WO2016047760A1 - ニッケルペースト及びニッケルペーストの製造方法 - Google Patents

ニッケルペースト及びニッケルペーストの製造方法 Download PDF

Info

Publication number
WO2016047760A1
WO2016047760A1 PCT/JP2015/077119 JP2015077119W WO2016047760A1 WO 2016047760 A1 WO2016047760 A1 WO 2016047760A1 JP 2015077119 W JP2015077119 W JP 2015077119W WO 2016047760 A1 WO2016047760 A1 WO 2016047760A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
transfer accelerator
dispersion transfer
anionic surfactant
mass
Prior art date
Application number
PCT/JP2015/077119
Other languages
English (en)
French (fr)
Inventor
有香 滝田
山辺 秀敏
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201580043272.2A priority Critical patent/CN106575542B/zh
Priority to JP2016550399A priority patent/JP6222373B2/ja
Publication of WO2016047760A1 publication Critical patent/WO2016047760A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Definitions

  • the present invention relates to a nickel paste that can be suitably used for an internal electrode of a multilayer ceramic capacitor, for example, and a method for producing the nickel paste.
  • nickel paste used for an internal electrode of a multilayer ceramic capacitor (hereinafter also referred to as “MLCC”) is manufactured by kneading nickel powder in a vehicle, and contains a large number of aggregates of nickel powder.
  • MLCC multilayer ceramic capacitor
  • it is normal to have a drying step regardless of the metal powder production method (dry method, wet method), and this drying step promotes agglomeration of nickel particles.
  • the resulting nickel powder contains aggregates produced during drying.
  • Recent multilayer ceramic capacitors are required to increase the number of laminated ceramic green sheets with internal electrode layers from several hundred to about 1000 layers in order to achieve a small size and large capacity. For this reason, studies have been made to reduce the thickness of the internal electrode layer from the conventional several ⁇ m level to the submicron level, and accordingly, the particle size of nickel powder, which is an electrode material for internal electrodes, has been reduced. It has been.
  • metal ultrafine powder such as nickel ultrafine powder has poor dispersibility, and when aggregates are present, the ceramic sheet layer penetrates when the nickel powder is sintered in the firing process during the production of the ceramic capacitor. Therefore, it becomes a defective product in which the electrodes are short-circuited. Further, even if the ceramic sheet layer cannot be penetrated, the current between the electrodes is reduced due to the short distance between the electrodes, which causes the life of the multilayer ceramic capacitor to deteriorate.
  • Patent Document 1 discloses the following technique. That is, first, with respect to what added specific anionic surfactant to the metal ultrafine powder water slurry (metal ultrafine powder concentration: 50 mass%) in the ratio of 0.3 mass part with respect to 100 mass parts of metal ultrafine powder. Then, a dispersion process using a process homogenizer or the like is performed for a predetermined time to disperse aggregates of ultrafine metal powder in water to primary particles. Thereafter, as an organic solvent, for example, 10 parts by mass of terpineol is added to 100 parts by mass of the metal ultrafine powder. Thereby, the terpineol layer containing the metal powder becomes a continuous layer and becomes a precipitate, and water is separated as a supernatant to obtain a metal ultrafine powder organic solvent slurry.
  • organic solvent for example, 10 parts by mass of terpineol is added to 100 parts by mass of the metal ultrafine powder.
  • an object of the present invention is to provide a nickel paste that can be suitably used as a material for an internal electrode of a multilayer ceramic capacitor and a method for producing the nickel paste that hardly changes in viscosity with time and has excellent stability. .
  • the present inventors previously added a dispersion migration accelerator having a specific type and amount of an anionic surfactant structure together with an organic solvent to a water slurry of nickel powder. Later, it was found that the above-mentioned problems can be solved by adding a specific kind and amount of an amine-based dispersion transfer accelerator to the slurry, and the present invention has been completed. Specifically, the present invention provides the following.
  • the first invention of the present invention is a nickel paste containing at least nickel powder, a dispersion transfer accelerator, an organic solvent, and a binder resin, wherein the dispersion transfer accelerator has the following general formula: (1) A dispersion transfer accelerator having one or more anionic surfactant structures represented by (2) and (3), and an amine dispersion transfer accelerator, the anion type The content of the dispersion transfer accelerator having a surfactant structure is 0.16 parts by mass to 3.0 parts by mass with respect to 100 parts by mass of the nickel powder, and the content of the amine dispersion transfer accelerator is It is 0.2 to 4 times the amount of the dispersion transfer accelerator having the anionic surfactant structure, the nickel concentration is 50% by mass to 70% by mass, and the viscosity is 8 Pa ⁇ s to 150 Pa ⁇ s.
  • the dispersion transfer accelerator having the anionic surfactant structure is lauroyl sarcosine, lauroylmethyl- ⁇ -alanine, myristoylmethyl- ⁇ -alanine. Cocoyl sarcosinate, myristoyl sarcosinate, palmitoyl sarcosine, stearoyl sarcosine, N-oleyl-N-methyl glycine, N-palmitolein-N-methyl glycine, N-baxen-N-methyl glycine, N-nerbon-N-
  • the nickel paste is one or more selected from the group consisting of methylglycine.
  • an amine-based dispersion migration accelerator is further added.
  • a kneading step of adding and kneading a binder resin to the organic layer nickel organic slurry, and in the nickel organic slurry forming step, the dispersion transfer accelerator having the anionic surfactant structure is represented by the following general formula: Any one or more of (1), (2), and (3) are added, and dispersion transfer promotion having the anionic surfactant structure with respect to the nickel powder
  • the amount of addition is a quantity total molecular cross-sectional area of the dispersing transfer promoter having anion type sur
  • the dispersion transfer accelerator having the anionic surfactant structure may be lauroyl sarcosine, lauroylmethyl- ⁇ -alanine, myristoylmethyl- ⁇ -alanine. Cocoyl sarcosinate, myristoyl sarcosinate, palmitoyl sarcosine, stearoyl sarcosine, N-oleyl-N-methyl glycine, N-palmitolein-N-methyl glycine, N-baxen-N-methyl glycine, N-nerbon-N- A method for producing a nickel paste, comprising at least one selected from the group consisting of methylglycine.
  • the fifth invention of the present invention is the nickel paste according to the third or fourth invention, wherein in the kneading step, the binder resin is added as a vehicle containing a concentration of 5% by mass or more. It is a manufacturing method.
  • the nickel paste according to the present invention has almost no change in viscosity with time, is excellent in stability, and can be suitably used as a material for an internal electrode of a multilayer ceramic capacitor.
  • the drying step since the drying step is not included, the oxidation of nickel powder can be suppressed, there is no dry aggregation, and a stable nickel paste can be obtained in terms of quality, At the same time, since nickel dust, which is a harmful substance, is not generated, it is excellent from the viewpoint of health and safety. And since the obtained nickel paste has very high viscosity stability and becomes a paste having a long pot life, it is possible to efficiently ensure stable quality and to reduce costs.
  • the present embodiment a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably.
  • the expression “x to y” (x and y are arbitrary numerical values) means “x or more and y or less” unless otherwise specified.
  • the nickel paste according to the present embodiment is a nickel paste containing at least nickel powder, a dispersion transfer accelerator, an organic solvent, and a binder resin.
  • the dispersion transfer accelerator includes a dispersion transfer accelerator having one or more anionic surfactant structures represented by the following general formulas (1), (2), and (3), and an amine-based dispersion. It is a migration promoter.
  • n is an integer of 10 to 20.
  • the content of the dispersion transfer accelerator having the anionic surfactant structure described above is 0.16 parts by mass to 3.0 parts by mass with respect to 100 parts by mass of nickel powder.
  • the content of the migration accelerator is 0.2 to 4 times the amount of the dispersion migration accelerator having an anionic surfactant structure.
  • the nickel concentration in the nickel paste is 50% by mass to 70% by mass.
  • the nickel paste has a viscosity of 8 Pa ⁇ s to 150 Pa ⁇ s, and a moisture content measured by the Karl Fischer method is less than 1% by mass.
  • the nickel powder as a constituent component is dispersed with less aggregation, and can be suitably used, for example, for an internal electrode of a high multilayer ceramic capacitor.
  • this nickel paste is excellent in stability with no change in viscosity with time and becomes a paste having a long pot life, so that stable quality can be secured efficiently.
  • Nickel powder is a constituent component of the nickel paste, and various nickel powders can be used regardless of a production method such as a wet method or a dry method.
  • a production method such as a wet method or a dry method.
  • it may be nickel powder by a so-called dry method such as a CVD method, an evaporative quenching method, a hydrogen reduction method using nickel salt or nickel hydroxide, and a reducing agent such as hydrazine is added to the nickel salt solution.
  • Nickel powder by a so-called wet method such as the used wet reduction method may be used.
  • the nickel powder is preferably ultrafine particles having an average particle diameter of 0.05 ⁇ m to 0.5 ⁇ m.
  • the ultrafine nickel powder can be suitably used as, for example, an internal electrode of a multilayer ceramic capacitor. From the viewpoint of corresponding to the thinning required in recent years as an internal electrode of MLCC, it is necessary to use nickel powder having an average particle diameter of about 0.05 ⁇ m to 0.3 ⁇ m, particularly at an internal level of 1000 layers. In order to obtain an electrode, nickel powder having an average particle size of submicron is required, and it is more preferable to use nickel powder of 0.05 ⁇ m to 0.1 ⁇ m.
  • the dispersion transfer accelerator is adsorbed and coated on the surface of the nickel powder, and acts to improve the dispersibility in the nickel paste.
  • the dispersion transfer accelerator contains a dispersion transfer accelerator having an anionic surfactant structure and an amine-based dispersion transfer accelerator.
  • the whole quantity contains the mix
  • the surfaces of the nickel powder particles are oxidized in the air and hydrated with water in the air to form hydroxyl groups. This is the same in water. Since the hydroxyl group formed on the surface shows basicity in the case of nickel, naturally, a dispersion transfer accelerator having an anionic surfactant structure such as an organic acid such as carboxylic acid or sarcosine acid is strongly present at the terminal.
  • the surface of nickel powder can be treated by so-called neutralization reaction.
  • a part of the surface of the nickel powder has a part where the metallic nickel is exposed (hereinafter also referred to as “metallic nickel part”), and this part acts as a Lewis acid. Therefore, such a metal nickel part cannot adsorb a dispersion transfer accelerator having an anionic surfactant structure such as an organic acid such as carboxylic acid or sarcosine acid at the terminal. It is known that this metallic nickel part is increased by slurry-like wet nickel powder not accompanied by heat drying. On the other hand, when wet nickel powder is heated and dried in the air, the surface is oxidized, Such nickel metal parts are reduced.
  • the present inventor uses the amine-based dispersion transfer accelerator, which is a basic substance, after surface coating with a dispersion transfer accelerator having an anionic surfactant structure such as an organic acid such as carboxylic acid and sarcosine acid at the terminal. It has been found that by further applying a surface coating, the Lewis acid point can be neutralized, and as a result, the thickening phenomenon when paste-formed can be suppressed.
  • Dispersion migration accelerator having an anionic surfactant structure First, as a dispersion transfer accelerator having an anionic surfactant structure, the dispersion transfer accelerator having an anionic surfactant structure represented by the following general formulas (1), (2), and (3): Any one or more of the agents can be used.
  • n in the formula is an integer of 10 to 20.
  • dispersion transfer accelerator having such an anionic surfactant structure examples include lauroyl sarcosine, lauroylmethyl- ⁇ -alanine, myristoylmethyl- ⁇ -alanine, cocoyl sarcosinate, myristoyl sarcosinate, One selected from the group consisting of palmitoyl sarcosine, stearoyl sarcosine, N-oleyl-N-methyl glycine, N-palmitolein-N-methyl glycine, N-baxene-N-methyl glycine, N-nervone-N-methyl glycine It can be contained, or can be contained in combination of two or more selected from these.
  • the amine-based dispersion transfer accelerator is not particularly limited, but may include those having a structure such as an alkyl having a primary, secondary, or tertiary amino group at the terminal, or a polyalkylene oxide.
  • a structure such as an alkyl having a primary, secondary, or tertiary amino group at the terminal, or a polyalkylene oxide.
  • oleylamine, polyoxyethylene alkylamine, polyoxyethylene alkylamide and the like can be exemplified.
  • Organic solvent is a solvent that is usually used as a solvent for conductive paste, and is not particularly limited as long as it is a solvent that can dissolve the above-described dispersion transfer accelerator.
  • organic solvents such as terpene alcohols and aliphatic hydrocarbons are preferable.
  • examples of the terpene alcohol-based organic solvent include terpineol (terpineol), dihydroterpineol, terpineol acetate, borneol, geraniol, linalool, and the like.
  • examples of the aliphatic hydrocarbon organic solvent include n-decane, n-dodecane, mineral spirit, and the like. These organic solvents may be used individually by 1 type, and may use 2 or more types together.
  • Binder resin As the binder resin, for example, it has a structure selected from a cellulose structure, a cellulose ester structure, and a cellulose ether structure, and a functional group (acid group) such as a carboxyl group is introduced, but at least one kind is included. Can do.
  • the nickel paste which concerns on this Embodiment can be made to contain various additives as needed in the range which does not impair the effect
  • a dispersant for further improving the dispersibility of nickel powder in the paste a viscosity modifier for adjusting viscosity, a rheology control agent for improving thixotropy, and the like can be added.
  • the nickel paste manufacturing method according to the present embodiment includes at least the following three steps [A] to [C].
  • the manufacturing method of this nickel paste is: [A] To an aqueous slurry of nickel powder, an organic solvent and a dispersion transfer accelerator having an anionic surfactant structure are added, and then an amine dispersion transfer accelerator is further added to form a nickel organic slurry. A nickel organic slurry forming step, [B] A water separation step of separating an aqueous layer from a nickel organic slurry separated into an aqueous layer and an organic layer to obtain an organic layer nickel organic slurry; [C] a kneading step of adding a binder resin to the organic layer nickel organic slurry and kneading; have. Below, each process is demonstrated in detail.
  • Nickel organic slurry forming step In the step [A], an organic solvent and a dispersion transfer accelerator having an anionic surfactant structure are added to an aqueous slurry of nickel powder (nickel powder water slurry), and the mixture is stirred and mixed. A nickel organic slurry is obtained by adding an amine-based dispersion transfer accelerator to the mixture and stirring and mixing.
  • Nickel powder water slurry As described above, various kinds of nickel powder can be used regardless of the production method such as a wet method or a dry method, for example, a so-called wet method such as a wet reduction method using a reducing agent such as hydrazine. It is preferred to use nickel powder according to
  • the nickel powder it is preferable to use an ultrafine nickel powder having an average particle diameter of 0.05 ⁇ m to 0.5 ⁇ m manufactured by a wet method.
  • the ultrafine nickel powder having an average particle diameter of 0.05 ⁇ m to 0.5 ⁇ m is suitably used as a multilayer ceramic capacitor internal electrode application, and the use of such nickel powder makes the effect appear more remarkably.
  • step [A] a nickel powder water slurry can be obtained by dispersing such ultrafine nickel powder in water by a conventionally known method.
  • the nickel content in the nickel powder water slurry is not particularly limited, but is preferably 20% by mass to 75% by mass.
  • the content is less than 20% by mass, the amount of water is excessively large, and a large amount of the organic solvent used for obtaining the nickel organic slurry is also used.
  • nickel concentration becomes low, it becomes difficult to produce
  • the content exceeds 75% by mass, the amount of moisture decreases, separation from the organic solvent becomes insufficient, and moisture tends to remain.
  • the dispersion transfer accelerator having an anionic surfactant structure includes an anionic interface having a specific structure represented by the following general formulas (1), (2), and (3). Any one or more of the activators can be used.
  • n in the formula is an integer of 10 to 20.
  • the hydrophilicity becomes strong and it becomes difficult for water to escape.
  • the number of n is larger than 20, it becomes lipophilic and easily removes water, but is difficult to dissolve in an organic solvent and cannot efficiently coat the surface of nickel powder.
  • cocoyl sarcosinate generally formula (1), molecular formula: C 16 H 31 NO 3
  • myristoyl sarcosinate generally formula (1), molecular formula: C 17 H 33 NO 3
  • palmitoyl sarcosine generally formula ( 1), molecular formula: C 19 H 37 NO 3
  • stearoyl sarcosine generally formula (1), molecular formula: C 22 H 43 NO 3
  • dispersion transfer accelerator having an anionic surfactant structure represented by the general formula (2)
  • the chemical name “lauroylmethyl- ⁇ -alanine” (chemical formula: (2-1) below, molecular formula: C 16 H 31 NO 3 , CAS No. 21539-57-1)
  • chemical name “myristoylmethyl- ⁇ -alanine” (chemical formula: (2-2) below, molecular formula: C 18 H 35 NO 3 , CAS No. 21539) -71-9) and the like.
  • m + n 12 to 20.
  • Organic solvent is a solvent that is usually used as a solvent for a conductive paste and is not particularly limited as long as it can dissolve the dispersion transfer accelerator, but as described above, terpene alcohol-based, aliphatic hydrocarbon-based It is preferable to use an organic solvent such as
  • terpene alcohol-based organic solvent examples include terpineol (terpineol), dihydroterpineol, terpineol acetate, borneol, geraniol, linalool and the like.
  • aliphatic hydrocarbon organic solvent examples include n-decane, n-dodecane, mineral spirit, and the like. These organic solvents can be used alone or in combination of two or more.
  • step (A) an organic solvent and a dispersion transfer accelerator having an anionic surfactant structure are added to and mixed with an aqueous slurry of nickel powder, and then the amine solution is added to the mixture. A dispersion transfer accelerator is further added.
  • amine-based dispersion transfer accelerator those having a structure such as alkyl having a primary, secondary, or tertiary amino group at the terminal, or a polyalkylene oxide can be used as described above.
  • alkyl having a primary, secondary, or tertiary amino group at the terminal or a polyalkylene oxide
  • polyalkylene oxide for example, oleylamine, polyoxyethylene alkylamine, polyoxyethylene alkylamide and the like can be exemplified.
  • step (A) an organic solvent and an organic solution containing a dispersion transfer accelerator having an anionic surfactant structure are mixed with a dispersion transfer accelerator having an anionic surfactant structure ( (Dispersion transfer accelerator organic solution) is obtained, and then, the nickel organic slurry is obtained by mixing the dispersion transfer accelerator organic solution and an aqueous slurry of nickel powder. Next, the nickel organic slurry is obtained by further adding and mixing an amine-based dispersion transfer accelerator to the nickel organic slurry.
  • the amount of dispersion transfer accelerator having an anionic surfactant structure and (ii) dispersion transfer promotion having an anionic surfactant structure are added.
  • the ratio “S 1 / W” between the amount S 1 of the organic solvent in which the agent is dissolved and the amount of water W in the nickel powder water slurry, and (iii) the amount of the amine-based dispersion transfer accelerator added are important. By setting these addition amounts and the ratio “S 1 / W” within an appropriate range, the surface of the nickel powder can be uniformly coated with the dispersion transfer accelerator.
  • the addition amount of dispersion transfer accelerator having an anionic surfactant structure is The total molecular cross-sectional area of the dispersion transfer accelerator is set to an amount that is 1 to 4 times the total surface area of the nickel powder.
  • the addition amount of the dispersion migration accelerator having this anionic surfactant structure can be calculated by, for example, the anionic surfactant structure to be added, which can be calculated by the method described in Non-Patent Document 1.
  • the molecular cross-sectional area per molecule of the dispersion transfer accelerator also referred to as the adsorption cross-sectional area, which corresponds to the projected area of the molecule on the plane) is used.
  • Surface area total molecular cross-sectional area of dispersion transfer accelerator having an anionic surfactant structure ”, which is the amount of dispersion transfer accelerator having an anionic surfactant structure).
  • This theoretically calculated amount X value can be regarded as an amount corresponding to the minimum amount of the dispersion transfer accelerator necessary to uniformly adsorb and coat all the surfaces of the nickel powder.
  • the cross-sectional area of the molecule is generally the same as the molecule for which a structure-optimized van der Waals (vdw) radius display is prepared and an atom with a known vdw radius such as a carbon atom is to be measured. Displayed on the screen as a calibration curve. The number of dots constituting the “circle” of the atom serving as the calibration curve is measured by image processing software, and the area per dot of the screen is obtained from the vdw radius of the atom and the area of the circle. Next, the molecular cross-sectional area can be obtained by calculating the number of dots of the molecule whose cross-sectional area is to be measured.
  • vdw van der Waals
  • Non-Patent Document 1 the cross-sectional area in the most stable conformation among the conformations of the dispersion transfer accelerator can be calculated as the molecular cross-sectional area.
  • This Non-Patent Document 1 exemplifies a method for calculating a molecular cross-sectional area using a typical higher fatty acid stearic acid as an example.
  • a cross-sectional view of stearic acid is drawn from the structural formula (a) of stearic acid and the space filling model (b) shown in this document.
  • the cross-sectional area can be obtained by drawing on graph paper using the coupling distance and the vdw radius, cutting the paper, and weighing the paper.
  • the molar mass is determined from the chemical formula of lauroyl sarcosine, it is 256 g / mol. That is, the weight of one molecule is 4.25E- 22 (g).
  • the amount of lauroyl sarcosine which is a dispersion transfer accelerator necessary for coating the surface 1 m 2 of the nickel powder, is 4.27E + 18 in number and 1.82E ⁇ 3 g in mass. Therefore, from this, the molecular cross-sectional area of lauroyl sarcosine can be calculated as 0.00182 g / m 2 .
  • the surface area of the Ni powder n (g) of the specific surface area A (m 2 / g) to be used is nAm 2 , and by multiplying these, lauroyl which is a dispersion transfer accelerator having an anionic surfactant structure
  • the theoretical calculation amount X value of sarcosine can be calculated as nA ⁇ 0.00182 (g).
  • a dispersion transfer accelerator having an anionic surfactant structure is added. If the addition amount of the dispersion transfer accelerator having an anionic surfactant structure is less than 1 times the theoretical calculation amount X value, the dispersion transfer accelerator cannot uniformly cover the surface of the nickel powder. Water in the organic nickel paste produced by the kneading process remains. On the other hand, if the addition amount is more than four times the theoretical calculation amount X value, the dispersion transfer accelerator is coated on the nickel powder surface in layers, so that water is embraced at that time, On the contrary, the residual amount of water increases.
  • the amount of the dispersing transfer promoter having a surfactant structure it is preferably, 0.00150g / m 2 ⁇ 0.00900g / m 2 is a 0.00100g / m 2 ⁇ 0.00900g / m 2 It is more preferable that it is 0.00182 g / m 2 to 0.00856 g / m 2 .
  • a dispersion transfer accelerator organic solution in which the dispersion transfer accelerator is dissolved and the nickel powder water slurry
  • the method is not particularly limited, and for example, a method using a known dispersion processing apparatus such as a ball mill, a homogenizer, a mortar, an automatic mortar, a kneader, or a planetary mixer can be used. If necessary, the pressure may be reduced by a vacuum pump or an aspirator to perform defoaming or dehydration. Moreover, you may make it perform a heating and cooling process.
  • the dispersion transfer having an organic solvent and an anionic surfactant structure in the nickel powder water slurry. It is characterized in that a nickel organic slurry is obtained by adding an accelerator and stirring and mixing, and then adding an amine-based dispersion transfer accelerator to the mixture and stirring and mixing.
  • the addition amount of the amine-based dispersion transfer accelerator is 0.2 to 4 times the addition amount of the dispersion transfer accelerator having the anionic surfactant structure described above.
  • the addition amount of the amine-based dispersion transfer accelerator is less than 0.2 times the addition amount of the dispersion transfer accelerator having an anionic surfactant structure, the change over time of the finally obtained nickel paste Can not be suppressed.
  • the addition amount of the amine-based dispersion transfer accelerator exceeds 4 times the addition amount of the dispersion transfer accelerator having an anionic surfactant structure, the water content by the Karl Fischer method is 1 A good nickel paste of less than mass% cannot be obtained effectively, and the effect cannot be sufficiently achieved.
  • step [B] Water separation step>
  • step [B] the aqueous layer is separated from the nickel organic slurry separated into the aqueous layer and the organic layer to obtain an organic nickel organic slurry.
  • the nickel organic slurry is obtained by mixing and stirring in the step [A] described above, the nickel powder in the nickel organic slurry is dispersed and transferred to the organic layer, and the supernatant water is separated and removed by a conventionally known method. A layer nickel organic slurry can be obtained.
  • step [C] a binder resin is added to the organic layer nickel organic slurry and kneaded.
  • water remaining in the slurry can be effectively separated and removed by a so-called flushing process in which the organic layer nickel organic slurry and the binder resin are kneaded.
  • a nickel paste having a moisture content measured by the Karl Fischer method of less than 1% by mass can be obtained.
  • the binder resin is not particularly limited, but is preferably added as a vehicle obtained by dissolving the resin in an organic solvent.
  • the vehicle is obtained by dissolving a resin in an organic solvent
  • the organic solvent may be one usually used for the purpose of conductive paste.
  • the resin a resin containing at least one selected from the group consisting of compounds having a cellulose structure, a cellulose ester structure, and a cellulose ether structure can be used.
  • the organic solvent is not particularly limited as long as it can dissolve the above-described resin.
  • a solvent such as a terpene alcohol type or an aliphatic hydrocarbon type is preferable, and the above-described step [A ] The same organic solvent used in the nickel organic slurry forming step is preferably used.
  • the concentration of the vehicle to be used is not particularly limited, but is preferably 5% by mass or more, and more preferably 10% by mass or more. If the concentration is less than 5% by mass, the viscosity becomes low, it becomes difficult to apply torque during kneading, and water separation is insufficient, which may increase the residual moisture content of the nickel paste.
  • the upper limit value of the vehicle concentration is not particularly limited, but may be, for example, 30% by mass or less.
  • a known method can be used, specifically, a method using a kneading apparatus such as a roll mill, a ball mill, a homogenizer, a lycra machine, a kneader, a planetary mixer, etc. It is not limited. Moreover, you may depressurize with a vacuum pump or an aspirator as needed, and may perform a defoaming or a dehydration process. It is also possible to perform heating and cooling processes.
  • a kneading apparatus such as a roll mill, a ball mill, a homogenizer, a lycra machine, a kneader, a planetary mixer, etc. It is not limited. Moreover, you may depressurize with a vacuum pump or an aspirator as needed, and may perform a defoaming or a dehydration process. It is also possible to perform heating and cooling processes.
  • the moisture content of the resulting nickel paste is more effective. Can be reduced. Specifically, the moisture content measured by the Karl Fischer method can be made more efficiently less than 1% by mass.
  • the nickel paste obtained as described above may be mixed with, for example, barium titanate as a dielectric that is a constituent component of the multilayer ceramic capacitor after the remaining moisture is separated and removed. Furthermore, in order to improve dispersibility, a dispersing agent can also be added and an organic solvent can also be added for viscosity adjustment. In order to obtain thixotropy, a rheology control agent or the like can be added and kneaded.
  • a basic substance is used. Since the surface coating with a certain amine-based dispersion transfer accelerator is further performed, it is possible to obtain a paste having excellent viscosity stability without causing a change in viscosity over time of the finally obtained nickel paste.
  • the nickel paste thus obtained can be suitably used, for example, as a material for an internal electrode of a highly multilayer ceramic capacitor, for which demands for miniaturization are increasing.
  • the obtained nickel paste was applied to a thickness of 200 ⁇ m on a PET film using an applicator and dried at 120 ° C. for 40 minutes.
  • membrane Cut out so that it might be set to (phi) 40mm, an area, a film thickness, and weight were measured, and the dry film density was computed from these data.
  • polyoxyethylene-laurylamine manufactured by NOF Corporation was prepared as an amine-based dispersion transfer accelerator, added in an amount of 1.5 g to the nickel powder organic slurry, and Excel Auto Homogenizer (Nippon Seiki Co., Ltd.). The mixture was stirred for 2 minutes at a rotational speed of 10 m / s. As a result, a nickel powder organic slurry coated with a dispersion transfer accelerator in two stages was obtained.
  • the dispersion transfer accelerator having an anionic surfactant structure for coating the surface 1 m 2 of the nickel powder is used.
  • the addition amount is 0.00119 g / m 2 as described above
  • the anionic surface activity added in Example 1 is calculated.
  • 1.5 g of N-oleyl-N-methylglycine, which is a dispersion transfer accelerator having an agent structure is 1.5 times the theoretical calculation amount X value.
  • polyoxyethylene-laurylamine which is an amine-based dispersion transfer accelerator
  • polyoxyethylene-laurylamine has the same mass as the addition amount of N-oleyl-N-methylglycine, which is a dispersion transfer accelerator having an anionic surfactant structure (1 ⁇ ). Amount).
  • ethyl cellulose manufactured by Dow Chemical Co., Standard name: STD300
  • a binder resin was added to dihydroterpineol, an organic solvent, and heated to 80 ° C. with stirring to prepare a vehicle (10.5 mass% ethyl cellulose).
  • 25 g of the vehicle and the nickel powder organic slurry coated with nickel powder with the dispersion transfer accelerator prepared as described above were sufficiently kneaded using three rolls, and then diluted with dihydroterpineol.
  • the content of N-oleyl-N-methylglycine which is a dispersion transfer accelerator having an anionic surfactant structure, is 1.7 parts by mass with respect to 100 parts by mass of nickel powder.
  • a nickel paste having a polyoxyethylene-laurylamine content equal to that of N-oleyl-N-methylglycine (one amount) and a nickel concentration of 60% by mass was obtained.
  • the residual moisture content was extremely low at 0.89% by mass. Further, a high film density of 4.9 g / cm 3 was obtained as the dry film density.
  • the initial value of the viscosity was 21.8 Pa ⁇ s. Even after 20 days, the viscosity increase rate was 1.0, no increase in viscosity was observed, and the viscosity was extremely stable over time.
  • Example 2 The amount of addition of polyoxyethylene-laurylamine (manufactured by NOF Corporation), which is an amine-based dispersion transfer accelerator, is the same as that of N-oleyl-N-methylglycine, which is a dispersion transfer accelerator having an anionic surfactant structure.
  • N-oleyl-N— which is a dispersion transfer accelerator having an anionic surfactant structure was treated in the same manner as in Example 1 except that the amount was 0.8 g which was 0.5 times the amount added.
  • the content of methyl glycine is 1.7 parts by mass with respect to 100 parts by mass of nickel powder, and the content of polyoxyethylene-lauryl amine, which is an amine-based dispersion transfer accelerator, is 0.8% of N-oleyl-N-methyl glycine.
  • a nickel paste having a five-fold amount and a nickel concentration of 60% by mass was produced.
  • Example 3 The amount of addition of polyoxyethylene-laurylamine (manufactured by NOF Corporation), which is an amine-based dispersion transfer accelerator, is the same as that of N-oleyl-N-methylglycine, which is a dispersion transfer accelerator having an anionic surfactant structure.
  • N-oleyl-N-methylglycine, a dispersion transfer accelerator having an anionic surfactant structure was treated in the same manner as in Example 1 except that the amount was 4.5 g, which was three times the amount added.
  • the amount is 0.8 parts by mass with respect to 100 parts by mass of nickel powder, and the content of polyoxyethylene-laurylamine, which is an amine-based dispersion transfer accelerator, is the same mass as N-oleyl-N-methylglycine (1 times the amount) A nickel paste having a nickel concentration of 60% by mass was produced.
  • cocoyl sarcosinate which is a dispersion transfer accelerator having an agent structure
  • polyoxyethylene-laurylamine which is an amine-based dispersion transfer accelerator is A nickel paste having a content equal to that of cocoyl sarcosinate (one amount) and a nickel concentration of 60% by mass was produced.
  • Example 6 300 g of nickel powder water slurry (70% moisture content) manufactured by Sumitomo Metal Mining Co., Ltd. used in Example 1 (standard name: NR707, Ni ultrafine powder by wet reduction method, average particle size 0.07 ⁇ m, specific surface area 9.6 m 2 / g) as a starting material, and from N-oleyl-N-methylglycine to myristoylmethyl- ⁇ -alanine (molecular formula: C 18 H 35 NO 3) , as a dispersion transfer accelerator having an anionic surfactant structure
  • the content of myristoylmethyl- ⁇ -alanine which is a dispersion transfer accelerator having a surfactant structure, is 1.7 parts by mass with respect to 100 parts by mass of nickel powder, and polyoxyethylene is an amine-based dispersion transfer accelerator.
  • - content of laurylamine are myristoyl methyl - ⁇ - alanine same mass (1 volume), the nickel concentration to prepare a nickel paste is 60% by mass.
  • Table 1 summarizes the evaluation results of the nickel pastes obtained in Examples 1 to 4 and Comparative Examples 1 and 2 described above.
  • the nickel pastes obtained in Examples 1 to 4 a dense film having a very low moisture content and a high dry film density was obtained. Moreover, it turns out that these powders are excellent in dispersibility without the presence of aggregated powder.
  • the obtained nickel paste is found to be an extremely stable paste that is 20 days after the paste is produced and has no change in viscosity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 粘度の経時変化がほとんどなく、安定性に優れ、積層セラミックコンデンサの内部電極用として好適なニッケルペースト及びその製造方法を提供する。 本発明に係るニッケルペーストは、少なくとも、ニッケル粉と、分散移行促進剤と、有機溶剤と、バインダー樹脂とを含有する。分散移行促進剤は、特定の陰イオン型界面活性剤構造を有する分散移行促進剤及びアミン系分散移行促進剤であり、その陰イオン型界面活性剤構造を有する分散移行促進剤の含有量は、ニッケル粉100質量部に対して0.16質量部~3.0質量部であり、アミン系分散移行促進剤の含有量は、陰イオン型界面活性剤構造を有する分散移行促進剤の0.2倍量~4倍量である。また、ニッケル濃度が50質量%~70質量%であり、粘度が8Pa・s~150Pa・sであり、カールフィッシャー法により測定される水分率が1質量%未満である。

Description

ニッケルペースト及びニッケルペーストの製造方法
 本発明は、例えば積層セラミックコンデンサの内部電極用として好適に用いることができるニッケルペースト及びニッケルペーストの製造方法に関する。
 一般に、積層セラミックコンデンサ(以下、「MLCC」ともいう)の内部電極に用いられるニッケルペーストは、ビヒクル中にニッケル粉を混練して製造され、多くのニッケル粉の凝集体を含んでいる。ニッケル粉の製造プロセスにおける最終段階には、金属粉の製造方法(乾式法、湿式法)を問わず、乾燥工程を有するのが通常であり、この乾燥工程がニッケル粒子の凝集を促すため、得られるニッケル粉には乾燥時に生じた凝集体が含まれていることが一般的である。
 近年の積層セラミックコンデンサは、小型で大容量化を達成させるために、内部電極層を伴ったセラミックグリーンシートの積層数を、数百から1000層程度にまで増加させることが要求されている。このため、内部電極層の厚みを従来の数μmレベルからサブミクロンレベルに薄層化する検討がなされてきており、それに伴い、内部電極用の電極材料であるニッケル粉の小粒径化が進められている。
 しかしながら、小粒径になるほどニッケル粉の表面積は大きくなり、それに伴い表面エネルギーが大きくなって、凝集体を形成し易くなる。また、ニッケル超微粉等の金属超微粉は、分散性が悪く、凝集体が存在するようになると、セラミックコンデンサ製造時における焼成工程にてニッケル粉を焼結する際にセラミックシート層を突き抜けてしまうため、電極が短絡した不良品となる。また、たとえセラミックシート層を突き抜けない場合であっても、電極間距離が短くなることで部分的な電流集中が発生するため、積層セラミックコンデンサの寿命劣化の原因となっていた。
 MLCCの内部電極用に用いられるニッケル超微粉スラリーとしては、例えば特許文献1に開示されているスラリーがある。具体的に、この特許文献1には、以下のような技術が開示されている。すなわち、先ず、金属超微粉水スラリー(金属超微粉濃度:50質量%)に特定の陰イオン界面活性剤を金属超微粉100質量部に対して0.3質量部の割合で添加したものに対して、プロセスホモジナイザー等を用いた分散処理を所定時間実施して、水中における金属超微粉の凝集体を一次粒子にまで分散させる。その後、有機溶媒として、例えばターピネオールを金属超微粉100質量部に対して10質量部添加する。これにより、金属粉を含むターピネオール層が連続層となって沈殿物となり、水は上澄みとして分離されて、金属超微粉有機溶媒スラリーが得られるというものである。
特開2006-63441号公報
上江田 他 化学と教育,Vol.40,No.2,(1992年)p114-117
 しかしながら、特許文献1の方法では、ニッケル粉有機スラリーを作製するために、先ず、ニッケル粉水スラリーに直接、特定の陰イオン界面活性剤を添加し、次に有機溶媒と混合してニッケル粉を置換することによってニッケル粉有機スラリーを得る、という処理を行っており、ニッケル表面の酸化物層が十分に形成されていない湿式粉においては、表面に露出している金属ニッケルがルイス酸点として残存してしまい、例えばオレイルサルコシン等の界面活性剤ではその活性を封印できない。そのため、ペースト化において、エチルセルロースと水素結合による増粘現象を引き起こし、実用的には使用できないという大きな問題があった。
 そこで、本発明は、粘度の経時変化がほとんどなく安定性に優れ、積層セラミックコンデンサの内部電極用の材料として好適に用いることができるニッケルペースト及びニッケルペーストの製造方法を提供することを目的とする。
 本発明者らは、上述した課題を解決すべく鋭意検討した結果、特定の種類と量の陰イオン型界面活性剤構造を有する分散移行促進剤を予め有機溶剤と共にニッケル粉の水スラリーに添加した後に、さらに、特定の種類と量のアミン系分散移行促進剤をそのスラリーに添加することにより、上述した課題を解決できることを見出し、本発明を完成するに至った。具体的に、本発明は、以下のものを提供する。
 (1)本発明の第1の発明は、少なくとも、ニッケル粉と、分散移行促進剤と、有機溶剤と、バインダー樹脂とを含有するニッケルペーストであって、前記分散移行促進剤は、下記一般式(1)、(2)、及び(3)で表されるいずれか1種以上の陰イオン型界面活性剤構造を有する分散移行促進剤、及びアミン系分散移行促進剤であり、前記陰イオン型界面活性剤構造を有する分散移行促進剤の含有量は、前記ニッケル粉100質量部に対して0.16質量部~3.0質量部であり、前記アミン系分散移行促進剤の含有量は、前記陰イオン型界面活性剤構造を有する分散移行促進剤の0.2倍量~4倍量であり、ニッケル濃度が50質量%~70質量%であり、粘度が8Pa・s~150Pa・sであり、カールフィッシャー法により測定される水分率が1質量%未満であることを特徴とするニッケルペーストである。
Figure JPOXMLDOC01-appb-C000003
(但し、一般式(1)、(2)において、nは、10~20の整数である。一般式(3)において、m、nは、m+n=12~20の関係を満たす。)
 (2)本発明の第2の発明は、第1の発明において、前記陰イオン型界面活性剤構造を有する分散移行促進剤が、ラウロイルサルコシン、ラウロイルメチル-β-アラニン、ミリストイルメチル-β-アラニン、ココイルサルコシネート、ミリストイルサルコシネート、パルミトイルサルコシン、ステアロイルサルコシン、N-オレイル-N-メチルグリシン、N-パルミトレイン-N-メチルグリシン、N-バクセン-N-メチルグリシン、N-ネルボン-N-メチルグリシンからなる群から選ばれる1種以上であることを特徴とするニッケルペーストである。
 (3)本発明の第3の発明は、ニッケル粉の水スラリーに、有機溶剤と、陰イオン型界面活性剤構造を有する分散移行促進剤とを添加した後に、アミン系分散移行促進剤をさらに添加してニッケル有機スラリーを形成するニッケル有機スラリー形成工程と、水層と有機層とに分離した前記ニッケル有機スラリーから該水層を分離して、有機層ニッケル有機スラリーを得る水分離工程と、前記有機層ニッケル有機スラリーにバインダー樹脂を添加して混錬する混練工程とを有し、前記ニッケル有機スラリー形成工程では、前記陰イオン型界面活性剤構造を有する分散移行促進剤として、下記一般式(1)、(2)、及び(3)で表されるいずれか1種以上を添加し、前記ニッケル粉に対する前記陰イオン型界面活性剤構造を有する分散移行促進剤の添加量は、該陰イオン型界面活性剤構造を有する分散移行促進剤の総分子断面積が該ニッケル粉の総表面積の1倍~4倍となる量であり、前記有機溶剤の質量Sと前記ニッケル粉の水スラリー中の水の質量Wとの比であるS/Wが、0.02<S/W<0.4の関係を満たし、前記アミン系分散移行促進剤の添加量は、前記陰イオン型界面活性剤構造を有する分散移行促進剤の添加量の0.2倍~4倍となる量であることを特徴とするニッケルペーストの製造方法である。
Figure JPOXMLDOC01-appb-C000004
 
(但し、一般式(1)、(2)において、nは、10~20の整数である。一般式(3)において、m、nは、m+n=12~20の関係を満たす。)
 (4)本発明の第4の発明は、第3の発明において、前記陰イオン型界面活性剤構造を有する分散移行促進剤は、ラウロイルサルコシン、ラウロイルメチル-β-アラニン、ミリストイルメチル-β-アラニン、ココイルサルコシネート、ミリストイルサルコシネート、パルミトイルサルコシン、ステアロイルサルコシン、N-オレイル-N-メチルグリシン、N-パルミトレイン-N-メチルグリシン、N-バクセン-N-メチルグリシン、N-ネルボン-N-メチルグリシンからなる群から選ばれる1種以上であることを特徴とするニッケルペーストの製造方法である。
 (5)本発明の第5の発明は、第3又は第4の発明において、前記混練工程では、前記バインダー樹脂を5質量%以上の濃度で含有するビヒクルとして添加することを特徴とするニッケルペーストの製造方法である。
 本発明に係るニッケルペーストによれば、その粘度の経時変化がほとんどなく安定性に優れ、積層セラミックコンデンサの内部電極用の材料として好適に用いることができる。
 また、本発明に係るニッケルペーストの製造方法によれば、乾燥工程を含まないためニッケル粉の酸化を抑制することができ、乾燥凝集がなく、品質面でも安定したニッケルペーストを得ることができ、また同時に、有害物であるニッケル粉塵が発生しないため安全衛生上の観点からも優れている。そして、得られたニッケルペーストは、粘度安定性がきわめて高く、ポットライフの長いペーストとなるため、効率的に安定した品質を確保でき、コストを抑えることができる。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更することができる。また、本明細書において、「x~y」(x、yは任意の数値)との表記は、特に断らない限り「x以上y以下」の意味である。
 ≪1.ニッケルペースト≫
 本実施の形態に係るニッケルペーストは、少なくとも、ニッケル粉と、分散移行促進剤と、有機溶剤と、バインダー樹脂とを含有するニッケルペーストである。その分散移行促進剤は、下記一般式(1)、(2)、及び(3)で表されるいずれか1種以上の陰イオン型界面活性剤構造を有する分散移行促進剤、及びアミン系分散移行促進剤である。
Figure JPOXMLDOC01-appb-C000005
 
(但し、一般式(1)、(2)において、nは、10~20の整数である。一般式(3)において、m、nは、m+n=12~20の関係を満たす。)
 このニッケルペーストでは、上述した陰イオン型界面活性剤構造を有する分散移行促進剤の含有量が、ニッケル粉100質量部に対して0.16質量部~3.0質量部であり、アミン系分散移行促進剤の含有量が、陰イオン型界面活性剤構造を有する分散移行促進剤の0.2倍量~4倍量である。
 また、ニッケルペースト中のニッケル濃度は、50質量%~70質量%である。また、このニッケルペーストにおいては、粘度が8Pa・s~150Pa・sであり、カールフィッシャー法により測定される水分率が1質量%未満である。
 このようなニッケルペーストによれば、構成成分であるニッケル粉がより凝集の少ない状態で分散されており、例えば高積層セラミックコンデンサの内部電極用として好適に用いることができる。また、このニッケルペーストでは、粘度の経時的な変化がなく安定性に優れ、ポットライフの長いペーストとなるため、効率的に安定した品質を確保することができる。
 [ニッケル粉]
 ニッケル粉は、当該ニッケルペーストの構成成分であり、湿式法や乾式法等の製法を問わずに種々のニッケル粉を使用することができる。例えば、CVD法、蒸発急冷法、ニッケル塩やニッケル水酸化物等を用いた水素還元法等のいわゆる乾式法によるニッケル粉であってもよく、またニッケル塩溶液に対してヒドラジン等の還元剤を用いた湿式還元法等のいわゆる湿式法によるニッケル粉であってもよい。その中でも、湿式還元法等のいわゆる湿式法によるニッケル粉を使用することが好ましい。
 また、ニッケル粉としては、平均粒径が0.05μm~0.5μmの超微粒のものであることが好ましい。超微粒のニッケル粉は、例えば、積層セラミックコンデンサの内部電極の用途として好適に用いることができる。MLCCの内部電極として近年要求される薄層化に対応する観点からすると、好ましくは平均粒径が0.05μm~0.3μm程度のニッケル粉を用いることが必要であり、特に1000層レベルの内部電極とするためには、平均粒径がサブミクロンのニッケル粉が必要とされ、0.05μm~0.1μmのニッケル粉を用いることがより好ましい。
 [分散移行促進剤]
 分散移行促進剤は、ニッケル粉の表面に吸着してコートされ、ニッケルペースト中での分散性を向上させるように作用する。この分散移行促進剤としては、陰イオン型界面活性剤構造を有する分散移行促進剤、及び、アミン系分散移行促進剤を含有している。ここで、本実施の形態に係る製造方法における条件でニッケルペーストを製造する場合には、配合した分散移行促進剤はニッケルペースト中にその全量が含有される。
 ここで、ニッケル粉粒子の表面は、大気中では酸化され、また大気中の水により水和して水酸基が形成される。このことは、水中でも同様である。この表面に形成された水酸基は、ニッケルの場合には塩基性を示すため、当然ながら、末端にカルボン酸、サルコシン酸といった有機酸等の陰イオン型界面活性剤構造を有する分散移行促進剤が強く吸着し、いわゆる中和反応によってニッケル粉表面を処理することができる。
 しかしながら、ニッケル粉表面の一部には、金属ニッケルが露出した部分(以下、「金属ニッケル部」ともいう)もあり、その部分はルイス酸としてふるまう。そのため、このような金属ニッケル部には、末端にカルボン酸やサルコシン酸のような有機酸等の陰イオン型界面活性剤構造を有する分散移行促進剤を吸着させることができない。この金属ニッケル部は、加熱乾燥を伴わないスラリー状の湿式ニッケル粉で多くなっていることが知られており、一方で、湿式ニッケル粉を大気中で加熱乾燥すると、表面が酸化されて、このような金属ニッケル部は減少する。したがって、加熱乾燥工程を伴わない湿式法により得られるニッケル粉スラリーにおけるニッケル粉表面には、多くのルイス酸点が存在することになり、有機酸による表面処理だけでは、ペースト化で使用されるエチルセルロース等の水酸基を介して水素結合が形成されてしまい、その結果、ペーストの増粘という問題が生じてしまう。
 そこで、本発明者は、末端にカルボン酸、サルコシン酸といった有機酸等の陰イオン型界面活性剤構造を有する分散移行促進剤による表面被覆の後、塩基性物質であるアミン系分散移行促進剤による表面被覆をさらに施すようにすることで、そのルイス酸点を中和することができ、その結果としてペースト化されたときの増粘現象を抑えることができることを見出した。
  (陰イオン型界面活性剤構造を有する分散移行促進剤)
 先ず、陰イオン型界面活性剤構造を有する分散移行促進剤としては、下記一般式(1)、(2)、及び(3)で表される、陰イオン型界面活性剤構造を有する分散移行促進剤のうちいずれか1種以上を用いることができる。
Figure JPOXMLDOC01-appb-C000006
 ここで、一般式(1)、(2)で表される化合物に関して、式中のnは、10~20の整数である。また、一般式(3)で表される化合物に関して、式中のm、nは、m+n=12~20の関係を満たす。
 このような陰イオン型界面活性剤構造を有する分散移行促進剤として、具体的には、ラウロイルサルコシン、ラウロイルメチル-β-アラニン、ミリストイルメチル-β-アラニン、ココイルサルコシネート、ミリストイルサルコシネート、パルミトイルサルコシン、ステアロイルサルコシン、N-オレイル-N-メチルグリシン、N-パルミトレイン-N-メチルグリシン、N-バクセン-N-メチルグリシン、N-ネルボン-N-メチルグリシンからなる群から選ばれる1種を含有させることができ、またはこれらから選ばれる2種以上を組み合わせて含有させることもできる。
  (アミン系分散移行促進剤)
 次に、アミン系分散移行促進剤としては、特に限定されないが、末端に、1級、2級、3級アミノ基を有するアルキル、ポリアルキレンオキサイド等の構造を有するものを含有させることができる。例えば、オレイルアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド等を例示することができる。
 [有機溶剤]
 有機溶剤は、通常、導電ペースト用溶剤として用いられる溶剤であり、上述した分散移行促進剤を溶解することが可能な溶剤あれば、特に限定されない。その中でも、テルペンアルコール系、脂肪族炭化水素系等の有機溶剤であることが好ましい。
 具体的に、テルペンアルコール系の有機溶剤としては、例えば、ターピネオール(テルピネオール)、ジハイドロターピネオール、ターピネオールアセテート、ボルネオール、ゲラニオール、リナロール等が挙げられる。また、脂肪族炭化水素系の有機溶剤としては、例えば、n-デカン、n-ドデカン、ミネラルスピリット等が挙げられる。これらの有機溶剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 [バインダー樹脂]
 バインダー樹脂としては、例えば、セルロース構造、セルロースエステル構造、及びセルロースエーテル構造から選ばれる構造を有し、カルボキシル基等の官能基(酸基)が導入されているものの、少なくとも1種類を含有させることができる。
 [その他]
 なお、本実施の形態に係るニッケルペーストには、その作用を損なわせない範囲で、必要に応じて種々の添加剤を含有させることができる。
 具体的には、ペースト中におけるニッケル粉の分散性をより向上させるための分散剤や、粘度を調整するための粘度調整剤、チクソ性を高めるためのレオロジーコントロール剤等を添加することができる。
 ≪2.ニッケルペーストの製造方法≫
 次に、ニッケルペーストの製造方法について説明する。本実施の形態に係るニッケルペーストの製造方法は、少なくとも、下記[A]~[C]の3工程を有している。
 すなわち、このニッケルペーストの製造方法は、
 [A]ニッケル粉の水スラリーに、有機溶剤と、陰イオン型界面活性剤構造を有する分散移行促進剤とを添加し、その後、アミン系分散移行促進剤をさらに添加してニッケル有機スラリーを形成するニッケル有機スラリー形成工程と、
 [B]水層と有機層とに分離したニッケル有機スラリーから水層を分離して、有機層ニッケル有機スラリーを得る水分離工程と、
 [C]有機層ニッケル有機スラリーにバインダー樹脂を添加して混錬する混練工程と、
を有している。以下に、各工程について詳細に説明する。
  <[A]ニッケル有機スラリー形成工程>
 工程[A]においては、ニッケル粉の水スラリー(ニッケル粉水スラリー)に、有機溶剤と、陰イオン型界面活性剤構造を有する分散移行促進剤とを添加して攪拌、混合を行い、その後、その混合液にアミン系分散移行促進剤を添加して攪拌、混合を行うことによって、ニッケル有機スラリーを得る。
 (ニッケル粉水スラリー)
 ニッケル粉としては、上述したように、湿式法や乾式法等の製法を問わずに種々のものを使用することができ、例えば、ヒドラジン等の還元剤を用いた湿式還元法等のいわゆる湿式法によるニッケル粉を使用することが好ましい。
 また、ニッケル粉としては、湿式法により作製された、平均粒径が0.05μm~0.5μmの超微粒ニッケル粉を用いることが好ましい。平均粒径が0.05μm~0.5μmの超微粒ニッケル粉は、積層セラミックコンデンサ内部電極用途として好適に用いられ、このようなニッケル粉を用いることによって、効果がより顕著に表れるようになる。
 工程[A]においては、このような超微粒ニッケル粉を従来公知の方法により水中に分散させることによって、ニッケル粉水スラリーを得ることができる。
 ニッケル粉水スラリー中のニッケル含有量としては、特に限定されないが、20質量%~75質量%とすることが好ましい。含有量が20質量%未満であると、水分量が多くなりすぎ、ニッケル有機スラリーを得るために使用する有機溶剤も大量に使用することになる。また、ニッケル濃度が低くなるため、良好なニッケルペーストが生成されにくくなる。一方で、含有量が75質量%を越えると、水分量が少なくなり、有機溶剤との分離が不十分となって、水分が残留しやすくなってしまう。
 (陰イオン型界面活性剤構造を有する分散移行促進剤)
 陰イオン型界面活性剤構造を有する分散移行促進剤としては、上述したように、下記の一般式(1)、(2)、及び(3)で表されるような特定構造を有する陰イオン界面活性剤のうちのいずれか1種以上を用いることができる。
Figure JPOXMLDOC01-appb-C000007
 ここで、一般式(1)、(2)で表される化合物に関して、式中のnは10~20の整数である。nの数が10より小さいと、親水性が強くなり、水が抜けにくくなる。一方で、nの数が20より大きいと、親油性になって水を除去しやすくなるものの、有機溶剤に溶けにくく効率的にニッケル粉の表面をコーティングできない。
 例えば、一般式(1)で表される化合物において、n=10とした化学式で表される、陰イオン型界面活性剤構造を有する分散移行促進剤は、具体的には下記式(1-1)のような化合物である。この化学式(1-1)で表される、陰イオン型界面活性剤構造を有する分散移行促進剤は、化学名が「ラウロイルサルコシン」(分子式=C1529NO、CAS No.=97-78-9)である、市販されている陰イオン界面活性剤である。
Figure JPOXMLDOC01-appb-C000008
 また、ココイルサルコシネート(一般式(1)、分子式:C1631NO)、ミリストイルサルコシネート(一般式(1)、分子式:C1733NO)、パルミトイルサルコシン(一般式(1)、分子式:C1937NO)、ステアロイルサルコシン(一般式(1)、分子式:C2243NO)等を例示することができる。
 また、一般式(2)で表される陰イオン型界面活性剤構造を有する分散移行促進剤として、化学名「ラウロイルメチル-β-アラニン」(化学式:下記(2-1)、分子式:C1631NO、CAS No.21539-57-1、)や、化学名「ミリストイルメチル-β-アラニン」(化学式:下記(2-2)、分子式:C1835NO、CAS No.21539-71-9)等が具体的に挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 また、一般式(3)で表される化合物に関して、式中のm、nは、m+n=12~20の関係を満たす。m+nが12より小さいと、親油性が不足して水分の分離が不十分となる。一方で、m+nが20より大きいと、有機溶剤に溶解しにくくなる。
 具体的に、一般式(3)で表される陰イオン型界面活性剤構造を有する分散移行促進剤としては、分子式がC2139NOであって下記(3-1)の化学式(但し、一般式(3)においてm=7、n=7のもの)で示される、化学名「N-オレイル-N-メチルグリシン」、分子式がC1935NO(但し、一般式(3)においてm=7、n=5のもの)である化学名「N-パルミトレイン-N-メチルグリシン」、分子式がC2139NO(但し、一般式(3)においてm=9、n=5のもの)である化学名「N-バクセン-N-メチルグリシン」、分子式がC2751NO(但し、一般式(3)においてm=13、n=7のもの)である化学名「N-ネルボン-N-メチルグリシン」、等を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 (有機溶剤)
 有機溶剤は、通常、導電ペースト用溶剤として用いられる溶剤であり、分散移行促進剤を溶解することが可能な溶剤あれば特に限定されないが、上述したように、テルペンアルコール系、脂肪族炭化水素系等の有機溶剤を用いることが好ましい。
 テルペンアルコール系の有機溶剤としては、ターピネオール(テルピネオール)、ジハイドロターピネオール、ターピネオールアセテート、ボルネオール、ゲラニオール、リナロール等が挙げられる。また、脂肪族炭化水素系の有機溶剤としては、n-デカン、n-ドデカン、ミネラルスピリット等が挙げられる。これらの有機溶剤は、1種単独、または2種以上を併せて用いることができる。
 (アミン系分散移行促進剤)
 上述したように、工程(A)では、ニッケル粉の水スラリーに、有機溶剤と陰イオン型界面活性剤構造を有する分散移行促進剤とを添加して混合した後に、その混合液に、アミン系分散移行促進剤をさらに添加する。
 アミン系分散移行促進剤としては、上述したように、末端に、1級、2級、3級アミノ基を有するアルキル、ポリアルキレンオキサイド等の構造を有するものを用いることができる。例えば、オレイルアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド等を例示することができる。
 (ニッケル有機スラリー)
 工程(A)では、先ず、有機溶剤と、陰イオン型界面活性剤構造を有する分散移行促進剤とを混合して、陰イオン型界面活性剤構造を有する分散移行促進剤を含有した有機溶液(分散移行促進剤有機溶液)を得て、その後、この分散移行促進剤有機溶液とニッケル粉の水スラリーとを混合することによって、ニッケル有機スラリーを得る。次に、そのニッケル有機スラリーに対して、さらにアミン系分散移行促進剤を添加して混合することによって、ニッケル有機スラリーを得ることを特徴としている。
 ここで、本実施の形態に係る製造方法においては、(i)陰イオン型界面活性剤構造を有する分散移行促進剤の添加量と、(ii)陰イオン型界面活性剤構造を有する分散移行促進剤を溶解させる有機溶剤の量Sとニッケル粉水スラリー中の水分量Wとの比「S/W」と、(iii)アミン系分散移行促進剤の添加量と、が重要となる。これらの添加量及び比「S/W」を適切な範囲とすることによって、ニッケル粉の表面に分散移行促進剤を均一にコートすることができる。
 (i)陰イオン型界面活性剤構造を有する分散移行促進剤の添加量について
 本実施の形態に係る製造方法においては、陰イオン型界面活性剤構造を有する分散移行促進剤の添加量を、その分散移行促進剤の総分子断面積がニッケル粉の総表面積の1倍~4倍となる量とする。
 具体的に、この陰イオン型界面活性剤構造を有する分散移行促進剤の添加量は、例えば、非特許文献1に記載されている方法で算出可能な、添加する陰イオン型界面活性剤構造を有する分散移行促進剤の1分子あたりの分子断面積(吸着断面積ともいい、分子の平面への投影面積に相当する)を使用し、ここから、式「ニッケル粉の総表面積(m)×陰イオン型界面活性剤構造を有する分散移行促進剤の単位分子断面積あたりの質量(g/m)」で計算される理論計算量X値(g)(このXが、「ニッケル粉の総表面積=陰イオン型界面活性剤構造を有する分散移行促進剤の総分子断面積」となる陰イオン型界面活性剤構造を有する分散移行促進剤の量である)を算出することで求めることができる。この理論計算量X値は、ニッケル粉の全表面に均一に吸着して被覆するのに最低限必要な分散移行促進剤量に相当する量とみなすことができる。
 ここで、分子断面積は、一般的に、構造最適化されたファンデルワールス(vdw)半径表示の3次元分子模型を用意し、炭素原子等のvdw半径が既知の原子を測定したい分子と同一画面上に表示し、検量線とする。画像処理ソフトで検量線となる原子の“円”を構成しているドット数を計測し、その原子のvdw半径と円の面積とから、画面の1ドット当りの面積を求める。次に、断面積を測定したい分子のドット数を計算することによって分子断面積とすることができる。
 なお、より具体的には、非特許文献1によれば、分散移行促進剤の立体配座のうち、最も安定な配座における断面積を分子断面積として算出することができる。この非特許文献1には、代表的な高級脂肪酸のステアリン酸を例とした分子断面積の算出方法が例示されている。この文献に示されたステアリン酸の構造式(a)と空間充填模型図(b)とから、ステアリン酸の断面図を作図している。断面積は、結合距離とvdw半径とを用いて方眼紙等に作図し、その紙を切り取って重量を計量することで求めることができる。
 例えば、一般式(1)で表される陰イオン型界面活性剤構造を有する分散移行促進剤として「ラウロイルサルコシン(分子式:C1529NO)」を一例とした場合、上述した非特許文献1に示された分子断面積の算出方法と同様にして算出してみたところ、そのラウロイルサルコシンの分子断面積は0.00182g/mであることが分かった。以下、その算出手順を具体的に説明する。
 先ず、ラウロイルサルコシンの化学式からモル質量を求めると、256g/molとなる。すなわち、1分子の重さは4.25E-22(g)である。分子1個の断面積は、2.34E-15(cm)=2.34E-19(m)と算出される。ここで、ニッケル粉の表面1mを被覆するのに必要な分散移行促進剤であるラウロイルサルコシンの物量としては、個数で4.27E+18個であり、質量で1.82E-3gである。したがって、このことから、ラウロイルサルコシンの分子断面積は0.00182g/mと算出することができる。
 また、使用する比表面積A(m/g)のNi粉n(g)の表面積はnAmであり、これらを乗じることによって、陰イオン型界面活性剤構造を有する分散移行促進剤であるラウロイルサルコシンの理論計算量X値は、nA×0.00182(g)と算出することができる。
 同様にして、例えば、陰イオン型界面活性剤構造を有する分散移行促進剤として、「ラウロイルメチル-β-アラニン(分子式:C1631NO、CAS No.21539-57-1)の場合には、ニッケル粉の表面1mを被覆するのに必要な分散移行促進剤の量は0.00195g/mであることが分かった。また、「ミリストイルメチル-β-アラニン(分子式:C1835NO、CAS No.21539-71-9)の場合には、ニッケル粉の表面1mを被覆するのに必要な分散移行促進剤の量は0.00214g/mであることが分かった。このような算出方法により、本実施の形態に係る製造方法において使用することができる、陰イオン型界面活性剤構造を有する分散移行促進剤の理論計算量X値を算出することができる。
 本実施の形態に係る製造方法においては、上述のようにして算出された理論計算量X値に基づいて、ニッケル粉の表面積に応じて理論計算量X値の1倍量~4倍量の、陰イオン型界面活性剤構造を有する分散移行促進剤を添加する。陰イオン型界面活性剤構造を有する分散移行促進剤の添加量が理論計算量X値の1倍量未満であると、その分散移行促進剤によりニッケル粉表面を均一に覆うことができず、引き続き混錬処理を施して作製する有機ニッケルペースト中の水が残留してしまう。一方で、添加量が理論計算量X値の4倍量より多いと、その分散移行促進剤がニッケル粉表面に何層にも重なって被覆されるため、その際に水が抱き込まれて、かえって水の残留量が増加してしまう。
 なお、分散移行促進剤の種類によって異なるものの、陰イオン型界面活性剤構造を有する分散移行促進剤の添加量のみで規定すれば、ニッケル粉の表面1mを被覆するのに必要な陰イオン型界面活性剤構造を有する分散移行促進剤の添加量としては、0.00100g/m~0.00900g/mであることが好ましく、0.00150g/m~0.00900g/mであることがより好ましく、0.00182g/m~0.00856g/mであることが特に好ましい。
 (ii)有機溶剤の量Sと水分量Wとの比「S/W」
 また、上述した陰イオン型界面活性剤構造を有する分散移行促進剤は、有機溶剤に溶解してからニッケル粉水スラリーに添加する。このとき、本実施の形態においては、有機溶剤とニッケル粉水スラリーとに関して、有機溶剤の質量Sとニッケル粉水スラリー中の水の質量Wとの比である「S/W」が、0.02<S/W<0.4の関係を満たすようにする。
 ここで、陰イオン型界面活性剤構造を有する分散移行促進剤を直接ニッケル粉水スラリーに添加すると、その分散移行促進剤がミセル化してニッケル粉表面に効率よく吸着し難くなる。そのため、陰イオン型界面活性剤構造を有する分散移行促進剤を添加するに際しては、有機溶剤に一旦溶解させてからニッケル粉水スラリーに添加することが必要となる。
 ニッケル粉に対して陰イオン型界面活性剤構造を有する分散移行促進剤をコートするにあたり、分散移行促進剤を溶解させた有機溶液(分散移行促進剤有機溶液)とニッケル粉水スラリーとの混合攪拌方法としては、特に限定されるものではなく、例えば公知の分散処理装置であるボールミル、ホモジナイザー、乳鉢、自動乳鉢、ニーダー、プラネタリーミキサー等を使用した方法を用いることができる。また、必要に応じて、真空ポンプ又はアスピレーターで減圧して、脱泡や脱水処理を施すようにしてもよい。また、加熱、冷却処理を行うようにしてもよい。
 (iii)アミン系分散移行促進剤の添加量について
 本実施の形態に係る製造方法においては、上述したように、ニッケル粉の水スラリーに、有機溶剤と陰イオン型界面活性剤構造を有する分散移行促進剤とを添加して攪拌、混合を行い、その後、この混合液にさらにアミン系分散移行促進剤を添加して攪拌、混合を行うことによって、ニッケル有機スラリーを得ることを特徴としている。
 そして、そのアミン系分散移行促進剤の添加量としては、上述した陰イオン型界面活性剤構造を有する分散移行促進剤の添加量の0.2倍~4倍となる量とする。
 アミン系分散移行促進剤の添加量が、陰イオン型界面活性剤構造を有する分散移行促進剤の添加量の0.2倍量未満の量であると、最終的に得られるニッケルペーストの経時変化を抑制することができない。一方で、アミン系分散移行促進剤の添加量が、陰イオン型界面活性剤構造を有する分散移行促進剤の添加量の4倍量を超えた量であると、カールフィッシャー法による水分率が1質量%未満の良好なニッケルペーストを効果的に得ることができず、その効果を十分に奏し得ない。
 <[B]水分離工程>
 工程[B]では、水層と有機層とに分離したニッケル有機スラリーからその水層を分離して、有機層ニッケル有機スラリーを得る。
 上述した工程[A]において混合攪拌によってニッケル有機スラリーを得ると、そのニッケル有機スラリー中のニッケル粉は、有機層に分散移行し、上澄みの水を従来公知の方法で分離除去することで、有機層ニッケル有機スラリーを得ることができる。
 この工程で分離した有機層ニッケル有機スラリーには、15質量%~50質量%程度の水分が残存しているが、本実施の形態に係る製造方法においては、この残存水分も次工程の混練工程[C]において効果的に低減させることができる。
 <[C]混練工程>
 工程[C]では、有機層ニッケル有機スラリーにバインダー樹脂を添加して混錬する。この工程[C]において、有機層ニッケル有機スラリーと、バインダー樹脂とを混練する、いわゆるフラッシングプロセスにより、スラリー中に残留した水分を効果的に分離除去することができる。これにより、具体的には、カールフィッシャー法により測定される水分率が1質量%未満であるニッケルペーストを得ることができる。
 バインダー樹脂としては、特に限定されないが、有機溶剤に樹脂を溶解させて得られるビヒクルとして添加することが好ましい。ここで、ビヒクルは、樹脂を有機溶剤に溶解させることで得られるものであり、有機溶剤としては導電ペーストの用途に通常使用されているものでよい。
 例えば、樹脂としては、セルロース構造、セルロースエステル構造、及びセルロースエーテル構造を有する化合物からなる群より選ばれる少なくとも1種を含有するものを用いることができる。また、有機溶剤としては、上述した樹脂を溶解することができるものであれば特に限定されず、例えば、テルペンアルコール系、脂肪族炭化水素系等の溶剤であることが好ましく、上述した工程[A]のニッケル有機スラリー形成工程にて用いられる有機溶剤と同様のものが好適に用いられる。
 使用するビヒクルの濃度としては、特に限定されないが、5質量%以上であることが好ましく、10質量%以上であることがより好ましい。濃度が5質量%未満であると、粘度が低くなり、混練時にトルクがかかりにくくなり、また水の分離が不十分となってニッケルペーストの残留水分量が多くなる可能性がある。なお、ビヒクルの濃度の上限値としては、特に限定されないが、例えば30質量%以下とすることができる。
 また、混練方法としては、公知の方法を使用することができ、具体的にはロールミル、ボールミル、ホモジナイザー、ライカイ機、ニーダー、プラネタリーミキサー等の混練装置を用いた方法により行うことができ、特に限定されない。また、必要に応じて、真空ポンプ又はアスピレーターで減圧し、脱泡や脱水処理を施してもよい。また、加熱、冷却処理を行うことも可能である。
 このように、ニッケル水スラリーに、有機溶剤及び樹脂を強制的に吸着させて、水を有機溶剤と置換し分離する「フラッシングプロセス」を適用することにより、得られるニッケルペーストの水分率をより効果的に低減させることができる。具体的には、カールフィッシャー法により測定される水分率を、より効率的に1質量%未満とすることができる。
 なお、以上のようにして得られるニッケルペーストは、残留した水分を分離除去した後に、積層セラミックコンデンサの構成成分である誘電体として例えばチタン酸バリウム等を混合してもよい。さらに、分散性を上げるために、分散剤を添加することもでき、また粘度調整のために有機溶剤を添加することもできる。また、チクソ性を出すために、レオロジーコントロール剤等を添加して混練することもできる。
 以上のように、本実施の形態に係る製造方法では、末端にカルボン酸、サルコシン酸といった有機酸等の陰イオン型界面活性剤構造を有する分散移行促進剤による表面被覆の後、塩基性物質であるアミン系分散移行促進剤による表面被覆をさらに施すようにしているため、最終的に得られるニッケルペーストの経時的な粘度変化を生じさせず、粘度安定性に優れたペーストとすることができる。
 このようにして得られたニッケルペーストによれば、例えば、小型化の要求が増している、高積層セラミックコンデンサの内部電極用の材料として好適に用いることができる。
 以下に、本発明の実施例を示してさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 ≪評価方法≫
 下記の実施例及び比較例に示す作製条件にて得られたニッケルペーストについて、以下の評価方法により評価を行った。
  (残留水分率の測定)
 得られたニッケルペーストについて、その水分率を、電量滴定式カールフィッシャー水分計(京都電子工業株式会社製)を用いて、180℃における残留水分率(質量%)を測定した。
  (乾燥膜密度の測定)
 得られたニッケルペーストを、PETフィルム上にアプリケーターを用いて200μmの厚さに塗布し、120℃で40分間乾燥させた。得られた膜について、φ40mmになるように切り抜き、面積、膜厚、及び重量を測定し、これらのデータから乾燥膜密度を算出した。
  (粘度の評価)
 レオメーター(MCR-501,アントンパール社製)を用い、せん断速度4.0s-1、25℃におけるニッケルペーストの粘度(Pa・s)を測定した。また、ニッケルペーストを製造した日を初期値(1日目)とし、5日目、10日目、20日目における粘度測定の結果から増粘率(測定粘度/粘度初期値)を算出し、粘度の経時変化を評価した。
 ≪実施例及び比較例におけるニッケルペーストの作製≫
 [実施例1]
 (1)ニッケルペーストの作製
 先ず、住友金属鉱山株式会社製のニッケル粉水スラリー(水分量70%)300g(規格名:NR707、湿式還元法によるNi超微粉、平均粒径0.07μm、比表面積9.6m/g)を出発原料とした。
 次に、有機溶剤としてジヒドロターピネオール(日本香料株式会社製)13.7gを用意し、その有機溶剤に、陰イオン型界面活性剤構造を有する分散移行促進剤として日油株式会社製のN-オレイル-N-メチルグリシン(商品名:オレオイルザルコシン221P)1.5gを溶解させて、分散移行促進剤有機溶液15.2gを調製した。
 その後、ニッケル粉水スラリーに対して、調製した分散移行促進剤有機溶液15.2gを加え、エクセルオートホモジナイザー(日本精機株式会社製)で周速10m/sの回転速度で2分間混合攪拌して、理論計算値X値の1.5倍量の陰イオン型界面活性剤構造を有する分散移行促進剤をニッケル粉にコートしたニッケル粉有機スラリーを得た。なお、このときの、陰イオン型界面活性剤構造を有する分散移行促進剤を混合溶解させた有機溶剤の質量Sとニッケル粉水スラリー中の水の質量Wとの比であるS/Wは0.065であった。
 さらに、アミン系分散移行促進剤としてポリオキシエチレン-ラウリルアミン(日油株式会社製)を用意し、ニッケル粉有機スラリーに対して1.5gの添加量で添加し、エクセルオートホモジナイザー(日本精機社製)で周速10m/sの回転速度で2分間混合攪拌した。これにより、2段階で分散移行促進剤をコートしたニッケル粉有機スラリーを得た。
 なお、処理条件としては、ニッケル粉90gの表面積が9.6×90=864mであり、このニッケル粉の表面1mをコートするための陰イオン型界面活性剤構造を有する分散移行促進剤の添加量は、上述した通り0.00119g/mであり、理論計算量X値は864m×0.00119g/m=1.03gと算出され、実施例1で添加した陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシン1.5gは、理論計算量X値の1.5倍量である。また、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンは、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの添加量と同質量(1倍量)とした。
 次に、有機溶剤のジヒドロターピネオールに、バインダー樹脂としてエチルセルロース(ダウケミカル社製,規格名:STD300)を投入し、攪拌しながら80℃に加熱してビヒクル(10.5質量%エチルセルロース)を調製した。そして、そのビヒクル25gと、上述のように作製した、分散移行促進剤をニッケル粉にコートしたニッケル粉有機スラリーとを、3本ロールを用いて十分に混錬し、その後ジヒドロターピネオールで希釈して、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの含有量がニッケル粉100質量部に対して1.7質量部で、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンの含有量がN-オレイル-N-メチルグリシンと同質量(1倍量)であり、ニッケル濃度が60質量%であるニッケルペーストを得た。
 (2)ニッケルペーストの評価
 作製したニッケルペーストの試料について、上述した評価方法により、「残留水分率」、「乾燥膜密度」、及び「粘度」を測定して評価した。
 その結果、残留水分率は0.89質量%と極めて少なかった。また、乾燥膜密度は、4.9g/cmという高い膜密度が得られた。また、粘度は、初期値が21.8Pa・sであり、20日経過しても増粘率は1.0で、粘度の増加は認められず、粘度は経時的に極めて安定していた。
 [実施例2]
 アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミン(日油株式会社製)の添加量を、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの添加量の0.5倍量である0.8gとしたこと以外は、実施例1と同様に処理して、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの含有量がニッケル粉100質量部に対して1.7質量部で、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンの含有量がN-オレイル-N-メチルグリシンの0.5倍量であり、ニッケル濃度が60質量%であるニッケルペーストを作製した。
 [実施例3]
 アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミン(日油株式会社製)の添加量を、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの添加量の3倍量である4.5gとしたこと以外は、実施例1と同様に処理して、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの含有量がニッケル粉100質量部に対して1.7質量部で、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンの含有量がN-オレイル-N-メチルグリシンの3倍量であり、ニッケル濃度が60質量%であるニッケルペーストを作製した。
 [実施例4]
 住友金属鉱山社製のニッケル粉水スラリー(水分量70%)300g(規格名:NR720、平均粒径0.2μm、比表面積4.4m/g)を用意し、これを出発原料として使用したこと以外は、実施例1と同様に処理して、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシン(理論計算値X値=0.5g)の含有量がニッケル粉100質量部に対して0.8質量部で、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンの含有量がN-オレイル-N-メチルグリシンと同質量(1倍量)であり、ニッケル濃度が60質量%であるニッケルペーストを作製した。
 [実施例5]
 実施例1で使用した住友金属鉱山株式会社製のニッケル粉水スラリー(水分量70%)300g(規格名:NR707、湿式還元法によるNi超微粉、平均粒径0.07μm、比表面積9.6m/g)を出発原料とし、陰イオン型界面活性剤構造を有する分散移行促進剤として、N-オレイル-N-メチルグリシンからココイルサルコシネート(分子式:C1631NO,日進化成株式会社製,理論計算値X値=1.7g)に代えて理論計算量X値の1.5倍量で添加したこと以外は、実施例1と同様に処理して、陰イオン型界面活性剤構造を有する分散移行促進剤であるココイルサルコシネートの含有量がニッケル粉100質量部に対して1.7質量部で、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンの含有量がココイルサルコシネートと同質量(1倍量)であり、ニッケル濃度が60質量%であるニッケルペーストを作製した。
 [実施例6]
 実施例1で使用した住友金属鉱山株式会社製のニッケル粉水スラリー(水分量70%)300g(規格名:NR707、湿式還元法によるNi超微粉、平均粒径0.07μm、比表面積9.6m/g)を出発原料とし、陰イオン型界面活性剤構造を有する分散移行促進剤として、N-オレイル-N-メチルグリシンからミリストイルメチル-β-アラニン(分子式:C1835NO,日進化成株式会社製,理論計算値X値=1.7g)に代えて理論計算量X値の1.5倍量で添加したこと以外は、実施例1と同様に処理して、陰イオン型界面活性剤構造を有する分散移行促進剤であるミリストイルメチル-β-アラニンの含有量がニッケル粉100質量部に対して1.7質量部で、アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミンの含有量がミリストイルメチル-β-アラニンと同質量(1倍量)であり、ニッケル濃度が60質量%であるニッケルペーストを作製した。
 [比較例1]
 アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミン(日油株式会社製)の添加量を、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの添加量の0.1倍量としたこと以外は、実施例1と同様にしてニッケルペーストを作製した。
 [比較例2]
 アミン系分散移行促進剤であるポリオキシエチレン-ラウリルアミン(日油株式会社製)の添加量を、陰イオン型界面活性剤構造を有する分散移行促進剤であるN-オレイル-N-メチルグリシンの添加量の5倍量としたこと以外は、実施例1と同様にしてニッケルペーストを作製した。
 ≪評価結果のまとめ≫
 下記表1に、上述した実施例1~4、及び、比較例1、2のそれぞれで得られたニッケルペーストの評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000012
 表1に示す結果からも分かるように、実施例1~4にて得られたニッケルペーストでは、その水分率はいずれも極めて少なく、乾燥膜密度も高い緻密な膜が得られた。また、これらのペーストには、凝集粉が存在しておらず分散性に優れていることが分かる。そして、得られたニッケルペーストは、ペースト作製後20日後であって粘度に変化がなく、極めて安定したペーストであることが分かる。
 これに対して、実施例における作製条件と異なる条件で作製した比較例1及び2のニッケルペーストでは、経時的な粘度の変化を抑制できていないことが分かる。

Claims (5)

  1.  少なくとも、ニッケル粉と、分散移行促進剤と、有機溶剤と、バインダー樹脂とを含有するニッケルペーストであって、
     前記分散移行促進剤は、下記一般式(1)、(2)、及び(3)で表されるいずれか1種以上の陰イオン型界面活性剤構造を有する分散移行促進剤、及びアミン系分散移行促進剤であり、
     前記陰イオン型界面活性剤構造を有する分散移行促進剤の含有量は、前記ニッケル粉100質量部に対して0.16質量部~3.0質量部であり、
     前記アミン系分散移行促進剤の含有量は、前記陰イオン型界面活性剤構造を有する分散移行促進剤の0.2倍量~4倍量であり、
     ニッケル濃度が、50質量%~70質量%であり、
     粘度が、8Pa・s~150Pa・sであり、
     カールフィッシャー法により測定される水分率が、1質量%未満である
     ことを特徴とするニッケルペースト。
    Figure JPOXMLDOC01-appb-C000001
     
    (但し、一般式(1)、(2)において、nは、10~20の整数である。一般式(3)において、m、nは、m+n=12~20の関係を満たす。)
  2.  前記陰イオン型界面活性剤構造を有する分散移行促進剤は、ラウロイルサルコシン、ラウロイルメチル-β-アラニン、ミリストイルメチル-β-アラニン、ココイルサルコシネート、ミリストイルサルコシネート、パルミトイルサルコシン、ステアロイルサルコシン、N-オレイル-N-メチルグリシン、N-パルミトレイン-N-メチルグリシン、N-バクセン-N-メチルグリシン、N-ネルボン-N-メチルグリシンからなる群から選ばれる1種以上であることを特徴とする請求項1に記載のニッケルペースト。
  3.  ニッケル粉の水スラリーに、有機溶剤と、陰イオン型界面活性剤構造を有する分散移行促進剤とを添加した後に、アミン系分散移行促進剤をさらに添加してニッケル有機スラリーを形成するニッケル有機スラリー形成工程と、
     水層と有機層とに分離した前記ニッケル有機スラリーから該水層を分離して、有機層ニッケル有機スラリーを得る水分離工程と、
     前記有機層ニッケル有機スラリーにバインダー樹脂を添加して混錬する混練工程と
     を有し、
     前記ニッケル有機スラリー形成工程では、
     前記陰イオン型界面活性剤構造を有する分散移行促進剤として、下記一般式(1)、(2)、及び(3)で表されるいずれか1種以上を添加し、
     前記ニッケル粉に対する前記陰イオン型界面活性剤構造を有する分散移行促進剤の添加量は、該陰イオン型界面活性剤構造を有する分散移行促進剤の総分子断面積が該ニッケル粉の総表面積の1倍~4倍となる量であり、
     前記有機溶剤の質量Sと前記ニッケル粉の水スラリー中の水の質量Wとの比であるS/Wが、0.02<S/W<0.4の関係を満たし、
     前記アミン系分散移行促進剤の添加量は、前記陰イオン型界面活性剤構造を有する分散移行促進剤の添加量の0.2倍~4倍となる量である
     ことを特徴とするニッケルペーストの製造方法。
    Figure JPOXMLDOC01-appb-C000002
     
    (但し、一般式(1)、(2)において、nは、10~20の整数である。一般式(3)において、m、nは、m+n=12~20の関係を満たす。)
  4.  前記陰イオン型界面活性剤構造を有する分散移行促進剤は、ラウロイルサルコシン、ラウロイルメチル-β-アラニン、ミリストイルメチル-β-アラニン、ココイルサルコシネート、ミリストイルサルコシネート、パルミトイルサルコシン、ステアロイルサルコシン、N-オレイル-N-メチルグリシン、N-パルミトレイン-N-メチルグリシン、N-バクセン-N-メチルグリシン、N-ネルボン-N-メチルグリシンからなる群から選ばれる1種以上であることを特徴とする請求項3に記載のニッケルペーストの製造方法。
  5.  前記混練工程では、前記バインダー樹脂を5質量%以上の濃度で含有するビヒクルとして添加することを特徴とする請求項3又は4に記載のニッケルペーストの製造方法。
     
PCT/JP2015/077119 2014-09-26 2015-09-25 ニッケルペースト及びニッケルペーストの製造方法 WO2016047760A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580043272.2A CN106575542B (zh) 2014-09-26 2015-09-25 镍膏及镍膏的制造方法
JP2016550399A JP6222373B2 (ja) 2014-09-26 2015-09-25 ニッケルペースト及びニッケルペーストの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197396 2014-09-26
JP2014-197396 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047760A1 true WO2016047760A1 (ja) 2016-03-31

Family

ID=55581276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077119 WO2016047760A1 (ja) 2014-09-26 2015-09-25 ニッケルペースト及びニッケルペーストの製造方法

Country Status (4)

Country Link
JP (1) JP6222373B2 (ja)
CN (1) CN106575542B (ja)
TW (1) TWI687401B (ja)
WO (1) WO2016047760A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018228A1 (ja) * 2015-07-24 2017-02-02 住友金属鉱山株式会社 ニッケルペースト及びニッケルペーストの製造方法
JP2019007032A (ja) * 2017-06-20 2019-01-17 住友金属鉱山株式会社 ニッケルペースト及びその製造方法、並びにニッケル有機スラリーの製造方法
WO2019220667A1 (ja) * 2017-05-23 2019-11-21 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6546309B1 (ja) * 2018-03-19 2019-07-17 株式会社ノリタケカンパニーリミテド 経時粘度が安定な導電性ペースト

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063441A (ja) * 2004-07-30 2006-03-09 Jfe Mineral Co Ltd 金属超微粉スラリー
JP2006183066A (ja) * 2004-12-27 2006-07-13 Sumitomo Metal Mining Co Ltd ニッケル粉分散有機スラリー及びその製造方法
JP2006282978A (ja) * 2004-06-21 2006-10-19 Sekisui Chem Co Ltd バインダー樹脂組成物、ペースト及びグリーンシート
JP2012107201A (ja) * 2010-10-29 2012-06-07 Sekisui Chem Co Ltd 変性ポリビニルアセタール樹脂及び変性ポリビニルアセタール樹脂組成物
JP2015046256A (ja) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 ニッケルペーストの製造方法及びニッケルペースト

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020764B2 (ja) * 2001-12-21 2007-12-12 Jfeミネラル株式会社 分散性に優れた金属超微粉スラリー
CN100547028C (zh) * 2004-06-21 2009-10-07 积水化学工业株式会社 粘合剂树脂组合物、糊以及生片
TWI310570B (en) * 2004-07-30 2009-06-01 Jfe Mineral Co Ltd Ultrafine metal powder slurry
KR100773534B1 (ko) * 2005-07-15 2007-11-05 삼성전기주식회사 혼합 분산제, 이를 이용한 페이스트 조성물 및 분산방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282978A (ja) * 2004-06-21 2006-10-19 Sekisui Chem Co Ltd バインダー樹脂組成物、ペースト及びグリーンシート
JP2006063441A (ja) * 2004-07-30 2006-03-09 Jfe Mineral Co Ltd 金属超微粉スラリー
JP2006183066A (ja) * 2004-12-27 2006-07-13 Sumitomo Metal Mining Co Ltd ニッケル粉分散有機スラリー及びその製造方法
JP2012107201A (ja) * 2010-10-29 2012-06-07 Sekisui Chem Co Ltd 変性ポリビニルアセタール樹脂及び変性ポリビニルアセタール樹脂組成物
JP2015046256A (ja) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 ニッケルペーストの製造方法及びニッケルペースト

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018228A1 (ja) * 2015-07-24 2017-02-02 住友金属鉱山株式会社 ニッケルペースト及びニッケルペーストの製造方法
WO2019220667A1 (ja) * 2017-05-23 2019-11-21 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ
CN112106149A (zh) * 2017-05-23 2020-12-18 住友金属矿山株式会社 导电性浆料、电子部件以及叠层陶瓷电容器
CN112106149B (zh) * 2017-05-23 2022-09-27 住友金属矿山株式会社 导电性浆料、电子部件以及叠层陶瓷电容器
JP2019007032A (ja) * 2017-06-20 2019-01-17 住友金属鉱山株式会社 ニッケルペースト及びその製造方法、並びにニッケル有機スラリーの製造方法
JP7091611B2 (ja) 2017-06-20 2022-06-28 住友金属鉱山株式会社 ニッケルペースト及びその製造方法、並びにニッケル有機スラリーの製造方法

Also Published As

Publication number Publication date
TWI687401B (zh) 2020-03-11
JP6222373B2 (ja) 2017-11-01
CN106575542B (zh) 2018-03-20
CN106575542A (zh) 2017-04-19
TW201619124A (zh) 2016-06-01
JPWO2016047760A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6179274B2 (ja) ニッケルペーストの製造方法及びニッケルペースト
JP6222373B2 (ja) ニッケルペースト及びニッケルペーストの製造方法
TWI593763B (zh) 表面覆銅填充物、其製備方法及導電性組合物
KR20140030091A (ko) 은분 및 그 제조 방법
JP6278126B2 (ja) ニッケルペースト及びニッケルペーストの製造方法
JP6727922B2 (ja) 銀粉およびその製造方法、ならびに導電性ペースト
JP2016032085A (ja) 積層セラミックコンデンサ内部電極用ペースト、及び積層セラミックコンデンサ
JP7091611B2 (ja) ニッケルペースト及びその製造方法、並びにニッケル有機スラリーの製造方法
JP6399160B2 (ja) ニッケルペースト
JP2017199672A (ja) ニッケルペースト及びニッケルペーストの製造方法
JP7207391B2 (ja) ニッケルペースト及びニッケルペーストの製造方法
JP4161472B2 (ja) 導電性厚膜ペーストおよびその製造方法ならびにこれを用いた積層セラミックコンデンサ
JP6481755B2 (ja) 誘電体材料の製造方法
KR102007856B1 (ko) 분산성이 개선된 은 분말의 제조방법
TW201013707A (en) Method for manufacturing inorganic powder paste
JP2014122368A (ja) ニッケル超微粉、導電ペーストおよびニッケル超微粉の製造方法
JP2019099860A (ja) ニッケルスラリー、ニッケルスラリーの製造方法およびニッケルペーストの製造方法
JP3656558B2 (ja) 導電性ペースト及びそれを用いた電子部品
JP2017106088A (ja) 銅粉の製造方法およびそれを用いた導電性ペーストの製造方法
JP2019178400A (ja) 銀被覆金属粉末およびその製造方法、銀被覆金属粉末を含む導電性ペースト、並びに導電性ペーストを用いた導電膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844351

Country of ref document: EP

Kind code of ref document: A1