WO2016047574A1 - ポリシリコンパッケージ - Google Patents

ポリシリコンパッケージ Download PDF

Info

Publication number
WO2016047574A1
WO2016047574A1 PCT/JP2015/076623 JP2015076623W WO2016047574A1 WO 2016047574 A1 WO2016047574 A1 WO 2016047574A1 JP 2015076623 W JP2015076623 W JP 2015076623W WO 2016047574 A1 WO2016047574 A1 WO 2016047574A1
Authority
WO
WIPO (PCT)
Prior art keywords
bag
polysilicon
filled
crushed
package
Prior art date
Application number
PCT/JP2015/076623
Other languages
English (en)
French (fr)
Inventor
聡子 吉村
卓也 浅野
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to US15/503,103 priority Critical patent/US10518964B2/en
Priority to EP15844223.6A priority patent/EP3199472B1/en
Priority to KR1020177005042A priority patent/KR102420347B1/ko
Priority to JP2016550163A priority patent/JP6768512B2/ja
Priority to CN201580039661.8A priority patent/CN106660694B/zh
Publication of WO2016047574A1 publication Critical patent/WO2016047574A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/38Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for delicate optical, measuring, calculating or control apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/08Materials, e.g. different materials, enclosed in separate compartments formed during filling of a single container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B29/00Packaging of materials presenting special problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/10Container closures formed after filling
    • B65D77/12Container closures formed after filling by collapsing and flattening the mouth portion of the container and securing without folding, e.g. by pressure-sensitive adhesive, heat-sealing, welding or applying separate securing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polysilicon package containing a crushed polysilicon used as a raw material for manufacturing semiconductors.
  • High-purity polysilicon is manufactured mainly by the Siemens method, and is used as a raw material for manufacturing a silicon single crystal used as a material for semiconductor devices and the like.
  • the Siemens method is a method in which high-purity polysilicon is vapor-grown in a rod shape by energizing and heating a high-purity silicon seed (core wire) and reacting a silane-based gas and hydrogen on the seed surface. .
  • the polysilicon rod manufactured by the Siemens method is crushed and packaged and packed in the form of a crushed polysilicon (hereinafter also referred to as Si crushed material), which is a lump, to produce single crystal polysilicon. Sometimes transported to factories.
  • Si crushed material a crushed polysilicon
  • the Si crushed material was filled in a bag made of a polyethylene resin film and filled with Si crushed material in order to prevent contamination after performing an etching treatment for removing impurities on the surface, if necessary.
  • a bag that is, a polysilicon package, is generally transported by packing it in a transport case such as a cardboard box.
  • a packaging mode in which a package containing bulk polysilicon has a double structure consisting of an inner bag and an outer bag, so that the outer bag can be prevented from being contaminated even if the inner bag is damaged.
  • Patent Document 1 a packaging mode is known in which a package containing bulk polysilicon has a double structure consisting of an inner bag and an outer bag, so that the outer bag can be prevented from being contaminated even if the inner bag is damaged.
  • the above double packaging is an effective means and is widely adopted industrially.
  • an object of the present invention is to reduce the thickness of the bag. Specifically, a bag formed of a polyethylene resin film having a thickness of 300 ⁇ m or less is filled with Si crushed material, and the bag is damaged by the crushed material. It is to provide an effectively prevented package.
  • the inventors of the present invention hold the bag in an upright state with the filling opening facing upward, and the Si crushed material enters the bag from the filling opening.
  • the Si crushed material When filling the Si crushed material, if the Si crushed material filled after that has a strong pressure, for example, the force pushed by hand or machine filling, the Si crushed material will fall from the top By the force caused by the gravitational acceleration, the film constituting the bag is greatly stretched in that portion by being pushed like a wedge, and the bag is damaged by the Si crushed material in the thinner portion due to the elongation.
  • a polysilicon package in which an average thickness of 300 ⁇ m or less is filled with crushed polysilicon in a bag formed of a polyethylene resin film,
  • the bag has a heat seal joint at the bottom, and the polysilicon crushed material is filled so that the maximum elongation of the bag is 5% or less in an upright state with the bottom as a ground contact surface.
  • a polysilicon package is provided.
  • the ratio (h / L 1 ) between the inner peripheral length L 1 of the bag before filling the crushed polysilicon and the loading height h of the crushed polysilicon filled in the bag is 0. .1 or more, (2)
  • the average maximum piece length of the crushed polysilicon is 5 to 150 mm.
  • the polyethylene-based resin film forming the bag has a piercing strength (JIS-Z1707) of 5N or more, Is preferred.
  • a polysilicon double package in which the polysilicon package is enclosed in an outer bag made of a polyethylene resin film.
  • the bottom portion when filling a bag formed of a polyethylene resin film with an average thickness of 300 ⁇ m or less with polysilicon crushed material, the bottom portion is set to be a ground plane and the filling opening is upright.
  • a method for manufacturing a polysilicon package which is held in a state and filled with a crushed polysilicon so that the maximum elongation of the bag does not become 5% or more from the opening for filling.
  • the thickness of the polyethylene resin film forming the bag is as thin as 300 ⁇ m or less, a reduction in sealing performance due to insufficient heat sealing is effectively avoided.
  • the film is thin, local expansion of the bag due to filling with polysilicon (Si) crushed material is limited, so it is possible to effectively avoid a decrease in the piercing strength of the film due to the expansion of the bag.
  • breakage of the bag at the part that is excessively extended locally is effectively prevented, contamination of Si crushed material due to breakage of the bag is avoided, and its purity can be maintained at a high level.
  • LLDPE linear low density polyethylene
  • metallocene catalyst system a bag formed of linear low density polyethylene (LLDPE) having high puncture strength and excellent pinhole resistance, particularly LLDPE of a metallocene catalyst system. Is brought about.
  • LLDPE linear low density polyethylene
  • the film formed by such LLDPE has the characteristic that the elongation is large, in the present invention, the elongation of the bag due to the filling of Si crushed material is limited, so its pinhole resistance is effective. It is because it can be utilized for.
  • FIG. 2 is a schematic view showing a side surface (FIG. 1 (A)) and an A-A ′ cross section (FIG. 1 (B)) of a typical form (flat bag) of a bag used in the polysilicon package of the present invention.
  • FIG. 2A is a schematic side view of the polysilicon package of the present invention in which bags are filled with crushed Si
  • FIG. 2A is a schematic side view
  • FIG. 2B is a cross-sectional view taken along line BB in FIG. 'Schematic cross section. Schematic which shows the filling method to the bag of the polysilicon crushed material for obtaining the polysilicon package of this invention.
  • the bag indicated by 1 as a whole has a heat seal joint 2 at the lower end by heat sealing a polyethylene resin film. At the upper end, a filling opening 3 for filling the crushed Si into the bag 1 is formed.
  • the bag 1 shown in FIG. 1 has a so-called flat bag shape, and is produced, for example, by heat-sealing one end portion (lower end portion) of a tubular film formed by extrusion molding.
  • the bag 1 may have a form such as a gusset bag in which a gusset is formed and a fold is formed in the gusset, and in addition to the lower end (2), both sides It may be formed by a three-way seal in which a heat seal joint is also formed at the end.
  • the bag 1 preferably has a flat bag or gusset bag configuration.
  • the inner peripheral length of the hollow portion of the bag 1 is indicated by L 1 as shown in FIG. In FIG. 1B, L 1 is described as the outer peripheral length for the purpose of drawing, but this L 1 indicates the inner peripheral length.
  • the thickness of the polyethylene resin film forming the bag 1 needs to be 300 ⁇ m or less, preferably 250 ⁇ m or less. That is, when the thickness of this film is too thick, when the filling opening 2 of the bag 1 is closed by heat sealing, heat welding becomes insufficient, and the sealing performance of the bag 1 may be lowered. Moreover, when the bag 1 is filled with crushed Si and the package obtained by heat-sealing the opening 2 is packed into a transport case such as cardboard, the packaging property of the package is impaired. Problems also arise. Moreover, when the thickness of such a polyethylene-type resin film is too thin, it will become difficult to adjust the elongation rate mentioned later to the predetermined range, or the intensity
  • the polyethylene resin for forming the film is not particularly limited as long as it can be formed into a film having the above thickness.
  • LLDPE linear low density polyethylene
  • these polyethylenes are usually used having an extrusion grade MFR, for example, an MFR of 5 g / 10 min (190 ° C.) or less.
  • the polyethylene-based resin film preferably has a puncture strength measured in accordance with JIS-Z1707 within a range of 5N or more, particularly 7N or more within the above-described thickness range. Hall property can be secured.
  • such a film is obtained by polymerization using linear low density polyethylene (LLDPE), particularly a metallocene catalyst.
  • LLDPE linear low density polyethylene
  • metallocene LLDPE metallocene linear low density polyethylene
  • LDPE low density polyethylene
  • high pressure polyethylene an ethylene chain includes a long-chain branch, and such a structure brings about a decrease in density and flexibility.
  • LLDPE is obtained by copolymerizing several kinds of ⁇ -olefin (for example, 1-butene, 1-hexene, 4-methylpentene-1, 1-octene, etc.) with a small amount of ethylene as a repeating unit.
  • ⁇ -olefin for example, 1-butene, 1-hexene, 4-methylpentene-1, 1-octene, etc.
  • Such LLDPE is excellent in impact resistance, pinhole resistance and sealing properties, but those obtained using a metallocene catalyst in particular have a sharp molecular weight distribution and better impact resistance. It is also advantageous for producing a film which exhibits pinhole resistance and sealing properties and has a high piercing strength and a film used for forming a bag by heat sealing.
  • the film made from LLDPE as mentioned above, especially the film made from metallocene LLDPE is excellent in the above-mentioned characteristics, it has the property that it is very easy to stretch.
  • the Si crushed material is filled. Since the elongation at the time is suppressed, the characteristics of such an LLDPE film can be sufficiently exhibited, and breakage of the bag due to filling of crushed Si can be effectively avoided.
  • the polyethylene-based resin forming the above-described film is an additive other than the resin component, for example, various fillers, oxidation, from the viewpoint of preventing contamination of Si crushed material filled in the bag 1. It is desirable that the amount of additives such as inhibitors, particularly metal compounds, is reduced. Particularly preferably, such additives are not blended, and the film is formed only by the resin component. Is good.
  • the bag 1 of FIG. 1 formed of the above-described polyethylene-based resin film is filled with Si crushed material through the filling opening 3.
  • the filling opening 3 is closed by heat sealing as necessary, thereby having a configuration as shown in FIGS. 2 (A) and 2 (B).
  • the polysilicon package is obtained. 2A and 2B, the heat seal joint 3a formed by closing the filling opening 3 by heat sealing is 3a, the Si crushed material 4 is present, and the heat seal joint 3a is present.
  • the head space (upper cavity) is indicated by 5.
  • the fact that the maximum elongation is in the above range means that the local elongation of the bag 1 due to the filling of the Si crushed material 4 is greatly limited, and as a result, the bag 1 ( The deterioration of characteristics such as piercing strength due to the elongation of the polyethylene-based resin film is effectively avoided, and breakage of the bag due to such elongation is effectively prevented.
  • the size of the Si crushed material 4 filled in the bag 1 is not particularly limited. In general, however, the Si crushed material 4 having an average maximum piece length of 5 to 150 mm, particularly 30 to 110 mm is filled.
  • the present invention is most effective. That is, when the Si crushed material 4 having the above size is filled in the bag 1, stress is applied to the bag 1 as the Si crushed material 4 is loaded. 4 is filled, the Si crushed material 4 filled later is pushed into the Si crushed material 4 previously filled and loaded into the Si crushed material 4 loaded earlier. As a result, the bag 1 is pushed outward and stretched.
  • the Si crushed material 4 is obtained by mechanically crushing a polysilicon rod manufactured by the Siemens method, and there are some which are larger than the above range. Each of the Si crushed materials 4 is often individually packaged, and in such a case, the problem of breakage due to elongation of the bag 1 (polyethylene resin film) can be ignored, so the present invention is applied. There is no meaning.
  • the Si crushed material 4 is very small, for example, when the average maximum piece length is smaller than the above range, the Si crushed material 4 is packed tightly in the bag 1 and loaded, The amount of the Si crushed material 4 that is pushed into the load of the Si crushed material 4 previously filled by the filling of the Si crushed material 4 after that is extremely small. The elongation due to is relatively small.
  • the polysilicon package of the present invention exhibits the most excellent effect when the Si crushed material 4 whose average maximum piece length is in the above range is filled.
  • the poly-silicon package of the present invention with respect to the inner peripheral length L 1 of the bag 1 before filling the Si crushed 4, the ratio of the stacking height h of the Si crushed product is filled into the bag 1 (h / It is desirable to set L 1 ) to be 0.1 or more. That is, set the inner circumferential length L 1 of the larger bag 1, is set small the height of the bag 1, for example, by setting such that the ratio (H / L1) becomes smaller, the maximum elongation of the bag 1 It can also be set to the above-mentioned range. However, this can be set large inner circumferential length L 1 of the bag 1, as, becomes larger than necessary installation space of the package, it caused the inconvenience such required a large storage space than necessary End up.
  • the filling opening 3 at the upper end is most preferably closed by heat sealing to form a heat sealing joint 3a.
  • the Si crushed material 4 filled in the bag 1 is formed.
  • a head space 5 is present between the upper surface of the heat seal and the heat seal joint 3a.
  • the inner peripheral length L 1 of the bag 1 before filling the Si crushed 4, for example, cutting a portion of the head space 5 in the vicinity of the heat sealed junction 2 of the upper end It can be easily obtained by measuring the inner peripheral length at this portion. This is because the elongation of the polyethylene resin film forming the bag 1 is substantially zero. For the same reason, the piercing strength of the polyethylene resin film used for forming this package can be obtained by cutting out this portion and measuring the piercing strength.
  • the above-described ratio (h / L 1 ) is set within a predetermined range.
  • the filling amount of the Si crushed material 4 and the size of the bag 1 are set within an appropriate range, and the Si crushed material 4 is filled so that the elongation of the bag 1 is restricted.
  • the empty bag 1 before filling with the Si crushed material 4 is longer than the outer peripheral length of the bag and has an inner peripheral length of less than 5% of the outer peripheral length.
  • the Si crushed material 4 may be filled while being housed in the frame 7 and held in an upright state. That is, since excessive deformation due to the filling of the Si crushed material 4 is suppressed by the frame body 7, the Si crushed material 4 to be filled later can be pushed between the loaded pieces of the Si crushed material 4 previously filled. This effectively avoids the local elongation of the bag 1 and makes it possible to set the maximum elongation within the aforementioned range.
  • the frame body 7 has a container shape with an open top, but of course has a cylindrical shape and is placed on a suitable base. Also good.
  • the inner diameter of the frame body 7 should have a size close to the outer peripheral length of the empty bag 1 from the viewpoint of preventing deformation due to filling of the Si crushed material 4. It is preferable that the length is equal to or less than 1.05 times, particularly 1.03 times or less of the outer peripheral length.
  • the frame body 7 only needs to have rigidity enough to suppress deformation due to filling of the Si crushed material 4, and further prevents metal contamination of the Si crushed material due to accidental contact with the Si crushed material 4. From the viewpoint of making it, it is preferable that it is made of a synthetic resin.
  • the frame body 7 is formed of polyolefin resin such as polyethylene resin and polypropylene resin, polyurethane resin, acrylonitrile butadiene styrene resin, polyvinyl chloride resin, polycarbonate resin, Teflon (trade name), etc., and ensures appropriate rigidity. Therefore, it is desirable that the thickness is 1 mm or more, preferably 1.5 mm or more, and more preferably 2 mm or more.
  • the synthetic resin does not contain additives other than the resin component.
  • the side surface of the frame body 7 can be opened by hinge connection or the like.
  • the bag 1 filled with the Si crushed material is taken out from the frame 7, and the filling opening 3 is appropriately heat-sealed, thereby the present invention.
  • the polysilicon package can be obtained.
  • the height of the frame body 7 is set to a size such that the filling opening 3 is exposed, and heat sealing can be performed in a state where the bag 1 is accommodated in the frame body 7.
  • the elongation of the bag when the Si crushed material 4 is filled is effectively suppressed.
  • the fluidity of the Si crushed material 4 in the bag 1 is low, and therefore, due to the dead weight of the Si crushed material 4 in the bag 1.
  • the bag 1 is unlikely to stretch. For this reason, by suppressing the maximum elongation at the time of filling the Si crushed material 4 as described above, the bag can be used not only at the time of filling the Si crushed material 4, but also at the time of storing or transporting the package. Can be effectively prevented, and the Si crushed material 4 can be kept in high purity.
  • the polysilicon package of the present invention can also be used as a double structure. That is, the above-described polysilicon package of the present invention can be used as an inner bag, which can be accommodated in an outer bag and used as a double package.
  • the outer bag may be formed of the same polyethylene resin film as the inner bag (polysilicon package of the present invention), but in particular, the inner bag of the polyethylene resin film and the outer bag.
  • the polyethylene resin film is easily slippery. For example, even if the inner bag is pierced by the corners of the Si crushed material 4 by selecting the type of polyethylene resin so that the static friction coefficient between these films (JIS-K7125) is 0.5 or less. The force is not easily transmitted directly to the outer bag, and the outer bag can be effectively prevented from being damaged. From the viewpoint of ensuring such high slipperiness, it is preferable to use metallocene LLDPE as the film for the inner bag (polysilicon package of the present invention) and the outer bag.
  • the total average thickness of the outer bag and the inner bag is 500 ⁇ m or less in order to prevent the package from being bulky during transportation.
  • the average thickness of each bag is preferably more than 100 ⁇ m and not more than 300 ⁇ m.
  • the breakage rate of the package is a value measured by the following method.
  • Package breakage rate (%) A bag of polysilicon packages prepared by filling a bag of Si crushed material in a predetermined method and heat-sealing the filling opening of the bag is packed into a corrugated cardboard box, five bags at a time. With the cushioning material inserted in, put it on the platform of the light truck, travel 200km on the general road, cut the heat seal joint at the filling opening of the package, take out the crushed Si, Water was poured into the bag, and a bag that had a hole to the extent that water was blown out was regarded as a broken bag, and the percentage of broken bags in 40 bodies was defined as the broken rate (%) of the package. This experiment was performed three times to obtain an average breakage rate (%).
  • Table 1 shows piercing strength (JIS-Z1707) and providing a film of metallocene LLDPE having an average thickness, by using this film, a bag of the circumferential length L 1 and length shown in Table 1 (height) (Rights Bag or gusset bag).
  • MFR (190 degreeC) of the metallocene LLDPE used for preparation of a film is 2 g / 10min.
  • the outer peripheral length of the bag, in the flat bag and gusset bag substantially the same as the inner peripheral length L 1.
  • Bag 2 Heat-seal joint at the lower end 3: Filling opening 3a: Heat-seal joint at the filling opening 4: Crushed polysilicon 5: Head space 7: Frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Packages (AREA)
  • Bag Frames (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

本発明の課題は、厚みが薄く、具体的には、300μm以下の厚みのポリエチレン系樹脂フィルムにより形成された袋にポリシリコン破砕物(Si破砕物)を充填したパッケージであって、該Si破砕物による袋の破損が有効に防止されたパッケージを提供することである。本発明によれば、平均厚みが300μm以下のポリエチレン系樹脂フィルムにより形成された袋(1)にSi破砕物(4)が充填されているポリシリコンパッケージにおいて、袋(1)は、底部に、ヒートシール接合部(2)を有しており、底部を接地面とした正立状態に袋(1)を保持したときの袋(1)の最大伸び率が5%以下となるように、Si破砕物(4)が充填されていることを特徴とするポリシリコンパッケージが提供される。

Description

ポリシリコンパッケージ
 本発明は、半導体の製造原料等に使用されるポリシリコンの破砕物が収容されたポリシリコンパッケージに関する。
 高純度のポリシリコンは、主にシーメンス法で製造され、半導体デバイスなどの素材として用いられるシリコン単結晶製造のための原料として使用される。かかるシーメンス法とは、高純度シリコンのシード(芯線)を通電加熱し、そのシード表面でシラン系ガスと水素とを反応させることにより、高純度のポリシリコンを棒状に気相成長させる方法である。
 上記シーメンス法によって製造されたポリシリコンロッドは、これを破砕して、塊片である、ポリシリコン破砕物(以下、Si破砕物ともいう)の形態で包装・梱包されて単結晶ポリシリコンの製造工場などに輸送されることがある。
 上記Si破砕物は、必要に応じて、表面の不純物を除去するためのエッチング処理を行なった後、汚染を防止するため、ポリエチレン系樹脂フィルム製の袋に充填され、Si破砕物が充填された袋、即ちポリシリコンパッケージは、一般には、これを段ボール箱の如き輸送用ケース内に梱包して輸送される。
 ところで、上記のようなポリシリコン破砕物が充填されている袋では、その輸送時において、内容物のSi破砕物の鋭利な角部が包装袋を突き破り、ポリシリコンが外気と接触することで汚染されるという間題が指摘されている。
 上記問題に対しては、いくつかの対策も提案されている。
 例えば、塊状のポリシリコンが収容されているパッケージを、内袋と外袋との二重構造とすることにより、内袋が破損しても外袋で汚染を防止できるようにした包装態様が知られている(特許文献1参照)。上記二重包装は有効な手段であり、工業的に広く採用されている。
 しかしながら、上記のように二重包装としても、内袋の破損を防止することが必要である。内袋の破損は、外袋の破損をもたらすおそれがあるからである。
 ポリシリコン破砕物が充填された袋の破損を防止する手段としては、該袋を構成するポリエチレン系樹脂フィルムの厚みを厚くすることが考えられるが、厚みによる袋の破損防止には限界がある。即ち、フィルム厚みを過度に厚くすると、ポリシリコン破砕物充填後、充填用の開口をヒートシールによる閉じた場合、ヒートシールによる熱融着が不十分となりやすく、袋のシール性が低下してしまうからである。特に、ガゼット袋のように、マチに折り込みが形成されている袋では、折り込み部でのヒートシールが不十分となり、シール性の低下が大きい。また、袋を形成するフィルムの厚みが厚すぎると、ポリシリコン破砕物が充填された袋を、輸送用ケースに詰め込むとき、袋が嵩張り、効率よく梱包ができないという問題も生じる。
 このように、袋の厚み調整のみでは、シール性の低下や梱包性などの別の問題が生じてしまうため、ポリシリコン破砕物の融点による袋の破損を効果的に防止することができない。
実用新案登録第2561015号
 従って、本発明の目的は、厚みが薄く、具体的には、300μm以下の厚みのポリエチレン系樹脂フィルムにより形成された袋に、Si破砕物が充填されており、該破砕物による袋の破損が有効に防止されたパッケージを提供することにある。
 本発明者らは、上記課題を解決すべく、鋭意検討を重ねた結果、袋をその充填用開口を上にして正立した状態に保持し、該充填用開口から該袋内にSi破砕物を充填したとき、先に充填されたSi破砕物間に、その後に充填されたSi破砕物が強い圧力、例えば、人手により押し込まれる力や、機械充填であれば、上部よりSi破砕物を落下させた際の重力加速度による力により、くさびのように押し込まれることで、袋を構成するフィルムがその部分において大きく伸ばされ、その伸びによりより薄くなった部分で、Si破砕物による袋の破損が生じ易いという知見を見出した。そして、この知見に基づき、この伸びが制限されるように、袋内へのSi破砕物の充填手段等を調整することにより、袋の破損を防止でき、本発明を完成させるに至った。
 本発明によれば、平均厚みが300μm以下ポリエチレン系樹脂フィルムにより形成された袋にポリシリコン破砕物が充填されているポリシリコンパッケージにおいて、
 前記袋は、底部にヒートシール接合部を有しており、該底部を接地面とした正立した状態で、袋の最大伸び率が5%以下となるように、前記ポリシリコン破砕物が充填されていることを特徴とするポリシリコンパッケージが提供される。
 本発明のポリシリコンパッケージにおいては、
(1)ポリシリコン破砕物を充填する前の前記袋の内周長Lと、該袋内に充填されているポリシリコン破砕物の積載高さhとの比(h/L)が0.1以上であること、
(2)前記ポリシリコン破砕物の平均最大片長が5~150mmであること、
(3)前記袋を形成しているポリエチレン系樹脂フィルムは、5N以上の突き刺し強度(JIS-Z1707)を有していること、
が好適である。
 また、本発明によれば、上記ポリシリコンパッケージが、ポリエチレン系樹脂フィルムよりなる外袋に封入されているポリシリコン二重パッケージが提供される。
 本発明によれば、さらに、平均厚みが300μm以下ポリエチレン系樹脂フィルムにより形成された袋にポリシリコン破砕物を充填するに際し、該底部を接地面とし、その充填用開口を上にして正立した状態に保持し、該充填用開口から、袋の最大伸び率が5%以上とならないようにポリシリコンの破砕物を充填するポリシリコンパッケージの製造方法が提供される。
 かかる製造方法においては、前記袋を型枠内に挿入してポリシリコン破砕物を充填することにより、ポリシリコン破砕物を充填する際の袋の伸びを抑制することが望ましい。
 本発明のポリシリコンパッケージは、袋を形成しているポリエチレン系樹脂フィルムの厚みが300μm以下と薄いため、ヒートシール不足によるシール性の低下が有効に回避されている。
 また、上記フィルムの厚みが薄いにもかかわらず、ポリシリコン(Si)破砕物の充填による袋の局部的な伸びが制限されているため、袋の伸びによるフィルムの突き刺し強度の低下が有効に回避されており、局部的に過度に伸びた部分での袋の破損が有効に防止され、袋の破損によるSi破砕物の汚染が回避され、その純度を高度に保持することができる。
 かかる本発明のポリシリコンパッケージでは、突き刺し強度が高く、耐ピンホール性に優れた直鎖低密度ポリエチレン(LLDPE)、特にメタロセン触媒系のLLDPEにより形成された袋を用いた場合に、最も大きな効果がもたらされる。このようなLLDPEにより形成されたフィルムは、伸びが大きいという特性を有しているが、本発明では、Si破砕物の充填による袋の伸びが制限されているため、その耐ピンホール性を有効に活かすことができるからである。
本発明のポリシリコンパッケージに使用する袋の代表的な形態(平袋)の側面(図1(A))及びA-A’断面(図1(B))を示す概略図。 袋内にSi破砕物が充填された本発明のポリシリコンパッケージの概略図であり、図2(A)は概略側面図であり、図2(B)は、図2(A)のB-B’断面の概略図。 本発明のポリシリコンパッケージを得るためのポリシリコン破砕物の袋への充填方法を示す概略図。
 本発明のポリシリコンパッケージに使用する袋を示す図1を参照して、全体として1で示される袋は、ポリエチレン系樹脂のフィルムをヒートシールすることにより下端部にヒートシール接合部2を有しており、その上端には、Si破砕物を袋1内に充填するための充填用開口3が形成されている。
 図1に示された袋1は、所謂平袋の形態を有しており、例えば、押出成形により形成されたチューブ状のフィルムの一方側端部(下端部)をヒートシールすることにより作製される。
 勿論、かかる袋1は、マチが形成され、このマチの部分に折り込みが形成されたガゼット袋のような形態を有していてもよいし、さらに、上記の下端部(2)に加え、両側端部にもヒートシール接合部が形成される3方シールにより形成されたものであってもよい。
 但し、大量のSi破砕物を充填するという点では、袋1は、平袋あるいはガゼット袋の形態を有していることが好適である。
 この袋1の空洞部の内周長は、図1(B)に表されているように、Lで示されている。尚、図1(B)では、図の作成上、Lが外周長のように記載されているが、このLは内周長を示す。
 本発明において、袋1を形成するポリエチレン系樹脂フィルムの厚みは、300μm以下、好ましくは250μm以下であることが必要である。即ち、このフィルムの厚みが厚過ぎる場合、上記袋1の充填用開口2をヒートシールにより閉じるとき、熱溶着が不十分となり、袋1のシール性が低下するおそれがある。また、袋1にSi破砕物が充填され、上記の開口2をヒートシールして得られるパッケージを、段ボール等の輸送用ケースに詰め込む際に嵩張ってしまい、このパッケージの梱包性が損なわれるという問題も生じてしまう。
 また、このようなポリエチレン系樹脂フィルムの厚みは、過度に薄いと、後述する伸び率を所定の範囲に調整することが困難となったり、或いは袋1の強度が大きく低下するなどの問題を生じてしまうため、一般に、100μm以上、特に120μmであることが望ましい。
 本発明において、上記フィルムを形成するポリエチレン系樹脂としては、上記のような厚みのフィルムに成形できる限り、特に制限はされず、例えば、密度が0.930g/cm未満の低密度ポリエチレン(LDPE)、密度が0.930g/cm以上の高密度ポリエチレン(HDPE)、密度が0.910~0.925g/cmの範囲にある直鎖低密度ポリエチレン(LLDPE)などであってよく、これらは、適宜、ブレンドして使用することもできる。また、これらのポリエチレンは、通常、押出グレードのMFR、例えば、5g/10min(190℃)以下のMFRを有するものが使用される。
 さらに、上記のポリエチレン系樹脂のフィルムは、前述した厚みの範囲内で、JIS-Z1707により測定される突き刺し強度が5N以上、特に7N以上の範囲にあることが好ましく、これにより、優れた耐ピンホール性を確保することができる。
 また、上記のような薄い厚みで突き刺し強度が上記のように高い値を示すフィルムを得るという点で、かかるフィルムは、直鎖低密度ポリエチレン(LLDPE)、特にメタロセン系触媒を用いての重合により得られるメタロセン直鎖低密度ポリエチレン(メタロセンLLDPE)により作製されていることが最適である。
 即ち、低密度ポリエチレン(LDPE)は、ラジカル開始剤を触媒とし、高圧(1000~4000気圧程度)、高温(100~350℃程度)の環境下で、エチレンを重合して得られるものであり、高圧法ポリエチレンとも呼ばれる。このような方法で得られるLDPEは、エチレン鎖が長鎖の分岐を含むようになり、このような構造により、密度の低下や柔軟性がもたらされる。これに対してLLDPEは、繰り返し単位のエチレンに若干量のα-オレフィン(例えば、1-ブテン、1-ヘキセン、4-メチルペンテン-1、1-オクテンなど)の複数種を共重合させたものであり、短い分岐がランダムに導入されており、これにより密度の低下が持たされるのであるが、LDPEに比して分岐が短く、分子の直線性が高いという性質を有している。このようなLLDPEは、耐衝撃性、耐ピンホール性及びシール性に優れているのであるが、特にメタロセン触媒を用いて得られたものは、分子量分布がシャープであり、より優れた耐衝撃性、耐ピンホール性、シール性を示し、高い突き刺し強度を有するフィルムの作製やヒートシールにより袋を形成するために用いるフィルムの作製にも有利である。
 ところで、上記のようなLLDPE製のフィルム、特にメタロセンLLDPE製のフィルムは、上記のような特性に優れているものの、非常に伸びやすいという性質を有しており、このため、このフィルムにより袋1を作製し、Si破砕物を充填したときの伸びが大きく、伸びによる薄肉化によって上述した耐衝撃性や耐ピンホール性が低下するという問題があるが、本発明では、Si破砕物を充填したときの伸びが抑制されているため、このようなLLDPEフィルムの特性を十分に発揮させ、Si破砕物の充填による袋の破損を有効に回避することができる。
 また、本発明において、上述したフィルムを形成するポリエチレン系樹脂は、袋1内に充填されるSi破砕物の汚染を防止するという観点から、樹脂成分以外の添加剤、例えば各種の充填剤、酸化防止剤等の添加剤、特に金属化合物の配合量が低減されていることが望ましく、特に好適には、このような添加剤が配合されておらず、樹脂成分のみによってフィルムが形成されているのがよい。
 上述したポリエチレン系樹脂のフィルムにより形成された図1の袋1には、Si破砕物が充填用開口3を通して充填される。
 Si破砕物が袋1内に充填された後、充填用開口3を必要に応じてヒートシールによって閉じることにより、図2(A)及び図2(B)に示されるような形態を有する本発明のポリシリコンパッケージが得られる。図2(A)及び(B)において、充填用開口3をヒートシールによって閉じることにより形成されたヒートシール接合部は3a、Si破砕物は4、及びヒートシール接合部3aを形成したときに存在するヘッドスペース(上方の空洞部)は5で示されている。
 上記のように充填用開口3は、ヒートシールにより閉じられることが推奨されるが、例えば、袋の未充填部分が十分に長い場合には、該部分を折り曲げることによって封止することも可能である。
 図2を参照して、本発明のポリシリコンパッケージでは、Si破砕物4が充填されている袋1を正立状態に保持した時、即ち、ヒートシール接合部2が底部となり、ヒートシール接合部3aが上端部となるように保持されたとき、袋1の最大伸び率が5%以下、特に3%以下となるように、ポリシリコン破砕物4が充填されている。
 この最大伸び率は、下記式により算出される。
  最大伸び率(%)=((L-L)/L)×100
  式中、
   Lは、袋1にSi破砕物4が充填されていない状態での袋1の空洞
  部の内周長を示し(図1(B)参照)、
   Lは、Si破砕物4が充填され、充填用開口3がヒートシールによ
  り閉じられてヒートシール接合部3aが形成された状態での最大伸びを
  示す部分(図2(B)におけるB-B’断面)での袋1の内周長を示す
  。
 即ち、本発明において、最大伸び率が上記範囲にあるということは、Si破砕物4の充填による袋1の局部的な伸びが大きく制限されていることを意味し、この結果、この袋1(ポリエチレン系樹脂フィルム)の伸びによる突き刺し強度などの特性低下が有効に回避され、このような伸びによる袋の破損が有効に防止されることとなる。
 また、本発明において、袋1内に充填されるSi破砕物4の大きさは特に制限されないが、一般に、平均最大片長5~150mm、特に30~110mmの大きさのSi破砕物4が充填されている場合に、本発明は最も効果的である。
 即ち、上記のような大きさのSi破砕物4を袋1内に充填していくと、Si破砕物4の積載に伴って、袋1には外側に応力が附加わるが、さらにSi破砕物4を充填していくと、後から充填されたSi破砕物4が、先に充填されたSi破砕物4が、先に充填され積載されたSi破砕物4の間に押し込まれていき、これにより、袋1が外方に押し広げられて伸びるようになる。このような伸びは、突き刺し強度た耐ピンホール性の低下などをもたらし、充填時或いは輸送時の振動などによりSi破砕物4の尖った角の突き刺さり、が生じ易く、袋1の破損をもたらしやすくなる。しかるに、本発明では、このような充填時の伸びが有効に抑制されているため、袋1の伸びによる特性低下を有効に回避することができ、かかる伸びによる破損を有効に回避することができるわけである。
 これに対して、Si破砕物4は、シーメンス法により製造されたポリシリコンロッドを機械的に破砕して得られたものであり、上記範囲よりも大きなものも存在するが、このような大きなサイズのSi破砕物4は、それぞれ、個別に包装をされる場合が多く、かかる場合は、袋1(ポリエチレン樹脂系フィルム)の伸びによる破損の問題は無視することができるため、本発明を適用する意味はない。
 また、Si破砕物4が非常に小さいような場合、例えば、その平均最大片長が上記範囲よりも小さい場合には、Si破砕物4は袋1内に密に充填されて積載されていくため、後からのSi破砕物4の充填によって、このSi破砕物4が先に充填されたSi破砕物4の積載物中に押し込まれていく量は極めて僅かであり、後からのSi破砕物の充填による伸びは比較的小さい。また、袋1の内面に対して均一に圧がかかるため、局部的な伸びも起こり難い。従って、Si破砕物4の充填による袋1の破損もあまり生じない。
 このように、本発明のポリシリコンパッケージは、平均最大片長が上記範囲内にあるSi破砕物4が充填されている場合に最も優れた効果を発揮するわけである。
 さらに、本発明のポリシリコンパッケージでは、Si破砕物4を充填する前の袋1の内周長Lに対する、袋1内に充填されているSi破砕物の積載高さhの比(h/L)が0.1以上となるように設定されることが望ましい。
 即ち、袋1の内周長Lを大きく設定し、袋1の高さを小さく設定し、例えば上記の比(H/L1)が小さくなるように設定することにより、袋1の最大伸びを前述した範囲に設定することもできる。しかしながら、このように袋1の内周長Lを大きく設定することは、このパッケージの設置スペースが必要以上に大きくなってしまい、必要以上に大きな保管場所が必要となるなどの不都合を生じてしまう。勿論、多数のパッケージを積み重ねることにより、このような不都合を回避することができるが、多数のパッケージの積み重ねは、袋1の破損をより生じ易くさせることとなってしまう。
 よって、本発明では、比(h/L)を上記範囲内となるように設定することが好適となる。
 尚、本発明においては、最も好適には、上端の充填用開口3をヒートシールにより閉じられてヒートシール接合部3aが形成され、このような場合、袋1内に充填されたSi破砕物4の上面とヒートシール接合部3aとの間にはヘッドスペース5が一般に存在することとなる。比(h/L)を上記の範囲内に設定したとき、このようなヘッドスペースは、該袋1のヒートシール接合部3aまでの全高さの20~90%の範囲となる。
 尚、本発明のポリシリコンパッケージにおいて、Si破砕物4を充填する前の袋1の内周長Lは、例えば、上端部のヒートシール接合部2の近傍のヘッドスペース5の部分を切断し、この部分での内周長を測定することにより容易に求めることができる。この部分は、袋1を形成しているポリエチレン系樹脂フィルムの伸びが実質上ゼロだからである。また、同様な理由により、この部分を切り取り、突き刺し強度を測定することにより、このパッケージの形成に使用されているポリエチレン系樹脂フィルムの突き刺し強度を求めることができる。
 また、本発明において、Si破砕物4が充填された状態での袋1の最大伸びを前述した範囲に設定するためには、前述した比(h/L)が所定範囲内となるように、Si破砕物4の充填量や袋1の大きさを適宜の範囲に設定すると共に、袋1の伸びが制限されるように、Si破砕物4を充填するという手段が採用される。
 具体的には、図3に示されているように、Si破砕物4を充填する前の空の袋1を、該袋の外周長より長く、外周長の5%未満の内周長を有する枠体7の内部に収容し、正立した状態に保持しながら、Si破砕物4の充填を行えばよい。即ち、Si破砕物4の充填による過度の変形が枠体7によって抑えられるため、後から充填されるSi破砕物4が先に充填されたSi破砕物4の積載物の間に押し込められることが有効に回避され、これにより、袋1の局部的な伸びを抑制することができ、最大伸びを前述した範囲内に設定することが可能となる。
 枠体7は、図3では、上部が開口した容器形状の形態を有しているが、勿論、筒状形状を有しており、適当な基台上に載置されているものであってもよい。
 また、上記の枠体7の内径は、Si破砕物4の充填による変形を防止するという観点から、空の袋1の外周長に近い大きさを有しているべきであり、例えば、袋1の外周長と同じか、或いは外周長の1.05倍以下、特に1.03倍以下の大きさであることが好ましい。
 さらに、枠体7は、Si破砕物4の充填による変形を抑制できる程度の剛性を有していればよく、さらに、Si破砕物4との偶発的な接触によるSi破砕物の金属汚染を防止するという観点から、合成樹脂製であることが好適である。
 例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂などのポリオレフィン樹脂、ポリウレタン樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、テフロン(商品名)などにより枠体7が形成され、適度の剛性を確保するため、その厚みが、1mm以上、好ましくは、1.5mm以上、更に好ましくは、2mm以上であることが望ましい。
 また、Si破砕物4の金属汚染を防止するという観点から、上記の合成樹脂は、樹脂成分以外の添加剤が配合されていないことが好適である。
 尚、上記の枠体7は、Si破砕物4が充填された後の袋1を容易に取り出し可能とするため、ヒンジ連結等により、その側面を開放可能としておくことが好適である。
 上記のようにして袋1内にSi破砕物が充填された後、この枠体7からSi破砕物が充填された袋1を取り出し、適宜、充填用開口3をヒートシールすることにより、本発明のポリシリコンパッケージを得ることができる。
 この場合、枠体7の高さを充填用開口3が露出するような大きさとし、枠体7内に袋1が収容されている状態でヒートシールを行うことも可能である。
 上記のようにして得られる本発明のポリシリコンパッケージは、Si破砕物4の充填時での袋の伸びが有効に抑制されている。また、このように伸びが抑制されるようにSi破砕物4が充填された後では、袋1内のSi破砕物4の流動性は低く、従って、袋1内のSi破砕物4の自重による袋1の伸びは生じ難い。このため、上記のようにSi破砕物4の充填時の最大伸びを抑制しておくことにより、Si破砕物4の充填時は勿論のこと、その後の、パッケージの保管或いは輸送時においても、袋の破損が有効に防止され、Si破砕物4を高純度に保持することができる。
 また、本発明のポリシリコンパッケージは、二重構造として使用することもできる。
 即ち、上述した本発明のポリシリコンパッケージを内袋として使用し、これを、外袋内に収容して二重パッケージとして使用することもできる。
 このような二重パッケージにおいて、外袋としては、内袋(本発明のポリシリコンパッケージ)と同様のポリエチレン樹脂フィルムで形成されていてよいが、特に、内袋のポリエチレン樹脂系フィルムと外袋のポリエチレン系樹脂フィルムとが、相互に滑りやすいことが好適である。
 例えば、これらのフィルム間の静摩擦係数(JIS-K7125)が0.5以下となるように、ポリエチレン系樹脂の種類を選択することにより、Si破砕物4の角により内袋が突き破られても、その力が外袋に直接伝わり難くなり、外袋の破損を効果的に防止できる。
 また、このような高い滑り性を確保するという観点から、内袋(本発明のポリシリコンパッケージ)や外袋のフィルムとして、メタロセンLLDPEを用いるが好適である。
 さらに、前記二重パッケージにおいては、前記外袋と内袋との平均厚みの合計が500μm以下であることが、搬送時の包装体の嵩張りを防止するために好ましい。尚、上記態様においても、それぞれの袋の平均厚みは100μmを超え、300μm以下であることが好ましい。
 以下、本発明を更に具体的に説明するため、実施例を示すが、本発明は、かかる実施例に限定されるものではない。
 尚、実施例において、パッケージの破損率は、以下の方法により測定した値である。
パッケージの破損率(%);
 所定の方法によりSi破砕物が袋内に充填され且つ該袋の充填用開口をヒートシールすることにより作製されたポリシリコンパッケージ40体を、5袋ずつ段ボール箱に詰め、段ボール箱内の空間部分に緩衝材を挿入した状態で、軽トラックの荷台に載せ、一般道を200km走行後、該パッケージの充填用開口でのヒートシール接合部を切断してSi破砕物を取り出し、切断部から袋内に水を注入し、水が吹き出す程度の孔が空いていたものを破損袋とし、40体中に占める破損袋の割合をパッケージの破損率(%)とした。
 この実験を3回行い、平均の破損率(%)を求めた。
<実施例1、2>
 表1に示す突き刺し強度(JIS-Z1707)及び平均厚みを有するメタロセンLLDPEのフィルムを用意し、このフィルムを用いて、表1に示す内周長L及び長さ(高さ)の袋(平袋またはガゼット袋)を作製した。尚、フィルムの作製に用いたメタロセンLLDPEのMFR(190℃)は2g/10minである。
 尚、袋の外周長は、平袋及びガゼット袋においては、実質上、内周長Lと同じである。
 厚み約5mmのポリエチレン製の板状体で作成された枠体(内面周囲長が956mm)を用意し、この枠体内に上記の袋を用意し、表1に示す平均最大片長を有するSi破砕物10kgを手動で該袋内に充填した後、この袋の充填用開口をヒートシールした。
 得られたパッケージについて、平均の破損率を測定し、その結果を示した。
 また、破損率の測定実験に用いたパッケージ毎に、袋の最大外周長を測定し、これを最大内周長Lとし、その最大伸び率を算出し、表1に示した。
 さらに、表1には、各袋について測定した平均ヘッドスペース割合、内周長LとSi破砕物の積載高さとの比(h/L)の平均値を併せて示した。
<比較例1>
 枠体を使用せずに袋内へのSi破砕物の充填を行った以外は実施例1と同様にしてパッケージを作製し、同様の測定を行い、その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
  1:袋
  2:下端のヒートシール接合部
  3:充填用開口
  3a:充填用開口のヒートシール接合部
  4:ポリシリコン破砕物
  5:ヘッドスペース
  7:枠体

Claims (8)

  1.  平均厚みが300μm以下ポリエチレン系樹脂フィルムにより形成された袋にポリシリコン破砕物が充填されているポリシリコンパッケージにおいて、
     前記袋は、底部にヒートシール接合部を有しており、該底部を接地面とした正立した状態で、袋の最大伸び率が5%以下となるように、前記ポリシリコン破砕物が充填されていることを特徴とするポリシリコンパッケージ。
  2.  該底部に対向する上部にもヒートシール接合部を有しており、該上部のヒートシール接合部が充填用開口を閉じたものである請求項1に記載のポリシリコンパッケージ。
  3.  ポリシリコン破砕物を充填する前の前記袋の内周長Lに対する、該袋内に充填されているポリシリコン破砕物の積載高さhの比(h/L)が0.1以上である請求項2に記載のポリシリコンパッケージ。
  4.  前記ポリシリコン破砕物の平均最大片長が5~150mmである請求項1記載のポリシリコン包装体。
  5.  前記袋を形成しているポリエチレン系樹脂フィルムは、5N以上の突き刺し強度(JIS-Z1707)を有している請求項1に記載のポリシリコンパッケージ。
  6.  請求項1に記載のポリシリコンパッケージが、ポリエチレン系樹脂フィルムよりなる外袋に封入されているポリシリコン二重パッケージ。
  7.  平均厚みが300μm以下ポリエチレン系樹脂フィルムにより形成された袋にポリシリコン破砕物を充填するに際し、該底部を接地面とし、その充填用開口を上にして正立した状態に保持し、該充填用開口から、袋の最大伸び率が5%以上とならないようにポリシリコンの破砕物を充填するポリシリコンパッケージの製造方法。
  8.  前記袋を型枠内に挿入してポリシリコン破砕物を充填することにより、ポリシリコン破砕物を充填する際の袋の伸びを抑制する、請求項7に記載のポリシリコンパッケージの製造方法。
PCT/JP2015/076623 2014-09-26 2015-09-18 ポリシリコンパッケージ WO2016047574A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/503,103 US10518964B2 (en) 2014-09-26 2015-09-18 Polysilicon package
EP15844223.6A EP3199472B1 (en) 2014-09-26 2015-09-18 Method of producing polysilicon package
KR1020177005042A KR102420347B1 (ko) 2014-09-26 2015-09-18 폴리실리콘 패키지
JP2016550163A JP6768512B2 (ja) 2014-09-26 2015-09-18 ポリシリコンパッケージ
CN201580039661.8A CN106660694B (zh) 2014-09-26 2015-09-18 多晶硅包装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-196131 2014-09-26
JP2014196131 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047574A1 true WO2016047574A1 (ja) 2016-03-31

Family

ID=55581101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076623 WO2016047574A1 (ja) 2014-09-26 2015-09-18 ポリシリコンパッケージ

Country Status (8)

Country Link
US (1) US10518964B2 (ja)
EP (1) EP3199472B1 (ja)
JP (1) JP6768512B2 (ja)
KR (1) KR102420347B1 (ja)
CN (1) CN106660694B (ja)
MY (1) MY177489A (ja)
TW (1) TWI656068B (ja)
WO (1) WO2016047574A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190945A1 (ja) * 2021-03-08 2022-09-15 株式会社トクヤマ ポリシリコン破砕物充填用包装袋及びポリシリコン包装体
JP7150222B1 (ja) * 2021-04-28 2022-10-07 株式会社トクヤマ 治具及び多結晶シリコン箱詰体の製造方法
WO2022230555A1 (ja) * 2021-04-28 2022-11-03 株式会社トクヤマ 治具及び多結晶シリコン箱詰体の製造方法
JP7417534B2 (ja) 2018-10-31 2024-01-18 株式会社トクヤマ ポリシリコンの防汚方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214099A1 (de) * 2013-07-18 2015-01-22 Wacker Chemie Ag Verpackung von polykristallinem Silicium
DE102013223883A1 (de) * 2013-11-22 2015-05-28 Wacker Chemie Ag Verfahren zur Herstellung von polykristallinem Silicium
CN116888048A (zh) 2021-12-13 2023-10-13 瓦克化学股份公司 用于自动包装粉碎硅的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036981A (ja) * 2007-08-27 2010-02-18 Mitsubishi Materials Corp シリコンの梱包方法及び梱包体
JP2010528955A (ja) * 2007-06-13 2010-08-26 ワッカー ケミー アクチエンゲゼルシャフト 多結晶シリコン破砕物を包装する方法及び装置
JP2012101838A (ja) * 2010-11-12 2012-05-31 Tokuyama Corp ポリシリコン包装体の製造方法
JP2014108829A (ja) * 2012-12-04 2014-06-12 Wacker Chemie Ag ポリシリコンの包装

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565720A (en) * 1983-07-27 1986-01-21 Idemitsu Petrochemical Co., Ltd. Packaging bag
JPH03176311A (ja) * 1989-11-27 1991-07-31 Tokihisa Masuda 包装商品の集積とケース詰の装置と方法
JP2561015Y2 (ja) 1992-05-26 1998-01-28 高純度シリコン株式会社 多結晶シリコンの収容容器
JP4115986B2 (ja) * 2004-11-24 2008-07-09 株式会社大阪チタニウムテクノロジーズ 多結晶シリコンの梱包方法
DE102006014874A1 (de) * 2006-03-30 2007-10-04 Wacker Chemie Ag Vorrichtung und Verfahren zum Zerkleinern von grobteilig gebrochenem polykristallinem Silicium
DE102011003875A1 (de) * 2011-02-09 2012-08-09 Wacker Chemie Ag Verfahren und Vorrichtung zum Dosieren und Verpacken von Polysiliciumbruchstücken sowie Dosier- und Verpackungseinheit
DE102011081196A1 (de) * 2011-08-18 2013-02-21 Wacker Chemie Ag Verfahren zur Verpackung von polykristallinem Silicium
US20130177266A1 (en) * 2012-01-09 2013-07-11 Curwood, Inc. Readily Ventable Reclosable Flexible Containers
JP2013213299A (ja) * 2012-04-03 2013-10-17 Shin-Etsu Chemical Co Ltd 樹脂製手袋
DE102012206251A1 (de) * 2012-04-17 2013-10-17 Wacker Chemie Ag Verpackung von polykristallinem Silicium
DE102012220422A1 (de) * 2012-11-09 2014-05-15 Wacker Chemie Ag Verpackung von polykristallinem Silicium
DE102012223192A1 (de) * 2012-12-14 2014-06-18 Wacker Chemie Ag Verpackung von polykristallinem Silicium
DE102013214099A1 (de) * 2013-07-18 2015-01-22 Wacker Chemie Ag Verpackung von polykristallinem Silicium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528955A (ja) * 2007-06-13 2010-08-26 ワッカー ケミー アクチエンゲゼルシャフト 多結晶シリコン破砕物を包装する方法及び装置
JP2010036981A (ja) * 2007-08-27 2010-02-18 Mitsubishi Materials Corp シリコンの梱包方法及び梱包体
JP2012101838A (ja) * 2010-11-12 2012-05-31 Tokuyama Corp ポリシリコン包装体の製造方法
JP2014108829A (ja) * 2012-12-04 2014-06-12 Wacker Chemie Ag ポリシリコンの包装

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199472A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417534B2 (ja) 2018-10-31 2024-01-18 株式会社トクヤマ ポリシリコンの防汚方法
WO2022190945A1 (ja) * 2021-03-08 2022-09-15 株式会社トクヤマ ポリシリコン破砕物充填用包装袋及びポリシリコン包装体
JP7150222B1 (ja) * 2021-04-28 2022-10-07 株式会社トクヤマ 治具及び多結晶シリコン箱詰体の製造方法
WO2022230555A1 (ja) * 2021-04-28 2022-11-03 株式会社トクヤマ 治具及び多結晶シリコン箱詰体の製造方法

Also Published As

Publication number Publication date
KR102420347B1 (ko) 2022-07-13
JPWO2016047574A1 (ja) 2017-07-06
KR20170063536A (ko) 2017-06-08
TWI656068B (zh) 2019-04-11
CN106660694A (zh) 2017-05-10
EP3199472A1 (en) 2017-08-02
CN106660694B (zh) 2018-09-21
MY177489A (en) 2020-09-16
US10518964B2 (en) 2019-12-31
EP3199472B1 (en) 2019-12-18
JP6768512B2 (ja) 2020-10-14
US20170233174A1 (en) 2017-08-17
TW201613804A (en) 2016-04-16
EP3199472A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2016047574A1 (ja) ポリシリコンパッケージ
TWI548567B (zh) 用於包裝多晶矽之方法
RU2474522C2 (ru) Полимерная бутылка для горячего наполнения или термической обработки
US20230264449A1 (en) Tubular film for stretch hoods comprising recycled material
JP5514081B2 (ja) ポリシリコン包装体の製造方法
CN103848071A (zh) 多晶硅包装物以及通过向其中填充多晶硅并熔接而将多晶硅包装到塑料袋中的方法
JP6907404B2 (ja) シーラント用樹脂組成物、シーラント用多層フィルム、熱融着性積層フィルムおよび包装体
US10894644B2 (en) Stretch hood system
ES2605879T3 (es) Películas de sellado
JP3993465B2 (ja) 包装袋
JP2012254569A (ja) ガゼット折り包装袋用フィルム及びガゼット折り袋状物
US11318723B2 (en) Packaging films with improved hot-tack performance
JP6804867B2 (ja) 包装用袋の製造方法
JP7137172B2 (ja) 包装用袋の製造方法
CN110002102A (zh) 一种pe复合包装膜的制作方法及其产品的用途
JP3206050U (ja) 三辺易開封性包装袋
JP4086546B2 (ja) 包装袋および包装体
JP2023125717A (ja) 包装袋用積層体フィルム、包装袋、輸送用梱包体、及び包装袋用積層体フィルムの製造方法
BRPI0711793A2 (pt) embalagem flexìvel em matéria plástica
JP6862853B2 (ja) フレキシブル包装体およびフレキシブル包装袋の製造方法
JPS6237140A (ja) 二重包装袋の製造方法
JP2004203444A (ja) 嵌合具及び嵌合具付包装用袋体
JPH11227701A (ja) ガス充填シュリンク包装体の箱詰め方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550163

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015844223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005042

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE