WO2016045399A1 - 一种机电设备的高精制控方法 - Google Patents

一种机电设备的高精制控方法 Download PDF

Info

Publication number
WO2016045399A1
WO2016045399A1 PCT/CN2015/079999 CN2015079999W WO2016045399A1 WO 2016045399 A1 WO2016045399 A1 WO 2016045399A1 CN 2015079999 W CN2015079999 W CN 2015079999W WO 2016045399 A1 WO2016045399 A1 WO 2016045399A1
Authority
WO
WIPO (PCT)
Prior art keywords
various
components
parts
adjustment
fine
Prior art date
Application number
PCT/CN2015/079999
Other languages
English (en)
French (fr)
Inventor
黄国峰
黄定友
Original Assignee
黄国峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄国峰 filed Critical 黄国峰
Publication of WO2016045399A1 publication Critical patent/WO2016045399A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41805Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4181Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by direct numerical control [DNC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41835Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by programme execution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41845Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by system universality, reconfigurability, modularity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31031Assembly, manipulator cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a high-refining control method in the design, manufacture and assembly process of an electromechanical device, in particular a rotor, a stator, an encoder, a manual or an automatic tool changer loosening device, and the like, and includes various Components that do not have rotating or moving parts, various orbital motion components, various mechanical components, and electromechanical components are combined separately, and multiple pieces, multiple pairs, and multiple parts of each structure are combined with each other.
  • the precision error control system adopts the omni-directional precision adjustable control mechanism in the multi-faceted three-dimensional of various parts, and finely adjusts according to the precision requirement value and the numerical values measured by various instruments and meters, and achieves various technologies of design. After the request, a high-refining control method of an electromechanical device for locking is implemented.
  • the precision control method of electromechanical equipment currently used on the market the quality of the product is determined by the precision of the machining equipment itself.
  • the disadvantages of the above method are: the use of conventional design to manufacture and assemble important parts, due to the processing of parts
  • the error, plus the accumulated error in the assembly makes the precision of the produced products low.
  • the difference between the rotor and the stator of the same power electromechanical product is large, the distal end of the shaft jumps and the shaft vibration value is high, and the accuracy of the reverse repeat positioning accuracy is large.
  • the main methods for reducing the accuracy error of electromechanical equipment are: repeated processing and repeated assembly, and the use of numerical control, space and other compensation systems to reduce the precision error value generated in the process of processing products.
  • the above method can reduce the precision error value generated in the process of processing the product, but this method is used to reduce the concentricity error between the multiple, multiple, and multiple combinations, and to reduce the precision error generated by the electromechanical device during operation. It is very limited; the need for the development of modern science and technology, the accuracy requirements are getting higher and higher, especially in the fields of high-speed trains, ships, aviation, defense and military equipment, etc. The precision requirements are very high, and it is far from being able to meet the modernization according to the existing technology. Defense requirements.
  • the AC double swing head used in the global production the spindle motor of about 30KW: the distance between the rotor and the stator of the motor is about 0.3mm, and the distal end of the shaft is about 0.01mm.
  • the shaft vibration is about 1.6mm/s, the AC double oscillating head is in the working range of 1m, and the positioning accuracy is about 0.02mm.
  • the difference between the rotor and the stator is large, the distal end of the shaft jumps and the shaft vibration is high, and the repeating position is repeated.
  • the precision error is large. Therefore, in order to make the difference between the rotor and the stator of the same power electromechanical products small, the distal end of the shaft jumps and the shaft vibration value is low, the accuracy of the reverse repeat positioning accuracy is small, only the repeated processing and repeated fitting, and the numerical control
  • the compensation method of the space and other compensation systems is difficult to meet the requirements of high precision. It is necessary to start from the basic application of the electromechanical equipment itself and the comprehensive application of the compensation system such as numerical control and space to meet the requirements of high precision.
  • the object of the present invention is to address the above-mentioned shortcomings, design according to various mechanical principles, design components of various structures of electromechanical equipment, set concentric points and various measurement technical indicators, through comprehensive calculation of static and dynamic mechanics, Between the above combinations, the design also provides an omnidirectional precision modulatable control mechanism in the multi-faceted three-dimensional of various components to control the difference between the rotor and the stator of the same power electromechanical product, the distal end of the shaft and the shaft The vibration value is high, and the accuracy of the repeated positioning accuracy is large.
  • an electromechanical device that implements the design, manufacture, and assembly of the present invention, in combination with a compensation system such as a numerical control or a space, is designed, manufactured, and assembled with an AC double swing head, a spindle motor of about 30 KW: a rotor of various motors and The distance between the stators is about 0.15mm, the distal end of the shaft is about 0.005mm, the shaft vibration is about 0.8mm/s, the AC double swing head is in the 1m working range, and the anti-repetitive positioning accuracy is about 0.002mm.
  • the product is in The distance difference between the rotor and the stator of the same power electromechanical product is small, the distal end of the shaft and the vibration value of the shaft are low, the distal end of the shaft is low, and the shaft vibration value is low, and the accuracy of the reverse repeat positioning accuracy is small.
  • the above-mentioned precision is high or low, depending on the precision of the measuring instrument itself used in designing, manufacturing, and assembling the present invention, in order to determine the accuracy of implementing the present invention, such as using a higher precision instrument and meter to implement the present invention.
  • the above values will be lower, fully meeting the high precision requirements of modern technology development.
  • the present invention is based on the above description and the final purpose of the comparison is:
  • the distance between the rotor and the stator of various electromechanical components is small, so that various electromechanical components of the same power, the distal end of the shaft and the vibration value of the shaft are low, and the accuracy of the reverse repeat positioning is high;
  • the concentric points are respectively set, and various structural components are designed according to various mechanical principles, including various components with or without rotating or moving parts.
  • the mobile fine-tuning adjustment parts with all-round adjustable mechanism are provided in all kinds of multi-faceted three-dimensional parts with or without rotating or moving parts.
  • the mobile fine-tuning adjustment component of the azimuth adjustable mechanism is provided with a mobile fine-tuning adjustment component of an all-round adjustable mechanism in a multi-faceted stereo of various orbital motion sub-components, and is assembled in various parts.
  • the components and components of the omnidirectional adjustable mechanism are adjusted and adjusted;
  • the omni-directional precision adjustable control mechanism between parts and components of various structures can be formed;
  • the parts and components adjusted by static fine control are static and fine.
  • the multiple, multiple, and multiple concentric forces are balanced to achieve various precision technical requirements for concentric straightness, concentric flatness, concentric parallelism, concentric verticality, and equivalent centroid tolerance (eg, concentric parallel interpretation: 1
  • the rotor forms a concentricity when the inner shaft of the stator rotates, and at any moment through the axis cutting plane, the outer diameter of the rotor is measured at multiple locations along the radial distance.
  • Parallelism is formed by measuring the range of numerical difference between the inner and outer surfaces of the parallel stator. 2
  • multiple sets of guide rails are combined with various power drives along the axial direction.
  • the motion forms a concentricity, and is driven by various powers along the axial direction, keeping the corresponding surfaces of the two guide rails parallel to each other, and measuring the distance difference between the respective center planes of the corresponding sets of the guide rail pairs and the corresponding central axes of the respective groups.
  • the measure of parallelism called concentric parallelism, and so on, concentric straightness, concentric flatness, concentricity, and equivalent centroid tolerance);
  • the measurement index of the geometrical tolerance such as roundness, coaxiality, straightness, flatness, parallelism, verticality, symmetry, etc. is controlled, and converted into a manufacturing and assembly drawing.
  • various technical indicators are indicated by means of graphics, text and symbols;
  • the manufacturing process rules are prepared, the various materials and parts required are purchased, and various components required for the manufacture are required.
  • the main components are: multi-faceted three-dimensional parts in various structures, including various parts with or without rotating or moving parts, various orbital moving parts, various mechanical parts and electromechanical parts.
  • Set the omni-directional precision adjustable control mechanism including:
  • the mobile fine-tuning adjustment parts with all-round adjustable mechanism are provided in all kinds of multi-faceted three-dimensional parts with or without rotating or moving parts.
  • the mobile fine-tuning adjustment component of the azimuth adjustable mechanism is provided with a mobile fine-tuning adjustment component of an all-round adjustable mechanism in a multi-faceted stereo of various orbital motion sub-components, and is assembled in various parts.
  • the components and components of the omnidirectional adjustable mechanism are adjusted and adjusted;
  • the multi-faceted three-dimensional of various components there is a mobile fine-tuning adjustment component with an all-round adjustable mechanism, and an omnidirectional adjustable mechanism is provided in the multi-faceted three-dimensional combination of various other static components.
  • the static precision control adjustment component and then the fine adjustment of the combination of the above-mentioned mobile fine control adjustment component and the static fine control adjustment component, according to various structures, the multiple concentric forces balance all-round
  • the requirements of precision technical requirements are added to the multi-faceted three-dimensional one-piece parts in various orientations required for all-round fine control, and the fine-tuning adjustment components of the adjustable mechanism are assembled to form various structural components.
  • Omni-directional precision adjustable control mechanism ;
  • the movement precision adjustment parts with omnidirectional adjustable mechanism are respectively arranged in the multi-faceted three-dimensional of the various other static components of the combination.
  • a static fine control adjustment component with a full range of adjustable mechanisms and then between the above-mentioned fine control adjustment components and the fine control adjustment components of the precise fine control adjustment components, according to various structures, multiple pieces are concentric
  • An all-round precision adjustable control mechanism that assembles and forms parts of various structures with rotating or moving parts;
  • the mobile fine-tuning adjustment components with all-round adjustable mechanism are respectively provided in all aspects of the multi-faceted three-dimensional combination of various static components.
  • the static fine adjustment component of the adjustable mechanism can be balanced between the above-mentioned precise adjustment of the combination of the mobile fine control adjustment component and the static fine control adjustment component, according to the multiple concentric forces of various structures.
  • the requirements of the various precision technical requirements are added to the multi-faceted three-dimensional one-piece parts in various orientations required for all-round fine control, and the fine-tuning adjustment components of the adjustable mechanism are arranged to form various structures.
  • the omnidirectional precision of the orbital motion components can be adjusted and controlled;
  • the multi-faceted three-dimensional structure of various mechanical parts and electromechanical parts assembled from various parts there is a movement fine adjustment part of an all-round adjustable mechanism, and in addition to various static parts of the combination thereof
  • a static fine adjustment member having an omnidirectional adjustable mechanism is provided, and then between the above-mentioned fine adjustment and adjustment of the moving fine adjustment adjusting member and the stationary fine control adjusting member, respectively, according to various structures, the plurality of parts are respectively concentric
  • the static fine control adjustment component is static during the adjustment process.
  • System use fine control to adjust the parts to adjust, let it move the fine control adjustment parts to move, according to the design of the various precision technical requirements and the values of various instruments and meters to calculate the fine adjustment, respectively
  • the combination of the mechanical parts and the electromechanical parts of the structure is balanced with each other in a plurality of concentric forces of various structures during operation, achieving concentric straightness, concentric parallelism, concentric flatness, concentricity, and equivalent centroid tolerance
  • the final locking is performed to complete the present invention.
  • the present invention has the following significant advantages:
  • the distance between the rotor and the stator of various electromechanical components is realized to be small, so that various electromechanical components of the same power, the distal end of the shaft and the vibration value of the shaft are low, and the accuracy of the reverse repeat positioning is high;
  • the invention is applied to electric motor, electromechanical product, lathe, milling machine, boring machine, grinding machine, drilling machine, engraving machine, three-link processing center, three-linkage measurement instrument, mechanical electromechanical numerical control automatic integrated production line and assembly equipment, medical equipment, textile equipment , petrochemical equipment, automobiles, trains, railway tracks, ships, aircraft, defense military equipment.
  • the AC double oscillating head is composed of one spindle motor and multiple torque motors.
  • the spindle motor is composed of: stator, rotor, bearing, encoder, manual or automatic tool changer, etc.
  • the motor is composed of stator, rotor, bearing, encoder and other components.
  • the function of the spindle motor in the AC double oscillating head is designed according to the user's requirements to determine the rated power, rated voltage, maximum speed and torque of the spindle motor.
  • the torque motor function in the AC double oscillating head is designed and determined according to the functions determined by the spindle motor through various mechanical comprehensive calculations;
  • the design of the spindle motor is designed by combining the stationary parts and the moving parts of the rotor, the stator, the encoder, the manual or the automatic tool changer, and the moving parts according to various mechanical principles.
  • the design of the torque motor which is formed by combining the stator, the encoder and the like, and the AC double swing head formed by combining one spindle motor and multiple torque motors, respectively, through static mechanics and dynamics.
  • the comprehensive application calculation of mechanics according to the combination of the above different uses, respectively set the measurement indexes of the geometrical tolerances such as roundness, coaxiality, straightness, flatness, parallelism, perpendicularity, symmetry, etc. in various structures.
  • An all-round precision adjustable control mechanism for multi-faceted three-dimensional parts and components including:
  • the mobile fine-tuning adjustment parts with all-round adjustable mechanism are provided in all aspects of multi-faceted three-dimensional parts with or without rotating bearing parts.
  • the movable fine adjustment component of the adjustable mechanism is provided with a movement fine adjustment component of an all-round adjustable mechanism in a multi-faceted stereo of a spindle motor assembled with various components and a plurality of torque motor components;
  • the components and components of the omnidirectional adjustable mechanism are adjusted and adjusted;
  • the multi-part and multi-part concentric forces according to various structures are used. Balanced all-round precision technical requirements, respectively, in a variety of positions required for all-round fine control, multiple sets of one-component multi-faceted three-dimensional, with fine adjustment components for adjustable mechanisms;
  • the various components can be formed, including all kinds of parts with or without rotating bearing parts, spindle motor and multiple torque motor parts. Adjust the control mechanism;
  • Components including various components with or without rotating bearing components, spindle motors and multiple torque motor components, each of which has multiple, multiple, concentric forces in various structures during operation Balance, to achieve the accuracy of the concentric straightness, concentric flatness, concentric parallelism, concentric verticality equivalent to the geometrical tolerance of the geometrical requirements;
  • the measurement index of the geometrical tolerance such as roundness, coaxiality, straightness, flatness, parallelism, verticality, symmetry, etc. is controlled, and converted into a manufacturing and assembly drawing.
  • various technical indicators are indicated by means of graphics, text and symbols;
  • the manufacturing process specification is prepared, the various materials and parts required are purchased, and various parts required for manufacturing are manufactured.
  • the various components required are mainly: the omnidirectional precision adjustable control mechanism is set in the multi-faceted three-dimensional parts of various structures, including:
  • the mobile fine-tuning adjustment parts with all-round adjustable mechanism are provided in all aspects of multi-faceted three-dimensional parts with or without rotating bearing parts.
  • the movable fine adjustment component of the adjustable mechanism is provided with a movement fine adjustment component of an all-round adjustable mechanism in a multi-faceted stereo of a spindle motor assembled with various components and a plurality of torque motor components;
  • the components and components for the static fine adjustment of the omnidirectional adjustable mechanism are provided;
  • the multi-part and multi-part concentric forces according to various structures are used. Balanced all-round precision technical requirements, respectively, in a variety of positions required for all-round fine control, multiple sets of one-component multi-faceted three-dimensional, with fine adjustment components for adjustable mechanisms;
  • the multi-faceted three-dimensional of various components there is a mobile fine-tuning adjustment component with an all-round adjustable mechanism, and an omnidirectional adjustable mechanism is provided in the multi-faceted three-dimensional combination of various other static components.
  • the static precision control adjustment component and then the fine adjustment of the combination of the above-mentioned mobile fine control adjustment component and the static fine control adjustment component, according to various structures, the multiple concentric forces balance all-round
  • the requirements of precision technical requirements are added to the multi-faceted three-dimensional one-piece parts in various orientations required for all-round fine control, and the fine-tuning adjustment components of the adjustable mechanism are assembled to form various structural components.
  • Omni-directional precision adjustable control mechanism ;
  • a mobile fine-tuning adjustment component with an all-round adjustable mechanism is respectively provided in the multi-faceted three-dimensional shape of the other static components of the combination.
  • a static fine control adjustment component with an all-round adjustable mechanism and then a plurality of separate concentric functions according to various structures between the fine adjustment and adjustment of the above-mentioned mobile fine control adjustment component and the stationary fine control adjustment component.
  • the mobile fine-tuning adjustment parts of the omnidirectional adjustable mechanism are respectively arranged in the multi-faceted three-dimensional form of the other static components of the combination thereof.
  • a static fine control adjustment component with a full range of adjustable mechanisms, and then between the above-mentioned fine control adjustment components and the fine control adjustment components of the precise fine control adjustment components, according to various structures, multiple pieces are concentric
  • the assembly adjustment and locking process specifications are prepared, and the overall assembly of the AC double oscillating head is performed according to the design drawings.
  • the concentric reference points of the spindle motor, the torque motor and the mechanical components of various structures are assembled at the same time, and the spindle motor, the torque motor component and the mechanical component of various structures are assembled, and respectively assembled in various
  • the omni-directional precision adjustable control mechanism between the spindle motor, torque motor component and mechanical component of the structure can be adjusted, including:
  • the movement fine adjustment component of the omnidirectional adjustable mechanism is provided, and the various combinations of the various components are still stationary.
  • there is a static fine adjustment adjusting component of an omnidirectional adjustable mechanism and then between the above-mentioned fine adjustment of the moving fine adjustment adjusting component and the stationary fine control adjusting component, according to various structures
  • Separate concentric force balance of all kinds of precision technical requirements, respectively, in the various directions required for all-round fine control add multiple sets of one-component multi-faceted stereo, with fine adjustment of adjustable mechanism Components, assembled to form a variety of structures of the spindle motor, torque motor and mechanical components of the full range of precision adjustable control mechanism;
  • the static fine control adjustment component is static during the adjustment process.
  • System use fine control to adjust the parts to adjust, let it move the fine control adjustment parts to move, according to the design of the various precision technical requirements and the values of various instruments and meters to calculate the fine adjustment, respectively
  • the combination of the spindle motor, the torque motor and the mechanical components of the structure is balanced with a plurality of concentric forces of various structures during operation, achieving concentric straightness, concentric parallelism, concentric flatness, concentric verticality equivalent
  • the technical requirements for the accuracy of the geometrical tolerances are fully checked and finally locked.
  • various mechanical components and electromechanical components of the fixed double gantry 5 linkage 9-axis machining center the concentric points are respectively set, and various structural components are designed according to various mechanical principles, including Various combinations of components with or without rotating or moving parts, various orbital motion components, various mechanical components, and various electromechanical components such as servo motors, torque motors, and AC double swing heads
  • the comprehensive application calculation of mechanics and dynamic mechanics according to the combination of the above different uses, respectively set the measurement index of the geometrical tolerance such as roundness, coaxiality, straightness, flatness, parallelism, perpendicularity, symmetry, etc.
  • Components of the structure including various parts with or without rotating or moving parts, various orbital motion parts, various mechanical parts and various servo motors, torque motors, AC double swing heads, etc.
  • An all-round precision adjustable control mechanism is provided in the multi-faceted solid part of the component, including:
  • the mobile fine-tuning adjustment parts with all-round adjustable mechanism are provided in all kinds of multi-faceted three-dimensional parts with or without rotating or moving parts.
  • the mobile fine-tuning adjustment component of the azimuth adjustable mechanism is provided with a mobile fine-tuning adjustment component of an all-round adjustable mechanism in a multi-faceted stereo of various orbital motion sub-components, and is assembled in various parts.
  • Various mechanical parts and various multi-faceted three-dimensional three-dimensional three-dimensional electromechanical components such as servo motor, torque motor, AC double swing head, etc.
  • the components and components of the omnidirectional adjustable mechanism are adjusted and adjusted;
  • the omni-directional precision adjustable control mechanism between parts and components of various structures can be formed;
  • the parts and components adjusted by static fine control are static and fine.
  • the multiple, multiple, and multiple concentric forces are balanced to achieve various precision technical requirements for concentric straightness, concentric flatness, concentric parallelism, and concentric verticality equivalent to the heart-shaped tolerance;
  • the measurement index of the geometrical tolerance such as roundness, coaxiality, straightness, flatness, parallelism, verticality, symmetry, etc. is controlled, and converted into a manufacturing and assembly drawing.
  • various technical indicators are indicated by means of graphics, text and symbols;
  • the various components required are mainly: parts in various structures, including various parts with or without rotating or moving parts, multiple parts of various orbital motions, All kinds of mechanical components and various servo motors, torque motors, AC double swing heads and other electromechanical components in the multi-faceted stereo to set the omni-directional precision adjustable control mechanism, including:
  • the mobile fine-tuning adjustment parts with all-round adjustable mechanism are provided in all kinds of multi-faceted three-dimensional parts with or without rotating or moving parts.
  • the mobile fine-tuning adjustment component of the azimuth adjustable mechanism is provided with a mobile fine-tuning adjustment component of an all-round adjustable mechanism in a multi-faceted stereo of various orbital motion sub-components, and is assembled in various parts.
  • Various mechanical parts and various multi-faceted three-dimensional three-dimensional three-dimensional electromechanical components such as servo motor, torque motor and AC double oscillating head are equipped with mobile fine control adjustment parts with all-round adjustable mechanism;
  • the components and components of the omnidirectional adjustable mechanism are adjusted and adjusted;
  • the multi-faceted three-dimensional of various components there is a mobile fine-tuning adjustment component with an all-round adjustable mechanism, and an omnidirectional adjustable mechanism is provided in the multi-faceted three-dimensional combination of various other static components.
  • the static precision control adjustment component and then the fine adjustment of the combination of the above-mentioned mobile fine control adjustment component and the static fine control adjustment component, according to various structures, the multiple concentric forces balance all-round
  • the requirements of precision technical requirements are added to the multi-faceted three-dimensional one-piece parts in various orientations required for all-round fine control, and the fine-tuning adjustment components of the adjustable mechanism are assembled to form various structural components.
  • Omni-directional precision adjustable control mechanism ;
  • the movement precision adjustment parts with omnidirectional adjustable mechanism are respectively arranged in the multi-faceted three-dimensional of the various other static components of the combination.
  • a static fine control adjustment component with a full range of adjustable mechanisms and then between the above-mentioned fine control adjustment components and the fine control adjustment components of the precise fine control adjustment components, according to various structures, multiple pieces are concentric
  • An all-round precision adjustable control mechanism that assembles and forms parts of various structures with rotating or moving parts;
  • the mobile fine-tuning adjustment components with all-round adjustable mechanism are respectively provided in all aspects of the multi-faceted three-dimensional combination of various static components.
  • the static fine adjustment component of the adjustable mechanism can be balanced between the above-mentioned precise adjustment of the combination of the mobile fine control adjustment component and the static fine control adjustment component, according to the multiple concentric forces of various structures.
  • the requirements of the various precision technical requirements are added to the multi-faceted three-dimensional one-piece parts in various orientations required for all-round fine control, and the fine-tuning adjustment components of the adjustable mechanism are arranged to form various structures.
  • the omnidirectional precision of the orbital motion components can be adjusted and controlled;
  • the assembly is assembled according to the overall technical requirements of the designed fixed double gantry 5 linkage 9-axis machining center.
  • the adjustment and locking process rules according to the design drawings, the fixed assembly of the double gantry 5 linkage 9-axis machining center, the mechanical components of various structures and the electromechanical components such as servo motor, torque motor and AC double oscillating head are set at the same time.
  • the concentric reference points of different combinations are respectively assembled with mechanical components of various structures and servo motor, torque motor, AC double swing head and other electromechanical components, and mechanical components and servo motors assembled in various structures.
  • the omni-directional precision adjustable control mechanism between different combinations of electromechanical components such as torque motors and AC double oscillating heads including:
  • a mobile fine-tuning adjustment component with an all-round adjustable mechanism.
  • the static fine adjustment component of the omnidirectional adjustable mechanism is respectively provided, and the fine adjustment adjustment of the above-mentioned mobile fine adjustment component and the stationary fine control adjustment component are respectively combined.
  • the concentric force balance of all kinds of precision technical requirements respectively, in the various directions required for all-round precision control, add multiple sets of one-component multi-faceted three-dimensional It is equipped with fine-adjusting and adjusting parts of adjustable mechanism, assembling and forming various structural mechanical parts and servo motor, torque motor, AC double swing head and other electromechanical components.
  • the static fine control adjustment component is static during the adjustment process.
  • System use fine control to adjust the parts to adjust, let it move the fine control adjustment parts to move, according to the design of the various precision technical requirements and the values of various instruments and meters to calculate the fine adjustment, respectively
  • the mechanical components of the structure and the combination of the electromechanical components such as the servo motor, the torque motor and the AC double oscillating head are balanced with each other in a plurality of concentric forces of various structures during operation to achieve concentric straightness, concentric parallelism, and concentric plane.
  • Degree, concentricity and verticality are equivalent to the technical requirements of various precisions of the heart-shaped tolerance.

Abstract

一种机电设备的高精制控方法:设计各种零部件、部件分别组合时设定同心点,通过静态及动态力学的综合计算,设定各项测量指标及精度技术要求值,分别在各种零部件,包括带有或者未带有转动或运动零部件的零部件、轨道运动副零部件、机械部件及机电部件的多面立体中设置全方位精度可调节制控机构;按技术指标制造零部件;装配及锁固依照设计的各项测量指标,按精度技术要求值与各种仪器仪表测量的数值对照配合计算进行精调,使各组合相互之间,在运行中分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项技术要求后进行锁固。这种方法能有效制控精度的误差,提高机电设备整体综合能力。

Description

一种机电设备的高精制控方法 技术领域
本发明涉及机电设备在设计、制造、装配过程中的高精制控方法,特别是转子、定子、编码器、手动或自动换刀器松拉装置等各种零部件,以及包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件进行分别的组合,各种结构的多件、多副、多部分别组合之间的同心精度误差制控,采用分别在各种零部件的多面立体中设置全方位精度可调节制控机构,按精度要求值与各种仪器仪表测量的数值对照配合进行精调,达到设计的各项技术要求后,再实施锁固的一种机电设备的高精制控方法。
背景技术
目前市场上使用的机电设备精度控制方法:完全是靠机械加工设备的本身精度高低来确定该产品的质量,上述方法的缺点是:釆用常规设计制造装配的重要零部件,由于零部件的加工误差,加上装配上积累的误差,从而使生产的产品精度低,同等功率机电产品的转子与定子之间距离差值大,轴远端跳动及轴振动值高,往反重复定位精度误差大。 目前降低机电设备的精度误差主要的方法是:采用重复加工和重复装配,以及采用数控、空间等补偿系统减少加工产品过程中产生的精度误差值。
技术问题
上述方法可以减少加工产品过程中产生的精度误差值,但用这种方法来减少多件、多副、多部分别组合之间的同心精度误差,以及减少机电设备在运行中产生的精度误差,是非常有限的;现代科技发展的需要,对精度要求越来越高,特别是高速列车、船舶、航空、国防军事装备等领域使用的精度要求非常高,按照现有的技术远远不能满足现代化的国防要求。 例如,全球生产使用的AC双摆头,30KW左右的主轴电机:电机的转子与定子之间距离在0.3mm左右,轴远端跳动为0.01mm左右, 轴振动为1.6mm/s左右,AC双摆头在1m工作范围,定位精度为0.02mm左右,该产品转子与定子之间距离差值大,轴远端跳动及轴振动高,往反重复定位精度误差大。 因此,要想使同等功率机电产品的转子与定子之间距离差值小,轴远端跳动及轴振动值低,往反重复定位精度误差小,只靠重复加工及重复配装,以及靠数控、空间等补偿系统的方法来补偿,是难以满足高精度的要求,必须从机电设备本身的基础精度着手与数控、空间等补偿系统配合使用的综合应用,方能满足高精度的要求。
技术解决方案
本发明目的是针对上述的缺点,设计依据各种力学原理,设计出机电设备的各种结构的零部件分别组合,设定同心点及各项测量技术指标,通过静态及动态力学的综合计算,上述分别组合之间,设计同时在各种零部件的多面立体中设置全方位精度可调制控机构,来制控同等功率机电产品的转子与定子之间距离差值大,轴远端跳动及轴振动值高,往反重复定位精度误差大等问题。
例如,实施本发明设计、制造、装配的机电设备,与数控、空间等补偿系统配合使用的情况下,设计、制造、装配的AC双摆头,30KW左右的主轴电机:使各种电机转子与定子之间距离在0.15mm左右,轴远端跳动为0.005mm左右、轴振动为0.8mm/s左右,AC双摆头的在1m工作范围,往反重复定位精度为0.002mm左右,该产品在同等功率机电产品的转子与定子之间距离差值小,轴远端跳动及轴振动值低轴远端跳动及轴振动值低,往反重复定位精度误差小。
上述的精度高低,要看设计、制造、装配实施本发明时,使用的测量仪器仪表本身的精度高低,方能确定实施本发明的精度高低,如釆用更高精密仪器仪表配合实施本发明,上述的数值就会更低,充分满足现代化科技发展的高精度要求。
本发明根据上述举列说明比较最终目的是:
1、降低常规设计制造装配的各种机械部件及机电部件,在设计制造装配时由于零部件的加工误差,加上装配上积累的误差;
2、实现各种机电部件的转子与定子之间距离小,使同等功率的各种机电部件,轴远端跳动及轴振动值低,往反重复定位精度高;
3、控制机电设备的精度误差及零部件在运行中产生位移,提高机电设备整体综合能力。
本发明目的是这样实现的:
(1)设计
针对该机电设备的各种零部件的设计,分别设定同心点,依据各种力学原理,设计出各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件分别的组合,通过静态力学及动态力学的综合应用计算,根据上述不同用途的组合,分别设定圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的测量指标,在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的多面立体中设置全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的各种机械部件及机电部件的多面立体中,设有全方位可调节机构的移动精控调节部件;
又在上述各种结构的零部件、部件分别组合的另其各种静止的零部件、部件的多面立体中,设有全方位可调节机构静止精控调节的零部件、部件;
再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多副、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
根据用途不同组合的设计,形成各种结构的零部件、部件不同用途组合之间的全方位精度可调节制控机构;
设计同时设定各种结构的多件、多副、多部分别同心的作用力平衡的各项精度技术要求值,在调节过程中以静止精控调节的零部件、部件为静制,用精控调节零部件进行调节,让其移动精控调节的零部件、部件移动,依照设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照配合计算进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的组合相互之间,在运行中各种结构的多件、多副、多部分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项精度技术要求(例如同心平行度解释:①对于电机来说,转子在定子内轴转动时形成同心度,且在任一瞬时通过轴线剖切面,沿着径向距离多处测量转子的外径面与平行定子的内径面间距所得数值差范围大小的度量而形成平行度,称为同心平行度;②对于各种动力机械运动副来说,多组导轨副与各种动力驱动沿着轴向组合运动形成同心度,以各种动力驱动沿着轴向为轴心,保持两导轨对应面相互平行,测量多组相对应导轨副的各自中心面与它们各组对应中心轴线的距离差值范围大小的度量形成平行度,称为同心平行度。以此类推同心直线度、同心平面度、同心垂直度等同心形位公差);
依据上述设计的设置,在设计三维立体效果图中,控制圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的测量指标,转换成为制造、装配图,在转换的图纸中,通过图形、文字及符号标注说明各项技术指标;
(2)制造零部件
完成设计的工作后,根据设计的机电设备整体图纸的技术要求,编制制造工艺规程,购置所需的各种材料及零部件,以及进行制造出所需的各种零部件,其中所需的各种零部件主要是:在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的多面立体中设置全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的各种机械部件及机电部件的多面立体中,设有全方位可调节机构的移动精控调节部件;
又在上述各种结构的零部件、部件分别组合的另其各种静止的零部件、部件的多面立体中,设有全方位可调节机构静止精控调节的零部件、部件;
再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多副、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
所有零部件必须通过严密不漏的质量检验,符合设计的圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的各项设计技术指标;
(3)装配调节及锁固
各种零部件的装配调节及锁固
完成上述设计、制造或购置各种零部件等质检工作后,按照设计的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行各种机械部件及机电部件的各种零部件装配工作,在装配同时设定各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件不同用途分别组合的同心基准点,分别装配好不同用途组合的各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件,以及分别装配好在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件不同用途组合之间的全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构零部件的全方位精度可调节制控机构;
在各种带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构带有转动或运动零部件的零部件的全方位精度可调节制控机构;
在各种未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构未带有转动或运动零部件的零部件的全方位精度可调节制控机构;
在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多副分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构轨道运动副零部件的全方位精度可调节制控机构;
依照设计设定的同心点及圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的指标进行测量,在调节过程中以静止精控调节零部件为静制,用精控调节零部件进行调节,让其移动精控调节零部件移动,按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件的组合相互之间,在运行中各种结构的多件、多副分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项精度技术要求,全面核对后,进行锁固;
机电设备整体的装配调节及锁固
完成上述各种机械部件及机电部件的各种零部件装配工作后,按照设计的机电设备整体的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行机电设备整体的装配工作,在装配同时设定各种结构的机械部件及机电部件不同用途分别组合的同心基准点,分别装配好不同用途组合的各种结构的机械部件及机电部件,以及分别装配好在各种结构的机械部件及机电部件不同用途组合之间的全方位精度可调节制控机构,包括:
在各种不同零部件分组装而成的各种机械部件及机电部件的多面立体中,设有全方位可调节机构的移动精控调节部件,又分别在其组合的另其各种静止部件的多面立体中,设有全方位可调节机构的静止精控调节部件,再在上述移动精控调节部件与静止精控调节部件分别组合的精控调节之间,根据各种结构的多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构机械部件及机电部件的全方位精度可调节制控机构;
依照设计设定的同心点及圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的指标进行测量,在调节过程中以静止精控调节部件为静制,用精控调节零部件进行调节,让其移动精控调节部件移动,按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的机械部件及机电部件的组合相互之间,在运行中各种结构的多部分别同心的作用力平衡,达到同心直线度、同心平行度、同心平面度、同心垂直度等同心形位公差的各项精度技术要求,全面核对后,最终进行锁固,完成本发明。
有益效果
本发明与现有技术比较,有如下显著的优点:
1、大大降低了常规设计制造装配的各种机械部件及机电部件,在设计制造装配时由于零部件的加工误差,加上装配上积累的误差;
2、实现了各种机电部件的转子与定子之间距离较小,使同等功率的各种机电部件,轴远端跳动及轴振动值低,往反重复定位精度高;
3、有效控制机电设备的精度误差及零部件在运行中产生位移等优点,提高了机电设备整体综合能力。
本发明应用范围:
本发明应用到电机、机电产品、车床、铣床、镗床、磨床、钻床、雕刻机、三联动以上加工中心、三联动以上测量仪器、机械机电数控自动一体化生产线及装配设备、医疗设备、纺织设备、石化设备、汽车、列车、铁路轨道、船舶、飞机、国防军事装备。
附图说明
本发明的最佳实施方式
本发明的实施方式
结合实施例,进一步描述本发明。
实施例1:
一种AC双摆头的高精制控方法
(1)设计的AC双摆头
AC双摆头是:1台主轴电机、多台力矩电机等部件分别组成,其中主轴电机是:定子、转子、轴承、编码器、手动或自动换刀器松拉装置等零部件分别组成,力矩电机是:定子、转子、轴承、编码器等零部件分别组成,AC双摆头中的主轴电机功能是根据用户的需求确定主轴电机的额定功率、额定电压、最高转速、力矩等功能进行设计,AC双摆头中的力矩电机功能是根据主轴电机确定的功能通过各种力学综合计算而进行设计确定的功能;
设计分别设定同心点,依据各种力学原理,将转子、定子、编码器、手动或自动换刀器松拉装置等静止零部件及运动零部件分别进行组合而形成的主轴电机设计,将转子、定子、编码器等零部件分别进行组合而形成的力矩电机电机设计,又将1台主轴电机、多台力矩电机等部件分别进行组合而形成的AC双摆头全面设计,通过静态力学及动态力学的综合应用计算,根据上述不同用途的组合,分别设定圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的测量指标,在各种结构的零部件、部件的多面立体中设置全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动轴承零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的主轴电机及多台力矩电机部件的多面立体中,设有全方位可调节机构的移动精控调节部件;
又在上述各种结构的零部件、部件分别组合的另其各种静止的零部件、部件的多面立体中,设有全方位可调节机构静止精控调节的零部件、部件;
再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
根据用途不同组合的设计,形成各种结构的零部件,包括各种带有或者未带有转动轴承零部件的零部件、主轴电机及多台力矩电机部件不同用途组合之间的全方位精度可调节制控机构;
设计同时设定各种结构的多件、多部分别同心的作用力平衡的各项精度技术要求值,在调节过程中以静止精控调节的零部件、部件为静制,用精控调节零部件进行调节,让其移动精控调节的零部件、部件移动,依照设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照配合计算进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动轴承零部件的零部件、主轴电机及多台力矩电机部件的组合相互之间,在运行中各种结构的多件、多部分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项精度技术要求;
依据上述设计的设置,在设计三维立体效果图中,控制圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的测量指标,转换成为制造、装配图,在转换的图纸中,通过图形、文字及符号标注说明各项技术指标;
(2)AC双摆头的零部件制造
完成上述设计的工作后,根据设计的AC双摆头整体图纸的技术要求,编制制造工艺规程,购置所需的各种材料及零部件,以及进行制造出所需的各种零部件,其中所需的各种零部件主要是:在各种结构的零部件、部件的多面立体中设置全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动轴承零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的主轴电机及多台力矩电机部件的多面立体中,设有全方位可调节机构的移动精控调节部件;
又分别在上述各种结构的零部件、部件分别组合的另其各种静止零部件、部件的多面立体中,设有全方位可调节机构的静止精控调节的零部件、部件;
再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
所有零部件必须通过严密不漏的质量检验,符合设计的圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的各项设计技术指标;
(3)AC双摆头的装配调节及锁固
主轴电机、力矩电机的各种零部件的装配调节及锁固
完成上述设计、制造或购置各种零部件等质检工作后,按照设计的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行主轴电机、力矩电机的各种零部件装配工作,在装配同时设定各种结构的零部件,包括各种带有或者未带有转动轴承零部件的零部件不同用途分别组合的同心基准点,分别装配好不同用途组合的各种零部件,以及分别装配好在各种结构的零部件,包括各种带有或者未带有转动轴承零部件的零部件不同用途组合之间的全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构零部件的全方位精度可调节制控机构;
在各种带有转动轴承零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,形组装成各种结构的带有转动轴承零部件的零部件的全方位精度可调节制控机构;
在各种未带有转动轴承零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构的未带有转动轴承零部件的零部件的全方位精度可调节制控机构;
依照设计设定的同心点及圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的指标进行测量,在调节过程中以静止精控调节零部件为静制,用精控调节零部件进行调节,让其移动精控调节零部件移动,按按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动轴承零部件的零部件的组合相互之间,在运行中各种结构的多件分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项精度技术要求,全面核对后,进行锁固;
AC双摆头整体的装配调节及锁固
完成上述主轴电机、力矩电机的各种零部件装配工作后,按照设计的AC双摆头整体的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行AC双摆头整体的装配工作,在装配同时设定各种结构的主轴电机、力矩电机及机械部件不同用途分别组合的同心基准点,分别装配好各种结构的主轴电机、力矩电机部件及机械部件,以及分别装配好在各种结构的主轴电机、力矩电机部件及机械部件不同用途组合之间的全方位精度可调节制控机构,包括:
在各种不同零部件分组装而成的主轴电机、力矩电机部件及机械部件的多面立体中,设有全方位可调节机构的移动精控调节部件,又分别在其组合的另其各种静止部件的多面立体中,设有全方位可调节机构的静止精控调节部件,再在上述移动精控调节部件与静止精控调节部件分别组合的精控调节之间,根据各种结构的多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构的主轴电机、力矩电机及机械部件的全方位精度可调节制控机构;
依照设计设定的同心点及圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的指标进行测量,在调节过程中以静止精控调节部件为静制,用精控调节零部件进行调节,让其移动精控调节部件移动,按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的主轴电机、力矩电机及机械部件的组合相互之间,在运行中各种结构的多部分别同心的作用力平衡,达到同心直线度、同心平行度、同心平面度、同心垂直度等同心形位公差的各项精度技术要求,全面核对后,最终进行锁固。
实施例2:
一种固定式双龙门5联动9轴加工中心的高精制控方法
(1)设计的固定式双龙门5联动9轴加工中心
针对该固定式双龙门5联动9轴加工中心的各种零部件、各种机械部件及机电部件的设计,分别设定同心点,依据各种力学原理,设计出各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件分别的组合,通过静态力学及动态力学的综合应用计算,根据上述不同用途的组合,分别设定圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的测量指标,在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件的多面立体中设置全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件的多面立体中,设有全方位可调节机构的移动精控调节零部件;
又在上述各种结构的零部件、部件分别组合的另其各种静止的零部件、部件的多面立体中,设有全方位可调节机构静止精控调节的零部件、部件;
再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多副、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
根据用途不同组合的设计,形成各种结构的零部件、部件不同用途组合之间的全方位精度可调节制控机构;
设计同时设定各种结构的多件、多副、多部分别同心的作用力平衡的各项精度技术要求值,在调节过程中以静止精控调节的零部件、部件为静制,用精控调节零部件进行调节,让其移动精控调节的零部件、部件移动,依照设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照配合计算进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的组合相互之间,在运行中各种结构的多件、多副、多部分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项精度技术要求;
依据上述设计的设置,在设计三维立体效果图中,控制圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的测量指标,转换成为制造、装配图,在转换的图纸中,通过图形、文字及符号标注说明各项技术指标;
(2)制造零部件
完成设计的工作后,根据设计的固定式双龙门5联动9轴加工中心整体图纸的技术要求,编制制造工艺规程,购置所需的各种材料及零部件,以及进行制造出所需的各种零部件,其中所需的各种零部件主要是:在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动的多副零部件、各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件的多面立体中设置全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的各种机械部及各种伺服电机、力矩电机、AC双摆头等机电部件的多面立体中,设有全方位可调节机构的移动精控调节零部件;
又在上述各种结构的零部件、部件分别组合的另其各种静止的零部件、部件的多面立体中,设有全方位可调节机构静止精控调节的零部件、部件;
再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多副、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
所有零部件必须通过严密不漏的质量检验,符合设计的圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的各项设计技术指标;
(3)装配调节及锁固
固定式双龙门5联动9轴加工中心的各种零部件的装配调节及锁固
完成上述设计、制造或购置各种零部件等质检工作后,按照设计的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件的各种零部件装配工作,在装配同时设定各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件不同用途分别组合的同心基准点,分别装配好不同用途组合的各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件,以及分别装配好在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件不同用途组合之间的全方位精度可调节制控机构,包括:
在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构零部件的全方位精度可调节制控机构;
在各种带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构带有转动或运动零部件的零部件的全方位精度可调节制控机构;
在各种未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构未带有转动或运动零部件的零部件的全方位精度可调节制控机构;
在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多副分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构轨道运动副零部件的全方位精度可调节制控机构;
依照设计设定的同心点及圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的指标进行测量,在调节过程中以静止精控调节零部件为静制,用精控调节零部件进行调节,让其移动精控调节零部件移动,按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件的组合相互之间,在运行中各种结构的多件、多副分别同心的作用力平衡,达到同心直线度、同心平面度、同心平行度、同心垂直度等同心形位公差的各项精度技术要求,全面核对后,进行锁固;
固定式双龙门5联动9轴加工中心整体的装配调节及锁固
完成上述各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件的各种零部件装配工作后,按照设计的固定式双龙门5联动9轴加工中心整体的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行固定式双龙门5联动9轴加工中心的整体装配工作,在装配同时设定各种结构的机械部件及伺服电机、力矩电机、AC双摆头等机电部件不同用途分别组合的同心基准点,分别装配好不同用途组合的各种结构的机械部件及伺服电机、力矩电机、AC双摆头等机电部件,以及分别装配好在各种结构的机械部件及伺服电机、力矩电机、AC双摆头等机电部件不同用途组合之间的全方位精度可调节制控机构,包括:
在各种不同零部件分组装而成的各种机械部件及各种伺服电机、力矩电机、AC双摆头等机电部件的多面立体中,设有全方位可调节机构的移动精控调节部件,又分别在其组合的另其各种静止部件的多面立体中,设有全方位可调节机构的静止精控调节部件,再在上述移动精控调节部件与静止精控调节部件分别组合的精控调节之间,根据各种结构的多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构机械部件及伺服电机、力矩电机、AC双摆头等机电部件的全方位精度可调节制控机构;
依照设计设定的同心点及圆度、同轴度、直线度、平面度、平行度、垂直度、对称度等形位公差的指标进行测量,在调节过程中以静止精控调节部件为静制,用精控调节零部件进行调节,让其移动精控调节部件移动,按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的机械部件及伺服电机、力矩电机、AC双摆头等机电部件的组合相互之间,在运行中各种结构的多部分别同心的作用力平衡,达到同心直线度、同心平行度、同心平面度、同心垂直度等同心形位公差的各项精度技术要求,全面核对后,最终进行锁固。
工业实用性
序列表自由内容

Claims (2)

  1. 一种机电设备的高精制控方法,其特征是按以下流程实现的:
    (1)设计
    针对该机电设备的各种零部件的设计,分别设定同心点,依据各种力学原理,设计出各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件分别的组合,通过静态力学及动态力学的综合应用计算,根据上述不同用途的组合之间,分别设定形位公差的测量指标,在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的多面立体中设置全方位精度可调节制控机构,包括:
    在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分组装而成的各种机械部件及机电部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又在上述各种结构的零部件、部件分别组合的另其各种静止零部件、部件的多面立体中,设有全方位可调节机构静止精控调节的零部件、部件;
    再在上述各种移动精控调节的零部件、部件与各种静止精控调节的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多副、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
    根据用途不同组合的设计,形成各种结构的各种零部件、部件不同用途组合之间的全方位精度可调节制控机构;
    设计同时设定各种结构的多件、多副、多部分别同心的作用力平衡的各项精度技术要求值,在调节过程中以静止精控调节零部件为静制,用精控调节零部件进行调节,让其移动精控调节零部件移动,依照设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照配合计算进行精调,分别使各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的组合相互之间,在运行中各种结构的多件、多副、多部分别同心的作用力平衡,达到同心形位公差的技术要求;
    依据上述设计的设置,在设计三维立体效果图中,控制形位公差的测量指标,转换成为制造、装配图,在转换的图纸中,通过图形、文字及符号标注说明技术指标;
    (2)制造零部件
    完成设计的工作后,根据设计的机电设备整体图纸的技术要求,编制制造工艺规程,购置所需的各种材料及零部件,以及进行制造出所需的各种零部件,其中所需的零部件主要包括:在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件、各种机械部件及机电部件的多面立体中,设置全方位精度可调节制控机构,包括:
    在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种带有或者未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,在各种不同零部件分别组装而成的各种机械部件及机电部件的多面立体中,设有全方位可调节机构的移动精控调节零部件;
    又在上述各种结构的零部件、部件分别组合的另其各种静止零部件、部件的多面立体中,设有全方位可调节机构的静止精控调节零部件、部件;
    再在上述各种移动精控调解的零部件、部件与各种静止精控调解的零部件、部件分别组合的精控调节之间,根据各种结构的多件、多副、多部分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件;
    所有零部件必须通过严密不漏的质量检验,符合形位公差设计的各项设计技术指标;
    (3)装配调节及锁固
    各零部件的装配调节及锁固
    完成上述设计、制造或购置各种零部件等质检工作后,按照设计的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行各种机械部件及机电部件的各种零部件装配工作,在装配同时设定不同各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件之间分别组合的同心基准点,分别装配好不同用途组合的各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件,以及分别装配好在各种结构的零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动的多副零部件不同用途组合之间的全方位精度可调节制控机构,包括:
    在各种零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控零部件组合的精控调节之间、根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要,分别在全方位精控所需各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构零部件的全方位精度可调节制控机构;
    在各种带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要、分别在全方位精控所需各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构的各种带有转动或运动零部件的零部件的全方位精度可调节制控机构;
    在各种未带有转动或运动零部件的零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种或各体静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间、根据各种结构的多件分别同心的作用力平衡的全方位各项精度技术要求的需要、分别在全方位精控所需的各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构未带有转动或运动零部件的全方位精度可调节制控机构;
    在各种轨道运动副零部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节零部件与静止精控调节零部件组合的精控调节之间,根据各种结构的多副分别同心的作用力平衡的全方位各项精度技术要求的需要、分别在全方位精控所需各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构轨道运动副零部件的全方位精度可调节制控机构;
    依照设计设定同心点及形位公差的指标进行测量,在调节过程中以静止精控调节零部件为静制,用精控调节零部件进行调节,让其移动精控调节零部件移动,按设计设定的各项精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的各种零部件,包括各种带有或者未带有转动或运动零部件的零部件、各种轨道运动副零部件的组合相互之间,在运行中各种结构的多件、多副分别同心的作用力平衡,达到同心形位公差的各项技术要求,全面核对后,进行锁固;
    机电设备整体的装配调节及锁固
    完成上述各种机械及机电部件的零部件装配工作后,按照设计的机电设备整体的技术要求,编制装配调节及锁固工艺规程,根据设计图纸进行机电设备整体的装配工作,在装配同时设定各种结构的各种机械部件及机电部件不同用途分别组合的同心基准点,分别装配好不同用途组合的各种结构的机械部件及机电部件,以及分别装配好在各种结构的各种机械部件及机电部件不同用途组合之间的全方位精度可调节制控机构,包括:
    在各种不同零部件分组装而成的各种机械部件及机电部件的多面立体中,设有全方位可调节机构的移动精控调节零部件,又分别在其组合的另其各种静止零部件的多面立体中,设有全方位可调节机构的静止精控调节零部件,再在上述移动精控调节部件与静止精控调节部件分别组合的精控调节之间,根据各种结构的多部分别同心的作用力平衡的全方位各项精度技术要求的需要、分别在全方位精控所需各个方位处增设多组一种零部件的多面立体中,设有可调节机构的精控调节零部件,组装形成各种结构的各种机械部件及机电部件的全方位精度可调节制控机构;
    依照设计设定同心点及形位公差的指标进行测量,在调节过程中以静止精控调节零部件为静制,用精控调节零部件进行调节,让其移动精控调节零部件移动,按设计设定的精度技术要求值与各种仪器仪表测量的数值对照计算配合进行精调,分别使各种结构的各种机械部件及机电部件的组合相互之间,在运行中各种结构的多部分别同心的作用力平衡,达到同心形位公差的各项精度技术要求,全面核对后,最终进行锁固。
  2. 如权利要求1所述的一种机电设备的高精制控方法,其特征是:所述机电设备为电机、机电产品、车床、铣床、镗床、磨床、钻床、雕刻机、三联动以上加工中心、三联动以上测量仪器、机械机电数控自动一体化设备、医疗设备、纺织设备、石化设备、汽车、列车、铁路轨道、船舶、飞机、国防军事装备的高精制控方法。
PCT/CN2015/079999 2014-09-26 2015-05-27 一种机电设备的高精制控方法 WO2016045399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410503650.8 2014-09-26
CN201410503650.8A CN104400418B (zh) 2014-09-26 2014-09-26 一种机电设备的高精制控方法

Publications (1)

Publication Number Publication Date
WO2016045399A1 true WO2016045399A1 (zh) 2016-03-31

Family

ID=52638117

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/079999 WO2016045399A1 (zh) 2014-09-26 2015-05-27 一种机电设备的高精制控方法
PCT/CN2015/090045 WO2016045552A1 (zh) 2014-09-26 2015-09-18 一种机电设备的高精制控方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090045 WO2016045552A1 (zh) 2014-09-26 2015-09-18 一种机电设备的高精制控方法

Country Status (7)

Country Link
US (1) US20170160728A1 (zh)
EP (1) EP3199293A4 (zh)
JP (1) JP2017521774A (zh)
KR (1) KR20160148030A (zh)
CN (2) CN104400418B (zh)
RU (1) RU2016152398A (zh)
WO (2) WO2016045399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400418B (zh) * 2014-09-26 2018-04-13 黄国峰 一种机电设备的高精制控方法
CN113932692A (zh) * 2021-09-18 2022-01-14 东风柳州汽车有限公司 一种多轴车辆双后桥平行度检测装调方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201119789A (en) * 2009-12-07 2011-06-16 Metal Ind Res & Dev Ct Mounting device and mounting method for shaft.
CN202804621U (zh) * 2012-04-06 2013-03-20 黄国峰 一种提高机械精度定位调校的装置
CN102601612B (zh) * 2012-04-06 2013-12-18 黄国峰 一种提高机械精度定位调校的方法
KR101409322B1 (ko) * 2013-12-19 2014-06-19 (주)아이솔루션 카메라 모듈의 렌즈 광축 정렬 및 조립 장치 및 그것을 이용한 렌즈 광축 정렬 및 조립 방법
CN104400418A (zh) * 2014-09-26 2015-03-11 黄国峰 一种机电设备的高精制控方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536935B2 (en) * 1997-07-23 2003-03-25 Atarum Institute Computerized system for market-based constraint optimization
JP4403211B2 (ja) * 1999-07-09 2010-01-27 野村Vtc株式会社 主軸移動型自動旋盤の支持ユニットのための位置決め治具
JP4541589B2 (ja) * 2001-05-16 2010-09-08 シチズンホールディングス株式会社 数値制御工作機械におけるワークの加工方法及びそのプログラム
JP4666675B2 (ja) * 2004-04-19 2011-04-06 シチズンホールディングス株式会社 数値制御旋盤におけるワークの加工方法
US7208861B2 (en) * 2005-02-04 2007-04-24 Piezomotor Uppsala Ab Electromechanical drive element
KR100992655B1 (ko) * 2005-08-04 2010-11-05 우에노 세이끼 가부시키가이샤 전자 부품 제조 장치, 전자 부품 제조 장치의 제어 방법 및 제어 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체
CN101020288A (zh) * 2007-03-21 2007-08-22 沪东中华造船(集团)有限公司 一种大型圆形罐体的组装方法
US20100023897A1 (en) * 2008-02-20 2010-01-28 Pikus Fedor G Property-Based Classification In Electronic Design Automation
CN101920456A (zh) * 2010-02-02 2010-12-22 黄国峰 机械设备六方位螺纹调校定位方法
CN102717248A (zh) * 2012-07-05 2012-10-10 南通中远船务工程有限公司 一种八边形桩腿分段合拢精度设计方法
CN203031255U (zh) * 2012-12-05 2013-07-03 深圳市大族激光科技股份有限公司 零件自动装配装置
CN103464985B (zh) * 2013-09-22 2016-01-20 福建省威盛机械发展有限公司 叉装车/装载机的动臂的生产工艺及其精加工固定工装
CN103499978A (zh) * 2013-09-28 2014-01-08 国家电网公司 一种光伏自动追日控制系统及其使用方法
CN103551848A (zh) * 2013-10-01 2014-02-05 龙口市蓝牙数控装备有限公司 车铣一体机床

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201119789A (en) * 2009-12-07 2011-06-16 Metal Ind Res & Dev Ct Mounting device and mounting method for shaft.
CN202804621U (zh) * 2012-04-06 2013-03-20 黄国峰 一种提高机械精度定位调校的装置
CN102601612B (zh) * 2012-04-06 2013-12-18 黄国峰 一种提高机械精度定位调校的方法
KR101409322B1 (ko) * 2013-12-19 2014-06-19 (주)아이솔루션 카메라 모듈의 렌즈 광축 정렬 및 조립 장치 및 그것을 이용한 렌즈 광축 정렬 및 조립 방법
CN104400418A (zh) * 2014-09-26 2015-03-11 黄国峰 一种机电设备的高精制控方法

Also Published As

Publication number Publication date
CN106660182A (zh) 2017-05-10
US20170160728A1 (en) 2017-06-08
WO2016045552A1 (zh) 2016-03-31
KR20160148030A (ko) 2016-12-23
EP3199293A4 (en) 2018-12-05
EP3199293A1 (en) 2017-08-02
CN104400418B (zh) 2018-04-13
RU2016152398A (ru) 2018-07-03
JP2017521774A (ja) 2017-08-03
CN104400418A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
US7084533B2 (en) Dual-function three-axis positioning system
CN103128628B (zh) 基于多自由度电机的光学元件加工及检测平台
CN101480734B (zh) 具有热位移约束滚滑回转结合部宏微驱动的复合加工中心
CN103084854B (zh) 一种数控加工机床及其旋转工作台
CN111390562A (zh) 新型精密复合六轴联动的数控机床
CN110508832B (zh) 多刀高效同步动平衡车削加工机床及加工方法
WO2016045399A1 (zh) 一种机电设备的高精制控方法
CN108367366B (zh) 用于高精密机床的卡盘
CN105171498B (zh) 一种用于加工大直径薄壁盘类零件的数控双面车床
CN112025315B (zh) 一种环形工件铣磨测一体化加工机床及其控制方法
CN102871751B (zh) 义齿加工机
CN111958012B (zh) 一种联轴同镗轴孔精度保证方法
He et al. Development of a novel 5-DOF controlled maglev local actuator for high-speed electrical discharge machining
CN115401472A (zh) 一种抵消磁吸力的直线电机驱动的动梁龙门数控机床
CN110561197A (zh) 一种可五轴联动的立式加工中心
CN111408952A (zh) 一种环形工件铣磨测混合加工机床及其控制方法
CN114211015A (zh) 一种回转类零件高精度加工车床自动找正的机构及其方法
CN203636514U (zh) 面向规则金刚石工具头超精密研磨/抛光加工平台
CN215280029U (zh) 一种加工针织机圆筒针槽的新型高精度铣床
JPH04240050A (ja) 機上測定装置
CN113042769B (zh) 一种可调锁紧镗头
CN111730202B (zh) 激光切割模组及装置
CN212239993U (zh) 新型精密复合六轴联动的数控机床
CN215415776U (zh) 一种用于测量微特电机参数的装置
Díaz-Pérez et al. Positioning uncertainty of the control system for the planar motion of a nanopositioning platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/08/09)

122 Ep: pct application non-entry in european phase

Ref document number: 15844170

Country of ref document: EP

Kind code of ref document: A1