを35モル部、1−ヘキセンを0.9モル部、アニソールを340モル部及びルテニウム系重合触媒として4−アセトキシベンジリデン(ジクロロ)(4,5−ジブロモ−1,3−ジメシチル−4−イミダゾリン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウム(C1063、和光純薬社製)を0.005モル部、窒素置換した耐圧ガラス反応器に仕込み、攪拌下に80℃で30分間の重合反応を行ってノルボルネン系開環重合体の溶液を得た。
 次いで、重合2段目として重合1段目で得た溶液中にテトラシクロ[6.5.0.12,5.08,13]トリデカ−3,8,10,12−テトラエンを45モル部、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物を20モル部、アニソールを250モル部及びC1063を0.01モル部追加し、攪拌下に80℃で1.5時間の重合反応を行ってノルボルネン系開環重合体の溶液を得た。この溶液について、ガスクロマトグラフィーを測定したところ、実質的に単量体が残留していないことが確認され、重合転化率は99%以上であった。
 次いで、窒素置換した攪拌機付きオートクレーブに、得られた開環重合体の溶液を仕込み、C1063を0.03モル部追加し、150℃、水素圧7MPaで、5時間攪拌させて水素添加反応を行って、ノルボルネン系開環重合体の水素添加物である脂環式オレフィン重合体(1)の溶液を得た。脂環式オレフィン重合体(1)の重量平均分子量は60,000、数平均分子量は30,000、分子量分布は2であった。また、水素添加率は95%であり、カルボン酸無水物基を有する繰り返し単位の含有率は20モル%であった。脂環式オレフィン重合体(1)の溶液の固形分濃度は22%であった。
実施例1
(第1熱硬化性樹脂組成物の調製)
 ビフェニル構造を有する多価エポキシ化合物(A)としてのビフェニルジメチレン骨格ノボラック型エポキシ樹脂(商品名「NC−3000L」、日本化薬社製、エポキシ当量269)50部、3価以上の多価グリシジル基含有エポキシ化合物(B)としてのテトラキスヒドロキシフェニルエタン型エポキシ化合物(商品名「jER 1031S」、三菱化学社製、エポキシ当量200、軟化点90℃)50部、トリアジン構造含有フェノール樹脂(C)としてのトリアジン構造含有クレゾ−ルノボラック樹脂(商品名「フェノライト LA−3018−50P」、不揮発分50%のプロピレングリコールモノメチルエーテル溶液、DIC社製、活性水酸基当量154)30部(トリアジン構造含有クレゾ−ルノボラック樹脂換算で15部)、活性エステル化合物(D)としての活性エステル化合物(商品名「エピクロン HPC−8000−65T」、不揮発分65%のトルエン溶液、DIC社製、活性エステル基当量223)115.3部(活性エステル化合物換算で75部)、充填剤としてのシリカ(商品名「SC2500−SXJ」、アドマテックス社製)350部、老化防止剤としてのヒンダードフェノール系酸化防止剤(商品名「イルガノックス(登録商標)3114」、BASF社製)1部、及びアニソール110部を混合し、遊星式攪拌機で3分間攪拌した。さらにこれに、硬化促進剤として1−ベンジル−2−フェニルイミダゾールをアニソールに30%溶解した溶液8.3部(1−ベンジル−2−フェニルイミダゾール換算で2.5部)を混合し、遊星式攪拌機で5分間攪拌して第1熱硬化性樹脂組成物のワニスを得た。なお、ワニス中、充填剤の含有量は、固形分換算で64%であった。
(第2熱硬化性樹脂組成物)
 合成例1にて得られた脂環式オレフィン重合体(1)の溶液454部〔脂環式オレフィン重合体(1)換算で100部〕、硬化剤としてのジシクロペンタジエン骨格を有する多価エポキシ化合物(商品名「エピクロン HP7200L」、DIC社製、「エピクロン」は登録商標)36部、無機充填剤としてのシリカ(商品名「アドマファイン SO−C1」、アドマテックス社製、平均粒子径0.25μm、「アドマファイン」は登録商標)24.5部、老化防止剤としてのトリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート(商品名「イルガノックス(登録商標)3114」、BASF社製)1部、紫外線吸収剤としての2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール0.5部、及び硬化促進剤としての1−ベンジル−2−フェニルイミダゾール0.5部を、アニソールに混合して、配合剤濃度が16%になるように混合することで、第2熱硬化性樹脂組成物のワニスを得た。
(硬化複合体の作製)
 上記にて得られた第2熱硬化性樹脂組成物のワニスを、表面に離型層を備えるポリエチレンテレフタレートフィルム(支持体、厚さ50μm)上にワイヤーバーを用いて塗布し、次いで、窒素雰囲気下、80℃で5分間乾燥させて、未硬化の第2熱硬化性樹脂組成物からなる、厚み3μmの第2樹脂層(被めっき層)が形成された支持体付きフィルムを得た。
 次に、支持体付きフィルムの第2熱硬化性樹脂組成物からなる第2樹脂層の形成面に、上記にて得られた第1熱硬化性樹脂組成物のワニスを、ドクターブレード(テスター産業社製)とオートフィルムアプリケーター(テスター産業社製)を用いて塗布し、次いで、窒素雰囲気下、80℃で5分間乾燥させて、総厚みが20μmである第2樹脂層及び第1樹脂層(接着層)が形成された支持体付き硬化性樹脂組成物層を得た。当該支持体付き硬化性樹脂組成物層は、支持体、第2熱硬化性樹脂組成物からなる第2樹脂層、第1熱硬化性樹脂組成物からなる第1樹脂層の順で形成された。
 次いで、上記とは別に、ガラスフィラー及びハロゲン不含エポキシ化合物を含有するワニスをガラス繊維に含浸させて得られたコア材の表面に、厚みが18μmの銅が貼られた、厚み0.8mm、160mm角(縦160mm、横160mm)の両面銅張り基板表面に、配線幅及び配線間距離が50μm、厚みが18μmで、表面が有機酸との接触によってマイクロエッチング処理された導体層を形成して内層基板を得た。
 この内層基板の両面に、上記にて得られた支持体付き硬化性樹脂組成物層を150mm角に切断したものを、支持体が付いた状態で、硬化性樹脂組成物層側の面が内側となるようにして貼り合わせた後、耐熱性ゴム製プレス板を上下に備えた真空ラミネータを用い、200Paに減圧して、温度110℃、圧力0.1MPaで60秒間加熱圧着積層した。次いで、室温で30分間静置した後、180℃で30分間の条件で加熱(第1の加熱)することにより、硬化性樹脂組成物層を硬化させることで、硬化樹脂層(電気絶縁層)を形成した。
 次いで、内層基板の両面に形成した硬化樹脂層に対し、UVレーザー加工機(製品名「LUC−2K21」、日立ビアメカニクス社製)を用いて、支持体が付いた状態のまま、マスク径0.8mm、出力0.4W、バースト100ショットの条件にて、支持体側からUVレーザーを照射することにより、硬化樹脂層に、開口径25μmのビアホールを形成した。
(プラズマ処理によるデスミア処理工程)
 次いで、支持体が付いた状態のまま、得られた硬化複合体について、上記にて形成したビアホール内の樹脂残渣を除去するために、プラズマ発生装置(製品名「NM−FP1 A」、パナソニックファクトリーソリューションズ社製)を用いて、支持体側から、プラズマ処理を行った。なお、この際の条件は、Oガス雰囲気下、処理時間10分、出力500W、ガス圧20Pa、室温とした。次いで、プラズマ処理後の硬化複合体から支持体を剥離した。そして、このようにして支持体を剥離したプラズマ処理(デスミア処理)後の硬化複合体について、上述した方法にしたがって、デスミア性の評価を行った。
(スパッタリングによる乾式めっき層の形成)
 支持体を剥離した硬化複合体の、硬化複合体のビアホール内壁面、及び硬化樹脂層表面(第2熱硬化性樹脂組成物からなる硬化後の第2樹脂層の表面)に、スパッタリング装置(製品名「CFS−4ES/i−Miller」、芝浦エレテック社製)により、スパッタリングターゲットとして、銅ターゲットを用いて、厚み250nmの乾式めっき層を形成した。そして、このようにして乾式めっき層を形成した硬化複合体について、150℃で30分間アニール処理を行い、アニール処理が施された硬化複合体を用いて、上述した方法に従って、微細配線形成性の評価を行った。
(湿式めっき層の形成)
 次いで、アニール処理が施された硬化複合体を、所定パターンでマスクした状態にて、電解銅めっきを施すことで、硬化複合体のビアホール内に、電解銅めっき(湿式めっきにより形成される導体)を充填するとともに、厚さ30μmの電解銅めっき膜(湿式めっき層)を所定パターンで形成させた。次いで当該硬化複合体を180℃で60分間加熱処理した後、乾式めっき層のうち、その上に電解銅めっき膜を形成していない部分を、JCU社製 SAC700W3Cを用いたエッチングにより除去することで、硬化複合体のビアホール内に、乾式めっき層及び電解銅めっき(湿式めっき)からなる導体が充填され、かつ、硬化複合体の硬化樹脂層(電気絶縁層)上に乾式めっき層及び電解銅めっき膜(湿式めっき層)からなる導体層が形成された両面2層の多層プリント配線板を得た。そして、得られた多層プリント配線板を用いて、硬化樹脂層の表面粗度の測定及び硬化樹脂層と導体層との密着性(ピール強度)の評価を行った。結果を表1に示す。
比較例1
 支持体付き硬化性樹脂組成物層を、内層基板の両面に貼り合わせた後、支持体を剥離し、支持体を剥離した状態で、硬化性樹脂組成物層の硬化、ビアホールの形成、及びプラズマ処理によるデスミア処理を行った以外は、実施例1と同様にして、硬化複合体及び多層プリント配線板を得て、同様に評価を行った。結果を表1に示す。
比較例2
 スパッタリングにより、乾式めっき層を形成する代わりに、無電解めっきにより無電解めっき層を形成し、次いで、この無電解めっき層上に、電解銅めっき膜を形成した以外は、実施例1と同様にして、硬化複合体及び多層プリント配線板を得て、同様に評価を行った。結果を表1に示す。なお、無電解めっき層の形成は、国際公開第2012/090980号の実施例2と同様の方法により行った。
比較例3
 支持体付き硬化性樹脂組成物層を、内層基板の両面に貼り合わせた後、支持体を剥離し、支持体を剥離した状態で、硬化性樹脂組成物層の硬化、及びビアホールの形成を行うとともに、デスミア処理をプラズマ処理による方法に代えて、過マンガン酸塩の水溶液を用いた方法により行った以外は、比較例2と同様にして、硬化複合体及び多層プリント配線板を得て、同様に評価を行った。結果を表1に示す。なお、過マンガン酸塩の水溶液を用いたデスミア処理は、国際公開第2012/090980号の実施例2と同様に行った。
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、本発明の製造方法によれば、ビアホール内の樹脂残渣が適切に除去され(デスミア性に優れ)、これにより導通信頼性に優れ、微細な配線を形成可能であり、かつ、表面粗度が低く、導体層に対する密着性に優れた硬化樹脂層(電気絶縁層)を備えた積層体が得られる結果となった(実施例1)。
 一方、支持体を剥離した状態で、硬化性樹脂組成物層の硬化、ビアホールの形成、及びデスミア処理(プラズマ処理による方法、及び過マンガン酸塩の水溶液による方法のいずれも)を行なった場合には、微細な配線を形成することができず、また、硬化樹脂層の表面粗度が高くなる結果となった(比較例1,3)。
 さらに、硬化樹脂層上に直接形成する導体層を、乾式めっきにより形成する方法に代えて、無電解めっきにより形成した場合には、硬化樹脂層と導体層との密着性に劣る結果となった(比較例2)。

Claims (7)

  1.  支持体上に、熱硬化性樹脂組成物からなる硬化性樹脂組成物層を形成することで、支持体付き硬化性樹脂組成物層を得る第1工程と、
     前記支持体付き硬化性樹脂組成物層を、硬化性樹脂組成物層形成面側にて、基材に積層させることで、基材と、支持体付き硬化性樹脂組成物層とからなる支持体付き硬化前複合体を得る第2工程と、
     前記複合体について加熱を行い、前記硬化性樹脂組成物層を熱硬化させることで、硬化樹脂層とすることで、基材と、支持体付き硬化樹脂層とからなる支持体付き硬化複合体を得る第3工程と、
     前記支持体付き硬化複合体の前記支持体側から穴開けを行うことで、前記硬化樹脂層にビアホールを形成する第4工程と、
     前記硬化複合体のビアホール内の樹脂残渣を除去する第5工程と、
     前記支持体付き硬化複合体から前記支持体を剥離することで、基材及び硬化樹脂層からなる硬化複合体を得る第6工程と、
     前記硬化複合体のビアホールの内壁面、及び、前記硬化樹脂層上に、乾式めっきにより、乾式めっき導体層を形成する第7工程と、を有することを特徴とする積層体の製造方法。
  2.  前記第5工程における、ビアホール内の樹脂残渣の除去を、プラズマ処理により行うことを特徴とする請求項1に記載の積層体の製造方法。
  3.  前記第7工程における、乾式めっきを、スパッタリング法により行うことを特徴とする請求項1または2に記載の積層体の製造方法。
  4.  前記乾式めっき導体層上に、さらに湿式めっきを行うことで、前記乾式めっき導体層上に、湿式めっき導体層を形成する第8工程をさらに備えることを特徴とする請求項1~3のいずれかに記載の積層体の製造方法。
  5.  前記第8工程において、前記ビアホール内を、前記乾式めっき導体層上に形成した湿式めっき導体層で充填することを特徴とする請求項4に記載の積層体の製造方法。
  6.  請求項1~5のいずれかの製造方法により得られる積層体。
  7.  請求項6に記載の積層体からなる多層回路基板。
PCT/IB2015/002087 2014-09-30 2015-09-30 積層体の製造方法 WO2016051273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/514,493 US20180007800A1 (en) 2014-09-30 2015-09-30 Laminate production method
KR1020177011414A KR101958764B1 (ko) 2014-09-30 2015-09-30 적층체의 제조 방법
CN201580064583.7A CN107211540B (zh) 2014-09-30 2015-09-30 层叠体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014199891A JP2016072419A (ja) 2014-09-30 2014-09-30 積層体の製造方法
JP2014-199891 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051273A1 true WO2016051273A1 (ja) 2016-04-07

Family

ID=55629489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/002087 WO2016051273A1 (ja) 2014-09-30 2015-09-30 積層体の製造方法

Country Status (5)

Country Link
US (1) US20180007800A1 (ja)
JP (1) JP2016072419A (ja)
KR (1) KR101958764B1 (ja)
CN (1) CN107211540B (ja)
WO (1) WO2016051273A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069978B2 (en) * 2017-04-07 2021-07-20 Skyworks Solutions, Inc. Method of manufacturing a radio-frequency module with a conformal shield antenna
JP2023140144A (ja) * 2022-03-22 2023-10-04 トヨタ自動車株式会社 表面が粗化された基板の製造方法及びめっき層を有する基板の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093355A (ja) * 2012-11-01 2014-05-19 Ajinomoto Co Inc プリント配線板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587884B2 (ja) * 1994-07-21 2004-11-10 富士通株式会社 多層回路基板の製造方法
JP4300687B2 (ja) 1999-10-28 2009-07-22 味の素株式会社 接着フィルムを用いた多層プリント配線板の製造法
TW521548B (en) * 2000-10-13 2003-02-21 Zeon Corp Curable composition, molded article, multi-layer wiring substrate, particle and its manufacturing process, varnish and its manufacturing process, laminate, and flame retardant slurry
JP2005045150A (ja) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd 中間接続用配線基材および多層配線基板、ならびにこれらの製造方法
JPWO2007061086A1 (ja) * 2005-11-25 2009-05-07 日本ゼオン株式会社 硬化性樹脂組成物およびその利用
CN103140537B (zh) * 2010-08-10 2016-10-12 日立化成株式会社 树脂组合物、树脂固化物、配线板及配线板的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093355A (ja) * 2012-11-01 2014-05-19 Ajinomoto Co Inc プリント配線板の製造方法

Also Published As

Publication number Publication date
JP2016072419A (ja) 2016-05-09
KR20170063844A (ko) 2017-06-08
CN107211540A (zh) 2017-09-26
US20180007800A1 (en) 2018-01-04
KR101958764B1 (ko) 2019-03-15
CN107211540B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
US10721823B2 (en) Laminate production method
US10716222B2 (en) Laminate production method
TWI627225B (zh) 硬化性環氧組成物、膜片、積層膜片、預浸體、積層體、硬化物、及複合體
TW201441299A (zh) 硬化性樹脂組成物、絕緣薄膜、預浸材料、硬化物、複合體以及電子材料用基板
JP6351062B2 (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
KR20150133704A (ko) 경화성 에폭시 조성물, 필름, 적층 필름, 프리프레그, 적층체, 경화물 및 복합체
KR101958764B1 (ko) 적층체의 제조 방법
JP2015143302A (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP6436173B2 (ja) 硬化性エポキシ組成物、並びに、これを用いて得られるフィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2016033188A (ja) 硬化樹脂膜の製造方法
JP2016115713A (ja) 多層プリント配線板の製造方法
TWI705898B (zh) 層積體之製造方法
TWI674051B (zh) 層積體、包含該層積體之多層電路基板及該層積體之製造方法
TWI691246B (zh) 層積體之製造方法
TWI741973B (zh) 層積體之製造方法,層積體及多層電路基板
TW201728453A (zh) 層積體之製造方法
JP6432604B2 (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
TWI681000B (zh) 硬化樹脂膜之製造方法
JP6808944B2 (ja) 多層プリント配線板用の接着フィルム
JP6458921B2 (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2016010938A (ja) 積層体の製造方法
JP2016022646A (ja) 積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177011414

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15514493

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15845894

Country of ref document: EP

Kind code of ref document: A1