WO2016047158A1 - レーザレーダ装置 - Google Patents
レーザレーダ装置 Download PDFInfo
- Publication number
- WO2016047158A1 WO2016047158A1 PCT/JP2015/053674 JP2015053674W WO2016047158A1 WO 2016047158 A1 WO2016047158 A1 WO 2016047158A1 JP 2015053674 W JP2015053674 W JP 2015053674W WO 2016047158 A1 WO2016047158 A1 WO 2016047158A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- laser
- reflected
- radar device
- shielding member
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
Definitions
- the present invention relates to a laser radar device that measures a distance by scanning a laser beam.
- a laser scanner described in Patent Document 1 is known as an apparatus for measuring a distance by scanning a laser beam.
- This laser scanner periodically scans a monitoring region with laser light by changing the direction of laser light emitted from a light emitter (light source) by a deflection unit (reflecting member). If an object is present in the monitoring area, the light beam is diffusely reflected on the surface of the object and analyzed by a laser scanner. Further, the laser beam after the emission and the laser beam after the reflection are both arranged in the same path, and both pass through the light transmission part formed on the cover.
- the angular position of the object is estimated from the angle setting of the deflection unit, and the distance from the laser scanner to the object is estimated based on the passage time of the laser light and the speed of the light.
- the received light signal based on the reflected laser light has a signal intensity that is inversely proportional to the square of the distance to the object, and further changes depending on the reflectance and surface state of the object. For this reason, the received light signal can change to a wide range of intensities (levels) from a large intensity to a small intensity.
- the reflected light may be detected by a light receiver disposed in the laser scanner. If detected in this way, the detected reflected light is misrecognized as reflected light from an object at a short distance, and it is erroneously determined that an object has been detected in the external space. Such reflected light is called “stray light”.
- stray light there is a method of providing a filter that suppresses transmission of stray light and transmits reflected light from an object, as in the laser radar device described in Patent Document 2.
- a filter is essential to prevent stray light from entering the light receiver in a configuration in which the emitted laser light and the reflected laser light pass through the same path.
- the above-mentioned filter has a peculiarity in which the transmission characteristic depends on the incident angle, and the filter is provided between the rotary reflection device (deflection unit) and the light receiver, and therefore the period is increased by the rotation of the rotary reflection device. In order to cope with the laser beam to be scanned, it is necessary to increase the shape of the filter.
- Patent Document 3 in order to solve the above-mentioned problem of “stray light”, a light shielding member provided with a plurality of convex portions and having depressions formed between adjacent convex portions is provided on the front side and the lower side of the light receiving surface.
- similar is disclosed.
- positioned above a hollow reflects the stray light which a part of laser beam reflects in the surface of the light transmissive part formed in the cover toward the inner wall of a hollow, thereby, Stray light can be attenuated.
- Laser light emitted from the light source of the laser radar device is light that travels straight, but has a slight component that spreads the beam.
- the beam is reflected upon reflection by the deflection unit (reflection member).
- the spread component further increases. For this reason, the laser light hits a wide range of the light transmitting portion formed on the cover due to the spread of the beam, and the laser light hitting the wide range further generates stray light in a wide range.
- the light shielding member In general, if the light shielding member is configured to cover a wide area, it can block a wide range of stray light. The problem that a rate will fall arises.
- the object of the present invention is to prevent the stray light from being generated in a wide range by preventing a part of the laser light reflected by the reflecting member from being reflected by the light transmitting portion and to increase the light detection rate by increasing the size of the stray light shielding member. It is an object of the present invention to provide a laser radar device that can prevent a decrease.
- a laser radar device includes a light emitting element that emits laser light, a reflecting member that reflects the laser light emitted from the light emitting element, and the reflecting member.
- a laser beam passage member having a spread component blocking hole through which the laser beam is transmitted so as to block the spread component of the reflected laser beam, and a light transmission for transmitting the laser beam that has passed through the spread component blocking hole.
- a light shielding member that shields stray light generated by a part of the laser beam being reflected by the light transmitting portion.
- light due to an increase in the size of the stray light shielding member can be prevented by preventing the stray light generation range from being expanded by partially reflecting the laser light reflected by the reflecting member. There is an effect that a decrease in the detection rate can be prevented.
- FIG. 1 is a perspective view showing a configuration of a distance measuring device according to Embodiment 1.
- FIG. It is front sectional drawing which shows the structure of the said distance measuring device. It is a side view which shows the structure of the said ranging apparatus.
- (A) is front sectional drawing for demonstrating the progress of the stray light in the conventional ranging device
- (b) is front sectional drawing for demonstrating the progress of the stray light in the ranging device which concerns on Embodiment 1.
- FIG. . (A) and (b) are the figures for demonstrating the scanning aspect of the laser beam radiate
- (A) is a side view which shows the structure of the modification of the said ranging apparatus
- (b) is a top view which shows typically the structure of the said modification
- (c) is the distance measurement which concerns on Embodiment 1.
- FIG. It is a top view which shows the structure of an apparatus typically. It is a side view which shows the structure of the other modification of the said distance measuring device.
- (A) is a wave form diagram which shows the light reception signal in the conventional distance measuring device
- (b) is a wave form diagram which shows the light reception signal in the distance measuring device which concerns on Embodiment 1.
- FIG. It is front sectional drawing which shows the structure of the ranging device which concerns on Embodiment 2.
- FIG. It is front sectional drawing which shows the structure of the distance measuring device which concerns on Embodiment 3.
- FIG. 1 is a perspective view illustrating a configuration of a distance measuring device 1 (laser radar device) according to the first embodiment.
- FIG. 2 is a front sectional view showing the configuration of the distance measuring device 1.
- FIG. 3 is a side view showing the configuration of the distance measuring device 1.
- the distance measuring device 1 includes a light emitting element 2 that emits a laser beam LL.
- the light emitting element 2 is attached to a fixing member 15 made of sheet metal.
- the laser light LL emitted from the light emitting element 2 is converted into parallel light by the lens 11.
- the laser beam LL converted into parallel light by the lens 11 is reflected by the mirror 12 (reflection member).
- the distance measuring device 1 includes a substantially square plate-shaped deflecting member 3 (reflecting member) that further reflects the laser light LL reflected by the mirror 12.
- the deflecting member 3 is disposed along a direction inclined about 45 degrees with respect to the traveling direction of the laser light LL reflected by the mirror 12, and is attached to the attachment member 13.
- the mounting member 13 is fixed to a motor 14 that rotates around the rotation axis RX.
- the motor 14 is fixed to the fixing member 15.
- a laser light guide member 9 is provided at the center of the deflection member 3.
- the laser light guide member 9 has a passage member 4 (laser light passage member) and a light shielding member 7.
- the passage member 4 has spreading component blocking holes H1 and H2 formed in a circular cross section.
- the spread component blocking hole H1 allows the laser beam LL to pass in the vertical direction so as to block the spread component of the laser beam LL reflected by the mirror 12.
- the spreading component blocking hole H2 allows the laser beam LL to pass in the horizontal direction so as to block the spreading component of the laser beam LL reflected by the deflecting member 3.
- the distance measuring device 1 is provided with a cover 5 provided so as to cover the light emitting element 2, the deflecting member 3, the laser light guide member 9, the mounting member 13, the motor 14, and the fixing member 15. 1 and 3 show the cover 5 omitted.
- the cover 5 is formed with a light transmitting portion 6 for transmitting the laser light LL that has passed through the spreading component blocking hole H2.
- the light shielding member 7 is disposed adjacent to the lower side of the passing member 4 and shields stray light generated when a part of the laser light LL is reflected by the light transmitting portion 6.
- the light shielding member 7 has a cylindrical (box-shaped) concave portion H ⁇ b> 3 that opens to face the light transmitting portion 6.
- the cylindrical recess H3 is disposed substantially parallel to the spreading component blocking hole H2.
- the spread component blocking holes H1 and H2 limit a region where the laser beam LL is incident on the light transmitting portion 6.
- the light shielding member 7 is arranged so that the stray light reaches the recess H3.
- the deflection member 3 can be rotated by the motor 14 along the rotation axis RX along the incident direction of the laser beam LL.
- the laser beam LL that has passed through the spreading component blocking hole H2 is transmitted through the light transmitting portion 6 of the cover 5 and projected to the external space. If an object exists in the external space, the laser light LL is reflected by the surface of the object, and the reflected light RL is transmitted again through the light transmitting portion 6 of the cover 5 from the opposite direction to the laser light LL.
- the laser light LL emitted from the light emitting element 2 and the reflected light RL reflected by the object in the external space travel along the same path, and both pass through the light transmitting portion 6 of the cover 5.
- the transmitted reflected light RL is deflected by the deflecting member 3, and the deflected light is collected by the lens 16 fixed to the fixing member 15 and reaches the light receiving element 8.
- the distance measuring device 1 has an arithmetic processing device 10.
- the arithmetic processing unit 10 obtains the distance to the object based on the time difference between the projected laser pulse and the laser pulse reflected by the object and received by the light receiving element 8.
- FIG. 4A is a front cross-sectional view for explaining the progression of stray light STL in the conventional distance measuring device 91
- FIG. 4B is for explaining the progression of stray light STL in the distance measuring device 1 according to the first embodiment.
- the distance measuring device 1 is provided with a laser light guide member 9 having a passage member 4 and a light shielding member 7, but the conventional distance measuring device 91 is not provided with the laser light guide member 9.
- the light transmission part 6 of the cover 5 When the light transmission part 6 of the cover 5 is present on the path of the laser light LL emitted to the external space, a part of the laser light LL is reflected by the surface of the light transmission part 6 and as shown in FIG. The reflected light becomes stray light STL and reaches the light receiving element 8 through the lens 16.
- the light shielding member 7 having the box-shaped recess H3 is fixed to the deflecting member 3, and the reflected light that causes stray light STL is reflected in the recess H3.
- the stray light STL can be blocked by the light blocking member 7 by being reflected and attenuated by the inner wall.
- the stray light STL can be reduced in a compact shape with reduced capacity and size. Occurrence can be prevented. Furthermore, by forming the concave portion H3 in a box shape, it is possible to suppress the generation of further reflected light that is a source of stray light STL.
- FIGS. 5A and 5B are diagrams for explaining a scanning mode of the laser light emitted from the distance measuring apparatus 1 according to the first embodiment.
- the deflecting member 3 can be rotated by the motor 14 around the rotation axis RX integrally with the laser light guide member 9 having the light shielding member 7, any scanning range of the laser light on the inner peripheral surface of the light transmitting portion 6 can be achieved.
- the light shielding member 7 has an equivalent light shielding function, and the light shielding member 7 can similarly prevent the generation of stray light STL in any scanning range.
- the laser beam LL is a light that has a strong straightness, but has a component that spreads the beam. Furthermore, in the case of the configuration in which the laser beam LL is emitted to the outside through reflection by the mirror 12 and the deflection member 3 as in the present embodiment, the beam spread component is further increased during reflection by the mirror 12 and the deflection member 3. The problem of increasing occurs. For this reason, the laser light LL hits a wide range of the light transmitting portion 6 formed in the cover 5 due to the spread of the beam, and the laser light LL hitting the wide range further generates stray light STL in a wide range. Become.
- the light shielding member In general, if the light shielding member is configured to cover a wide area, a wide range of stray light STL can be blocked. However, if the area covered by the light shielding member is widened, a large amount of light that should originally be received is also shielded. The problem that a detection rate falls will arise.
- the laser beam LL spreads and passes through the component blocking holes H1 and H2, thereby reducing the spread component of the laser beam LL.
- the laser beam LL hits only a very narrow region of the light transmission part 6 by blocking. Since the stray light STL, which is the reflected light of the laser light reflected from the narrow area of the cover 5 (light transmitting portion 6), reaches only the narrow area, the light shielding member 7 is arranged in this narrow area to block the light. By limiting the area, the above problem that the light detection rate is reduced is solved.
- the light-shielding member disclosed in Patent Document 3 has a continuous mountain shape (shape like a washboard), with a valley portion between the peaks as a concave portion, and multiple reflection at the concave portion. Is used to attenuate stray light.
- the recess H3 of the present embodiment is based on a technical idea different from the recess of Patent Document 3, and the recess H3 is a single box-shaped recess unlike the recess of Patent Document 3.
- the laser beam LL spreads and passes through the component blocking holes H1 and H2, so that the reflected light (stray light STL) reaches a very narrow region.
- the reflected light (stray light STL) ) Reaches the narrow area within one box-shaped recess H3.
- the concave portion of the light shielding member is a concave portion having a continuous mountain shape as in Patent Document 3, in principle, the light shielding region can be made infinitely wide by increasing the number of continuous peaks.
- stray light that has entered the valley between the mountains can be attenuated by multiple reflection, but stray light that hits the peak of the mountain cannot be attenuated in principle. Since the stray light that hits the top of the mountain is reflected to the outside, the stray light cannot be completely prevented.
- the light blocking area where the stray light STL reaches is limited to a narrow area, and the narrow area corresponds to the inside of the single recess H3. Since the light does not strike, the above problem does not occur.
- the box-shaped recess H3 extends just below the central cylindrical spreading component blocking hole H2 and is formed in parallel to the component blocking hole H2. That is, the spread component blocking hole H2 and the recess H3 are arranged in parallel. With such a configuration, the distance measuring device 1 can be made compact as a whole, and the light receiving area RA that can receive the reflected light RL reflected from the measurement object can be widened.
- the passage member 4 and the light shielding member 7 are integrally formed.
- the present invention is not limited to this configuration, and the passage member 4 and the light shielding member 7 may be configured separately.
- FIG. 6A is a side view showing a configuration of a modified example of the distance measuring device
- FIG. 6B is a plan view schematically showing the configuration of the modified example
- FIG. 6C is related to the first embodiment. It is a top view which shows the structure of a distance measuring device typically.
- the position where the light blocking member 7 is arranged is not limited to the position immediately below the passing member 4.
- light shielding members 7 may be provided on both sides of the passage member 4 in addition to the lower side of the passage member 4. With this configuration, for example, when the light shielding member 7 is disposed immediately below the passage member 4 as shown in FIG. 3, it is reflected by the light transmission portion 6 and passes as shown in FIG. 6C. Although the stray light STL returning to both sides of the member 4 cannot be shielded, if the light shielding members 7 are provided on both sides of the passage member 4, both sides of the passage member 4 are provided as shown in FIG. The stray light STL that has returned to can also be blocked by the light blocking member 7.
- FIG. 7 is a side view showing the configuration of another modification of the distance measuring apparatus.
- the light shielding member 7 may be configured to surround the passage member 4 as shown in FIG.
- the deflection member 3 is specifically configured by a mirror.
- the distance measuring device 1 according to the present embodiment is a device that changes the laser beam emission direction by rotating a mirror, and the passing member 4 and the light blocking member 7 fixed to the mirror simultaneously rotate according to the rotation of the mirror. Yes.
- the light shielding member (shielding member) of Patent Document 3 is fixed to the light receiver side, and is not configured to rotate the light shielding member by the rotation of the mirror.
- the position where the laser light is incident on the cover 5 changes so as to rotate, and the position of generation of stray light STL generated by reflection therefrom. Also changes. Therefore, in the method in which the light shielding member is fixed on the light receiver side as in Patent Document 3, the positional relationship of the light shielding member with respect to the stray light is changed by the rotation of the mirror, so that the stray light is appropriately shielded at the rotation angles of all the mirrors. It is difficult to do.
- the positional relationship between the stray light STL and the light shielding member 7 is shifted.
- the stray light STL can be appropriately shielded at the rotation angles of all the mirrors. That is, even if the direction in which the stray light STL enters is changed by the rotation of the mirror (deflection member 3), the light shielding member 7 also rotates in accordance with the rotation of the mirror (deflection member 3). However, it can be shielded appropriately.
- the distance measuring device 1 of the present embodiment reflects the laser light LL by the deflecting member 3 through the passing member 4 provided at the center of the mirror (deflecting member 3), and irradiates the laser beam LL to an external measurement target to measure.
- the laser beam (reflected light RL) reflected from the object is reflected by the peripheral portion (light receiving region RA) of the deflecting member 3 and guided to the light receiving element 8.
- one mirror (deflecting member 3) of the distance measuring device 1 has both a function of deflecting the laser light LL emitted from the light emitting element 2 and a function of deflecting the reflected light RL from the measurement target. .
- the passing member 4 and the light shielding member 7 of the present embodiment are located between the deflecting member 3 and the light transmitting portion 6, respectively.
- the laser beam LL reflected by the central portion of the deflecting member 3 passes through the spread component blocking hole H2, passes through the light transmitting portion 6 of the cover 5, and exits toward the measurement target.
- the stray light STL is shielded by the light shielding member 7 positioned between the stray light STL 6 and the stray light STL is prevented from reaching the light receiving element 8.
- the cover 5 of the distance measuring device 1 is not perpendicular to the emission direction of the laser beam LL but inclined to the direction perpendicular to the emission direction in the light transmission unit 6.
- the light shielding member 7 cannot be disposed in the portion of the optical path of the laser beam LL, that is, the portion of the spreading component blocking holes H1 and H2 of the passage member 4 so as not to prevent the emission of the laser beam LL.
- the surface of the light transmission part 6 is made perpendicular to the emission direction of the laser light LL, the reflected light from the light transmission part 6 returns as it is along the optical path of the incident light and reaches the component blocking holes H1 and H2. End up.
- the stray light STL is reflected by the spread component blocking holes H1 and H2 and becomes stray light STL, and the stray light STL cannot be prevented from entering the light receiving element 8.
- the direction in which the reflection of the laser beam LL is shifted need not be limited downward.
- a part of the laser beam LL is reflected by the light transmitting portion 6 so that light generated spreads toward the position shifted upward from the component blocking hole H2, and the light shielding member 7 is disposed at the position shifted upward. May be.
- FIG. 8A is a waveform diagram showing a light reception signal in the conventional distance measuring device
- FIG. 8B is a waveform diagram showing a light reception signal in the distance measuring device 1 according to the first embodiment.
- the light blocking member 7 when the light blocking member 7 is not provided and stray light STL is generated, the stray light received signal S2 by the stray light STL and the correct received light signal S1 are measured.
- the reflectance of an object in the external space is low or the distance from the object is short, it is difficult to distinguish the stray light reception signal S2 and the light reception signal S1, and the distance measurement accuracy deteriorates.
- the provision of the light blocking member 7 can prevent the generation of the stray light reception signal S2 due to the stray light STL.
- FIG. 9 is a front sectional view showing the configuration of the distance measuring apparatus 1a according to the second embodiment.
- the tip of the recess H3 formed in the light shielding member 7 is provided on the cover 5 side (X direction side) than the tip of the spreading component blocking hole H2 formed in the passage member 4. It doesn't matter.
- the passage member 4 has a cylindrical spread component blocking hole H2 parallel to the optical path of the laser beam LL.
- FIG. 10 is a front sectional view showing the configuration of the distance measuring apparatus 1b according to the third embodiment.
- the light emitting element 2 may be fixed inside the lens 16.
- the motor 14 is fixed to the fixing member 15 .
- the present invention is not limited to this. As shown in FIG. 10, the motor 14 may be fixed to the cover 5.
- a laser radar device (ranging device 1, 1 a, 1 b) according to aspect 1 of the present invention includes a light emitting element 2 that emits laser light LL and a reflecting member that reflects the laser light LL emitted from the light emitting element 2 Mirror 12 and deflecting member 3) and spreading component blocking holes H1 and H2 through which the laser beam LL passes are formed so as to block the spreading component of the laser beam LL reflected by the reflecting member (deflecting member 3).
- a laser light passing member (passing member 4), a light transmitting portion 6 for transmitting the laser light LL that has passed through the spread component blocking holes H1 and H2, and a part of the laser light LL are transmitted by the light transmitting portion 6.
- a light shielding member 7 for shielding stray light STL generated by reflection.
- the spreading component of the laser beam reflected by the reflecting member and passing through the spreading component blocking hole is blocked by the spreading component blocking hole formed in the laser beam passing member. For this reason, the spread of the area of the laser beam incident on the light transmission part is limited. Therefore, the spread of the stray light generated when a part of the laser light is reflected by the light transmitting portion is limited. As a result, it is possible to completely remove stray light generated by a part of the laser light reflected by the reflecting member being reflected by the light transmitting portion with a compact configuration.
- the light shielding member 7 has a cylindrical recess H 3 that opens to face the light transmission part 6. You may have.
- the stray light generated by reflecting a part of the laser light by the light transmitting portion is incident on the cylindrical concave portion that opens to face the light transmitting portion. Can be completely removed in a compact configuration.
- the cylindrical recess H 3 is disposed substantially parallel to the spreading component blocking hole H 2. Also good.
- the laser radar device becomes compact as a whole, and a light receiving area for receiving reflected light from the measurement object can be widened.
- the spread component blocking holes H 1, H 2 are incident on the light transmitting portion 6 with the laser light LL.
- the region is limited, and the light blocking member 7 may be arranged so that the stray light STL reaches the recess H3.
- the stray light can be completely removed with a compact configuration.
- the reflecting member (deflection member 3) has a rotational axis RX along the incident direction of the laser beam LL in the above aspect 1.
- the laser beam passage member (passage member 4) and the light shielding member 7 may be fixed to the reflection member (deflection member 3).
- the light shielding member even if the incident angle of the stray light changes due to the rotation of the reflecting member, the light shielding member also rotates in accordance with the rotation of the reflecting member. Can be shielded from light.
- the reflecting member (deflecting member 3) reflects the laser beam LL toward the measurement target in the above aspect 1.
- the laser light (reflected light RL) reflected by the measurement object may be reflected toward the light receiving element 8.
- one reflecting member can have both the function of deflecting the laser light emitted from the light emitting element and the function of deflecting the reflected light from the measurement target.
- the laser radar device (ranging devices 1, 1 a, 1 b) according to aspect 7 of the present invention is the above-described aspect 1, wherein the laser light passage member (passage member 4) and the light shielding member 7 are the reflection member (deflection member). 3) and the light transmission part 6 may be arranged.
- the laser light reflected by the central portion of the reflecting member passes through the spreading component blocking hole, passes through the light transmitting portion of the cover, and exits toward the measurement target, and transmits light to the reflecting member. It is possible to prevent stray light from reaching the light receiving element by blocking stray light with a light shielding member positioned between the light receiving element and the light receiving element.
- the laser radar device (ranging devices 1, 1 a, 1 b) according to aspect 8 of the present invention is the light emitting element 2, the reflection member (deflection member 3), and the laser light passage member (passage member 4). ) And the light shielding member 7 so as to cover the light shielding member 7, and the light transmissive portion 6 is further formed.
- the light transmissive portion 6 causes the stray light STL generated by the reflection to the light shielding member 7.
- the laser beam LL may be formed so as to be inclined with respect to a direction perpendicular to the incident direction of the laser beam LL to the light transmission part 6.
- a part of the laser light is reflected by the light transmitting portion of the cover so that light generated spreads toward the position shifted downward from the component blocking hole, and the light shielding member is positioned at the position shifted downward.
- the present invention can be used in a laser radar device that measures a distance by scanning a laser beam.
- Ranging device laser radar device
- Light emitting element 3
- Deflection member 4
- Passing member (Laser beam passing member)
- Cover 5
- Light Transmitting Section 7
- Light Shielding Member 8
- Light Receiving Element 9
- Laser Light Guide Member (Laser Light Passing Member, Reflecting Member)
- arithmetic processing unit 11
- lens mirror (reflective member) 13
- mounting member 14
- fixing member 16
- RX rotation axis STL stray light LL laser light RL reflected light RA light receiving area S1 light receiving signal S2 stray light receiving signal
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
迷光をコンパクトな構成で完全に除去する。レーザレーダ装置は、偏向部材(3)により反射されたレーザ光(LL)の広がり成分を遮断する広がり成分遮断孔(H2)が形成された通過部材(4)と、広がり成分遮断孔(H2)を通過したレーザ光(LL)を透過させるための光透過部(6)と、レーザ光(LL)の一部が光透過部(6)により反射されて生じた迷光を遮蔽する遮光部材(7)とを備える。
Description
本発明は、レーザ光を走査して距離を測定するレーザレーダ装置に関する。
レーザ光を走査して距離を測定する装置として、特許文献1に記載されたレーザスキャナが知られている。このレーザスキャナは、発光器(光源)から発射されたレーザ光の方向を偏向ユニット(反射部材)によって変化させることにより監視領域を周期的にレーザ光で走査する。該監視領域に対象物が存在すれば、前記光線はその対象物の表面で拡散反射され、レーザスキャナにおいて分析される。また、発射後のレーザ光と反射後のレーザ光とは同経路に配置された状態で、共にカバーに形成された光透過部を透過する。偏向ユニットの角度設定から対象物の角度位置が推定され、更にレーザ光の通過時間と光の速度に基づいてレーザスキャナから対象物までの距離が推定される。反射されたレーザ光に基づく受光信号は、対象物までの距離の2乗に反比例して信号強度が減少し、さらに、対象物の反射率、表面状態によっても信号強度が変化する。このため、受光信号は、大きい強度から小さい強度まで広い範囲の強度(レベル)に変化し得ることとなる。
上記レーザスキャナのように、偏向ユニット(反射部材)により反射されたレーザ光の照射経路上に防塵、防滴などを目的とするカバーが設けられると、レーザ光の一部がカバーに形成された光透過部の表面で反射されてしまうため、その反射光がレーザスキャナ内に配された受光器により検出されるおそれがある。このように検出されてしまうと、その検出された反射光を近距離にある対象物からの反射光と誤認識し、外部空間で物体が検出されたものと誤判断されてしまう。このような反射光を「迷光」と呼ぶ。
このような「迷光」の課題に対し、特許文献2に記載のレーザレーダ装置のように、迷光の透過を抑制し、対象物からの反射光を透過するフィルタを設ける方法がある。発射後のレーザ光と反射後のレーザ光とが同経路を通過する構成で迷光の受光器への入射を防ぐにはフィルタが必須となる。しかしながら、上記フィルタは、透過特性が入射角度に依存する特殊性を有しており、かつ、回転反射装置(偏向ユニット)と受光器との間にフィルタを設けるため、回転反射装置の回転により周期的に走査するレーザ光に対応するためにはフィルタの形状を大きくする必要が発生する。
特許文献3には、上記「迷光」の課題を解決するために、複数の凸状部を備え、隣接する凸状部間に窪みが形成された遮光部材を、受光面の前方側且つ下側寄りの位置に設ける構成が開示されている。そして、窪みの上側に配置される凸状部下方面は、レーザ光の一部がカバーに形成された光透過部の表面で反射されて生じる迷光を窪みの内壁に向けて反射し、これにより、迷光を減衰させることができる。
レーザレーダ装置の光源から出射されるレーザ光は、直進性の強い光であるが、ビームが広がる成分も少しではあるが有している。特許文献1~3に記載の構成のように、ミラー及び偏向ユニット(反射部材)による反射を介して外部にレーザ光が出射する構成の場合、偏向ユニット(反射部材)による反射の際にビームの広がり成分がさらに増加してしまう問題が生じる。このため、レーザ光はビームの広がりによりカバーに形成された光透過部の広範な範囲に当たることになり、広い範囲に当たったレーザ光はさらには広範囲に迷光を発生させることとなる。
一般的に、遮光部材は広い面積を覆うように構成すれば広範囲の迷光を遮断することができるが、遮光部材の覆う面積を広くすると本来受光すべき光までも多く遮光してしまい、光検出率が低下してしまうという問題が生じる。
本発明の目的は、反射部材により反射されたレーザ光の一部が光透過部により反射されて生じた迷光の発生範囲の広がりを防止して、迷光の遮蔽部材の大型化による光検出率の低下を防止することができるレーザレーダ装置を提供することにある。
上記の課題を解決するために、本発明の一態様に係るレーザレーダ装置は、レーザ光を出射する発光素子と、前記発光素子から出射されたレーザ光を反射する反射部材と、前記反射部材により反射されたレーザ光の広がり成分を遮断するように前記レーザ光を通過させる広がり成分遮断孔が形成されたレーザ光通過部材と、前記広がり成分遮断孔を通過したレーザ光を透過させるための光透過部と、前記レーザ光の一部が前記光透過部により反射されて生じた迷光を遮蔽する遮光部材とを備えたことを特徴とする。
本発明の一態様によれば、反射部材により反射されたレーザ光の一部が光透過部により反射されて生じた迷光の発生範囲の広がりを防止して、迷光の遮蔽部材の大型化による光検出率の低下を防止することができるという効果を奏する。
以下、本発明の実施の形態について、詳細に説明する。
〔実施形態1〕
(測距装置1(レーザレーダ装置)の構成)
図1は、実施形態1に係る測距装置1(レーザレーダ装置)の構成を示す斜視図である。図2は、測距装置1の構成を示す正面断面図である。図3は、測距装置1の構成を示す側面図である。
(測距装置1(レーザレーダ装置)の構成)
図1は、実施形態1に係る測距装置1(レーザレーダ装置)の構成を示す斜視図である。図2は、測距装置1の構成を示す正面断面図である。図3は、測距装置1の構成を示す側面図である。
測距装置1は、レーザ光LLを出射する発光素子2を備えている。発光素子2は、板金により構成された固定部材15に取り付けられている。発光素子2から出射されたレーザ光LLは、レンズ11により平行光に変換される。レンズ11により平行光に変換されたレーザ光LLは、ミラー12(反射部材)により反射される。
測距装置1は、ミラー12により反射されたレーザ光LLをさらに反射する略正方形の板状の偏向部材3(反射部材)を備えている。偏向部材3は、ミラー12により反射されたレーザ光LLの進行方向に対して約45度傾斜した方向に沿って配置されており、取付部材13に取り付けられている。
取付部材13は、回転軸RXの周りに回転するモータ14に固定されている。モータ14は、固定部材15に固定されている。
偏向部材3の中央には、レーザ光ガイド部材9が設けられている。レーザ光ガイド部材9は、通過部材4(レーザ光通過部材)と、遮光部材7とを有している。通過部材4には、広がり成分遮断孔H1・H2が断面円形状に形成されている。広がり成分遮断孔H1は、ミラー12により反射されたレーザ光LLの広がり成分を遮断するようにレーザ光LLを垂直方向に通過させる。広がり成分遮断孔H2は、偏向部材3により反射されたレーザ光LLの広がり成分を遮断するようにレーザ光LLを水平方向に通過させる。
測距装置1には、発光素子2と偏向部材3とレーザ光ガイド部材9と取付部材13とモータ14と固定部材15とを覆うように設けられたカバー5が設けられている。図1及び図3はカバー5を省略して示している。カバー5には、広がり成分遮断孔H2を通過したレーザ光LLを透過させるための光透過部6が形成されている。
遮光部材7は、通過部材4の下側に隣接して配置されており、レーザ光LLの一部が光透過部6により反射されて生じた迷光を遮蔽する。遮光部材7は、光透過部6に対向して開口する筒状(箱型)の凹部H3を有する。筒状の凹部H3は広がり成分遮断孔H2と実質的に平行に配置されている。広がり成分遮断孔H1・H2は、光透過部6にレーザ光LLが入射する領域を制限する。遮光部材7は、迷光が凹部H3の中に到達するように配置されている。偏向部材3は、レーザ光LLの入射方向に沿った回転軸RXに沿ってモータ14により回転可能である。
広がり成分遮断孔H2を通過したレーザ光LLはカバー5の光透過部6を透過して、外部空間に投光される。外部空間に物体が存在すれば、レーザ光LLはその物体の表面で反射され、反射光RLがカバー5の光透過部6をレーザ光LLとは逆方向から再度透過する。
このように、発光素子2から出射されたレーザ光LLと、外部空間の物体により反射された反射光RLとは同経路を進行し、共にカバー5の光透過部6を透過する。透過された反射光RLは偏向部材3により偏向され、偏向された光は固定部材15に固定されたレンズ16により集光されて受光素子8に到達する。
測距装置1は、演算処理装置10を有している。演算処理装置10は、投光したレーザパルスと、物体により反射されて受光素子8が受光したレーザパルスとの間の時間差に基づいて物体までの距離を求める。
(測距装置1の動作)
図4(a)は従来の測距装置91における迷光STLの進行を説明するための正面断面図であり、(b)は実施形態1に係る測距装置1における迷光STLの進行を説明するための正面断面図である。測距装置1には通過部材4と遮光部材7とを有するレーザ光ガイド部材9が設けられているが、従来の測距装置91にはレーザ光ガイド部材9が設けられていない。
図4(a)は従来の測距装置91における迷光STLの進行を説明するための正面断面図であり、(b)は実施形態1に係る測距装置1における迷光STLの進行を説明するための正面断面図である。測距装置1には通過部材4と遮光部材7とを有するレーザ光ガイド部材9が設けられているが、従来の測距装置91にはレーザ光ガイド部材9が設けられていない。
外部空間へ出射されるレーザ光LLの経路上にカバー5の光透過部6が存在すると、レーザ光LLの一部が光透過部6の表面で反射され、図4(a)に示すように反射光が迷光STLとなってレンズ16を通って受光素子8に到達してしまう。一方、図4(b)に示す実施形態1の測距装置1では、偏向部材3に箱型の凹部H3を有した遮光部材7を固定し、迷光STLの要因となる反射光を凹部H3の内壁により反射させて減衰させることにより、迷光STLを遮光部材7により遮光することができる。
また、反射源となるカバー5の光透過部6の傍にある偏向部材3に箱型の凹部H3を有した遮光部材7を設けることにより、容量、寸法を抑えたコンパクトな形状で迷光STLの発生を防ぐことができる。さらに、凹部H3の形状を箱型にすることによって、迷光STLの元となるさらなる反射光の発生を抑制することもできる。
図5(a)(b)は実施形態1に係る測距装置1から出射されるレーザ光の走査の態様を説明するための図である。
偏向部材3が、遮光部材7を有するレーザ光ガイド部材9と一体に回転軸RXの周りにモータ14で回転可能であることにより、光透過部6の内周面におけるレーザ光のどの走査範囲でも同等の遮光機能を遮光部材7が有し、遮光部材7はどの走査範囲でも同様に迷光STLの発生を防ぐことができる。
レーザ光LLは直進性の強い光ではあるが、少しではあるがビームが広がる成分も有している。さらには、本実施形態のように、ミラー12及び偏向部材3による反射を介して外部にレーザ光LLが出射する構成の場合、ミラー12及び偏向部材3による反射の際にビームの広がり成分がさらに増加してしまう問題が生じる。このため、レーザ光LLはビームの広がりによりカバー5に形成された光透過部6の広範な範囲に当たることになり、広い範囲に当たったレーザ光LLはさらには広範囲に迷光STLを発生させることとなる。
一般的に、遮光部材は広い面積を覆うように構成すれば広範囲の迷光STLを遮断することができるが、遮光部材の覆う面積を広くすると本来受光すべき光までも多く遮光してしまい、光検出率が低下してしまうという問題が生じる。
そこで、本実施形態では上記の問題に鑑み、レーザ光LLがカバー5の光透過部6に当たる前に、レーザ光LLが広がり成分遮断孔H1・H2を通過することによりレーザ光LLの広がり成分を遮断して、光透過部6のごく狭い領域のみにレーザ光LLが当たるように構成している。カバー5(光透過部6)の狭い領域から反射されるレーザ光の反射光である迷光STLはやはり狭い領域のみに到達することになるので、この狭い領域に遮光部材7を配置して遮光する領域を限定することにより、光検出率が低下してしまうという上記の問題を解消している。
特許文献3に開示された遮光部材は、連続する山形の形状(洗濯板のような形状)を有しており、山と山との間の谷間の部分を凹部として、当該凹部での多重反射を利用して迷光を減衰させている。
本実施形態の凹部H3は特許文献3の凹部とは異なる技術思想によるものであり、凹部H3は、特許文献3の凹部とは異なり、1個の箱型の凹部となっている。本実施形態は、レーザ光LLが広がり成分遮断孔H1・H2を通るように構成することで非常に狭い領域に反射光(迷光STL)が到達するように構成しており、反射光(迷光STL)が到達する当該狭い領域が1個の箱型の凹部H3の中に納まるように構成している。
特許文献3のように遮光部材の凹部が、連続する山形の形状の凹部の場合、連続する山の数を増やすことにより原理的に無限に遮光領域を広くとることができる。しかしながら、山と山との間の谷間の部分に入射した迷光は多重反射により減衰させることができるが、山の頂点に当たった迷光は原理的に減衰させることができない。その山の頂点の部分に当たった迷光が外部に反射されてしまうため、迷光を完全に防ぐことができない。本実施形態は、迷光STLが到達する遮光領域を狭い領域に限定し、その狭い領域が1個の凹部H3の中に対応するように構成することにより、上記のように山の頂上の部分に光が当たることが無いので、上記の問題が発生することが無い。
箱型の凹部H3は、中央の筒状の広がり成分遮断孔H2のすぐ下側に広がり成分遮断孔H2に平行に形成されている。すなわち、広がり成分遮断孔H2と凹部H3とが平行に並ぶような構成となっている。このような構成にすることで、測距装置1を全体としてコンパクトにすることができ、測定対象から反射した反射光RLを受光できる受光領域RAを広くとることができる。
本実施形態では通過部材4と遮光部材7とが一体的に形成されているが、この形態に限定される必要はなく、通過部材4と遮光部材7とは別体で構成してもよい。
図6(a)は上記測距装置の変形例の構成を示す側面図であり、(b)は上記変形例の構成を模式的に示す平面図であり、(c)は実施形態1に係る測距装置の構成を模式的に示す平面図である。
遮光部材7が配置される位置は通過部材4のすぐ下側に限定されるものではない。例えば、図6(a)に示すように、通過部材4の下側に加えて、通過部材4の両脇に遮光部材7を設けてもよい。このように構成すると、例えば、図3に示すように通過部材4のすぐ下側に遮光部材7を配置した場合は、図6(c)に示すように、光透過部6により反射されて通過部材4の両脇に戻ってきた迷光STLを遮蔽することができないが、通過部材4の両脇にも遮光部材7を設けると、図6(b)に示すように、通過部材4の両脇に戻ってきた迷光STLも遮光部材7により遮蔽することができる。
図7は、上記測距装置の他の変形例の構成を示す側面図である。遮光部材7は、図7に示すように、通過部材4を囲むように構成してもよい。
偏向部材3は、具体的にはミラーにより構成されている。本実施形態の測距装置1は、ミラーの回転によりレーザ光の出射方向を変化させる装置において、ミラーの回転に従って同時にミラーに固定された通過部材4と遮光部材7とが回転する構成となっている。特許文献3の遮光部材(遮蔽部材)は、受光器側に固定されており、ミラーの回転により遮光部材が回転する構成ではない。
本実施形態の測距装置1では、ミラー(偏向部材3)が回転すると、レーザ光がカバー5に入射する位置が回転するように変化し、そこからの反射により発生する迷光STLの発生の位置も変化する。したがって、特許文献3のように受光器側に遮光部材を固定する方式では、迷光に対する遮光部材の位置関係がミラーの回転により変化してしまうので、全てのミラーの回転角度で迷光を適切に遮光することは困難である。それに対して本実施形態では、ミラー(偏向部材3)の回転と同期して、偏向部材3に固定された遮光部材7が回転するので、迷光STLと遮光部材7と間の位置関係がずれることがなく、全てのミラーの回転角度で迷光STLを適切に遮光することができる。即ち、ミラー(偏向部材3)の回転により迷光STLが入ってくる向きが変化しても、遮光部材7もミラー(偏向部材3)の回転に合わせて回転するので、どの角度にミラーが回転しても適切に遮光することができる。
本実施形態の測距装置1は、ミラー(偏向部材3)の中央部に設けた通過部材4を通してレーザ光LLを偏向部材3により反射させて外部の測定対象にレーザ光LLを照射し、測定対象から反射されたレーザ光(反射光RL)を偏向部材3の周辺部分(受光領域RA)で反射させて受光素子8に導く構成となっている。このように、測距装置1の1個のミラー(偏向部材3)は、発光素子2から出射したレーザ光LLを偏向させる機能と測定対象からの反射光RLを偏向させる機能とを兼ね備えている。
本実施形態の通過部材4と遮光部材7とは、それぞれ偏向部材3と光透過部6との間に位置する。偏向部材3の中央部で反射したレーザ光LLは、広がり成分遮断孔H2を通過したうえでカバー5の光透過部6を透過して測定対象に向かって出射し、偏向部材3と光透過部6との間に位置する遮光部材7で迷光STLを遮光して迷光STLが受光素子8に到達することを防止する。
本実施形態の測距装置1のカバー5は、光透過部6において、レーザ光LLの出射方向に対して垂直ではなく、出射方向に垂直な方向に対して傾斜している。レーザ光LLの光路の部分、即ち、通過部材4の広がり成分遮断孔H1・H2の部分は、レーザ光LLの出射を妨げないように、原理的に遮光部材7を配置することができない。このため、光透過部6の表面をレーザ光LLの出射方向に対して垂直にすると、光透過部6による反射光が入射光の光路をそのまま戻って広がり成分遮断孔H1・H2に到達してしまう。すると、広がり成分遮断孔H1・H2で反射されて迷光STLになり、迷光STLが受光素子8に侵入することを防げないという問題が生じる。
そこで、上記のような傾斜した構成にすることにより、レーザ光LLの一部がカバー5の光透過部6で反射されて生じた光が広がり成分遮断孔H2から下方にずれた位置に向かうようにし、この下方にずれた位置に遮光部材7を配置することにより、上記の問題を解決している。
なお、レーザ光LLの反射をずらす方向は下方に限定される必要はない。例えば、レーザ光LLの一部が光透過部6で反射されて生じた光が広がり成分遮断孔H2から上方にずれた位置に向かうようにし、この上方にずれた位置に遮光部材7を配置してもよい。
図8(a)は従来の測距装置における受光信号を示す波形図であり、(b)は実施形態1に係る測距装置1における受光信号を示す波形図である。図8(a)に示すように、遮光部材7が設けられておらず迷光STLが発生すると、迷光STLによる迷光受光信号S2と正しい受光信号S1とが計測される。外部空間にある物体の反射率が低いか、もしくは、物体との距離が短い場合、迷光受光信号S2と受光信号S1との識別が困難となり、測距精度が悪化する。一方、図8(b)に示すように、遮光部材7を設けることによって、迷光STLによる迷光受光信号S2の発生を防ぐことができる。
〔実施形態2〕
本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図9は、実施形態2に係る測距装置1aの構成を示す正面断面図である。図9に示すように、遮光部材7に形成された凹部H3の先端が、通過部材4に形成された広がり成分遮断孔H2の先端よりも、カバー5側(X方向側)に設けられていても構わない。
通過部材4は、レーザ光LLの光路に平行な筒形状の広がり成分遮断孔H2を有している。これにより、カバー5の光透過部6に投光されるレーザ光LLの範囲と、カバー5の光透過部6によって反射されるレーザ光(迷光)の範囲とを制限することができる。
〔実施形態3〕
本発明のさらに他の実施形態について、図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
本発明のさらに他の実施形態について、図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図10は、実施形態3に係る測距装置1bの構成を示す正面断面図である。前述した実施形態1及び2では、発光素子2が固定部材15に設けられている例を示した。しかしながら本発明はこれに限定されない。図10に示すように、発光素子2がレンズ16の内部に固定されている構成でも構わない。
また、前述した実施形態1及び2では、モータ14が固定部材15に固定されている例を示した。しかしながら本発明はこれに限定されない。図10に示すように、モータ14がカバー5に固定されている構成でも構わない。
〔まとめ〕
本発明の態様1に係るレーザレーダ装置(測距装置1・1a・1b)は、レーザ光LLを出射する発光素子2と、前記発光素子2から出射されたレーザ光LLを反射する反射部材(ミラー12、偏向部材3)と、前記反射部材(偏向部材3)により反射されたレーザ光LLの広がり成分を遮断するように前記レーザ光LLを通過させる広がり成分遮断孔H1・H2が形成されたレーザ光通過部材(通過部材4)と、前記広がり成分遮断孔H1・H2を通過したレーザ光LLを透過させるための光透過部6と、前記レーザ光LLの一部が前記光透過部6により反射されて生じた迷光STLを遮蔽する遮光部材7とを備えている。
本発明の態様1に係るレーザレーダ装置(測距装置1・1a・1b)は、レーザ光LLを出射する発光素子2と、前記発光素子2から出射されたレーザ光LLを反射する反射部材(ミラー12、偏向部材3)と、前記反射部材(偏向部材3)により反射されたレーザ光LLの広がり成分を遮断するように前記レーザ光LLを通過させる広がり成分遮断孔H1・H2が形成されたレーザ光通過部材(通過部材4)と、前記広がり成分遮断孔H1・H2を通過したレーザ光LLを透過させるための光透過部6と、前記レーザ光LLの一部が前記光透過部6により反射されて生じた迷光STLを遮蔽する遮光部材7とを備えている。
上記の構成によれば、レーザ光通過部材に形成された広がり成分遮断孔により、反射部材により反射されて広がり成分遮断孔を通過するレーザ光の広がり成分が遮断される。このため、光透過部に入射するレーザ光の面積の広がりが制限される。従って、レーザ光の一部が前記光透過部により反射されて生じた迷光の広がりが制限される。この結果、反射部材により反射されたレーザ光の一部が光透過部により反射されて生じる迷光をコンパクトな構成で完全に除去することができる。
本発明の態様2に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様1において、前記遮光部材7は、前記光透過部6に対向して開口する筒状の凹部H3を有してもよい。
上記の構成によれば、レーザ光の一部が光透過部により反射されて生じた迷光が、光透過部に対向して開口する筒状の凹部に入射するように構成することにより、上記迷光をコンパクトな構成で完全に除去することができる。
本発明の態様3に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様2において、前記筒状の凹部H3は前記広がり成分遮断孔H2と実質的に平行に配置されていてもよい。
上記の構成によれば、レーザレーダ装置が全体としてコンパクトになり、測定対象からの反射光を受光する受光領域を広くとることができる。
本発明の態様4に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様2において、前記広がり成分遮断孔H1・H2は、前記光透過部6に前記レーザ光LLが入射する領域を制限し、前記遮光部材7は、前記迷光STLが前記凹部H3の中に到達するように配置されていてもよい。
上記の構成によれば、上記迷光をコンパクトな構成で完全に除去することができる。
本発明の態様5に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様1において、前記反射部材(偏向部材3)は、前記レーザ光LLの入射方向に沿った回転軸RXに沿って回転可能であり、前記レーザ光通過部材(通過部材4)と前記遮光部材7とは、前記反射部材(偏向部材3)に固定されていてもよい。
上記の構成によれば、反射部材の回転により迷光の入射角度が変化しても、遮光部材も反射部材の回転に合わせて回転するので、反射部材がどの角度に回転しても迷光を適切に遮光することができる。
本発明の態様6に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様1において、前記反射部材(偏向部材3)は、前記レーザ光LLを測定対象に向けて反射するとともに、前記測定対象により反射されたレーザ光(反射光RL)を受光素子8に向けて反射してもよい。
上記の構成によれば、1個の反射部材が、発光素子から出射したレーザ光を偏向させる機能と測定対象からの反射光を偏向させる機能とを兼ね備えることができる。
本発明の態様7に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様1において、前記レーザ光通過部材(通過部材4)及び前記遮光部材7は、前記反射部材(偏向部材3)と前記光透過部6との間に配置されていてもよい。
上記の構成によれば、反射部材の中央部で反射したレーザ光が、広がり成分遮断孔を通過したうえでカバーの光透過部を透過して測定対象に向かって出射し、反射部材と光透過部との間に位置する遮光部材で迷光を遮光して迷光が受光素子に到達することを防止することができる。
本発明の態様8に係るレーザレーダ装置(測距装置1・1a・1b)は、上記態様1において、前記発光素子2と前記反射部材(偏向部材3)と前記レーザ光通過部材(通過部材4)と前記遮光部材7とを覆うように設けられて前記光透過部6が形成されたカバー5をさらに備え、前記光透過部6は、前記反射されて生じた迷光STLが前記遮光部材7に向かうように、前記レーザ光LLの前記光透過部6への入射方向に垂直な方向に対して傾いて形成されていてもよい。
上記の構成によれば、レーザ光の一部がカバーの光透過部で反射されて生じた光が広がり成分遮断孔から下方にずれた位置に向かうようにし、この下方にずれた位置に遮光部材を配置することにより、迷光の受光素子への侵入を防止することができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
本発明は、レーザ光を走査して距離を測定するレーザレーダ装置に利用することができる。
1 測距装置(レーザレーダ装置)
2 発光素子
3 偏向部材(反射部材)
4 通過部材(レーザ光通過部材)
5 カバー
6 光透過部
7 遮光部材
8 受光素子
9 レーザ光ガイド部材(レーザ光通過部材、反射部材)
10 演算処理装置
11 レンズ
12 ミラー(反射部材)
13 取付部材
14 モータ
15 固定部材
16 レンズ
H1 広がり成分遮断孔
H2 広がり成分遮断孔
H3 凹部
RX 回転軸
STL 迷光
LL レーザ光
RL 反射光
RA 受光領域
S1 受光信号
S2 迷光受光信号
2 発光素子
3 偏向部材(反射部材)
4 通過部材(レーザ光通過部材)
5 カバー
6 光透過部
7 遮光部材
8 受光素子
9 レーザ光ガイド部材(レーザ光通過部材、反射部材)
10 演算処理装置
11 レンズ
12 ミラー(反射部材)
13 取付部材
14 モータ
15 固定部材
16 レンズ
H1 広がり成分遮断孔
H2 広がり成分遮断孔
H3 凹部
RX 回転軸
STL 迷光
LL レーザ光
RL 反射光
RA 受光領域
S1 受光信号
S2 迷光受光信号
Claims (8)
- レーザ光を出射する発光素子と、
前記発光素子から出射されたレーザ光を反射する反射部材と、
前記反射部材により反射されたレーザ光の広がり成分を遮断するように前記レーザ光を通過させる広がり成分遮断孔が形成されたレーザ光通過部材と、
前記広がり成分遮断孔を通過したレーザ光を透過させるための光透過部と、
前記レーザ光の一部が前記光透過部により反射されて生じた迷光を遮蔽する遮光部材とを備えたことを特徴とするレーザレーダ装置。 - 前記遮光部材は、前記光透過部に対向して開口する筒状の凹部を有する請求項1に記載のレーザレーダ装置。
- 前記筒状の凹部は前記広がり成分遮断孔と実質的に平行に配置されている請求項2に記載のレーザレーダ装置。
- 前記広がり成分遮断孔は、前記光透過部に前記レーザ光が入射する領域を制限し、
前記遮光部材は、前記迷光が前記凹部の中に到達するように配置されている請求項2に記載のレーザレーダ装置。 - 前記反射部材は、前記レーザ光の入射方向に沿った回転軸に沿って回転可能であり、
前記レーザ光通過部材と前記遮光部材とは、前記反射部材に固定されている請求項1に記載のレーザレーダ装置。 - 前記反射部材は、前記レーザ光を測定対象に向けて反射するとともに、前記測定対象により反射されたレーザ光を受光素子に向けて反射する請求項1に記載のレーザレーダ装置。
- 前記レーザ光通過部材及び前記遮光部材は、前記反射部材と前記光透過部との間に配置されている請求項1に記載のレーザレーダ装置。
- 前記発光素子と前記反射部材と前記レーザ光通過部材と前記遮光部材とを覆うように設けられて前記光透過部が形成されたカバーをさらに備え、
前記光透過部は、前記反射されて生じた迷光が前記遮光部材に向かうように、前記レーザ光の前記光透過部への入射方向に垂直な方向に対して傾いて形成されている請求項1に記載のレーザレーダ装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014193655A JP5886394B1 (ja) | 2014-09-24 | 2014-09-24 | レーザレーダ装置 |
JP2014-193655 | 2014-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016047158A1 true WO2016047158A1 (ja) | 2016-03-31 |
Family
ID=55523941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053674 WO2016047158A1 (ja) | 2014-09-24 | 2015-02-10 | レーザレーダ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5886394B1 (ja) |
WO (1) | WO2016047158A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034486A (zh) * | 2019-05-17 | 2020-12-04 | 华为技术有限公司 | 激光雷达及激光雷达的控制方法 |
WO2024031905A1 (zh) * | 2022-08-10 | 2024-02-15 | 杭州宇树科技有限公司 | 一种激光雷达以及机器人 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106324582A (zh) * | 2016-10-28 | 2017-01-11 | 深圳市镭神智能系统有限公司 | 一种基于时间飞行法的激光雷达系统 |
WO2018150999A1 (ja) * | 2017-02-17 | 2018-08-23 | 北陽電機株式会社 | 物体捕捉装置 |
CN107390230B (zh) * | 2017-07-19 | 2019-07-16 | 哈尔滨工业大学 | 基于半对齐时间门的双Gm-APD光子计数激光雷达 |
KR102189503B1 (ko) * | 2018-09-14 | 2020-12-14 | 한국전자기술연구원 | 내부반사 차단구조를 갖는 라이다 |
EP4425210A2 (en) * | 2018-11-13 | 2024-09-04 | Aurora Operations, Inc. | Method and system for laser phase tracking for internal reflection subtraction in phase-encoded lidar |
CN111587382A (zh) * | 2018-12-18 | 2020-08-25 | 深圳市大疆创新科技有限公司 | 激光测量装置及无人飞行器 |
CN109581328B (zh) * | 2018-12-21 | 2023-06-02 | 宁波傲视智绘光电科技有限公司 | 一种激光雷达 |
CN113655461A (zh) * | 2020-05-12 | 2021-11-16 | 保定市天河电子技术有限公司 | 一种具有棱镜反射结构的激光雷达装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2033308A1 (en) * | 1970-07-04 | 1972-01-13 | Sick Erwin Fa | Weft monitor - with photo-electric light source in a rubber tubular assembly to reduce vibration shocks |
JPH0674763A (ja) * | 1992-08-28 | 1994-03-18 | Mitsubishi Electric Corp | 距離測定装置 |
JPH06214027A (ja) * | 1992-12-08 | 1994-08-05 | Erwin Sick Gmbh Opt Elektron | レーザー範囲検知装置 |
DE4412044A1 (de) * | 1994-04-08 | 1995-10-12 | Leuze Electronic Gmbh & Co | Optoelektronische Vorrichtung zum Erfassen von Gegenständen in einem Überwachungsbereich |
JP2000162318A (ja) * | 1998-11-24 | 2000-06-16 | Hamamatsu Photonics Kk | 全方位距離検出装置 |
EP1058142A2 (de) * | 1999-05-22 | 2000-12-06 | Volkswagen Aktiengesellschaft | Laserscanner mit kugelförmigen Linse |
WO2004068211A1 (de) * | 2003-01-29 | 2004-08-12 | Faro Technologies Gmbh | 3d-scanner |
DE10326848A1 (de) * | 2003-06-14 | 2005-01-13 | Leuze Lumiflex Gmbh + Co. Kg | Optischer Sensor |
US20070058230A1 (en) * | 2005-09-15 | 2007-03-15 | Fraunhofer-Gesellschaft Zur Forderung Der Angewand | Laser scanner |
JP2010117300A (ja) * | 2008-11-14 | 2010-05-27 | Denso Wave Inc | レーザレーダ装置 |
JP2011141261A (ja) * | 2009-12-08 | 2011-07-21 | Denso Wave Inc | レーザレーダ装置 |
JP2011214926A (ja) * | 2010-03-31 | 2011-10-27 | Hokuyo Automatic Co | マルチ信号処理装置、測距装置、及びマルチ測距システム |
JP2012068120A (ja) * | 2010-09-24 | 2012-04-05 | Denso Wave Inc | レーザレーダ装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666928A (ja) * | 1992-08-18 | 1994-03-11 | Seiko Epson Corp | 光センシング装置 |
EP2237063B1 (de) * | 2009-03-31 | 2012-02-08 | Pepperl + Fuchs GmbH | Optischer Sensor nach dem Laufzeitprinzip |
DE102010022159A1 (de) * | 2010-05-20 | 2011-11-24 | Leuze Electronic Gmbh + Co. Kg | Optischer Sensor |
JP5545253B2 (ja) * | 2011-03-30 | 2014-07-09 | 株式会社デンソーウェーブ | レーザレーダ装置 |
JP2013068582A (ja) * | 2011-09-26 | 2013-04-18 | Denso Wave Inc | レーザレーダ装置 |
EP2626722B1 (de) * | 2012-02-07 | 2016-09-21 | Sick AG | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten |
DE102013107695A1 (de) * | 2013-07-18 | 2015-01-22 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten |
-
2014
- 2014-09-24 JP JP2014193655A patent/JP5886394B1/ja active Active
-
2015
- 2015-02-10 WO PCT/JP2015/053674 patent/WO2016047158A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2033308A1 (en) * | 1970-07-04 | 1972-01-13 | Sick Erwin Fa | Weft monitor - with photo-electric light source in a rubber tubular assembly to reduce vibration shocks |
JPH0674763A (ja) * | 1992-08-28 | 1994-03-18 | Mitsubishi Electric Corp | 距離測定装置 |
JPH06214027A (ja) * | 1992-12-08 | 1994-08-05 | Erwin Sick Gmbh Opt Elektron | レーザー範囲検知装置 |
DE4412044A1 (de) * | 1994-04-08 | 1995-10-12 | Leuze Electronic Gmbh & Co | Optoelektronische Vorrichtung zum Erfassen von Gegenständen in einem Überwachungsbereich |
JP2000162318A (ja) * | 1998-11-24 | 2000-06-16 | Hamamatsu Photonics Kk | 全方位距離検出装置 |
EP1058142A2 (de) * | 1999-05-22 | 2000-12-06 | Volkswagen Aktiengesellschaft | Laserscanner mit kugelförmigen Linse |
WO2004068211A1 (de) * | 2003-01-29 | 2004-08-12 | Faro Technologies Gmbh | 3d-scanner |
DE10326848A1 (de) * | 2003-06-14 | 2005-01-13 | Leuze Lumiflex Gmbh + Co. Kg | Optischer Sensor |
US20070058230A1 (en) * | 2005-09-15 | 2007-03-15 | Fraunhofer-Gesellschaft Zur Forderung Der Angewand | Laser scanner |
JP2010117300A (ja) * | 2008-11-14 | 2010-05-27 | Denso Wave Inc | レーザレーダ装置 |
JP2011141261A (ja) * | 2009-12-08 | 2011-07-21 | Denso Wave Inc | レーザレーダ装置 |
JP2011214926A (ja) * | 2010-03-31 | 2011-10-27 | Hokuyo Automatic Co | マルチ信号処理装置、測距装置、及びマルチ測距システム |
JP2012068120A (ja) * | 2010-09-24 | 2012-04-05 | Denso Wave Inc | レーザレーダ装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034486A (zh) * | 2019-05-17 | 2020-12-04 | 华为技术有限公司 | 激光雷达及激光雷达的控制方法 |
CN112034486B (zh) * | 2019-05-17 | 2022-08-26 | 华为技术有限公司 | 激光雷达及激光雷达的控制方法 |
WO2024031905A1 (zh) * | 2022-08-10 | 2024-02-15 | 杭州宇树科技有限公司 | 一种激光雷达以及机器人 |
Also Published As
Publication number | Publication date |
---|---|
JP2016065745A (ja) | 2016-04-28 |
JP5886394B1 (ja) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5886394B1 (ja) | レーザレーダ装置 | |
US7443555B2 (en) | Laser scanner | |
EP2762914A1 (en) | Object detector | |
US20080007710A1 (en) | Door sensor system for detecting a target object | |
US6687033B2 (en) | Optical scanning device | |
JP5998808B2 (ja) | レーザレーダ装置 | |
JP2014052366A (ja) | 光計測装置、車両 | |
JP2013210378A (ja) | レーザレーダ装置 | |
JP6330539B2 (ja) | レーザ走査装置 | |
WO2016056543A1 (ja) | 走査光学系及びレーダー | |
KR20200009059A (ko) | 증가된 스캐닝 주파수를 갖는 라이다 장치, 그리고 스캐닝 영역의 스캐닝 방법 | |
JP2018077088A (ja) | 距離計測装置、及び距離計測方法 | |
JP2007333592A (ja) | 距離測定装置 | |
WO2017135225A1 (ja) | 光走査型の対象物検出装置 | |
JP2016090584A (ja) | センサ | |
JP2007108129A (ja) | 被測定物検出装置 | |
JPWO2016056541A1 (ja) | 走査光学系及びレーダー | |
JP2024012418A (ja) | 投受光装置及び測距装置 | |
JPWO2018147454A1 (ja) | 走査型の光学系及びレーザーレーダー装置 | |
JP6540388B2 (ja) | レーザレーダ装置 | |
JP5911987B1 (ja) | レーザ測距装置 | |
JP2013068582A (ja) | レーザレーダ装置 | |
JP6676974B2 (ja) | 対象物検出装置 | |
WO2017065048A1 (ja) | 光走査型の対象物検出装置 | |
WO2019235260A1 (ja) | 距離測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15844098 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15844098 Country of ref document: EP Kind code of ref document: A1 |