WO2016047669A1 - 光ファイバおよび光ファイバの製造方法 - Google Patents

光ファイバおよび光ファイバの製造方法 Download PDF

Info

Publication number
WO2016047669A1
WO2016047669A1 PCT/JP2015/076883 JP2015076883W WO2016047669A1 WO 2016047669 A1 WO2016047669 A1 WO 2016047669A1 JP 2015076883 W JP2015076883 W JP 2015076883W WO 2016047669 A1 WO2016047669 A1 WO 2016047669A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
light
fiber
longitudinal direction
Prior art date
Application number
PCT/JP2015/076883
Other languages
English (en)
French (fr)
Inventor
邦男 小倉
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2016512142A priority Critical patent/JP6046310B2/ja
Priority to US15/513,911 priority patent/US9958604B2/en
Publication of WO2016047669A1 publication Critical patent/WO2016047669A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking

Definitions

  • the present invention relates to an optical fiber or the like.
  • each core part of the multi-core fiber needs to be connected to a different optical fiber, optical element, or the like to send and receive transmission signals.
  • the multi-core fiber has a problem that it is difficult to connect as compared to a single-core optical fiber because the core is arranged in addition to the center of the cross section.
  • a multi-core fiber there is a multi-core fiber in which a marker for identifying the arrangement of the core is provided on the clad of the multi-core fiber (Patent Document 1). Further, even if it is not a multi-core fiber, an optical fiber having a cross-sectional shape perpendicular to the longitudinal direction of the optical fiber is directional with respect to the rotation direction about the longitudinal direction of the optical fiber (eg, an eccentric core fiber And polarization-maintaining optical fibers) are difficult to connect as compared to general single-core optical fibers as well as multi-core fibers.
  • the present invention has been made in view of such a problem, and an object thereof is to provide an optical fiber or the like that can easily specify the arrangement of the core from the outer surface of the resin coating portion of the optical fiber.
  • the first invention includes a core, a clad formed on the outer periphery of the core and having a refractive index lower than that of the core, a resin coating formed on the outer periphery of the clad, A colored portion provided on a portion of the outer surface of the resin coating portion in the circumferential direction, and a cross-sectional configuration perpendicular to the longitudinal direction of the optical fiber is a rotation direction about the longitudinal direction of the optical fiber In the cross section perpendicular to the longitudinal direction of the optical fiber, the relationship between the position of the colored portion and the position of the core is substantially constant over the longitudinal direction.
  • the optical fiber is provided as described above.
  • the colored portion is formed continuously or intermittently in the longitudinal direction over the entire length of the optical fiber.
  • the optical fiber is a multi-core fiber having a plurality of cores, and the colored portion includes a position of the colored portion and a specific core among the plurality of cores in a cross section perpendicular to the longitudinal direction of the multi-core fiber.
  • the relationship with the position may be provided so as to be substantially constant over the longitudinal direction.
  • the specific core is an outermost core disposed at a position closest to the outer surface of the clad in a cross section perpendicular to the longitudinal direction of the multi-core fiber, and the colored portion is positioned closest to the specific core. It may be formed.
  • a plurality of cores may be arranged so as to have symmetry, and the colored portion may be formed at a position shifted from an arbitrary axis of symmetry.
  • the colored portion may be formed in at least two places in a cross section perpendicular to the longitudinal direction of the multi-core fiber.
  • the colored portion is formed in the resin coating portion, and the positional relationship between the circumferential position of the colored portion and the specific core in the cross section perpendicular to the longitudinal direction of the optical fiber is substantially constant over the longitudinal direction. Therefore, the arrangement of the core can be grasped by the appearance of the optical fiber. For this reason, the rotation alignment of the optical fiber is easy.
  • the colored portion is formed over the entire length of the optical fiber, the positional relationship between the colored portion and the core is constant regardless of where the colored portion is cut.
  • a multi-core fiber can be applied.
  • the colored portion is formed at the closest circumferential position with respect to the outermost core closest to the outer peripheral portion, the position of the colored portion and the position of the specific core Easy to grasp.
  • the colored portion is formed at a position shifted from an arbitrary axis of symmetry. Then, it can be identified which end of the multi-core fiber.
  • At least two colored portions are formed in the circumferential direction, and each colored portion is formed on a different center line in a cross section perpendicular to the longitudinal direction of the multicore fiber, thereby identifying which end portion of the multicore fiber. can do. By doing so, the connection direction of the multi-core fiber is not mistaken.
  • a core a clad formed on the outer periphery of the core and having a lower refractive index than the core, a resin coating portion formed on the outer periphery of the clad, and a circumferential direction of the outer surface of the resin coating portion
  • a colored portion provided in a part of the optical fiber, the light introducing step of introducing light into the core of the optical fiber, and the light introduced into the core outside the optical fiber
  • the optical fiber is a multi-core fiber having a plurality of cores
  • the resin coating step has a relationship with a position of a specific core among the plurality of cores in a cross section perpendicular to the longitudinal direction of the optical fiber.
  • the colored resin may be applied to a part of the outer surface of the resin coating portion in the circumferential direction so as to be substantially constant over the longitudinal direction.
  • light may be introduced from a bent portion where the optical fiber is bent.
  • light may be introduced from the end of the optical fiber.
  • the optical fiber may be rotated in the circumferential direction by inclining a rotating surface of a bobbin that winds up the optical fiber or a bobbin that feeds out the optical fiber.
  • the optical fiber may be rotated in the circumferential direction by inclining a rotating surface of a roller disposed in front of or behind the detecting unit that detects light leakage in the light detecting step.
  • the colored portion can be formed over the entire length in the longitudinal direction so that the positional relationship of the multicore fiber with the specific core is substantially constant.
  • the light introduction part is a bent part, light can be introduced into the multi-core fiber in the vicinity of the light detection part.
  • the light introducing portion is an end portion of the multi-core fiber, light can be introduced into any specific core.
  • the multi-core fiber can be easily twisted by rotating the winding device or the bobbin for feeding out the multi-core fiber with the winding direction or the feeding direction of the multi-core fiber as the rotation axis. Therefore, by twisting the multi-core fiber so as to follow the intensity of light detected by the light detection unit, it is possible to easily control the specific core of the multi-core fiber to be at a fixed position.
  • Such an effect can also be obtained by rotating a roller arranged in front of or behind the optical fiber bent portion around the traveling direction of the multi-core fiber.
  • the present invention it is possible to provide a multi-core fiber or the like that can easily specify the core arrangement from the outer surface of the resin-coated portion of the multi-core fiber.
  • FIG. 4 is a cross-sectional view taken along the line FF in E part of FIG.
  • FIG. 4 is a cross-sectional view taken along line FF in E part of FIG.
  • the figure which shows the colored resin coating device 10d The figure which shows the colored resin coating device 10e.
  • the figure which shows the multi-core fiber 1b The figure which shows the multi-core fiber 1c.
  • the figure which shows the multi-core fiber 1d The figure which shows the multi-core fiber 1e.
  • FIG. 1a is a perspective view of a multi-core fiber 1 that is an optical fiber.
  • the multi-core fiber 1 is an optical fiber having a circular cross section, a plurality of cores 5 arranged at predetermined intervals, and a clad 3 having a refractive index lower than that of the plurality of cores formed on the outer periphery of the plurality of cores.
  • a total of seven cores 5 are arranged at the apexes of a regular hexagon around the center of the multi-core fiber 1 and the periphery thereof. That is, the central core 5 and the surrounding six cores 5 are all at a constant interval.
  • the intervals between the adjacent cores 5 are also the same.
  • the core 5 serves as a signal light waveguide.
  • the arrangement of the cores 5 is not limited to the illustrated example.
  • a resin coating 7 is formed on the outer periphery of the cladding 3.
  • a colored portion 9 is formed on a part of the outer surface of the resin coating portion 7 in the circumferential direction.
  • the colored portion 9 is formed continuously in the longitudinal direction of the multicore fiber 1.
  • the colored portion 9 is desirably formed continuously over the entire length of the multi-core fiber 1, but may be formed within a predetermined length range.
  • the shape of the cross section perpendicular to the longitudinal direction of the multicore fiber 1 has directivity with respect to the rotational direction about the longitudinal direction of the multicore fiber.
  • the position of the specific core 5 and the position where the colored portion 9 is formed are substantially constant over the longitudinal direction of the multicore fiber 1. That is, this positional relationship is maintained at an arbitrary position in the longitudinal direction of the multi-core fiber 1 (an arbitrary position in the formation range of the colored portion 9).
  • the specific core 5 is one core (hereinafter referred to as the outermost core) arranged at a position closest to the outer surface of the clad in a cross section perpendicular to the longitudinal direction of the multicore fiber 1.
  • the coloring part 9 functions as a marker for recognizing the position of the core.
  • FIG. 2 is a diagram illustrating the colored resin coating apparatus 10.
  • the colored resin coating apparatus 10 mainly includes bobbin placement units 11 and 21, a bobbin control unit 25, a guide 17, an optical fiber bending unit 15, a light detection unit 23, a resin coating unit 19, and the like.
  • the bobbin placement portion 11 is provided with a light introducing portion 13.
  • the light introducing unit 13 is a light source that introduces light into the end of the multi-core fiber 1.
  • the light introduction part 13 can also introduce light into all the cores, it can also introduce light into a specific core.
  • the multi-core fiber 1 drawn out from the bobbin 12 (arrow A in the figure) is sent to the optical fiber bending portion 15 disposed between the pair of guides 17.
  • the optical fiber bending portion 15 is a roller, and bends the multi-core fiber 1 passing through the roller to a predetermined curvature.
  • the guide 17 is a roller that guides the travel route of the multi-core fiber 1 so that the multi-core fiber 1 is bent in contact with the optical fiber bending portion 15 for a predetermined range.
  • a light detecting portion 23 is disposed in the vicinity of the optical fiber bent portion 15.
  • the light detection unit 23 is a sensor that continuously detects light leaked from the multi-core fiber 1.
  • the light intensity of the leaked light detected by the light detection unit 23 is transmitted to the bobbin control unit 25.
  • the bobbin control unit 25 controls the posture of the bobbin 12. The detection of leakage light by the light detection unit 23 and the control method of the bobbin 12 by this will be described later.
  • the multi-core fiber 1 that has passed through the optical fiber bent portion 15 passes through the resin coating portion 19.
  • a colored resin is applied to a predetermined position on the outer peripheral surface of the resin coating part 7 of the multicore fiber 1.
  • the resin application unit 19 can apply the colored resin continuously or intermittently over the entire length of the multi-core fiber 1 by, for example, bringing a roller holding the colored resin into contact with the outer peripheral surface of the multi-core fiber 1.
  • the color of the colored resin is not limited as long as it is a color that can be identified with respect to the resin coating portion 7.
  • the colored resin applied by the resin application part 19 is cured by drying or UV irradiation as necessary, so that the colored part 9 is formed.
  • the multi-core fiber 1 in which the colored portion 9 is formed is wound up by a winding bobbin 22 disposed in the bobbin placement portion 21. As described above, the multi-core fiber 1 is manufactured.
  • FIG. 3 is an enlarged view of the vicinity of the optical fiber bent portion 15 (enlarged view of B portion in FIG. 2).
  • the multi-core fiber 1 is bent along the optical fiber bent portion 15.
  • light is introduced into the at least one core 5 of the multi-core fiber 1 by the light introduction unit 13 (light introduction process). Therefore, when the multicore fiber 1 is bent with a curvature equal to or greater than a predetermined curvature, light introduced into the core 5 leaks to the outside of the multicore fiber according to the strain of the multicore fiber 1 (D in the figure) (light leakage process) .
  • the light detection unit 23 detects this leakage light (light detection step).
  • FIGS. 4a and 4b are cross-sectional views taken along line FF in part E of FIG. 3, and show the different states of the light introducing core 5a.
  • a line G in the figure is a center line in a cross section perpendicular to the longitudinal direction of the multi-core fiber 1 and is a line perpendicular to the roller surface of the optical fiber bent portion 15.
  • FIG. 4A is a diagram illustrating a state in which the light introduction core 5a is located on the line G and located at a portion farthest from the neutral axis L (optical fiber bent portion 15). Therefore, the light introducing core 5a in this state is in a state where the largest tensile strain is generated.
  • the light detection unit 23 detects the light intensity of the leaked light.
  • FIG. 4 b is a diagram showing a state where the light introducing core 5 a is located at a position deviated from the perpendicular G. That is, the multi-core fiber 1 is slightly rotated from the state of FIG. 4a around the center of the cross section (H in the figure).
  • the rotation with the central axis of the multicore fiber 1 as the rotation axis may be simply referred to as the rotation of the multicore fiber 1.
  • the light introduction core 5a is slightly closer to the neutral axis L than in the state of FIG. For this reason, the distortion amount of the light introduction core 5a becomes small. As a result, the intensity of the leakage light D is lowered.
  • the rotation direction of the multi-core fiber 1 can be more reliably detected by arranging the plurality of light detection units 23 at different positions in the circumferential direction of the multi-core fiber 1 and detecting leakage light from each direction. Can do.
  • the light introduction core 5a is in the state shown in FIG. 4a when the light detection unit 23 detects the light intensity of the leakage light from the light introduction core 5a and the light intensity of the leakage light is the highest. I understand. Moreover, when the light intensity of leaking light becomes weak, it can be recognized that the multi-core fiber 1 is rotating.
  • the rotation of the multi-core fiber 1 can be detected by detecting the leaked light from the cores. That is, it is desirable to use the outermost core as the light introducing core 5a for detecting such rotation.
  • 5a to 5c are views showing the position of the light introducing core 5a and the inclination of the bobbin 12 in the cross section of the multi-core fiber 1.
  • the bobbin 12 when the state where the light introduction core 5a is located on the line G and is located at the part farthest from the optical fiber bending portion 15 is a reference state, the bobbin 12 is kept straight in this reference state. To do. Therefore, the multi-core fiber 1 drawn out from the bobbin 12 has the light introducing core 5a positioned above it.
  • the bobbin control unit 25 controls the posture of the bobbin 12. For example, as shown in FIG. 5B, when the multi-core fiber 1 is rotating and it is determined that the arrangement of the cores 5 is shifted in the right direction in the figure (H in the figure) around the center of the cross section.
  • the bobbin controller 25 tilts the rotation surface of the bobbin 12 in the direction opposite to the rotation direction of the multi-core fiber 1 (direction I in the drawing).
  • the bobbin controller 25 inclines the rotation surface of the bobbin 12 in the direction opposite to the rotation direction of the multi-core fiber 1 (K direction in the figure). That is, the bobbin control unit 25 and the bobbin 12 function as an optical fiber rotating unit for rotating the multi-core fiber 1. In this manner, the optical fiber is rotated in the circumferential direction so that the amount of light leakage detected in the light detection step is substantially constant (optical fiber rotation step).
  • the inclination angle of the bobbin 12 is set according to the rotation angle of the multi-core fiber 1.
  • the rotation angle may be calculated from the light intensity detected by the light detection unit 23, and the bobbin 12 may be inclined by an angle that cancels the rotation angle.
  • the light intensity of the leaked light from the light detection unit 23 is a reference. You may incline until it becomes maximum intensity.
  • the colored resin is applied continuously or intermittently in the longitudinal direction at a predetermined position in the circumferential direction of the outer surface of the resin coating part of the multi-core fiber 1 (resin application process). Therefore, by always controlling the specific core (light introduction core 5a) to be in a predetermined circumferential position in the cross section perpendicular to the longitudinal direction of the multi-core fiber 1, the colored portion 9 and the specific core The positional relationship can be made substantially constant over the longitudinal direction of the multi-core fiber 1.
  • the colored portion 9 can be formed immediately above the light introducing core 5a (specific outermost core). That is, when the specific core is the outermost core closest to the outer peripheral portion of the clad in the cross section perpendicular to the longitudinal direction of the multicore fiber, the colored portion 9 is the outer surface of the resin coating portion closest to the outermost core. It can form in the circumferential direction position. For this reason, the position of a specific core can be easily visually recognized from the outer surface of the multi-core fiber 1.
  • the alignment becomes easy.
  • a method of connecting the multi-core fibers 1 to each other for example, light is applied from the side surfaces of the multi-core fibers 1, and the arrangement of the cores is matched by matching the light and dark patterns of light generated by the position of the core 5 Can do.
  • the position of the specific core 5 of the multi-core fiber 1 in the rotation direction can always be kept constant.
  • vertical to the longitudinal direction of the multi-core fiber 1 sent to the resin application part 19 can always be kept constant. Therefore, the colored resin can be applied to the specific core 5 at a constant position at all times. For this reason, in the cross section perpendicular
  • the rotation of the multicore fiber 1 can be detected with higher accuracy.
  • the light introducing core as a specific core and forming the colored portion 9 immediately above, it becomes easy to specify the position of the specific core.
  • the colored portion 9 of the multi-core fiber 1 is aligned and inserted into the ferrule for easy assembly. Further, at the time of manufacturing the tape core, the multi-core fibers 1 to be sent out are arranged in a certain direction with the position of the colored portion 9 as a mark, thereby obtaining a tape core in which the cores 5 are arranged in a predetermined direction in the tape cross section. be able to.
  • FIG. 6 is a plan view showing an optical fiber tape core manufacturing apparatus 20 for manufacturing the tape core 30.
  • the optical fiber ribbon manufacturing apparatus 20 mainly includes a bobbin placement unit 11a, a bobbin control unit 25a, a guide 24, a guide 24, a colored portion detection unit 26, a tape resin coating unit 28, and the like.
  • the bobbin arrangement unit 11 a, the bobbin control unit 25 a, the guide 24, and the colored portion detection unit 26 are arranged by the number of multi-core fibers 1 constituting the tape core wire 30.
  • the bobbin 12a is arranged on the bobbin arrangement part 11a.
  • the bobbin 12a is a bobbin around which the multi-core fiber on which the colored portion 9 is formed is wound and the multi-core fiber 1 is fed out.
  • Each multi-core fiber 1 drawn out from the bobbin 12a is sent to the guide 24.
  • the guide 24 is a roller and guides the multi-core fiber 1 to a predetermined position.
  • the guide 24 is provided with a V-groove so that the multi-core fiber 1 is always guided through a certain position.
  • a colored portion detection unit 26 is disposed.
  • the colored part detection unit 26 is a sensor that images the surface of the multi-core fiber 1 and continuously detects the position of the colored part 9.
  • the colored part detection unit 26 is, for example, a CCD camera. The position of the coloring part 9 detected by the coloring part detection part 26 is transmitted to the bobbin control part 25a.
  • the bobbin control unit 25a controls the posture of the bobbin 12a so that the position of the coloring unit 9 is always a constant position. Specifically, in the image of the multicore fiber 1, when it is determined that the colored portion 9 has shifted from the center of the image, the bobbin 12a is inclined so that the colored portion 9 moves in the opposite direction to the shift. By doing in this way, the multi-core fiber 1 can be sent to the tape resin coating
  • the tape resin coating portion 28 is an extruder composed of, for example, an alignment die or an extrusion die.
  • the tape resin coating applied by the tape resin coating portion 28 is cured by drying or UV irradiation as necessary.
  • the tape core wire 30 in which a plurality of multi-core fibers 1 are integrated is wound up by a winding device (not shown). Thus, the tape core wire 30 is manufactured.
  • FIG. 7 a is a cross-sectional view of the tape core wire 30.
  • the tape core wire 30 includes a plurality of multi-core fibers 1 and is integrated with the tape resin coating 32.
  • the multicore fibers 1 are arranged so that the cores 5 of all the multicore fibers 1 are arranged in the same direction.
  • the multi-core fiber 1 is arranged so that one center line of each of the multi-core fibers 1 connecting the three cores 5 is all directed in the thickness direction (vertical direction in the figure) of the tape core wire 30.
  • the arrangement of the cores 5 is substantially constant over the entire length of the tape core wire 30 in the longitudinal direction. That is, the arrangement of the cores 5 is always substantially constant in any cross section in the longitudinal direction of the tape core wire 30.
  • the arrangement of the cores 5 in the cross section perpendicular to the longitudinal direction of the tape core wire is not limited to the example shown in FIG. 7a.
  • the tape core wire 30a shown in FIG. 7b all one center line of each multi-core fiber 1 connecting the three cores 5 is rotated by a predetermined angle from the thickness direction of the tape core wire 30a (vertical direction in the figure). You may let them.
  • the orientations of the multi-core fibers 1 may not all be the same.
  • the cores 5 of some multi-core fibers 1 and the cores 5 of other multi-core fibers 1 are rotated 90 degrees with respect to the longitudinal direction of each multi-core fiber 1. You may arrange
  • the arrangement of the cores 5 should always be substantially constant in any cross section in the longitudinal direction of the tape core wire 30.
  • FIG. 8a is a diagram showing a colored resin coating apparatus 10a.
  • the colored resin coating device 10 a is substantially the same as the colored resin coating device 10, but has a light introducing portion 13 a instead of the light introducing portion 13.
  • the light introducing portion 13 a includes a light introducing bent portion 27 and a light source between a pair of guides 29.
  • the light introduction bending portion 27 is a roller, and bends the multi-core fiber 1 passing through the roller to a predetermined curvature.
  • the guide 29 is a roller that guides the travel route of the multi-core fiber 1 so that the multi-core fiber 1 is brought into contact with the light introduction bending portion 27 in a predetermined range and bent.
  • the multi-core fiber 1 passing through the light introducing bend 27 is irradiated with light by a light source disposed in the vicinity of the light introducing bend 27, light is introduced from the bend into the core inside the multi-core fiber 1. That is, light is introduced into the multi-core fiber 1 on the principle opposite to the leaked light in the optical fiber bent portion 15. A part of the light introduced into the multi-core fiber 1 is detected by the light detection unit 23 as leakage light in the optical fiber bending portion 15.
  • the same effects as those of the first embodiment can be obtained.
  • the light introduction part 13a since light cannot be introduced only into a specific core, light is introduced into a plurality of cores or almost all cores. However, even in this method, light can be efficiently introduced into the outermost core farthest from the neutral axis, and leakage light can be detected.
  • FIG.8 (b) is a figure which shows the colored resin coating device 10b.
  • the colored resin coating apparatus 10 b is substantially the same as the colored resin coating apparatus 10, but differs in that the bobbin control unit 25 controls the bobbin 22 instead of the bobbin 12.
  • the colored resin coating apparatus 10 b detects the intensity of light leaking from the optical fiber bending section 15 by the light detection unit 23, and detects twist in the rotation direction of the multicore fiber 1.
  • the bobbin controller 25 controls the posture of the bobbin 22 according to the rotation direction and the rotation amount of the multi-core fiber 1 from the detected intensity of the leaked light. Specifically, the rotation surface of the bobbin 22 is inclined. As described above, the position of the core 5 in the cross section perpendicular to the longitudinal direction of the multi-core fiber 1 sent to the resin application part 19 can be always kept constant.
  • the rotation angle of the bobbin 22 is set according to the rotation angle of the multi-core fiber 1.
  • the rotation angle is calculated from the light intensity detected by the light detection unit 23, and the bobbin 22 may be inclined by an angle that cancels the rotation angle.
  • the same effect as that of the first embodiment can be obtained.
  • the position of the multi-core fiber 1 can be controlled at a position closer to the resin application portion 19.
  • FIG. 9a is a diagram showing a colored resin coating apparatus 10c.
  • the colored resin coating apparatus 10c is substantially the same as the colored resin coating apparatus 10, but differs in that a fiber rotating unit 31 is provided.
  • the fiber rotating part 31 is disposed between the bobbin 12 and the optical fiber bent part 15 (guide 17).
  • the fiber rotating unit 31 is, for example, a roller.
  • the multi-core fiber 1 is in contact with the fiber rotating part 31 in a predetermined range. Therefore, a predetermined frictional force is generated between the multicore fiber 1 and the fiber rotating part 31.
  • the rotating unit control unit 25 b controls the attitude of the fiber rotating unit 31 by the leaked light detected by the light detecting unit 23. Specifically, the rotating surface of the fiber rotating unit 31 is tilted in the same manner as the above-described tilting of the bobbin. By rotating the fiber rotating part 31 in this direction, the multi-core fiber 1 passing through the fiber rotating part 31 can be rotated. Therefore, the position of the core 5 in the cross section perpendicular to the longitudinal direction of the multi-core fiber 1 sent to the resin application part 19 can be always kept constant.
  • the fourth embodiment it is possible to obtain the same effect as that of the first embodiment. Further, since it is only necessary to control the posture of the small roller as compared with the bobbins 12 and 22, etc., the control is easy.
  • FIG. 9B is a diagram showing the colored resin coating apparatus 10d.
  • the colored resin coating apparatus 10d is substantially the same as the colored resin coating apparatus 10c, but the installation location of the fiber rotating unit 31 is different.
  • the fiber rotating part 31 is disposed between the optical fiber bent part 15 (guide 17) and the resin coating part 19.
  • the rotation angle of the fiber rotation unit 31 is set according to the rotation angle of the multicore fiber 1.
  • the rotation angle may be calculated from the light intensity detected by the light detection unit 23, and the fiber rotation unit 31 may be inclined by an angle that cancels the rotation angle.
  • the same effect as that of the fourth embodiment can be obtained.
  • the circumferential position of the multi-core fiber 1 can be controlled at a location closer to the resin application portion 19.
  • FIG. 10 is a diagram showing a colored resin coating apparatus 10e.
  • the colored resin coating device 10e is substantially the same as the colored resin coating device 10, the multi-core fiber 1 is not drawn out from the bobbin 12, but is arranged continuously with the optical fiber core wire manufacturing device 40.
  • the optical fiber core manufacturing apparatus 40 includes a heater 43, resin-coated dies 45 and 49, ultraviolet irradiation apparatuses 47 and 51, and the like.
  • the multi-core fiber preform 41 is heated and melted by a heater 43 and drawn to obtain a glass fiber 53 having a predetermined diameter.
  • the glass fiber 53 is passed through the resin-coated die 45 supplied with the liquid resin heated to a certain temperature, and the liquid resin is applied to the outer periphery.
  • the applied liquid resin is cured by the ultraviolet irradiation device 47 to form a resin primary coating.
  • another resin secondary coating is formed by the resin coating die 49 and the ultraviolet irradiation device 51.
  • the resin coating part 7 is formed and the multi-core fiber 1 is manufactured.
  • a coloring material may be mixed in at least one of the resin primary coating or the resin secondary coating, and the multi-core fiber 1 may be a colored core.
  • the obtained multi-core fiber 1 is sent to the colored resin coating apparatus 10e as it is.
  • the colored resin coating apparatus 10 e light is introduced from the light introduction bending portion 27, and leak light is detected by the light detection portion 23.
  • the position of the multi-core fiber 1 in the rotation direction is grasped according to the intensity of the obtained leaked light, and the multi-core fiber 1 is rotated by the fiber rotating unit 31. As described above, the position of the core 5 in the cross section perpendicular to the longitudinal direction of the multi-core fiber 1 sent to the resin application part 19 can be always kept constant.
  • the position of the fiber rotating part 31 may be on the front process side of the optical fiber bending part 15 or on the rear process side. Further, the bobbin 22 may be rotated instead of the fiber rotating unit 31.
  • this invention can also be performed simultaneously with any process, such as a drawing process, a rewinding process, a screening process, a coloring process, and an overcoat process.
  • the multi-core fiber applicable to the present invention is not limited to the form shown in FIGS. 1a and 1b.
  • an arbitrary symmetry axis L It is preferable to form the colored portion 9 at a position deviated from the distance.
  • the distance between each of the plurality of cores and the colored portion 9 can be made all different, and a specific direction around the circumference of the clad can be identified. Therefore, it is possible to identify which end of both ends of the multi-core fiber 1b, and to prevent the multi-core fiber 1b from being connected in the wrong direction.
  • two or more colored portions 9 may be arranged as in the multi-core fiber 1c shown in FIG. Also in this case, when the plurality of cores are arranged so as to have symmetry, it is preferable to form the colored portion 9 at a position shifted from an arbitrary symmetry axis L from the viewpoint of core discrimination. As a result, the core can be identified more clearly. Moreover, you may change a color for every coloring part 9. FIG.
  • the present invention can also be applied to a multicore fiber 1d in which cores 5 are arranged in a line.
  • the colored portion 9 may be formed at a circumferential position closest to the outermost core closest to the outer peripheral portion in a cross section perpendicular to the longitudinal direction, or arranged at a position perpendicular to this. Also good.
  • the colored portions 9 may be disposed at a plurality of locations, or the colored portions 9 may be disposed at positions shifted from arbitrary line symmetry axes.
  • the present invention can also be applied to a multi-core fiber 1e having an overcoat resin 35.
  • the colored portion 9 may be formed on the outer periphery of the resin coating portion 7 and the overcoat resin 35 may be coated thereon.
  • it is desirable that the overcoat resin 35 is transparent.
  • the overcoat resin 35 is peeled off in the vicinity of the connecting portion so that the position of the colored portion can be identified. By doing so, the same effect can be obtained.
  • the colored portion 9 may be formed at a circumferential position closest to the outermost core in a cross section perpendicular to the longitudinal direction, or may be disposed at a position perpendicular to this.
  • the colored portions 9 may be disposed at a plurality of locations, or the colored portions 9 may be disposed at positions shifted from arbitrary line symmetry axes.
  • the present invention can also be applied to a multi-core fiber having a non-symmetric core 5 arrangement. In this case, even if there is only one colored portion 9, the orientation of the multicore fiber is not erroneously connected.
  • the colored portion is not limited to the one that can be visually confirmed, but may be one that can be confirmed by a detector or the like.
  • the optical fiber is a multi-core fiber.
  • the present invention is not limited to this. Even if it is other than a multi-core fiber, it is applicable if the shape of the cross section perpendicular to the longitudinal direction of the optical fiber is an optical fiber having directivity with respect to the rotation direction about the longitudinal direction of the optical fiber. is there.
  • the present invention can be applied to a polarization maintaining fiber, a flat core, or an eccentric core fiber having a core at the center, and an optical fiber in which a marker is provided separately from the signal light core.
  • a marker is provided separately from the signal light core.
  • the marker of the optical fiber only needs to be able to hold light for a predetermined length and is not used for signal light transmission, so it is not necessary to consider light transmission characteristics. For this reason, it can be set as the structure where light leaks easily compared with a core, and if it does in this way, it is especially suitable for this embodiment.
  • the relationship between the position of the colored portion and the position of the core is provided so as to be substantially constant over the longitudinal direction in the cross section perpendicular to the longitudinal direction of the optical fiber.
  • An optical fiber can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 マルチコアファイバ1は、複数のコア5が所定の間隔で配置され、周囲を複数のコアよりも屈折率が低いクラッド3で覆われたファイバである。クラッド3の外周には、樹脂被覆部7が形成される。樹脂被覆部7の外面の周方向の一部には、着色部9が形成される。着色部9は、マルチコアファイバ1の長手方向に連続して形成される。マルチコアファイバ1の長手方向と垂直な断面において、特定のコア5の位置と、着色部9が形成される周方向位置とは、マルチコアファイバ1の長手方向にわたって略一定となる。すなわち、マルチコアファイバ1の長手方向と垂直な断面において、特定のコア5の位置と、着色部9が形成される位置とは、マルチコアファイバ1の長手方向にわたって略一定となる。

Description

光ファイバおよび光ファイバの製造方法
 本発明は、光ファイバ等に関するものである。
 近年の光通信におけるトラフィックの急増により、一般的に用いられているシングルコアの光ファイバにおいて伝送容量の限界が近づいている。そこで、さらに通信容量を拡大する手段として、一本の光ファイバに複数のコアが形成されたマルチコアファイバが提案されている。マルチコアファイバを用いることで、光ファイバの敷設コストを抑え、伝送容量の拡大が可能となる。
 マルチコアファイバが伝送路として用いられた場合、このマルチコアファイバの各コア部は、それぞれ別の光ファイバや光素子等と接続されて伝送信号を送受する必要がある。
 一方、マルチコアファイバは、断面の中心以外にもコアが配置されているため、シングルコアの光ファイバと比較して接続が難しいという問題がある。
 このようなマルチコアファイバの接続を行う際には、マルチコアファイバのコアの配置が容易に特定できることが望ましい。
 このような、マルチコアファイバとしては、マルチコアファイバのクラッドに、コアの配置を識別するためのマーカを設けたマルチコアファイバがある(特許文献1)。
 また、マルチコアファイバ以外であっても、光ファイバの長手方向に対して垂直な断面形態が前記光ファイバの長手方向を軸とする回転方向に対して方向性を有する光ファイバ(たとえば、偏心コアファイバや偏波保持光ファイバ等)は、マルチコアファイバと同様に一般的なシングルコアの光ファイバと比較して接続が難しいという問題がある。
特開2011-170099号公報
 しかしながら、特許文献1のようにクラッド断面内に屈折率の異なるマーカを設ける方法では、断面を切断するか、もしくは樹脂被覆を剥いだクラッド側面から顕微鏡などでマーカの位置を観察するなどしないと、コア位置の識別ができない。したがって、外見から容易にコアの配置を認識することが困難である。
 本発明は、このような問題に鑑みてなされたもので、光ファイバの樹脂被覆部の外面から容易にコアの配置を特定することが可能な光ファイバ等を提供することを目的とする。
 前述した目的を達成するため、第1の発明は、コアと、前記コアの外周に形成され、前記コアよりも屈折率が低いクラッドと、前記クラッドの外周に形成された樹脂被覆部と、前記樹脂被覆部の外面の周方向の一部に設けられた着色部と、を有し、光ファイバの長手方向に対して垂直な断面の形態が、前記光ファイバの長手方向を軸とする回転方向に対して方向性を有し、前記着色部は、前記光ファイバの長手方向と垂直な断面において、前記着色部の位置と、前記コアとの位置との関係が、長手方向にわたって略一定となるように設けられていることを特徴とする光ファイバである。
 前記着色部は、前記光ファイバの全長にわたって、長手方向に連続的または断続的に形成されることが望ましい。
 前記光ファイバは、複数のコアを有するマルチコアファイバであり、前記着色部は、マルチコアファイバの長手方向と垂直な断面において、前記着色部の位置と、前記複数のコアのうちの特定のコアとの位置との関係が、長手方向にわたって略一定となるように設けられてもよい。
 前記特定のコアは、前記マルチコアファイバの長手方向と垂直な断面において、前記クラッドの外面に最も近い位置に配置された最外コアであり、前記着色部は、前記特定のコアに最も近い位置に形成されてもよい。
 前記マルチコアファイバの長手方向と垂直な断面において、複数のコアが対称性を有するように配置され、前記着色部は、任意の対称軸からずれた位置に形成されてもよい。
 前記着色部は、前記マルチコアファイバの長手方向と垂直な断面において、少なくとも2か所に形成されてもよい。
 第1の発明によれば、樹脂被覆部に着色部が形成され、着色部の周方向位置と、光ファイバの長手方向と垂直な断面における特定のコアとの位置関係が長手方向にわたって略一定であるため、光ファイバの外観によって、コアの配置を把握することができる。このため光ファイバの回転調芯が容易である。
 特に、着色部が光ファイバの全長にわたって形成されることで、いずれの位置で切断しても、着色部とコアとの位置関係が一定である。
 また、本発明の光ファイバとしては、例えば、マルチコアファイバを適用することができる。また、マルチコアファイバの長手方向と垂直な断面において、外周部に最も近い最外コアに対して、最も近い周方向位置に着色部が形成されれば、着色部の位置と特定のコアの位置とを把握しやすい。
 また、マルチコアファイバの長手方向と垂直な断面において、複数のコアが、断面の中心線を対称軸とした線対称に配置された場合において、着色部が、任意の対称軸からずれた位置に形成されれば、マルチコアファイバのいずれの端部かを識別することができる。
 また、着色部を周方向に少なくとも2か所形成し、それぞれの着色部が、マルチコアファイバの長手方向と垂直な断面の異なる中心線上に形成することでも、マルチコアファイバのいずれの端部かを識別することができる。このようにすることで、マルチコアファイバの接続方向を間違えることがない。
 第2の発明は、コアと、前記コアの外周に形成され、前記コアよりも屈折率が低いクラッドと、前記クラッドの外周に形成された樹脂被覆部と、前記樹脂被覆部の外面の周方向の一部に設けられた着色部と、を有する光ファイバの製造方法であって、前記光ファイバの前記コアに光を導入する光導入工程と、前記コアに導入した光を前記光ファイバの外部に漏らす光漏洩工程と、前記光漏洩工程での光の漏れを検知する光検知工程と、前記光検知工程において検知される光の漏れ量が略一定となるように、前記光ファイバを周方向に回転させる光ファイバ回転工程と、前記光ファイバの長手方向と垂直な断面において、前記コアとの位置関係が長手方向にわたって略一定となるように、前記樹脂被覆部の外面の周方向の一部に着色樹脂を塗布する樹脂塗布工程と、を有することを特徴とする光ファイバの製造方法である。
 前記光ファイバは、複数のコアを有するマルチコアファイバであり、前記樹脂塗布工程は、前記光ファイバの長手方向と垂直な断面において、前記複数のコアのうちの特定のコアとの位置との関係が、長手方向にわたって略一定となるように前記樹脂被覆部の外面の周方向の一部に着色樹脂を塗布してもよい。
 前記光導入工程において、前記光ファイバを屈曲させた屈曲部から光を導入してもよい。
 前記光導入工程において、前記光ファイバの端部から光を導入してもよい。
 前記光ファイバ回転工程は、前記光ファイバを巻き取るボビンまたは、前記光ファイバを繰り出すボビンの回転面を傾斜させて前記光ファイバを周方向に回転させてもよい。
 前記光ファイバ回転工程は、前記光検知工程で光の漏れを検知する検知部の前または後ろに配置されたローラの回転面を傾斜させて前記光ファイバを周方向に回転させてもよい。
 第2の発明によれば、マルチコアファイバの特定のコアとの位置関係が略一定となるように、長手方向の全長にわたって着色部を形成することができる。
 また、光導入部が屈曲部であれば、光検知部の近傍で光をマルチコアファイバに導入することができる。
 また、光導入部がマルチコアファイバの端部であれば、任意の特定のコアに光を導入することができる。
 また、マルチコアファイバの巻き取り方向または繰り出し方向を回転軸として、巻き取り装置またはマルチコアファイバを繰り出すボビンを、回転させることで、マルチコアファイバを容易に捻じることができる。したがって、光検知部で検知される光の強度に追従させて、マルチコアファイバを捻じることで、マルチコアファイバの特定のコアが一定の位置となるように容易に制御することができる。
 また、このような効果は、光ファイバ屈曲部の前または後ろに配置されたローラをマルチコアファイバの走行方向を軸として回転させることでも得ることができる。
 本発明によれば、マルチコアファイバの樹脂被覆部の外面から容易にコアの配置を特定することが可能なマルチコアファイバ等を提供することができる。
マルチコアファイバ1を示す図。 マルチコアファイバ1aを示す図。 着色樹脂塗布装置10を示す図。 光検知部23近傍を示す図であり、図2のB部拡大図。 図3のE部におけるF-F線断面図であり、光導入コア5aが光ファイバ屈曲部15の垂線G上の最上部に位置した状態を示す図。 図3のE部におけるF-F線断面図であり、光導入コア5aが、垂線Gからずれた部位に位置した状態を示す図。 マルチコアファイバ1の断面における光導入コア5aの位置とボビン12の傾きを示す図で、光導入コア5aが垂線G上に位置する状態を示す図。 マルチコアファイバ1の断面における光導入コア5aの位置とボビン12の傾きを示す図で、光導入コア5aが、垂線Gからずれた部位に位置した状態を示す図。 マルチコアファイバ1の断面における光導入コア5aの位置とボビン12の傾きを示す図で、光導入コア5aが、垂線Gからずれた部位に位置した状態を示す図。 光ファイバテープ心線製造装置20を示す図。 テープ心線30を示す断面図。 テープ心線30aを示す断面図。 着色樹脂塗布装置10aを示す図。 着色樹脂塗布装置10bを示す図。 着色樹脂塗布装置10cを示す図。 着色樹脂塗布装置10dを示す図。 着色樹脂塗布装置10eを示す図。 マルチコアファイバ1bを示す図。 マルチコアファイバ1cを示す図。 マルチコアファイバ1dを示す図。 マルチコアファイバ1eを示す図。
(第1実施形態)
 以下、本発明にかかる光ファイバについて説明する。図1aは光ファイバであるマルチコアファイバ1の斜視図である。
 マルチコアファイバ1は、断面が円形であり、複数のコア5が所定の間隔で配置され、複数のコアよりも屈折率が低いクラッド3が複数のコアの外周に形成された光ファイバである。例えば、全部で7つのコア5は、マルチコアファイバ1の中心と、その周囲に正六角形の各頂点位置に配置される。すなわち、中心のコア5と周囲の6つのコア5とは全て一定の間隔となる。また、6つのコア5において、隣り合う互いのコア5同士の間隔も同一となる。コア5は、信号光の導波路となる。なお、コア5の配置は、図示した例には限られない。
 クラッド3の外周には、樹脂被覆部7が形成される。樹脂被覆部7の外面の周方向の一部には、着色部9が形成される。着色部9は、マルチコアファイバ1の長手方向に連続して形成される。着色部9は、マルチコアファイバ1の全長にわたって連続的に形成されることが望ましいが、所定の長さの範囲に形成されてもよい。
 マルチコアファイバ1の長手方向に対して垂直な断面の形態は、マルチコアファイバの長手方向を軸とする回転方向に対して方向性を有する。また、マルチコアファイバ1の長手方向と垂直な断面において、特定のコア5の位置と、着色部9が形成される位置とは、マルチコアファイバ1の長手方向にわたって略一定となる。すなわち、マルチコアファイバ1の長手方向の任意の位置(着色部9の形成範囲の任意の位置)において、この位置関係が維持される。
 例えば、特定のコア5が、マルチコアファイバ1の長手方向と垂直な断面において、クラッドの外面に最も近い位置に配置された1つのコア(以下、最外コアとする)とする。この場合において、着色部9が最外コアに最も近い位置(最外コアの直上)に形成されれば、特定のコア5の位置を容易に視認することができる。すなわち、着色部9は、コアの位置を認識するためのマーカとして機能する。
 なお、着色部9は、図1(b)に示すマルチコアファイバ1aのように、長手方向に対して断続的に形成してもよい。この場合でも、着色部9が形成されている範囲のマルチコアファイバ1の長手方向と垂直な断面において、特定のコア5の位置と、着色部9が形成される位置とは、マルチコアファイバ1の長手方向にわたって略一定となる。
 次に、マルチコアファイバ1の製造方法について説明する。図2は、着色樹脂塗布装置10を示す図である。着色樹脂塗布装置10は、主に、ボビン配置部11、21、ボビン制御部25、ガイド17、光ファイバ屈曲部15、光検知部23、樹脂塗布部19等から構成される。
 ボビン配置部11には、着色前のマルチコアファイバ1が巻き付けられたボビン12が配置されており、マルチコアファイバ1がボビン12から繰り出される。ボビン配置部11には、光導入部13が設けられる。光導入部13は、マルチコアファイバ1の端部に光を導入する光源である。なお、光導入部13は、全てのコアに光を導入することもできるが、特定のコアにのみ光を導入することもできる。
 ボビン12から繰り出されたマルチコアファイバ1は(図中矢印A)、一対のガイド17の間に配置された光ファイバ屈曲部15に送られる。光ファイバ屈曲部15はローラであって、ローラに接して通過するマルチコアファイバ1を所定の曲率に屈曲させる。ガイド17は、光ファイバ屈曲部15にマルチコアファイバ1を所定範囲接触させて屈曲させるために、マルチコアファイバ1の走行ルートをガイドするローラである。
 光ファイバ屈曲部15の近傍には、光検知部23が配置される。光検知部23は、マルチコアファイバ1からの漏れ光を連続して検出するセンサである。光検知部23で検知された漏れ光の光強度は、ボビン制御部25に送信される。ボビン制御部25は、ボビン12の姿勢を制御する。なお、光検知部23による漏れ光の検出と、これによるボビン12の制御方法については後述する。
 光ファイバ屈曲部15を通過したマルチコアファイバ1は、樹脂塗布部19を通過する。樹脂塗布部19では、マルチコアファイバ1の樹脂被覆部7の外周面の所定の位置に着色樹脂が塗布される。樹脂塗布部19は、例えば着色樹脂を保持するローラをマルチコアファイバ1の外周面に接触させることで、着色樹脂をマルチコアファイバ1の全長にわたって、連続的にまたは断続的に塗布することができる。なお、着色樹脂は、樹脂被覆部7に対して識別可能な色であれば色は問わない。
 樹脂塗布部19で塗布された着色樹脂は、必要に応じて、乾燥やUV照射によって硬化されて、着色部9が形成される。着色部9が形成されたマルチコアファイバ1は、ボビン配置部21に配置された巻き取り用のボビン22によって巻き取られる。以上により、マルチコアファイバ1が製造される。
 次に、光検知部23による漏れ光の検出と、ボビン12の制御方法について説明する。図3は、光ファイバ屈曲部15近傍の拡大図(図2のB部拡大図)である。前述した様に、マルチコアファイバ1は、光ファイバ屈曲部15に沿って屈曲する。また、マルチコアファイバ1の少なくとも一つのコア5には、光導入部13によって、光が導入されている(光導入工程)。したがって、所定の曲率以上の曲率でマルチコアファイバ1を屈曲させると、マルチコアファイバ1の歪に応じて、コア5に導入した光がマルチコアファイバの外部に漏洩する(図中D)(光漏洩工程)。光検知部23は、この漏れ光を検知する(光検知工程)。
 図4a、図4bは、図3のE部におけるF-F線断面図であり、光導入コア5aの位置がそれぞれ異なる状態を示す図である。図中の線Gは、マルチコアファイバ1の長手方向と垂直な断面における中心線であって、光ファイバ屈曲部15のローラ面に対して垂直な線である。なお、前述のように、光は全てのコア5に導入することもできるが、簡単のため、以下の説明では、図示した一つの光導入コア5aに光が導入された例について説明する。
 図4aにおいて、中心のコア5を通り、光ファイバ屈曲部15との接触面に平行な線L(すなわち中立軸)より上方(光ファイバ屈曲部15から遠い方向)が曲げ変形による引張領域となり、中立軸Lより下方(光ファイバ屈曲部15方向)が曲げ変形による圧縮領域となる。すなわち、図4aは、光導入コア5aが、線G上に位置し、中立軸L(光ファイバ屈曲部15)から最も遠い部位に位置する状態を示す図である。したがって、この状態における光導入コア5aは、最も大きな引張歪が生じている状態となる。
 光導入コア5aが大きな歪を受けると、それに応じて漏れ光が生じる(図中D)。この漏れ光は、歪量に応じて変動し、歪量が大きくなると、漏れ光の光量も増加する。したがって、図4aの状態では、漏れ光が最も多くなる。この漏れ光の光強度を光検知部23で検知する。
 一方、図4bは、光導入コア5aが、垂線Gからずれた部位に位置した状態を示す図である。すなわち、マルチコアファイバ1が、断面中心を軸として、図4aの状態からわずかに回転した状態である(図中H)。なお、以下の説明において、マルチコアファイバ1の中心軸を回転軸とした回転を、単に、マルチコアファイバ1の回転と称する場合がある。この状態では、図4aの状態と比較して、光導入コア5aが中立軸Lにわずかに近くなる。このため、光導入コア5aの歪量が小さくなる。この結果、漏れ光Dの強度が低くなる。
 なお、例えば、複数の光検知部23をマルチコアファイバ1の周方向の異なる位置にそれぞれ配置し、それぞれの方向から漏れ光を検知することで、マルチコアファイバ1の回転方向をより確実に検知することができる。
 このように、光導入コア5aからの漏れ光の光強度を光検知部23で検知することで、最も漏れ光の光強度が大きいときが、光導入コア5aが図4aの状態であることが分かる。また、漏れ光の光強度が弱くなると、マルチコアファイバ1が回転していることを認識することができる。
 なお、全てのコアに光を導入した場合であっても、コアからの漏れ光を検知することで、マルチコアファイバ1の回転を検知することができる。すなわち、このような回転を検知するための光導入コア5aとしては、最外コアを利用することが望ましい。特に、特定のコアにのみ光を導入する場合には、マルチコアファイバ1の中心コア以外のコアを特定のコアとして選択する必要があり、最外コアに光を導入することが望ましい。
 次に、ボビン配置部11(ボビン12)の制御方法について説明する。図5a~図5cは、マルチコアファイバ1の断面における光導入コア5aの位置とボビン12の傾きを示す図である。なお、各図の左側は、図3のE部におけるF-F線断面図であり、各図の右図は、図2のC方向からみたボビン12の姿勢を示す図である。
 図5aに示すように、光導入コア5aが、線G上に位置し、光ファイバ屈曲部15から最も遠い部位に位置する状態を基準状態とすると、この基準状態では、ボビン12をまっすぐに維持する。したがって、ボビン12から繰り出されるマルチコアファイバ1は、上方に光導入コア5aが位置することとなる。
 一方、光検知部23による漏れ光の光強度が変化し、マルチコアファイバ1が回転していると判断されると、ボビン制御部25は、ボビン12の姿勢を制御する。例えば、図5(b)に示すように、マルチコアファイバ1が回転しており、コア5の配置が、断面中心を軸として図中右方向(図中H)にずれていると判断されると、ボビン制御部25は、ボビン12の回転面を、マルチコアファイバ1の回転方向とは逆方向(図中I方向)に傾斜させる。
 同様に、図5(c)に示すように、マルチコアファイバ1が回転しており、コア5の配置が、中心を軸として図中左方向(図中J)にずれていると判断されると、ボビン制御部25は、マルチコアファイバ1の回転方向とは逆方向(図中K方向)にボビン12の回転面を傾斜させる。すなわち、ボビン制御部25およびボビン12は、マルチコアファイバ1を回転させるための光ファイバ回転部として機能する。このように、光検知工程において検知される光の漏れ量が略一定となるように、光ファイバを周方向に回転させる(光ファイバ回転工程)。
 なお、ボビン12の傾斜角度は、マルチコアファイバ1の回転角度に応じて設定される。例えば、光検知部23によって検知された光強度から、回転角度を算出し、それを打ち消す角度だけボビン12を傾斜してもよいし、光検知部23での漏れ光の光強度が基準となる最大強度となるまで傾斜してもよい。
 樹脂塗布部19では、マルチコアファイバ1の樹脂被覆部の外面の周方向の所定の位置に、長手方向に対して連続的または断続的に着色樹脂が塗布される(樹脂塗布工程)。したがって、常に、特定のコア(光導入コア5a)が、マルチコアファイバ1の長手方向と垂直な断面における所定の周方向位置にくるように制御することで、着色部9と、特定のコアとの位置関係を、マルチコアファイバ1の長手方向にわたって略一定とすることができる。
 例えば、着色樹脂をマルチコアファイバ1の上方から塗布すれば、前述した光導入コア5a(特定の最外コア)の直上に着色部9を形成することができる。すなわち、特定のコアが、マルチコアファイバの長手方向と垂直な断面において、クラッドの外周部に最も近い最外コアである場合において、着色部9は、この最外コアに最も近い樹脂被覆部の外面の周方向位置に形成することができる。このため、特定のコアの位置を、マルチコアファイバ1の外面から容易に視認することができる。
 このように、マルチコアファイバ1の特定のコアの位置を容易に視認できるため、マルチコアファイバ1を他のファイバや素子と接続する際、その位置合わせが容易となる。
 なお、マルチコアファイバ1同士を接続する方法としては、例えば、マルチコアファイバ1の側面から光を当て、コア5の位置によって生じる光の明暗模様を、互いに一致させることで、コア同士の配置を合わせることができる。または、一方のマルチコアファイバの特定のコアまたは全てのコアに光を導入し、他方のマルチコアファイバのコアから光を検出して、検出される光強度が最大となる位置に合わせることで、コア同士の配置を合わせることができる。
 マルチコアファイバ1同士を接続する方法として、いずれの方法においても、特定のコアの位置を着色部9によって把握することができるため、まず、マルチコアファイバ1の着色部9の位置同士を合わせて対向させた後に、微調整のみを行えばよい。このため、調芯が極めて容易である。
 以上、本実施の形態によれば、マルチコアファイバ1の特定のコア5の回転方向の位置を常に一定に保つことができる。このため、樹脂塗布部19に送られるマルチコアファイバ1の長手方向と垂直な断面における特定のコア5の位置を、常に一定に保つことができる。したがって、特定のコア5に対して、常に一定の位置に、着色樹脂を塗布することができる。このため、マルチコアファイバ1の長手方向に垂直な断面において、着色部9の位置と、特定のコア5との位置関係を略一定にすることができる。
 したがって、本発明によれば、マルチコアファイバ1の樹脂被覆部の外面から容易にコアの配置を特定することが可能となる。
 このため、例えば特定のコア同士を融着接続する場合に、マルチコアファイバ1の着色部9の位置を合わせて融着機にセットすれば、僅かな調整で、簡単に且つ正確にコアの位置合わせができる。このため、低損失での融着接続が容易に実現できる。
 また、マルチコアファイバ1の回転を検出するために光を導入するコアとして、最外コアを選択することで、より精度よく、マルチコアファイバ1の回転を検出することができる。
 また、光導入コアを特定のコアとして、この直上に着色部9を形成することで、特定のコアの位置の特定が容易となる。
 また、コネクタを製造する場合も、これと同じ方法をとれば、マルチコアファイバ1の着色部9の位置を合わせて、フェルール内へ挿入し、容易に組み立てが可能となる。また、テープ心線の製造時には、送り出すマルチコアファイバ1を、着色部9の位置を目印に一定の方向に並べることで、テープ断面においてコア5が決められた方向に配列されたテープ心線を得ることができる。
 図6は、テープ心線30を製造するための光ファイバテープ心線製造装置20を示す平面図である。光ファイバテープ心線製造装置20は、主に、ボビン配置部11a、ボビン制御部25a、ガイド24、ガイド24、着色部位検知部26、テープ樹脂被覆部28等から構成される。ボビン配置部11a、ボビン制御部25a、ガイド24、着色部位検知部26は、テープ心線30を構成するマルチコアファイバ1の本数分配置される。
 ボビン配置部11aにボビン12aが配置される。ボビン12aは、前述した着色部9が形成されたマルチコアファイバが巻き付けられており、マルチコアファイバ1を繰り出すボビンである。
 ボビン12aから繰り出されたマルチコアファイバ1は、それぞれ、ガイド24に送られる。ガイド24はローラであって、マルチコアファイバ1を所定の位置に誘導する。例えば、ガイド24にV溝を設け、マルチコアファイバ1が常に一定の位置を通過するように誘導する。
 それぞれのガイド24の近傍には、着色部位検知部26が配置される。着色部位検知部26は、マルチコアファイバ1の表面を撮像し、着色部9の位置を連続して検出するセンサである。着色部位検知部26は、例えば、CCDカメラである。着色部位検知部26で検知された着色部9の位置は、それぞれボビン制御部25aに送信される。
 ボビン制御部25aは、着色部9の位置が常に一定の位置になるように、ボビン12aの姿勢を制御する。具体的には、マルチコアファイバ1の画像において、着色部9が画像中央からずれたと判断すると、そのずれと反対向きに着色部9が移動するように、ボビン12aを傾斜させる。このようにすることで、常に着色部9が一定の方向に向いた状態で、マルチコアファイバ1をテープ樹脂被覆部28に送ることができる。なお、ボビン制御部25aによるボビン2aの傾斜は、前述したボビン制御部25によるボビン12の傾斜と同様である。
 すべて一定の向きに揃ったマルチコアファイバ1は、テープ樹脂被覆部28を通過する。テープ樹脂被覆部28では、複数本のマルチコアファイバ1が整列されて、外周部にテープ樹脂被覆が塗布される。テープ樹脂被覆部28は、例えば、整列ダイスや押出ダイスからなる押出機である。
 テープ樹脂被覆部28で塗布されたテープ樹脂被覆は、必要に応じて、乾燥やUV照射によって硬化する。複数本のマルチコアファイバ1が一体化されたテープ心線30は、図示を省略した巻き取り装置によって巻き取られる。以上により、テープ心線30が製造される。
 図7aは、テープ心線30の断面図である。前述した様に、テープ心線30は、複数のマルチコアファイバ1が併設されて、テープ樹脂被覆32で一体化されたものである。テープ心線30の長手方向に垂直な断面において、全てのマルチコアファイバ1のコア5の配置が、全て同じ向きに配列するようにマルチコアファイバ1が配置される。例えば、図示した例では、3つのコア5をつなぐそれぞれのマルチコアファイバ1の一つの中心線が、全て、テープ心線30の厚み方向(図の上下方向)に向くようにマルチコアファイバ1が配置される。また、テープ心線30は、テープ心線30の長手方向の全長にわたって、コア5の配列が略一定である。すなわち、テープ心線30の長手方向の任意の断面において、常に、コア5の配列が略一定となる。
 なお、テープ心線の長手方向に垂直な断面におけるコア5の配列は、図7aに示した例には限られない。図7bに示したテープ心線30aのように、3つのコア5をつなぐそれぞれのマルチコアファイバ1の一つの中心線を、全て、テープ心線30aの厚み方向(図の上下方向)から所定角度回転させてもよい。また、それぞれのマルチコアファイバ1の向きが、全て同一でなくてもよい。例えば、すべてのマルチコアファイバ1の内、一部のマルチコアファイバ1のコア5と、他のマルチコアファイバ1のコア5とが、それぞれのマルチコアファイバ1の長手方向を軸として互いに90度回転した配列となるようにマルチコアファイバ1を配置してもよい。いずれにしても、テープ心線30の長手方向の任意の断面において、常に、コア5の配列が略一定となればよい。
 このように、着色部9の位置をセンサなどで識別してマルチコアファイバ1を回転させながら整列させることで、コアの配置が長手方向にわたって一定となるテープ心線30を得ることができる。
(第2実施形態)
 次に、第2実施形態について説明する。第1実施形態では、光導入部13をマルチコアファイバ1の端部とした例について説明した。この方法によれば、特定のコアのみを選択して光を導入することができる。これに対し、他の方法でマルチコアファイバ1に光を導入することもできる。
 図8aは、着色樹脂塗布装置10aを示す図である。なお、以下の説明においては、着色樹脂塗布装置10と同一の構成については、同一の符号を付し、重複する説明を省略する。着色樹脂塗布装置10aは、着色樹脂塗布装置10と略同様であるが、光導入部13に代えて、光導入部13aを有する。
 光導入部13aは、一対のガイド29の間に光導入屈曲部27と光源を具備する。光導入屈曲部27はローラであって、ローラに接して通過するマルチコアファイバ1を所定の曲率に屈曲させる。ガイド29は、光導入屈曲部27にマルチコアファイバ1を所定範囲接触させて屈曲させるために、マルチコアファイバ1の走行ルートをガイドするローラである。
 光導入屈曲部27の近傍に配置された光源によって、光導入屈曲部27を通過するマルチコアファイバ1に光を照射すると、屈曲部からマルチコアファイバ1の内部のコアに光が導入される。すなわち、光ファイバ屈曲部15における漏れ光と逆の原理によって、光がマルチコアファイバ1に導入される。マルチコアファイバ1に導入された光の一部は、光ファイバ屈曲部15において漏れ光として光検知部23で検知される。
 以上のように、第2の実施形態によっても、第1の実施の形態と同様の効果を得ることができる。なお、光導入部13aでは、特定のコアのみに光を導入することはできないため、複数コアあるいは略全てのコアに光が導入される。しかしながらのこの方法においても、中立軸から最も遠い最外コアには効率よく光を導入することができるとともに、漏れ光を検知することができる。
(第3実施形態)
 次に、第3実施形態について説明する。図8(b)は、着色樹脂塗布装置10bを示す図である。着色樹脂塗布装置10bは、着色樹脂塗布装置10と略同様であるが、ボビン制御部25がボビン12ではなく、ボビン22を制御する点で異なる。
 着色樹脂塗布装置10bは、着色樹脂塗布装置10と同様に、光検知部23によって、光ファイバ屈曲部15で漏れる光の強度を検出し、マルチコアファイバ1の回転方向の捻じれを検出する。ボビン制御部25は、検出された漏れ光の強度から、マルチコアファイバ1の回転方向および回転量に応じて、ボビン22の姿勢を制御する。具体的には、ボビン22の回転面を傾斜させる。以上により、樹脂塗布部19に送られるマルチコアファイバ1の長手方向と垂直な断面におけるコア5の位置を、常に一定に保つことができる。
 なお、ボビン22の回転角度は、マルチコアファイバ1の回転角度に応じて設定される。例えば、光検知部23によって検知された光強度から、回転角度を算出し、それを打ち消す角度だけボビン22を傾斜させればよい。
 以上のように、第3の実施形態によっても、第1の実施の形態と同様の効果を得ることができる。また、樹脂塗布部19により近い部位でマルチコアファイバ1の位置を制御することができる。
(第4実施形態)
 次に、第4実施形態について説明する。図9aは、着色樹脂塗布装置10cを示す図である。着色樹脂塗布装置10cは、着色樹脂塗布装置10と略同様であるが、ファイバ回転部31が設けられる点で異なる。
 ファイバ回転部31は、ボビン12と光ファイバ屈曲部15(ガイド17)との間に配置される。ファイバ回転部31は、例えばローラである。マルチコアファイバ1は、ファイバ回転部31と所定の範囲で接触する。したがって、マルチコアファイバ1とファイバ回転部31との間には所定の摩擦力が生じる。
 光検知部23で検知された漏れ光によって、回転部制御部25bは、ファイバ回転部31の姿勢を制御する。具体的には、前述したボビンを傾斜させるのと同じ要領でファイバ回転部31の回転面を傾斜させる。ファイバ回転部31がこの方向に傾斜することで、ファイバ回転部31と接触して通過するマルチコアファイバ1に回転を加えることができる。したがって、樹脂塗布部19に送られるマルチコアファイバ1の長手方向と垂直な断面におけるコア5の位置を、常に一定に保つことができる。
 以上のように、第4の実施形態によっても、第1の実施の形態と同様の効果を得ることができる。また、ボビン12、22等と比較して小型のローラの姿勢を制御すればよいため、制御が容易である。
(第5実施形態)
 次に、第5実施形態について説明する。図9(b)は、着色樹脂塗布装置10dを示す図である。着色樹脂塗布装置10dは、着色樹脂塗布装置10cと略同様であるが、ファイバ回転部31の設置箇所が異なる。
 着色樹脂塗布装置10dでは、ファイバ回転部31が、光ファイバ屈曲部15(ガイド17)と樹脂塗布部19との間に配置される。この場合には、ファイバ回転部31の回転角度は、マルチコアファイバ1の回転角度に応じて設定される。例えば、光検知部23によって検知された光強度から、回転角度を算出し、それを打ち消す角度だけファイバ回転部31を傾斜させればよい。
 以上のように、第5の実施形態によっても、第4の実施の形態と同様の効果を得ることができる。また、樹脂塗布部19により近い部位でマルチコアファイバ1の周方向位置を制御することができる。
(第6実施形態)
 次に、第6実施形態について説明する。図10は、着色樹脂塗布装置10eを示す図である。着色樹脂塗布装置10eは、着色樹脂塗布装置10と略同様であるが、ボビン12からマルチコアファイバ1を繰り出すのではなく、光ファイバ心線製造装置40と連続して配置される。
 光ファイバ心線製造装置40は、ヒータ43、樹脂被覆ダイス45、49、紫外線照射装置47、51等から構成される。
 マルチコアファイバ母材41はヒータ43で加熱溶融して延伸され、所定の径を有するガラスファイバ53が得られる。次に、一定温度に加温された液状樹脂が供給された樹脂被覆ダイス45にガラスファイバ53を通過させ、外周に液状樹脂を塗布する。次いで、紫外線照射装置47によって塗布した液状樹脂を硬化させ、樹脂1次被覆を形成させる。その後、樹脂被覆ダイス49および紫外線照射装置51により、さらにもう1層の樹脂2次被覆を形成させる。以上により、樹脂被覆部7が形成され、マルチコアファイバ1が製造される。
 このとき樹脂1次被覆または樹脂2次被覆の少なくともいずれか一方に着色材を混ぜ、マルチコアファイバ1を着色心線としてもよい。
 得られたマルチコアファイバ1は、そのまま、着色樹脂塗布装置10eに送られる。着色樹脂塗布装置10eでは、光導入屈曲部27から光が導入され、光検知部23で漏れ光が検知される。得られた漏れ光の強度に応じて、マルチコアファイバ1の回転方向の位置を把握して、ファイバ回転部31によってマルチコアファイバ1を回転させる。以上により、樹脂塗布部19に送られるマルチコアファイバ1の長手方向と垂直な断面におけるコア5の位置を、常に一定に保つことができる。
 なお、ファイバ回転部31の位置は、光ファイバ屈曲部15の前工程側であってもよく、後工程側であってもよい。また、ファイバ回転部31に代えて、ボビン22を回転させてもよい。
 以上のように、第6の実施形態によっても、第1の実施の形態と同様の効果を得ることができる。このように、本願発明は、線引き工程、巻き返し工程、スクリーニング工程、着色工程、オーバーコート工程など、いずれの工程と同時に行うこともできる。
(他のマルチコアファイバの実施形態)
 本発明に適用可能なマルチコアファイバは、図1a、図1bに示したような形態には限られない。例えば、図11aに示すマルチコアファイバ1bのように、長手方向と垂直な断面において複数のコアが対称性を有するように配置されている場合、コアの識別性の観点からは、任意の対称軸Lからずれた位置に着色部9を形成することが好ましい。
 これにより、複数コアのそれぞれと着色部9との距離が全て異ならせることができ、クラッド
の周回りの特定の方向を識別できる。したがって、マルチコアファイバ1bの両端の内、どちらの端部であるかも識別でき、誤った方向にマルチコアファイバ1bが接続されることを抑制することができる。
 また、図11(b)に示すマルチコアファイバ1cのように、着色部9を2か所以上配置してもよい。この場合も、複数のコアが対称性を有するように配置されている場合、コアの識別性の観点からは、任意の対称軸Lからずれた位置に着色部9を形成することが好ましい。これにより、コアの識別がより明確にできるようになる。また、着色部9毎に色を変えてもよい。
 また、本発明の対象となるマルチコアファイバのコアの配置は、前述した例には限られない。例えば、図12aに示すように、コア5が一列に配列したマルチコアファイバ1dにも適用が可能である。この場合には、着色部9は、長手方向と垂直な断面において、外周部に最も近い最外コアに最も近い周方向位置に形成してもよく、または、これと垂直な位置に配置してもよい。また、複数個所に着色部9を配置してもよく、任意の線対称軸からずれた位置に着色部9を配置してもよい。
 また、図12(b)に示すように、オーバーコート樹脂35を有するマルチコアファイバ1eに適用することもできる。この場合には、樹脂被覆部7の外周に着色部9を形成し、その上にオーバーコート樹脂35を被覆してもよい。この場合には、オーバーコート樹脂35は、透明であることが望ましいが、オーバーコート樹脂35が、透明でない場合も、接続部近傍においてオーバーコート樹脂35を剥ぎ取り、着色部の位置が識別できるようにすることで、同様の効果を得ることができる。この場合でも、着色部9は、長手方向と垂直な断面において、最外コアに最も近い周方向位置に形成してもよく、または、これと垂直な位置に配置してもよい。また、複数個所に着色部9を配置してもよく、任意の線対称軸からずれた位置に着色部9を配置してもよい。
 また、図示を省略するが、対称ではないコア5の配置を有するマルチコアファイバに適用することもできる。この場合には、着色部9が1か所のみであっても、マルチコアファイバの向きを誤って接続することはない。
 また、着色部は目視で確認できるものに限らず、検知器等で確認できるものでもよい。
 なお、以上の説明において、光ファイバがマルチコアファイバである例について説明したが、本発明はこれに限られない。マルチコアファイバ以外であっても、光ファイバの長手方向に対して垂直な断面の形態が、光ファイバの長手方向を軸とする回転方向に対して方向性を有する光ファイバであれば、適用可能である。
 例えば、単心ファイバであっても、コアが光ファイバの中心から偏心した位置にある場合にも適用可能である。また、コアが中心にある偏波保持ファイバや偏平コア、あるいは偏心コアファイバの場合であって、信号光用のコアとは別にマーカが設けられる光ファイバにも適用が可能である。この場合には、マーカに光を導入して、前述した方法によって光ファイバの回転位置を定め、着色樹脂を塗布すればよい。当該光ファイバのマーカは、光を所定の長さだけ保持できればよく、信号光の伝送用に用いられるものではないため、光の伝送特性を考慮する必要がない。このため、コアと比較して光が漏れやすい構成とすることができ、この様にすると、本実施形態に特に好適である。
 このように、本実施形態によれば、光ファイバの長手方向と垂直な断面において、着色部の位置と、コアとの位置との関係が、長手方向にわたって略一定となるように設けられている光ファイバを得ることができる。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、各実施形態は、互いに組み合わせることができることは言うまでもない。
1、1a、1b、1c、1d、1e………マルチコアファイバ
3………クラッド
5………コア
5a………光導入コア
7………樹脂被覆部
9………着色部
10、10a、10b、10c、10d、10e………着色樹脂塗布装置
11、11a………ボビン配置部
12、12a………ボビン
13、13a………光導入部
15………光ファイバ屈曲部
17………ガイド
19………樹脂塗布部
20………光ファイバテープ心線製造装置
21………ボビン配置部
22………ボビン
23………光検知部
24………ガイド
25、25a………ボビン制御部
25b………回転部制御部
26………着色部位検知部
27………光導入屈曲部
28………テープ樹脂被覆部
29………ガイド
30………テープ心線
31………ファイバ回転部
32………テープ樹脂被覆
40………光ファイバ心線製造装置
41………ファイバ母材
43………ヒータ
45、49………樹脂被覆ダイス
47、51………紫外線照射装置
53………ガラスファイバ

Claims (12)

  1.  コアと、
     前記コアの外周に形成され、前記コアよりも屈折率が低いクラッドと、
     前記クラッドの外周に形成された樹脂被覆部と、
     前記樹脂被覆部の外面の周方向の一部に設けられた着色部と、
     を有し、
     光ファイバの長手方向に対して垂直な断面の形態が、前記光ファイバの長手方向を軸とする回転方向に対して方向性を有し、
     前記着色部は、前記光ファイバの長手方向と垂直な断面において、前記着色部の位置と、前記コアとの位置との関係が、長手方向にわたって略一定となるように設けられていることを特徴とする光ファイバ。
  2.  前記着色部は、前記光ファイバの全長にわたって、長手方向に連続的または断続的に形成されることを特徴とする請求項1記載の光ファイバ。
  3.  前記光ファイバは、複数のコアを有するマルチコアファイバであり、前記着色部は、マルチコアファイバの長手方向と垂直な断面において、前記着色部の位置と、前記複数のコアのうちの特定のコアとの位置との関係が、長手方向にわたって略一定となるように設けられていることを特徴とする請求項1記載の光ファイバ。
  4.  前記特定のコアは、前記マルチコアファイバの長手方向と垂直な断面において、前記クラッドの外面に最も近い位置に配置された最外コアであり、
     前記着色部は、前記特定のコアに最も近い位置に形成されることを特徴とする請求項3記載の光ファイバ。
  5.  前記マルチコアファイバの長手方向と垂直な断面において、複数のコアが対称性を有するように配置され、
     前記着色部は、任意の対称軸からずれた位置に形成されていることを特徴とする請求項3記載の光ファイバ。
  6.  前記着色部は、前記マルチコアファイバの長手方向と垂直な断面において、少なくとも2か所に形成されていることを特徴とする請求項3記載の光ファイバ。
  7.  コアと、
     前記コアの外周に形成され、前記コアよりも屈折率が低いクラッドと、
     前記クラッドの外周に形成された樹脂被覆部と、
     前記樹脂被覆部の外面の周方向の一部に設けられた着色部と、
     を有する光ファイバの製造方法であって、
     前記光ファイバの前記コアに光を導入する光導入工程と、
     前記コアに導入した光を前記光ファイバの外部に漏らす光漏洩工程と、
     前記光漏洩工程での光の漏れを検知する光検知工程と、
     前記光検知工程において検知される光の漏れ量が略一定となるように、前記光ファイバを周方向に回転させる光ファイバ回転工程と、
     前記光ファイバの長手方向と垂直な断面において、前記コアとの位置関係が長手方向にわたって略一定となるように、前記樹脂被覆部の外面の周方向の一部に着色樹脂を塗布する樹脂塗布工程と、を有することを特徴とする光ファイバの製造方法。
  8.  前記光ファイバは、複数のコアを有するマルチコアファイバであり、
     前記樹脂塗布工程は、前記光ファイバの長手方向と垂直な断面において、前記複数のコアのうちの特定のコアとの位置との関係が、長手方向にわたって略一定となるように前記樹脂被覆部の外面の周方向の一部に着色樹脂を塗布することを特徴とする請求項7記載の光ファイバの製造方法。
  9.  前記光導入工程において、前記光ファイバを屈曲させた屈曲部から光を導入することを特徴とする請求項7記載の光ファイバの製造方法。
  10.  前記光導入工程において、前記光ファイバの端部から光を導入することを特徴とする請求項7記載の光ファイバの製造方法。
  11.  前記光ファイバ回転工程は、前記光ファイバを巻き取るボビンまたは、前記光ファイバを繰り出すボビンの回転面を傾斜させて前記光ファイバを周方向に回転させることを特徴とする請求項7記載の光ファイバの製造方法。
  12.  前記光ファイバ回転工程は、前記光検知工程で光の漏れを検知する検知部の前または後ろに配置されたローラの回転面を傾斜させて前記光ファイバを周方向に回転させることを特徴とする請求項7記載の光ファイバの製造方法。
PCT/JP2015/076883 2014-09-24 2015-09-24 光ファイバおよび光ファイバの製造方法 WO2016047669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016512142A JP6046310B2 (ja) 2014-09-24 2015-09-24 光ファイバの製造方法
US15/513,911 US9958604B2 (en) 2014-09-24 2015-09-24 Optical fiber, and optical-fiber production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-193569 2014-09-24
JP2014193569 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047669A1 true WO2016047669A1 (ja) 2016-03-31

Family

ID=55581192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076883 WO2016047669A1 (ja) 2014-09-24 2015-09-24 光ファイバおよび光ファイバの製造方法

Country Status (3)

Country Link
US (1) US9958604B2 (ja)
JP (1) JP6046310B2 (ja)
WO (1) WO2016047669A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156217A1 (ja) * 2018-02-08 2019-08-15 日本電信電話株式会社 マルチコアファイバおよびその製造装置
JPWO2021070241A1 (ja) * 2019-10-08 2021-04-15
JP2021076633A (ja) * 2019-11-05 2021-05-20 株式会社フジクラ 光ファイバテープ心線の製造方法、マルチコアファイバの製造方法、光ファイバテープ心線の製造装置、光ファイバテープ心線、マルチコアファイバ及び光ファイバテープ心線の固定方法
JP2021076632A (ja) * 2019-11-05 2021-05-20 株式会社フジクラ 光ファイバテープ心線の製造方法、マルチコアファイバの製造方法、光ファイバテープ心線の製造装置、光ファイバテープ心線、マルチコアファイバ及び光ファイバテープ心線の固定方法
WO2022254986A1 (ja) * 2021-06-04 2022-12-08 住友電気工業株式会社 光ファイバの製造方法、光ファイバ、光ファイバリボンの製造方法、光ファイバリボン、光ファイバの製造装置、及び、光ファイバリボンの製造装置
WO2023062923A1 (ja) * 2021-10-13 2023-04-20 株式会社フジクラ ファイバ集合体、及び、ファイバ集合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908033B (zh) * 2019-12-06 2021-04-27 江苏亨通光电股份有限公司 间隔式着色光纤及其制备方法和光缆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813505U (ja) * 1981-07-17 1983-01-27 日本電信電話株式会社 マルチコア光フアイバ
JPS58105503U (ja) * 1982-01-13 1983-07-18 日立電線株式会社 定偏波型光フアイバ
JPH01279210A (ja) * 1988-04-30 1989-11-09 Furukawa Electric Co Ltd:The 偏波保持光ファイバ
JP2013033865A (ja) * 2011-08-02 2013-02-14 Mitsubishi Cable Ind Ltd 光ファイバおよび光ファイバの製造方法
JP2013050695A (ja) * 2011-08-01 2013-03-14 Furukawa Electric Co Ltd:The マルチコアファイバの接続方法、マルチコアファイバ、マルチコアファイバの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813505A (ja) 1981-07-15 1983-01-26 Mitsui Toatsu Chem Inc 除草剤組成物
JPS58105503A (ja) 1981-12-17 1983-06-23 富士通株式会社 厚膜低抗体のトリミング方法
JPS60213904A (ja) * 1984-04-10 1985-10-26 Sumitomo Electric Ind Ltd 定偏波フアイバの巻き取り方法
JP5267481B2 (ja) 2010-02-18 2013-08-21 住友電気工業株式会社 マルチコア光ファイバ
US9696513B2 (en) * 2013-11-22 2017-07-04 Corning Optical Communications LLC Multicore optical fibers and methods of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813505U (ja) * 1981-07-17 1983-01-27 日本電信電話株式会社 マルチコア光フアイバ
JPS58105503U (ja) * 1982-01-13 1983-07-18 日立電線株式会社 定偏波型光フアイバ
JPH01279210A (ja) * 1988-04-30 1989-11-09 Furukawa Electric Co Ltd:The 偏波保持光ファイバ
JP2013050695A (ja) * 2011-08-01 2013-03-14 Furukawa Electric Co Ltd:The マルチコアファイバの接続方法、マルチコアファイバ、マルチコアファイバの製造方法
JP2013033865A (ja) * 2011-08-02 2013-02-14 Mitsubishi Cable Ind Ltd 光ファイバおよび光ファイバの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156217A1 (ja) * 2018-02-08 2019-08-15 日本電信電話株式会社 マルチコアファイバおよびその製造装置
JP2019139028A (ja) * 2018-02-08 2019-08-22 日本電信電話株式会社 マルチコアファイバおよびその製造装置
JPWO2021070241A1 (ja) * 2019-10-08 2021-04-15
WO2021070241A1 (ja) * 2019-10-08 2021-04-15 日本電信電話株式会社 コア位置把握方法、接続方法、及び接続装置
JP7205643B2 (ja) 2019-10-08 2023-01-17 日本電信電話株式会社 コア位置把握方法、接続方法、及び接続装置
JP2021076633A (ja) * 2019-11-05 2021-05-20 株式会社フジクラ 光ファイバテープ心線の製造方法、マルチコアファイバの製造方法、光ファイバテープ心線の製造装置、光ファイバテープ心線、マルチコアファイバ及び光ファイバテープ心線の固定方法
JP2021076632A (ja) * 2019-11-05 2021-05-20 株式会社フジクラ 光ファイバテープ心線の製造方法、マルチコアファイバの製造方法、光ファイバテープ心線の製造装置、光ファイバテープ心線、マルチコアファイバ及び光ファイバテープ心線の固定方法
JP7297643B2 (ja) 2019-11-05 2023-06-26 株式会社フジクラ 光ファイバテープ心線の製造方法及び光ファイバテープ心線の製造装置
JP7312671B2 (ja) 2019-11-05 2023-07-21 株式会社フジクラ 光ファイバテープ心線の製造方法及び光ファイバテープ心線
WO2022254986A1 (ja) * 2021-06-04 2022-12-08 住友電気工業株式会社 光ファイバの製造方法、光ファイバ、光ファイバリボンの製造方法、光ファイバリボン、光ファイバの製造装置、及び、光ファイバリボンの製造装置
WO2023062923A1 (ja) * 2021-10-13 2023-04-20 株式会社フジクラ ファイバ集合体、及び、ファイバ集合体の製造方法
JP7422957B2 (ja) 2021-10-13 2024-01-26 株式会社フジクラ ファイバ集合体、及び、ファイバ集合体の製造方法

Also Published As

Publication number Publication date
JPWO2016047669A1 (ja) 2017-04-27
US20170285258A1 (en) 2017-10-05
US9958604B2 (en) 2018-05-01
JP6046310B2 (ja) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6046310B2 (ja) 光ファイバの製造方法
JP6046311B2 (ja) テープ心線の製造方法
US9116321B2 (en) Optical fiber cord
US9541707B2 (en) Method for connecting multi-core fiber, multi-core fiber, and method for manufacturing multi-core fiber
EP3072001B1 (en) Grouping in a ribbon of marked multicore optical fibers
US9213134B2 (en) Alignment for splicing multi-core optical fibers
JP6734087B2 (ja) マルチコア光ファイバテープ心線の製造方法、および光ファイバテープ心線の製造方法
US9057815B2 (en) Angular alignment of optical fibers for fiber optic ribbon cables, and related methods
JP2015052704A (ja) 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
US9482814B2 (en) Multicore optical fiber and optical module
KR102408811B1 (ko) 간헐 연결형 광파이버 테이프 및 간헐 연결형 광파이버 테이프의 제조 방법
JP2017134360A (ja) 光ファイバテープ心線および光ケーブル
CN104081234A (zh) 多芯光纤带
JP6362302B2 (ja) 光ファイバテープ心線及び光ケーブル
JP2020003620A (ja) 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法
JP7297643B2 (ja) 光ファイバテープ心線の製造方法及び光ファイバテープ心線の製造装置
WO2016084465A1 (ja) 光ファイバ、光ファイバの調芯方法およびその接続構造、テープ心線およびその製造方法
JP2006139209A (ja) 光ファイバコード及び光ファイバコードと光コネクタとの接続方法
WO2019156217A1 (ja) マルチコアファイバおよびその製造装置
WO2021131977A1 (ja) マルチコアファイバ、光ファイバケーブル、及び光コネクタ
WO2024095531A1 (ja) マルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバユニットの製造装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、マルチコア光ファイバユニットの製造方法、マルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法
JP2006154448A (ja) 光ファイバコード
JP7312671B2 (ja) 光ファイバテープ心線の製造方法及び光ファイバテープ心線
JP2005077703A (ja) 光ドロップケーブル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016512142

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513911

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845181

Country of ref document: EP

Kind code of ref document: A1