WO2016045246A1 - 像素电路及其驱动方法、发光显示面板及显示装置 - Google Patents

像素电路及其驱动方法、发光显示面板及显示装置 Download PDF

Info

Publication number
WO2016045246A1
WO2016045246A1 PCT/CN2015/070152 CN2015070152W WO2016045246A1 WO 2016045246 A1 WO2016045246 A1 WO 2016045246A1 CN 2015070152 W CN2015070152 W CN 2015070152W WO 2016045246 A1 WO2016045246 A1 WO 2016045246A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
thin film
film transistor
transistor
driving
Prior art date
Application number
PCT/CN2015/070152
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
白峰
王海生
刘英明
郭仁炜
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/769,399 priority Critical patent/US9984272B2/en
Publication of WO2016045246A1 publication Critical patent/WO2016045246A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel circuit and a driving method thereof, a light emitting display panel, and a display device.
  • Organic light-emitting display is one of the hotspots in the research field of flat panel displays. Compared with liquid crystal displays, organic light-emitting diodes (OLEDs) have the advantages of low energy consumption, low production cost, self-luminescence, wide viewing angle and fast response. In the display fields of mobile phones, PDAs, digital cameras, etc., OLEDs have begun to replace traditional liquid crystal displays (LCDs). Pixel driver circuit design is the core technology content of AMOLED display, which has important research significance.
  • OLEDs are current-driven and require a constant current to control illumination. Due to the process process and device aging, the threshold voltage (Vth) of the driving thin film transistor at each pixel will drift, which causes the current flowing through each pixel point OLED to change due to the change of the threshold voltage, so that the display brightness is not Both, which affect the display of the entire image.
  • Vth threshold voltage
  • fingerprint-based technology can significantly improve the security of the system, making it ideal for use in security and high-end consumer electronics.
  • the present disclosure provides a pixel circuit and a driving method thereof, an organic light emitting display panel, and a display device, thereby improving uniformity of brightness of the organic light emitting display panel and improving image display effect of the display device. Efficient integration of display drivers, fingerprint recognition and touch detection.
  • An embodiment of the present disclosure provides a pixel circuit including a light emitting diode, the cathode of the light emitting diode being connected to a first signal source;
  • the pixel circuit further includes:
  • a display driving module respectively connected to the anodes of the first scan line, the second scan line, the control line, the data line, the second signal source, the third signal source and the light emitting diode, for the first scan input on the first scan line
  • Controlling the threshold voltage compensation process of the driving transistor by using the data signal input by the data line and the second signal input by the second signal source under control of the signal, the second scan signal input by the second scan line, and the control signal input by the control line
  • the light-emitting driving signal of the light-emitting diode is independent of the threshold voltage of the driving transistor;
  • a fingerprint identification module respectively connected to the first scan line, the second scan line, the fourth signal source, and the signal read line, for the first scan signal input on the first scan line and the second scan input on the second scan line Under the control of the signal, the fingerprint recognition and touch detection functions are realized.
  • the display driving module includes:
  • a first thin film transistor a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a first storage capacitor, and a first driving transistor;
  • the first poles of the first thin film transistor are respectively connected to the second signal source and the first end of the first storage capacitor, the gate of the first thin film transistor is connected to the control line, and the second pole of the first thin film transistor and the first driving transistor First pole connection
  • a first pole of the second thin film transistor is connected to the first pole of the first driving transistor, a gate of the second thin film transistor is connected to the second scan line, a second pole of the second thin film transistor and a second end of the first storage capacitor connection;
  • a first pole of the third thin film transistor is connected to the third signal source, a gate of the third thin film transistor is connected to the first scan line, and a second pole of the third thin film transistor is connected to the second end of the first storage capacitor;
  • a first pole of the fourth thin film transistor is connected to the data line, a gate of the fourth thin film transistor is connected to the second scan line, and a second pole of the fourth thin film transistor is connected to the second pole of the first driving transistor;
  • a first pole of the fifth thin film transistor is connected to the second pole of the first driving transistor, a gate of the fifth thin film transistor is connected to the control line, and a second pole of the fifth thin film transistor is connected to the anode of the light emitting diode Connect
  • a gate of the first driving transistor is coupled to a second end of the first storage capacitor.
  • the display driving module includes:
  • a first pole of the sixth thin film transistor is connected to the data line, a gate of the sixth thin film transistor is connected to the second scan line, and a second pole of the sixth thin film transistor is connected to the first pole of the second driving transistor;
  • a first pole of the seventh thin film transistor is connected to the second end of the second storage capacitor, a gate of the seventh thin film transistor is connected to the first scan line, and a second pole of the seventh thin film transistor is connected to the third signal source;
  • the first pole of the eighth thin film transistor is connected to the second pole of the third driving transistor, the gate of the eighth thin film transistor is connected to the control line, and the second pole of the eighth thin film transistor is connected to the anode of the organic light emitting diode;
  • a gate and a second pole of the second driving transistor are connected to the second end of the second storage capacitor
  • the first poles of the third driving transistor are respectively connected to the first end of the second storage capacitor and the second signal source, and the gate of the third driving transistor is connected to the second end of the second storage capacitor.
  • the fingerprint identification module includes:
  • the first pole of the reset transistor is connected to the fourth signal source, the gate of the reset transistor is connected to the first scan line, and the second pole of the reset transistor is connected to the second end of the third storage capacitor;
  • the first pole of the amplifying transistor is connected to the fourth signal source, the gate of the amplifying transistor is connected to the second end of the third storage capacitor, and the second pole of the amplifying transistor is connected to the first pole of the switching transistor;
  • a gate of the switching transistor is connected to the second scan line, and a second pole of the switching transistor is connected to the signal read line;
  • the first end of the third storage capacitor is connected to the second scan line
  • the detecting electrode is connected to the second end of the third storage capacitor.
  • the transistor is a P-type transistor
  • the first source is the source
  • the second stage is a drain.
  • the first signal input by the first signal source is a low level signal or a zero potential signal
  • the second signal input by the second signal source is a high level signal
  • the third signal input by the third signal source is a low level signal
  • the fourth signal input by the fourth signal source is a signal having a fixed potential.
  • the light emitting diode is an organic light emitting diode.
  • the embodiment of the present disclosure further provides a pixel driving method for driving the pixel circuit provided by the embodiment of the present disclosure, including:
  • Controlling the data signal input by the data line and the second signal input by the second signal source under the control of the first scan signal input by the first scan line, the second scan signal input by the second scan line, and the control signal input by the control line Performing a driving transistor threshold voltage compensation process such that the light emitting driving signal of the light emitting diode is independent of the driving transistor threshold voltage;
  • the fingerprint recognition and touch detection functions are implemented under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line.
  • the data signal and the second signal input by using the data line are controlled by the first scan signal input by the first scan line, the second scan signal input by the second scan line, and the control signal input by the control line.
  • the second signal of the source input performs a driving transistor threshold voltage compensation process, so that the process of the light emitting driving signal of the light emitting diode is independent of the threshold voltage of the driving transistor, including:
  • the third thin film transistor In a first phase of a time period, the third thin film transistor is in an on state, and the first thin film transistor, the second thin film transistor, the fourth thin film transistor, and the fifth thin film transistor are in an off state, so that the second end of the first storage capacitor The potential of the third signal input by the third signal source;
  • the second thin film transistor, the fourth thin film transistor, and the first driving transistor are in an on state, and the first thin film transistor, the third thin film transistor, and the fifth thin film transistor are in an off state to enable data
  • the data signal input by the line charges the potential of the second end of the first storage capacitor to a difference between the potential of the data signal and the threshold voltage of the first driving transistor;
  • the first thin film transistor and the fifth thin film transistor are in an on state, and the second thin film transistor, the third thin film transistor, and the fourth thin film transistor are in an off state to be based on the data signal and the second signal.
  • a light emitting driving signal of the light emitting diode is determined, and the light emitting driving signal is used to drive the light emitting diode to emit light.
  • the data signal input by using the data line is controlled by the first scan signal input by the first scan line, the second scan signal input by the second scan line, and the control signal input by the control line.
  • the second signal input by the second signal source performs driving transistor threshold voltage compensation processing, so that the process of the light emitting driving signal of the light emitting diode is independent of the threshold voltage of the driving transistor, including:
  • the seventh thin film transistor is in an on state, and the sixth thin film transistor and the eighth thin film transistor are in an off state, so that the potential of the second end of the second storage capacitor is the third input of the third signal source.
  • the sixth thin film transistor and the second driving transistor are in an on state, and the seventh thin film transistor and the eighth thin film transistor are in an off state, so that the data signal input by the data line is the second storage capacitor.
  • the potential of the second end is charged to a difference between a potential of the data signal and a threshold voltage of the second driving transistor;
  • the eighth thin film transistor is in an on state, and the sixth thin film transistor and the seventh thin film transistor are in an off state to determine an illumination driving signal of the light emitting diode based on the data signal and the second signal, and utilize The illumination driving signal drives the LED to emit light.
  • the process of implementing the fingerprint recognition and touch detection functions under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line includes:
  • the reset transistor In the first phase of a time period, the reset transistor is in an on state, and the switching transistor is in an off state such that the potential of the second terminal of the third storage capacitor is the potential of the fourth signal input by the fourth signal input terminal;
  • the reset transistor In the second phase of the time period, the reset transistor is in an off state, the switching transistor is in an on state, and the amplifying transistor is in an on or off state based on a potential of the second end of the third storage capacitor to enable signal read line transmission. a signal corresponding to the state of the amplifying transistor, so that the processor connected to the signal reading line performs fingerprint recognition based on the signal transmitted by the signal reading line;
  • the reset transistor, the switching transistor, and the amplifying transistor are in an off state.
  • the second phase further includes:
  • the position information of the fingerprint recognition operation is determined based on the second scan line information and the information of the signal read line.
  • the first scan signal is a low level signal
  • the second scan line signal is a high level signal
  • the control signal is a high level signal
  • the data signal is a low level signal or a high power Flat signal
  • the first scan signal is a high level signal
  • the second scan line signal is a low level signal
  • the control signal is a high level signal
  • the data signal is a high level signal
  • the first scan signal is a high level signal
  • the second scan line signal is a high level signal
  • the control signal is a low level signal
  • the data signal is a low level signal
  • the embodiment of the present disclosure further provides a light-emitting display panel, which may specifically include the pixel circuit provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a display device, which may specifically include the above-described light-emitting display panel provided by the embodiment of the present disclosure.
  • the pixel circuit and the driving method thereof, the organic light emitting display panel and the display device provided by the present disclosure are provided with the first scan line, the second scan line, the control line, the data line, and the second signal source.
  • a third signal source and an anode connection of the organic light emitting diode configured to use the data under the control of the first scan signal input by the first scan line, the second scan signal input by the second scan line, and the control signal input by the control line
  • the data signal input by the line and the second signal input by the second signal source perform driving transistor threshold voltage compensation processing, such that the light emitting driving signal of the organic light emitting diode is independent of the threshold voltage of the driving transistor; and the first scan line, The second scan line, the fourth signal source and the signal read line are connected for implementing fingerprint recognition and touch under the control of the first scan signal input by the first scan line and the second scan signal input by the second scan line
  • the fingerprint recognition module of the detection function is provided with the first scan line, the second scan line, the control line, the data line
  • FIG. 1 is a schematic structural diagram of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram 1 of a display driving module in a pixel circuit according to an embodiment of the present disclosure
  • FIG. 3 is a signal timing diagram 1 related to a pixel circuit according to an embodiment of the present disclosure
  • FIG. 4 is a first schematic diagram of a pixel circuit in a first stage according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram 1 of a state of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 6 is a first schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 7 is a second schematic structural diagram of a display driving module in a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a timing diagram 2 of a signal involved in a pixel circuit according to an embodiment of the present disclosure
  • FIG. 9 is a second schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic diagram of a state of a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 11 is a second schematic diagram of a pixel circuit in a third stage according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram 1 of a fingerprint circuit implemented by a pixel circuit according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram 2 of the principle of implementing fingerprint recognition by a pixel circuit according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a pixel circuit distribution according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a pixel circuit.
  • the pixel circuit may specifically include an organic light emitting diode (OLED), and the cathode of the organic light emitting diode is connected to the first signal source;
  • OLED organic light emitting diode
  • the pixel circuit may further include:
  • the display driving module 1 is respectively connected to the first scan line (Scan1), the second scan line (Scan2), the control line (EM), the data line, the second signal source, the third signal source, and the anode of the organic light emitting diode.
  • a first scan signal (V Scan1) to the input of the first scan line
  • a second scan signal (V Scan2) input of a second scan line
  • the data signal (V data ) and the second signal (V dd ) input by the second signal source perform a driving transistor threshold voltage (V th ) compensation process, so that the illuminating driving signal (I OLED ) of the organic light emitting diode and the driving transistor threshold voltage Vth has nothing to do;
  • the fingerprint identification module 2 is respectively connected to the first scan line, the second scan line, the fourth signal source and the signal read line (Read Line) for the first scan signal V Scan1 and the second input on the first scan line.
  • the fingerprint recognition function and the touch detection function are implemented under the control of the second scan signal V Scan2 input by the scan line.
  • the first signal input by the first signal source may specifically be a low level signal, or may be ground as the first signal source to implement zero potential input.
  • the second signal V dd input by the second signal source may specifically be a high level signal.
  • the third signal V int input by the third signal source may specifically be a low level signal.
  • the fourth signal input by the fourth signal source may specifically be a signal having a fixed potential, such as the common electrode signal V com .
  • the embodiment of the present disclosure further provides a pixel driving method for driving the pixel circuit provided by the embodiment of the present disclosure.
  • the method may specifically include:
  • the data signal V data and the data input by the data line are controlled under the control of the first scan signal V Scan1 input from the first scan line, the second scan signal V Scan1 input from the second scan line, and the control signal V EM input from the control line.
  • the second signal V dd input by the two signal sources performs a driving transistor threshold voltage V th compensation process such that the light emitting driving signal I OLED of the organic light emitting diode is independent of the driving transistor threshold voltage V th ;
  • the fingerprint recognition function is realized under the control of the first scan signal VScan1 input from the first scan line and the second scan signal VScan2 input from the second scan line.
  • the pixel circuit and the driving method thereof provided by the embodiments of the present disclosure can not only eliminate the influence of the threshold voltage V th of the driving transistor on the light emitting driving signal I OLED , thereby improving the uniformity of the brightness of the organic light emitting display panel and improving the image display effect of the display device. .
  • the pixel circuit provided by the embodiment of the present disclosure realizes the fingerprint recognition function while realizing display driving by adopting the circuit structure setting of the control signal multiplexing, thereby achieving efficient integration of display driving and fingerprint recognition.
  • the display driving module 1 may specifically include:
  • the first pole of the first thin film transistor T1 is connected to the second signal source and the first end of the first storage capacitor C1, and the gate of the first thin film transistor T1 is connected to the control line EM, and the second pole of the first thin film transistor T1 Connected to the first pole of the first driving transistor DTFT1;
  • the first electrode of the second thin film transistor T2 is connected to the first electrode of the first driving transistor DTFT1, the gate of the second thin film transistor T2 is connected to the second scan line, and the second electrode of the second thin film transistor T2 is connected to the first storage capacitor The second end of C1 is connected;
  • the first electrode of the third thin film transistor T3 is connected to the third signal source, the gate of the third thin film transistor T3 is connected to the first scan line, and the second electrode of the third thin film transistor T3 is connected to the second end of the first storage capacitor C1. connection;
  • the first electrode of the fourth thin film transistor T4 is connected to the data line, the gate of the fourth thin film transistor T4 is connected to the second scan line, and the second electrode of the fourth thin film transistor T4 is connected to the second electrode of the first driving transistor DTFT1;
  • the first electrode of the fifth thin film transistor T5 is connected to the second electrode of the first driving transistor DTFT1, the gate of the fifth thin film transistor T5 is connected to the control line, and the second electrode of the fifth thin film transistor T5 is connected to the anode of the organic light emitting diode. ;
  • the gate of the first driving transistor DTFT1 is connected to the second end of the first storage capacitor C1.
  • the display driver module 1 and the various transistors included in the fingerprint recognition module 2 may be P-type transistors, thereby unifying the transistor process and helping to improve the yield of the touch display device.
  • the first pole of the transistor may be a source
  • the second pole of the transistor may be a drain.
  • the pixel driving method provided by the embodiment of the present disclosure drives a specific embodiment of the display driving module 1 shown in FIG. 2 in detail in conjunction with the timing chart shown in FIG.
  • the process may specifically include:
  • the first stage is a first stage
  • the display driving module 1 shown in FIG. 2 may specifically be in a reset phase.
  • the signal input diagram of this stage is shown in the phase 1 of FIG. 3, that is, the control signal V EM may be a high level signal, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may specifically be The high-level signal, the data signal V data may be a low-level signal, so that the third thin film transistor T3 is in an on state, the first thin film transistor T1, the second thin film transistor T2, the fourth thin film transistor T4, and the fifth thin film. Transistor T5 is in an off state.
  • the third signal V int input by the third signal source is transmitted to the second terminal of the first storage capacitor C1, that is, the node B and the first driving through the third thin film transistor T3 in the on state.
  • the third signal V int may be a low level signal, so that the signal reset of the second end of the first storage capacitor C1 is implemented.
  • the display driving module 1 shown in FIG. 2 may specifically be in the discharge compensation phase.
  • the signal input diagram of this stage is shown in the phase 2 of FIG. 3, that is, the control signal V EM can be a high level signal, the first scan signal V Scan1 can be a high level signal, and the second scan signal V Scan2 can be specifically The low-level signal, the data signal V data may be a high-level signal, so that the second thin film transistor T2 and the fourth thin film transistor T4 are in an on state, the first thin film transistor T1, the third thin film transistor T3, and the fifth thin film. Transistor T5 is in an off state.
  • the first driving transistor DTFT1 Since the potential of the gate of the first driving transistor DTFT1 is the potential of the third signal V int in the first stage, the first driving transistor DTFT1 is turned on in the second stage.
  • the data signal V data input by the data line is transmitted to the first storage capacitor C1 through the fourth thin film transistor T4, the first driving transistor DTFT1, and the second thin film transistor T2 in the on state.
  • the voltage difference between the gate and the source is V th1 .
  • the potential of the node A is always the second signal V dd , the potential of the node B is always maintained at V data -V th1 after the charging is completed.
  • the fifth thin film transistor T5 is in an off state in the second stage, so that no current flows through the organic light emitting diode in the second stage, the lifetime loss of the organic light emitting diode can be reduced, Extends the service life of organic light-emitting diodes.
  • the third stage is the third stage.
  • the display driving module 1 shown in FIG. 2 may specifically be in the display lighting stage.
  • the signal input diagram of this stage is shown in phase 3 of FIG. 3, that is, the control signal V EM may be a low level signal, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may specifically be The high-level signal, the data signal V data may be a low-level signal, so that the first thin film transistor T1 and the fifth thin film transistor T5 are in an on state, the second thin film transistor T2, the third thin film transistor T3, and the fourth thin film. Transistor T4 is in an off state.
  • the potential of the first pole (ie, the source) of the first driving transistor DTFT1 is the second signal source input.
  • the potential of the second signal V dd , the driving current I OLED passes through the first thin film transistor T1, the first driving transistor DTFT1, and the fifth thin film transistor T5 to drive the organic light emitting diode to emit light.
  • the saturation current formula of the driving transistor DTFT can be obtained:
  • I OLED K(V GS -V th1 ) 2
  • V GS is the gate voltage of the first driving transistor
  • K is a constant related to the manufacturing process and driving design of the driving transistor DTFT.
  • the operating current I OLED of the organic light emitting diode OLED is not affected by the threshold voltage V th1 of the first driving transistor DTFT1, but only with the second signal V dd and the data signal V data .
  • the threshold voltage V th drift eliminate the influence of the driving transistor DTFT the threshold voltage V th to the working current of the organic light emitting diode OLED I OLED, not only can ensure the pixel unit
  • the OLED inside the OLED works normally, and the uniformity of image display can also be ensured.
  • the display driving module 1 of the embodiment of the present disclosure may be implemented in another circuit configuration. As shown in FIG. 7 , the display driving module 1 in this embodiment may specifically include:
  • a sixth thin film transistor T6 a seventh thin film transistor T7, an eighth thin film transistor T8, a second storage capacitor C2, a second driving transistor DTFT2, and a third driving transistor DTFT3;
  • the first pole of the sixth thin film transistor T6 is connected to the data line, the gate of the sixth thin film transistor T6 is connected to the second scan line, and the second pole of the sixth thin film transistor T6 is connected to the first pole of the second driving transistor DTFT2;
  • the first electrode of the seventh thin film transistor T7 is connected to the second end of the second storage capacitor C2, the gate of the seventh thin film transistor T7 is connected to the first scan line, and the second and third signal sources of the seventh thin film transistor T7 are connected. connection;
  • the first electrode of the eighth thin film transistor T8 is connected to the second electrode of the third driving transistor DTFT3, the gate of the eighth thin film transistor T8 is connected to the control line, and the second electrode of the eighth thin film transistor T8 is connected to the anode of the organic light emitting diode. ;
  • a gate and a second pole of the second driving transistor DTFT2 are connected to a second end of the second storage capacitor C2;
  • the first terminals of the third driving transistor DTFT3 are respectively connected to the first end of the second storage capacitor C2 and the second signal source, and the gate of the third driving transistor DTFT3 is connected to the second end of the second storage capacitor C2.
  • the pixel driving method provided by the embodiment of the present disclosure drives a specific embodiment of the display driving module 1 shown in FIG. 7 in detail in conjunction with the timing chart shown in FIG.
  • the process may specifically include:
  • the first stage is a first stage
  • the display driving module 1 shown in FIG. 7 may specifically be in the reset phase.
  • the signal input diagram of this stage is shown in the phase 1 of FIG. 8 , that is, the control signal V EM can be a high level signal, the first scan signal V Scan1 can be a low level signal, and the second scan signal V Scan2 can be specifically
  • the data signal V data may be a high-level signal, so that the seventh thin film transistor T7 is in an on state, and the sixth thin film transistor T6 and the eighth thin film transistor T8 are both in an off state.
  • the third signal V int input by the third signal source is transmitted to the second thin film transistor T7 in the on state, to the second end of the second storage capacitor C2, that is, the node F, and the second
  • the display driving module 1 shown in FIG. 7 may specifically be in the charging compensation phase.
  • the signal input schematic diagram of this stage is as shown in phase 2 of FIG. 8, that is, the control signal V EM may be a high level signal, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may specifically be The low-level signal, the data signal V data may be a high-level signal, so that the sixth thin film transistor T6 is in an on state, and the seventh thin film transistor T7 and the eighth thin film transistor T8 are both in an off state.
  • the second driving transistor DTFT2 and the third driving transistor DTFT3 are in the second stage. Both are in the on state.
  • the potential of the node E is always the second signal V dd , the potential of the node F is always maintained at V data -V th2 after the charging is completed.
  • the eighth thin film transistor T8 is in an off state in the second stage, so that no current flows through the organic light emitting diode in the second stage, the lifetime loss of the organic light emitting diode can be reduced, and the service life of the organic light emitting diode is prolonged.
  • the third stage is the third stage.
  • the display driving module 1 shown in FIG. 7 may specifically be in the display lighting stage.
  • the signal input diagram of this stage is as shown in phase 3 of FIG. 8 , that is, the control signal V EM may be a low level signal, the first scan signal V Scan1 may be a high level signal, and the second scan signal V Scan2 may specifically be The high-level signal, the data signal V data may be a low-level signal, so that the eighth thin film transistor T8 is in an on state, and the sixth thin film transistor T6 and the seventh thin film transistor T7 are both in an off state.
  • the driving current I OLED passes through the third driving transistor.
  • the DTFT 3 and the eighth driving transistor T8 emit light by driving the organic light emitting diode.
  • the saturation current formula of the driving transistor DTFT can be obtained:
  • I OLED K(V GS -V th ) 2
  • V GS is the gate voltage of the driving transistor
  • K is a constant related to the manufacturing process and driving design of the driving transistor DTFT
  • V th3 is a threshold voltage of the third driving transistor DTFT3
  • V th3 V th2 .
  • the operating current I OLED of the organic light emitting diode OLED is already unaffected by the threshold voltage V th of the driving transistor DTFT, and is only related to the second signal V dd and the data signal V data .
  • the threshold voltage V th drift eliminate the influence of the driving transistor DTFT the threshold voltage V th to the working current of the organic light emitting diode OLED I OLED, not only can ensure the pixel unit
  • the OLED inside the OLED works normally, and the uniformity of image display can also be ensured.
  • the fingerprint recognition module 2 involved in the embodiment of the present disclosure when the finger touches the screen, determines the finger concave and convex information by the processor connected to the signal reading line according to the size of the finger concave stripe and the detecting electrode coupling capacitance, thereby obtaining the finger. Fingerprint data.
  • the fingerprint identification module 2 may specifically include:
  • the first pole of the reset transistor M1 is connected to the fourth signal source, the gate of the reset transistor M1 is connected to the first scan line, and the second pole of the reset transistor M1 is connected to the second end of the third storage capacitor C3;
  • the first pole of the amplifying transistor M2 is connected to the fourth signal source, the gate of the amplifying transistor M2 is connected to the second end of the third storage capacitor C3, and the second pole of the amplifying transistor M3 is connected to the first pole of the switching transistor M3;
  • a gate of the switching transistor M3 is connected to the second scan line, and a second pole of the switching transistor M3 is connected to the signal read line;
  • the first end of the third storage capacitor C3 is connected to the second scan line;
  • the detecting electrode D is connected to the second end of the third storage capacitor C3.
  • the pixel driving method provided by the embodiment of the present disclosure drives a specific embodiment of the fingerprint identification module 2 shown in FIG. 2 or 7 in detail in conjunction with the timing chart shown in FIG. 3 or 8.
  • the working process of the fingerprint identification module 2 can be performed synchronously with the display driving module 1, that is, it can also be divided into three stages.
  • the process may specifically include:
  • the first stage is a first stage
  • the fingerprint identification module 2 shown in FIG. 2 or 7 may specifically be in the reset phase.
  • the signal input diagram of this stage is shown in phase 1 of FIG. 3 or 8, that is, the first scan signal V Scan1 may be a low level signal, and the second scan signal V Scan2 may be a high level signal, thereby resetting the transistor.
  • M1 is in an on state, and the switching transistor M3 is in an off state.
  • the fourth signal input by the fourth signal source for example, V com
  • V com the fourth signal input by the fourth signal source
  • the fourth signal V com may specifically be a signal having a fixed potential, thereby causing the amplifying transistor M2 to be in an off state.
  • the fingerprint recognition module 2 shown in FIG. 2 or 7 may specifically be in a signal acquisition phase.
  • the signal input diagram of this stage is shown in phase 2 of FIG. 3 or 8.
  • the first scan signal V Scan1 may be a high level signal
  • the second scan signal V Scan2 may be a low level signal, thereby making the switching transistor M3 In the on state, the reset transistor M1 is in an off state.
  • the fingerprint recognition module 2 when the finger touches the screen, the fingerprint recognition module 2 includes a detection capacitance Cf formed between the finger and the detection electrode D in addition to the reference capacitance C3, and the amplification transistor M2 itself also has The parasitic capacitance Ct, then, by changing the magnitude of the capacitance Cf, thereby changing the gate potential of the amplifying transistor M2 (the magnitude of the gate potential is determined by the magnitudes of Cf and C3 and Ct, and the larger the Cf, the higher the gate potential Small, and vice versa), resulting in amplifying transistor M2
  • the current flowing out of the drain changes, so that the processor can determine the concave and convex information of the surface of the finger based on the current change to implement the fingerprint recognition function.
  • the coupling portion when the portion of the finger above the detecting electrode D is a concave portion, the coupling portion generates a coupling capacitance Cf1 with the detecting electrode D. Since the concave surface is relatively far from the detecting electrode D, the coupling capacitance Cf1 is small. Thereby, the coupling capacitance Cf1 is sufficiently small with respect to C3 and Ct, so that the gate electrode potential of the amplification transistor M2 is reduced by a small amplitude, that is, the potential of the gate of the amplification transistor M2 is high, so that the amplification transistor M2 is in an off state.
  • the fourth signal input from the fourth signal source passes through the amplifying transistor M2 in the on state (the amplification signal M2 amplifies the fourth signal flowing through) and the switching transistor M3 flows in the signal reading.
  • the line, the signal reading line reads the current signal amplified by the amplifying transistor M2, and the processor determines, based on the calculated result of the amplified signal, that the finger portion of the detecting electrode D (ie, the screen) is convex at this time.
  • the fingerprint recognition function can be realized.
  • the technical solution provided by the embodiment of the present disclosure may further determine the X-axis direction coordinate of the touch point based on the signal output point of the second scan line in the second stage, and based on the transmission current signal.
  • the information of the signal reading line determines the Y-axis direction coordinate of the touch point, and thus the position coordinate of the touch point is determined.
  • the fingerprint recognition module 2 can also exist as a capacitive touch detection module, and when the finger touches the screen, the position information of the touched point is detected.
  • the pixel driving method involved in the embodiment of the present disclosure may further include the following steps:
  • the third stage is the third stage.
  • the fingerprint recognition module 2 shown in FIG. 2 or 7 may specifically be in a stagnation phase.
  • the signal input diagram of this stage is shown in phase 3 of FIG. 3 or 8.
  • the first scan signal V Scan1 may be a high level signal
  • the second scan signal V Scan2 may be a high level signal, thereby resetting the transistor.
  • M1 and the switching film transistor M3 are both in an off state. That is, all the devices in the fingerprint identification module 2 do not work in the third stage, and in the third stage, the display driving module 1 is in the lighting stage, thereby reducing the influence of fingerprint recognition on the display driving, thereby realizing display driving and fingerprinting. Efficient integration of identification.
  • the fingerprint recognition module 2 of the embodiment of the present disclosure may also have a capacitive touch detection function. Therefore, it can be seen that the pixel circuit provided by the embodiment of the present disclosure can be simultaneously implemented by adopting a signal multiplexing structure setting manner. Pixel compensation, fingerprint recognition and capacitive touch detection enable a convenient and efficient way of working. This structural design subverts the combination of all the functions of the previous devices and devices, greatly increasing the added value of the display products.
  • the fingerprint recognition module 2 is distributed in a predetermined pixel unit according to a preset arrangement manner according to the requirement of the touch resolution, for example, the arrangement of 3 ⁇ 3 shown in FIG. 14 .
  • the pixel unit of three rows and three columns only the display driving module 1 and the fingerprint recognition module 2 are simultaneously disposed in the pixel unit 101, and only the display driving module 1 is set in the other pixel unit 100 without setting the fingerprint recognition.
  • Module 2 thereby simplifying the structure of the pixel unit and reducing the manufacturing cost of the display panel.
  • an embodiment of the present disclosure further provides an organic light emitting display panel, which may specifically include the pixel circuit provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a display device, which may specifically include the organic light emitting display panel provided by the embodiment of the present disclosure.
  • the display device may specifically be a display device such as a liquid crystal panel, a liquid crystal television, a liquid crystal display, an OLED panel, an OLED display, a plasma display, or an electronic paper.
  • a display device such as a liquid crystal panel, a liquid crystal television, a liquid crystal display, an OLED panel, an OLED display, a plasma display, or an electronic paper.
  • the pixel circuit, the organic light emitting display panel and the display device of the present disclosure are particularly suitable for the GOA circuit requirement under the LTPS (low temperature polysilicon technology) process, and can also be applied to the amorphous silicon process. GOA circuit.
  • LTPS low temperature polysilicon technology
  • the pixel circuit and the driving method thereof, the organic light emitting display panel and the display device specifically includes: a display driving module, and the first scan line, the second scan line, An anode connection of the control line, the data line, the second signal source, the third signal source, and the organic light emitting diode, the first scan signal input at the first scan line, the second scan signal input to the second scan line, and the control line
  • the driving transistor threshold voltage compensation process is performed by using the data signal input by the data line and the second signal input by the second signal source under control of the input control signal, so that the light emitting driving signal of the organic light emitting diode is independent of the threshold voltage of the driving transistor;
  • a fingerprint identification module connected to the first scan line, the second scan line, the fourth signal source, and the signal read line, for the first scan signal input on the first scan line and the second scan input on the second scan line Under the control of the signal, the fingerprint recognition and touch detection functions are realized.
  • the above technical solution provided by the embodiment of the present disclosure can make the driving signal of the organic light emitting diode OLED independent of the threshold voltage V th of the driving transistor DTFT, thereby eliminating the influence of the threshold voltage V th of the driving transistor DTFT on the light emitting driving signal, and improving the organic
  • the uniformity of the brightness of the light-emitting display panel improves the image display effect of the display device.
  • the pixel unit provided by the embodiment of the present disclosure can integrate the fingerprint recognition and touch signal detection circuit of the built-in type touch screen, the fingerprint recognition and the touch detection are realized at the same time of the display driving, thereby realizing the pixel driving circuit and the fingerprint identification circuit. (with touch detection function) integrated settings.
  • Such a circuit structure arrangement can realize integration of a built-in type touch screen and an organic light emitting diode driving display, which is advantageous for reducing the thickness and weight of the display panel and reducing the cost of the display panel.
  • the current can be prevented from passing through the organic light emitting diode OLED for a long time, thereby reducing the lifetime loss of the organic light emitting diode OLED and prolonging the service life of the organic light emitting diode OLED.
  • the fingerprint recognition module when the display driving module drives the organic light emitting diode OLED to emit light, the fingerprint recognition module is in a stagnant state, thereby reducing the influence of fingerprint recognition on the display driving, thereby implementing display driving and fingerprinting. Efficient integration of identification.
  • the pixel circuit provided by the embodiments of the present disclosure can be applied to a thin film transistor of a process of amorphous silicon, polysilicon, oxide, or the like. At the same time, the above circuit can be easily changed to use an N-type thin film transistor, or a CMOS transistor circuit.
  • the above embodiment uses active matrix organic light emission The diode has been described as an example, but the present disclosure is not limited to a display device using an active matrix organic light emitting diode, and can also be applied to a display device using other various light emitting diodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素电路及其驱动方法、有机发光显示面板及显示装置,该像素电路包括显示驱动模块(1)和指纹识别模块(2),该显示驱动模块(1)与第一扫描线(Scan1)、第二扫描线(Scan2)、控制线(EM)、数据线、第二信号源、第三信号源以及有机发光二极管(OLED)的阳极连接,用于在第一扫描信号、第二扫描信号、控制信号的控制下,使得有机发光二极管(OLED)的发光驱动信号与驱动晶体管阈值电压无关;该指纹识别模块(2)与第一扫描线(Scan1)、第二扫描线(Scan2)、第四信号源以及信号读取线连接,用于在第一扫描信号和第二扫描信号的控制下,实现指纹识别和触控侦测功能。

Description

像素电路及其驱动方法、发光显示面板及显示装置
相关申请的交叉引用
本申请主张在2014年9月26日在中国提交的中国专利申请号No.201410505051.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,具体涉及一种像素电路及其驱动方法、发光显示面板及显示装置。
背景技术
有机发光显示器(AMOLED)是当今平板显示器研究领域的热点之一,与液晶显示器相比,有机发光二极管(OLED)具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点,目前,在手机、PDA、数码相机等显示领域OLED已经开始取代传统的液晶显示屏(LCD)。像素驱动电路设计是AMOLED显示器核心技术内容,具有重要的研究意义。
与TFT-LCD利用稳定的电压控制亮度不同,OLED属于电流驱动,需要稳定的电流来控制发光。由于工艺制程和器件老化等原因,各像素点的驱动薄膜晶体管的阈值电压(Vth)会漂移,这样就导致了流过每个像素点OLED的电流因阈值电压的变化而变化,使得显示亮度不均,从而影响整个图像的显示效果。
由于每个人的指纹具有唯一性,因此,基于指纹识别技术可显著提高系统的安全性,非常适合在安全防范和高档消费类电子产品中使用。
那么,如果能将触控内置技术、AMOLED技术以及指纹识别技术进行整合,势必会在未来成为显示领域发展的方向。
发明内容
本公开提供一种像素电路及其驱动方法、有机发光显示面板及显示装置,从而可改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果, 实现显示驱动、指纹识别和触控侦测的高效整合。
本公开提供方案如下:
本公开实施例提供了一种像素电路,包括一发光二极管,所述发光二极管的阴极连接第一信号源;
所述像素电路还包括:
显示驱动模块,分别与第一扫描线、第二扫描线、控制线、数据线、第二信号源、第三信号源以及发光二极管的阳极连接,用于在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得所述发光二极管的发光驱动信号与驱动晶体管阈值电压无关;
指纹识别模块,分别与第一扫描线、第二扫描线、第四信号源以及信号读取线连接,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能。
可选的,所述显示驱动模块包括:
第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一存储电容、第一驱动晶体管;其中:
第一薄膜晶体管的第一极分别与第二信号源、第一存储电容的第一端连接,第一薄膜晶体管的栅极与控制线连接,第一薄膜晶体管的第二极与第一驱动晶体管的第一极连接;
第二薄膜晶体管的第一极与第一驱动晶体管的第一极连接,第二薄膜晶体管的栅极与第二扫描线连接,第二薄膜晶体管的第二极与第一存储电容的第二端连接;
第三薄膜晶体管的第一极与第三信号源连接,第三薄膜晶体管的栅极与第一扫描线连接,第三薄膜晶体管的第二极与第一存储电容的第二端连接;
第四薄膜晶体管的第一极与数据线连接,第四薄膜晶体管的栅极与第二扫描线连接,第四薄膜晶体管的第二极与第一驱动晶体管的第二极连接;
第五薄膜晶体管的第一极与第一驱动晶体管的第二极连接,第五薄膜晶体管的栅极与控制线连接,第五薄膜晶体管的第二极与发光二极管的阳极连 接;
第一驱动晶体管的栅极与第一存储电容的第二端连接。
可选的,所述显示驱动模块包括:
第六薄膜晶体管、第七薄膜晶体管、第八薄膜晶体管、第二存储电容、第二驱动晶体管、第三驱动晶体管;其中:
第六薄膜晶体管的第一极与数据线连接,第六薄膜晶体管的栅极与第二扫描线连接,第六薄膜晶体管的第二极与第二驱动晶体管的第一极连接;
第七薄膜晶体管的第一极与第二存储电容的第二端连接,第七薄膜晶体管的栅极与第一扫描线连接,第七薄膜晶体管的第二极与第三信号源连接;
第八薄膜晶体管的第一极与第三驱动晶体管的第二极连接,第八薄膜晶体管的栅极与控制线连接,第八薄膜晶体管的第二极与有机发光二极管的阳极连接;
第二驱动晶体管的栅极和第二极与第二存储电容的第二端连接;
第三驱动晶体管的第一极分别与第二存储电容的第一端、第二信号源连接,第三驱动晶体管的栅极与第二存储电容的第二端连接。
可选的,所述指纹识别模块包括:
重置晶体管、放大晶体管、开关晶体管、第三存储电容以及探测电极;其中:
重置晶体管的第一极与第四信号源连接,重置晶体管的栅极与第一扫描线连接,重置晶体管的第二极与第三存储电容的第二端连接;
放大晶体管的第一极与第四信号源连接,放大晶体管的栅极与第三存储电容的第二端连接,放大晶体管的第二极与开关晶体管的第一极连接;
开关晶体管的栅极与第二扫描线连接,开关晶体管的第二极与信号读取线连接;
第三存储电容的第一端与第二扫描线连接;
探测电极与第三存储电容的第二端连接。
可选的,所述晶体管为P型晶体管,所述第一极为源极,所述第二级为漏极。
可选的,所述第一信号源输入的第一信号为低电平信号或者零电位信号;
所述第二信号源输入的第二信号为高电平信号;
所述第三信号源输入的第三信号为低电平信号;
所述第四信号源输入的第四信号为具有固定电位的信号。
优选的,所述发光二极管为有机发光二极管。
本公开实施例还提供了一种用于驱动上述本公开实施例提供的像素电路的像素驱动方法,包括:
在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得发光二极管的发光驱动信号与驱动晶体管阈值电压无关;以及
在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能。
可选的,所述在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得发光二极管的发光驱动信号与驱动晶体管阈值电压无关的过程包括:
在一时间周期的第一阶段,第三薄膜晶体管处于导通状态,第一薄膜晶体管、第二薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管处于截止状态,以使第一存储电容第二端的电位为第三信号源输入的第三信号的电位;
在所述时间周期的第二阶段,第二薄膜晶体管、第四薄膜晶体管、第一驱动晶体管处于导通状态,第一薄膜晶体管、第三薄膜晶体管、第五薄膜晶体管处于截止状态,以使数据线输入的数据信号将第一存储电容第二端的电位充电至数据信号的电位与第一驱动晶体管阈值电压的差值;
在所述时间周期的第三阶段,第一薄膜晶体管、第五薄膜晶体管处于导通状态,第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管处于截止状态,以基于数据信号和第二信号确定发光二极管的发光驱动信号,并利用所述发光驱动信号驱动发光二极管发光。
可选的,所述在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号 和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得发光二极管的发光驱动信号与驱动晶体管阈值电压无关的过程包括:
在一时间周期的第一阶段,第七薄膜晶体管处于导通状态,第六薄膜晶体管、第八薄膜晶体管处于截止状态,以使第二存储电容第二端的电位为第三信号源输入的第三信号的电位;
在所述时间周期的第二阶段,第六薄膜晶体管、第二驱动晶体管处于导通状态,第七薄膜晶体管、第八薄膜晶体管处于截止状态,以使数据线输入的数据信号将第二存储电容第二端的电位充电至数据信号的电位与第二驱动晶体管阈值电压的差值;
在所述时间周期的第三阶段,第八薄膜晶体管处于导通状态,第六薄膜晶体管、第七薄膜晶体管处于截止状态,以基于数据信号和第二信号确定发光二极管的发光驱动信号,并利用所述发光驱动信号驱动发光二极管发光。
可选的,所述在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能的过程包括:
在一时间周期的第一阶段,重置晶体管处于导通状态,开关晶体管处于截止状态,以使第三存储电容第二端的电位为第四信号输入端输入的第四信号的电位;
在所述时间周期的第二阶段,重置晶体管处于截止状态,开关晶体管处于导通状态,放大晶体管基于第三存储电容第二端的电位,处于导通或截止状态,以使信号读取线传输与放大晶体管状态对应的信号,以便于与信号读取线连接的处理器基于信号读取线传输的信号进行指纹识别;
在所述时间周期的第三阶段,重置晶体管、开关晶体管、放大晶体管处于截止状态。
可选的,所述第二阶段还包括:
基于第二扫描线信息以及信号读取线的信息,确定指纹识别操作的位置信息。
可选的,在所述第一阶段,第一扫描信号为低电平信号,第二扫描线信号为高电平信号,控制信号为高电平信号,数据信号为低电平信号或高电平信号;
在所述第二阶段,第一扫描信号为高电平信号,第二扫描线信号为低电平信号,控制信号为高电平信号,数据信号为高电平信号;
在所述第三阶段,第一扫描信号为高电平信号,第二扫描线信号为高电平信号,控制信号为低电平信号,数据信号为低电平信号。
本公开实施例还提供了一种发光显示面板,该发光显示面板具体可以包括上述本公开实施例提供的像素电路。
本公开实施例还提供了一种显示装置,该显示装置具体可以包括上述本公开实施例提供的发光显示面板。
从以上所述可以看出,本公开提供的像素电路及其驱动方法、有机发光显示面板及显示装置,通过设置与第一扫描线、第二扫描线、控制线、数据线、第二信号源、第三信号源以及有机发光二极管的阳极连接,用于在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得所述有机发光二极管的发光驱动信号与驱动晶体管阈值电压无关的显示驱动模块;与第一扫描线、第二扫描线、第四信号源以及信号读取线连接,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能的指纹识别模块。从而可改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果,实现显示驱动、指纹识别和触控侦测的高效整合。
附图说明
图1为本公开实施例提供的像素电路结构示意图;
图2为本公开实施例提供的像素电路中显示驱动模块结构示意图一;
图3为本公开实施例提供的像素电路所涉及的信号时序图一;
图4为本公开实施例提供的像素电路在第一阶段状态示意图一;
图5为本公开实施例提供的像素电路在第二阶段状态示意图一;
图6为本公开实施例提供的像素电路在第三阶段状态示意图一;
图7为本公开实施例提供的像素电路中显示驱动模块结构示意图二;
图8为本公开实施例提供的像素电路所涉及的信号时序图二;
图9为本公开实施例提供的像素电路在第一阶段状态示意图二;
图10为本公开实施例提供的像素电路在第二阶段状态示意图二;
图11为本公开实施例提供的像素电路在第三阶段状态示意图二;
图12为本公开实施例提供的像素电路实现指纹识别原理示意图一;
图13为本公开实施例提供的像素电路实现指纹识别原理示意图二;
图14为本公开实施例提供的像素电路分布示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本公开实施例提供了一种像素电路,如图1所示,该像素电路具体可以包括有机发光二极管(OLED),该有机发光二极管的阴极连接第一信号源;
如图1所示,该像素电路具体还可以包括:
显示驱动模块1,分别与第一扫描线(Scan1)、第二扫描线(Scan2)、控制线(EM)、数据线、第二信号源、第三信号源以及有机发光二极管的阳极连接,用于在第一扫描线输入的第一扫描信号(VScan1)、第二扫描线输入的第二扫描信号(VScan2)、控制线输入的控制信号(VEM)的控制下,利用数据线输入的数据信号(Vdata)和第二信号源输入的第二信号(Vdd)进行驱动晶 体管阈值电压(Vth)补偿处理,使得有机发光二极管的发光驱动信号(IOLED)与驱动晶体管阈值电压Vth无关;
指纹识别模块2,分别与第一扫描线、第二扫描线、第四信号源以及信号读取线(Read Line)连接,用于在第一扫描线输入的第一扫描信号VScan1和第二扫描线输入的第二扫描信号VScan2的控制下,实现指纹识别功能和触控侦测功能。
上述本公开实施例所涉及的第一信号源输入的第一信号具体可为低电平信号,也可以将地作为第一信号源,以实现零电位的输入。
上述本公开实施例所涉及的第二信号源输入的第二信号Vdd具体可为高电平信号。
上述本公开实施例所涉及的第三信号源输入的第三信号Vint具体可为低电平信号。
上述本公开实施例所涉及的第四信号源输入的第四信号具体可为具有固定电位的信号,例如公共电极信号Vcom
本公开实施例还提供了一种像素驱动方法,以用于驱动上述本公开实施例提供的像素电路。
该方法具体可以包括:
在第一扫描线输入的第一扫描信号VScan1、第二扫描线输入的第二扫描信号VScan1、控制线输入的控制信号VEM的控制下,利用数据线输入的数据信号Vdata和第二信号源输入的第二信号Vdd进行驱动晶体管阈值电压Vth补偿处理,使得有机发光二极管的发光驱动信号IOLED与驱动晶体管阈值电压Vth无关;以及
在第一扫描线输入的第一扫描信号VScan1和第二扫描线输入的第二扫描信号VScan2的控制下,实现指纹识别功能。
本公开实施例提供的像素电路及其驱动方法,不但可以消除驱动晶体管的阈值电压Vth对发光驱动信号IOLED的影响,从而改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果。同时,本公开实施例所提供的像素电路通过采用控制信号复用的电路结构设置,在实现显示驱动的同时,实现指纹识别功能,从而实现显示驱动和指纹识别的高效整合。
在一具体实施例中,如图2所示,本公开实施例所涉及的显示驱动模块1具体可以包括:
第一薄膜晶体管(T1)、第二薄膜晶体管(T2)、第三薄膜晶体管(T3)、第四薄膜晶体管(T4)、第五薄膜晶体管(T5)、第一存储电容(C1)、第一驱动晶体管(DTFT1);其中:
第一薄膜晶体管T1的第一极分别与第二信号源、第一存储电容C1的第一端连接,第一薄膜晶体管T1的栅极与控制线EM连接,第一薄膜晶体管T1的第二极与第一驱动晶体管DTFT1的第一极连接;
第二薄膜晶体管T2的第一极与第一驱动晶体管DTFT1的第一极连接,第二薄膜晶体管T2的栅极与第二扫描线连接,第二薄膜晶体管T2的第二极与第一存储电容C1的第二端连接;
第三薄膜晶体管T3的第一极与第三信号源连接,第三薄膜晶体管T3的栅极与第一扫描线连接,第三薄膜晶体管T3的第二极与第一存储电容C1的第二端连接;
第四薄膜晶体管T4的第一极与数据线连接,第四薄膜晶体管T4的栅极与第二扫描线连接,第四薄膜晶体管T4的第二极与第一驱动晶体管DTFT1的第二极连接;
第五薄膜晶体管T5的第一极与第一驱动晶体管DTFT1的第二极连接,第五薄膜晶体管T5的栅极与控制线连接,第五薄膜晶体管T5的第二极与有机发光二极管的阳极连接;
第一驱动晶体管DTFT1的栅极与第一存储电容C1的第二端连接。
本公开实施例中显示驱动模块1以及指纹识别模块2中所包括的各种晶体管,具体均可为P型晶体管,从而统一了晶体管工艺制程,有助于提高触控显示装置的良品率。本公开实施例中晶体管的第一极具体可为源极,晶体管的第二极具体可为漏极。
下面,结合附图3所示的时序图,对本公开实施例提供的像素驱动方法驱动如图2所示的显示驱动模块1的一个具体实施例进行详细的描述。
该过程具体可以包括:
第一阶段:
此阶段中,图2所示显示驱动模块1具体可处于重置阶段。
此阶段的信号输入示意图如图3中的阶段1,即控制信号VEM具体可为高电平信号,第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为低电平信号,从而使第三薄膜晶体管T3处于导通状态,第一薄膜晶体管T1、第二薄膜晶体管T2、第四薄膜晶体管T4、第五薄膜晶体管T5均处于截止状态。
如图4中实线箭头所示,第三信号源输入的第三信号Vint通过处于导通状态的第三薄膜晶体管T3,传输至第一存储电容C1第二端即节点B以及第一驱动晶体管DTFT1的栅极,以使第一存储电容C1的第二端电位为第三信号Vint,即VB=Vint。由于本公开实施例中,第三信号Vint具体可为低电平信号,因此实现第一存储电容C1第二端的信号重置。
第二阶段:
此阶段中,图2所示显示驱动模块1具体可处于放电补偿阶段。
此阶段的信号输入示意图如图3中的阶段2,即控制信号VEM具体可为高电平信号,第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为高电平信号,从而使第二薄膜晶体管T2和第四薄膜晶体管T4处于导通状态,第一薄膜晶体管T1、第三薄膜晶体管T3、第五薄膜晶体管T5均处于截止状态。
由于在第一阶段中,第一驱动晶体管DTFT1栅极的电位为第三信号Vint的电位,因此使第一驱动晶体管DTFT1在第二阶段处于导通状态。
那么如图5中实线箭头所示,数据线输入的数据信号Vdata通过处于导通状态的第四薄膜晶体管T4、第一驱动晶体管DTFT1、第二薄膜晶体管T2,传输至第一存储电容C1第二端即节点B,将节点B充电至数据信号Vdata的电位与第一驱动晶体管DTFT1的阈值电压Vth1的差值,即VB=Vdata-Vth1,从而使第一驱动晶体管DTFT1栅极与源极之间的压差为Vth1
由于该过程中,第一存储电容C1的第一端即节点A的电位始终为第二信号Vdd,所以在充电完毕以后,节点B的电位会一直维持在Vdata-Vth1
另外,由于在第二阶段第五薄膜晶体管T5处于截止状态,从而使得在第二阶段无电流流经有机发光二极管,从而可降低有机发光二极管的寿命损耗, 延长了有机发光二极管的使用寿命。
第三阶段:
此阶段中,图2所示显示驱动模块1具体可处于显示发光阶段。
此阶段的信号输入示意图如图3中的阶段3,即控制信号VEM具体可为低电平信号,第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为低电平信号,从而使第一薄膜晶体管T1和第五薄膜晶体管T5处于导通状态,第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4均处于截止状态。
如图6中实线箭头所示,由于第一薄膜晶体管T1和第五薄膜晶体管T5处于导通状态,从而使第一驱动晶体管DTFT1第一极(即源极)的电位为第二信号源输入的第二信号Vdd的电位,驱动电流IOLED通过第一薄膜晶体管T1、第一驱动晶体管DTFT1、第五薄膜晶体管T5以驱动有机发光二极管发光。
由驱动晶体管DTFT饱和电流公式可以得到:
IOLED=K(VGS-Vth1)2
=K[Vdd-(Vdata-Vth1)-Vth1]2
=K(Vdd-Vdata)2
其中,VGS为第一驱动晶体管栅源电压,K为与驱动晶体管DTFT生产工艺和驱动设计有关的常数。
由上式中可以看到,有机发光二极管OLED的工作电流IOLED已经不受第一驱动晶体管DTFT1的阈值电压Vth1的影响,而只与第二信号Vdd和数据信号Vdata有关。从而彻底解决了驱动晶体管DTFT由于工艺制程及长时间的操作造成阈值电压Vth漂移的问题,消除驱动晶体管DTFT阈值电压Vth对于有机发光二极管OLED的工作电流IOLED的影响,不但可以保证像素单元内的有机发光二极管OLED的正常工作,而且还可以保证图像显示的均匀性。
在另一具体实施例中,本公开实施例所涉及的显示驱动模块1还可以以另一种电路结构实现,如图7所示,此实施例中显示驱动模块1具体可以包括:
第六薄膜晶体管T6、第七薄膜晶体管T7、第八薄膜晶体管T8、第二存储电容C2、第二驱动晶体管DTFT2、第三驱动晶体管DTFT3;其中:
第六薄膜晶体管T6的第一极与数据线连接,第六薄膜晶体管T6的栅极与第二扫描线连接,第六薄膜晶体管T6的第二极与第二驱动晶体管DTFT2的第一极连接;
第七薄膜晶体管T7的第一极与第二存储电容C2的第二端连接,第七薄膜晶体管T7的栅极与第一扫描线连接,第七薄膜晶体管T7的第二极与第三信号源连接;
第八薄膜晶体管T8的第一极与第三驱动晶体管DTFT3的第二极连接,第八薄膜晶体管T8的栅极与控制线连接,第八薄膜晶体管T8的第二极与有机发光二极管的阳极连接;
第二驱动晶体管DTFT2的栅极和第二极与第二存储电容C2的第二端连接;
第三驱动晶体管DTFT3的第一极分别与第二存储电容C2的第一端、第二信号源连接,第三驱动晶体管DTFT3的栅极与第二存储电容C2的第二端连接。
下面,结合附图8所示的时序图,对本公开实施例提供的像素驱动方法驱动如图7所示的显示驱动模块1的一个具体实施例进行详细的描述。
该过程具体可以包括:
第一阶段:
此阶段中,图7所示显示驱动模块1具体可处于重置阶段。
此阶段的信号输入示意图如图8中的阶段1,即控制信号VEM具体可为高电平信号,第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为高电平信号,从而使第七薄膜晶体管T7处于导通状态,第六薄膜晶体管T6、第八薄膜晶体管T8均处于截止状态。
如图9中实线箭头所示,第三信号源输入的第三信号Vint通过处于导通状态的第七薄膜晶体管T7,传输至第二存储电容C2第二端即节点F,以及第二驱动晶体管DTFT2和第三驱动晶体管DTFT3的栅极,以使第二存储电容C2的第二端电位为第三信号Vint,即VF=Vint。由于本公开实施例中,第三信号Vint具体可为低电平信号,因此实现第二存储电容C2第二端的信号重 置。
第二阶段:
此阶段中,图7所示显示驱动模块1具体可处于充电补偿阶段。
此阶段的信号输入示意图如图8中的阶段2,即控制信号VEM具体可为高电平信号,第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为低电平信号,数据信号Vdata具体可为高电平信号,从而使第六薄膜晶体管T6处于导通状态,第七薄膜晶体管T7、第八薄膜晶体管T8均处于截止状态。
由于在第一阶段中,第二驱动晶体管DTFT2和第三驱动晶体管DTFT3的栅极的电位均为第三信号Vint的电位,因此使第二驱动晶体管DTFT2和第三驱动晶体管DTFT3在第二阶段均处于导通状态。
那么如图10中实线箭头所示,数据线输入的数据信号Vdata通过处于导通状态的第六薄膜晶体管T6、第二驱动晶体管DTFT2,传输至第二存储电容C2第二端即节点F,将节点F充电至数据信号Vdata的电位与第二驱动晶体管DTFT2的阈值电压Vth2的差值,即VF=Vdata-Vth2
由于该过程中,第二存储电容C2的第一端即节点E的电位始终为第二信号Vdd,所以在充电完毕以后,节点F的电位会一直维持在Vdata-Vth2
另外,由于在第二阶段第八薄膜晶体管T8处于截止状态,从而使得在第二阶段无电流流经有机发光二极管,从而可降低有机发光二极管的寿命损耗,延长了有机发光二极管的使用寿命。
第三阶段:
此阶段中,图7所示显示驱动模块1具体可处于显示发光阶段。
此阶段的信号输入示意图如图8中的阶段3,即控制信号VEM具体可为低电平信号,第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为高电平信号,数据信号Vdata具体可为低电平信号,从而使第八薄膜晶体管T8处于导通状态,第六薄膜晶体管T6、第七薄膜晶体管T7均处于截止状态。
如图11中实线箭头所示,由于第三驱动晶体管DTFT3第一极(即源极)的电位为第二信号源输入的第二信号Vdd的电位,驱动电流IOLED通过第三驱 动晶体管DTFT3、第八驱动晶体管T8以驱动有机发光二极管发光。
由驱动晶体管DTFT饱和电流公式可以得到:
IOLED=K(VGS-Vth)2
=K[Vdd-(Vdata-Vth2)-Vth3]2
=K(Vdd-Vdata)2
其中,VGS为驱动晶体管栅源电压,K为与驱动晶体管DTFT生产工艺和驱动设计有关的常数,Vth3为第三驱动晶体管DTFT3的阈值电压,本公开实施例中,Vth3=Vth2
由上式中可以看到,有机发光二极管OLED的工作电流IOLED已经不受驱动晶体管DTFT的阈值电压Vth的影响,而只与第二信号Vdd和数据信号Vdata有关。从而彻底解决了驱动晶体管DTFT由于工艺制程及长时间的操作造成阈值电压Vth漂移的问题,消除驱动晶体管DTFT阈值电压Vth对于有机发光二极管OLED的工作电流IOLED的影响,不但可以保证像素单元内的有机发光二极管OLED的正常工作,而且还可以保证图像显示的均匀性。
本公开实施例中所涉及的指纹识别模块2,当手指触摸屏幕时,根据手指凹凸条纹与探测电极耦合电容大小,由与信号读取线连接的处理器采集信号确定手指凹凸信息,从而得到手指的指纹数据。
在一具体实施例中,如图2或7所示,指纹识别模块2具体可以包括:
重置晶体管M1、放大晶体管M2、开关晶体管M3、第三存储电容C3以及探测电极D;
其中:
重置晶体管M1的第一极与第四信号源连接,重置晶体管M1的栅极与第一扫描线连接,重置晶体管M1的第二极与第三存储电容C3的第二端连接;
放大晶体管M2的第一极与第四信号源连接,放大晶体管M2的栅极与第三存储电容C3的第二端连接,放大晶体管M3的第二极与开关晶体管M3的第一极连接;
开关晶体管M3的栅极与第二扫描线连接,开关晶体管M3的第二极与信号读取线连接;
第三存储电容C3的第一端与第二扫描线连接;
探测电极D与第三存储电容C3的第二端连接。
下面,结合附图3或8所示的时序图,对本公开实施例提供的像素驱动方法驱动如图2或7所示的指纹识别模块2的一个具体实施例进行详细的描述。
本公开实施例中,指纹识别模块2的工作过程可与显示驱动模块1同步进行,即也可以分为三个阶段。
该过程具体可以包括:
第一阶段:
此阶段中,图2或7所示指纹识别模块2具体可处于重置阶段。
此阶段的信号输入示意图如图3或8中的阶段1,即第一扫描信号VScan1具体可为低电平信号,第二扫描信号VScan2具体可为高电平信号,从而使重置晶体管M1处于导通状态,开关晶体管M3处于截止状态。
如图4或9中虚线箭头所示,第四信号源输入的第四信号例如Vcom通过处于导通状态的重置晶体管M1,传输至第三存储电容C3第二端即节点G(第三存储电容C3第二端、放大晶体管M2栅极、探测电极D的连接点),以使节点G的电位为第四信号Vcom,即VG=Vcom,从而实现节电G的信号重置,以为下一阶段信号采集阶段作准备。
由于本公开实施例中,第四信号Vcom具体可为具有固定电位的信号,因此使放大晶体管M2处于截止状态。
第二阶段:
此阶段中,图2或7所示指纹识别模块2具体可处于信号采集阶段。
此阶段的信号输入示意图如图3或8中的阶段2,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为低电平信号,从而使开关晶体管M3处于导通状态,重置晶体管M1处于截止状态。
如图12所示,在第二阶段,当手指触控到屏幕时,指纹识别模块2中除了基准电容C3,还包含手指与探测电极D之间形成的探测电容Cf,同时放大晶体管M2本身也有寄生电容Ct,那么,通过探测电容Cf大小的不同,从而改变放大晶体管M2的栅极电势(栅极电势的大小是由Cf与C3和Ct的大小所决定的,Cf越大则栅极电势越小,反之亦然),从而导致放大晶体管M2 的漏极流出的电流发生变化,从而可以使处理器基于该电流变化确定手指表面的凹凸信息,以实现指纹识别功能。
如图13所示,当位于探测电极D上方的手指部分为凹部时,该凹部会与探测电极D之间产生耦合电容Cf1,由于凹面距离探测电极D相对较远,导致耦合电容Cf1较小,从而使耦合电容Cf1相对C3和Ct足够小,因此使放大晶体管M2的栅极电极电位降低幅度较小,即放大晶体管M2栅极的电势较高,从而使放大晶体管M2处于截止状态。此时,放大晶体管M2的漏极没有信号流出,即没有信号通过处于导通状态的开关晶体管M3而流向信号读取线,信号读取线仍然传输初始信号,处理器基于该初始信号计算得出的结果确定此时触摸探测电极D(即屏幕)的手指部位为凹部。
同样如图13所示,当位于探测电极D上方的手指部分为凸部时,该凸部会与探测电极D之间产生耦合电容Cf2,由于凸面距离探测电极D相对较近,导致耦合电容Cf2较大,从而使耦合电容Cf2相对C3和Ct足够大,因此使放大晶体管M2的栅极电极电位降低幅度较大,即放大晶体管M2栅极的电势变低,从而使放大晶体管M2处于导通状态。此时,如图5或10所示,第四信号源输入的第四信号通过处于导通状态的放大晶体管M2(放大晶体管M2对流经的第四信号进行放大)和开关晶体管M3流向信号读取线,信号读取线读取的是经过放大晶体管M2放大的电流信号,处理器基于该放大后的信号计算得出的结果确定此时触摸探测电极D(即屏幕)的手指部位为凸部。
处理器在采集完手指的完整凹凸部信息后,即可实现指纹识别功能。
在本公开一具体实施例中,本公开实施例所提供的技术方案,还可以基于第二阶段中,第二扫描线的信号输出点确定触摸点的X轴方向坐标,并基于传输电流信号的信号读取线的信息确定触摸点的Y轴方向坐标,至此也就确定了触摸点的位置坐标。
即本公开实施例中,指纹识别模块2还可以作为电容触控侦测模块存在,当手指触摸屏幕时,侦测触摸点的位置信息。
那么,在一具体实施例中,本公开实施例所涉及的像素驱动方法具体还可以包括以下步骤:
基于第二扫描线信息以及信号读取线的信息,确定指纹识别操作的位置 信息。
第三阶段:
此阶段中,图2或7所示指纹识别模块2具体可处于停滞阶段。
此阶段的信号输入示意图如图3或8中的阶段3,即第一扫描信号VScan1具体可为高电平信号,第二扫描信号VScan2具体可为高电平信号,从而使重置晶体管M1、开关膜晶体管M3均处于截止状态。即指纹识别模块2中的所有器件在第三阶段均不工作,而在第三阶段中,显示驱动模块1处于发光阶段,因此,可减少指纹识别对于显示驱动的影响,从而实现显示驱动和指纹识别的高效整合。
由于本公开实施例所涉及的指纹识别模块2还可以具有电容触控侦测功能,因此可以看出,本公开实施例所提供的像素电路,通过采用信号复用的结构设置方式,可以同时实现像素补偿、指纹识别以及电容式触控侦测功能,实现便捷高效的工作方式,这种结构设计颠覆了之前所有的器件与器件之间功能累加的组合方式,大大提高显示产品的附加值。
本公开实施例中,可基于触控分辨率的要求,在设计触控像素时,将指纹识别模块2按预设的排布方式分布在指定的像素单元中,例如图14示的3x3的排列方式,即在三行三列的像素单元中,只在像素单元101中同时设置包含有显示驱动模块1和指纹识别模块2,而其他像素单元100中只设置显示驱动模块1而不设置指纹识别模块2,从而简化像素单元结构,降低显示面板的制作成本。
基于本公开实施例提供的像素电路,本公开实施例还提供了一种有机发光显示面板,该有机发光显示面板具体可以包括上述本公开实施例提供的像素电路。
本公开实施例还提供了一种显示装置,该显示装置具体可以包括上述本公开实施例提供的有机发光显示面板。
该显示装置具体可以为液晶面板、液晶电视、液晶显示器、OLED面板、OLED显示器、等离子显示器或电子纸等显示装置。
本公开所述的像素电路、有机发光显示面板与显示装置特别适合LTPS(低温多晶硅技术)制程下的GOA电路需求,也可适用于非晶硅工艺下的 GOA电路。
从以上所述可以看出,本公开提供的像素电路及其驱动方法、有机发光显示面板及显示装置,该像素电路中具体可以包括:显示驱动模块,与第一扫描线、第二扫描线、控制线、数据线、第二信号源、第三信号源以及有机发光二极管的阳极连接,用于在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得所述有机发光二极管的发光驱动信号与驱动晶体管阈值电压无关;和指纹识别模块,与第一扫描线、第二扫描线、第四信号源以及信号读取线连接,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能。
本公开实施例提供的上述技术方案,可使有机发光二极管OLED的驱动信号与驱动晶体管DTFT的阈值电压Vth无关,从而可以消除驱动晶体管DTFT的阈值电压Vth对发光驱动信号的影响,改善有机发光显示面板亮度的均匀性,提高显示装置的图像显示效果。
由于本公开实施例所提供的像素单元中可以集成内置型触摸屏的指纹识别和触摸信号侦测电路,在显示驱动的同时,实现指纹识别和触控侦测,从而实现像素驱动电路、指纹识别电路(具有触控侦测功能)集成设置。这样的电路结构设置,可实现内置型触摸屏和有机发光二极管驱动显示的一体化,有利于降低显示面板的厚度和重量,并可降低显示面板的成本。
而且,本公开实施例所提供的技术方案中,还可以避免电流长时间通过有机发光二极管OLED,从而可降低有机发光二极管OLED的寿命损耗,延长了有机发光二极管OLED的使用寿命。
另外,本公开实施例所提供的技术方案中,在显示驱动模块驱动有机发光二极管OLED发光时,指纹识别模块处于停滞状态,因此,可减少指纹识别对于显示驱动的影响,从而实现显示驱动和指纹识别的高效整合。
需指出的是,本公开实施例所提供的像素电路可适用于非晶硅、多晶硅、氧化物等工艺的薄膜晶体管。同时,上述电路还可以轻易的改成采用N型薄膜晶体管,或CMOS管电路。而且,尽管上述实施例中以有源矩阵有机发光 二极管为例进行了说明,然而本公开不限于使用有源矩阵有机发光二极管的显示装置,也可以应用于使用其他各种发光二极管的显示装置。
以上所述仅是本公开的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (15)

  1. 一种像素电路,包括一发光二极管,所述发光二极管的阴极连接第一信号源;
    其中,所述像素电路还包括:
    显示驱动模块,分别与第一扫描线、第二扫描线、控制线、数据线、第二信号源、第三信号源以及所述发光二极管的阳极连接,用于在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得所述发光二极管的发光驱动信号与驱动晶体管阈值电压无关;
    指纹识别模块,分别与第一扫描线、第二扫描线、第四信号源以及信号读取线连接,用于在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能。
  2. 如权利要求1所述的像素电路,其中,所述显示驱动模块包括:
    第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第一存储电容、第一驱动晶体管;其中:
    第一薄膜晶体管的第一极分别与第二信号源、第一存储电容的第一端连接,第一薄膜晶体管的栅极与控制线连接,第一薄膜晶体管的第二极与第一驱动晶体管的第一极连接;
    第二薄膜晶体管的第一极与第一驱动晶体管的第一极连接,第二薄膜晶体管的栅极与第二扫描线连接,第二薄膜晶体管的第二极与第一存储电容的第二端连接;
    第三薄膜晶体管的第一极与第三信号源连接,第三薄膜晶体管的栅极与第一扫描线连接,第三薄膜晶体管的第二极与第一存储电容的第二端连接;
    第四薄膜晶体管的第一极与数据线连接,第四薄膜晶体管的栅极与第二扫描线连接,第四薄膜晶体管的第二极与第一驱动晶体管的第二极连接;
    第五薄膜晶体管的第一极与第一驱动晶体管的第二极连接,第五薄膜晶体管的栅极与控制线连接,第五薄膜晶体管的第二极与发光二极管的阳极连 接;
    第一驱动晶体管的栅极与第一存储电容的第二端连接。
  3. 如权利要求1所述的像素电路,其中,所述显示驱动模块包括:
    第六薄膜晶体管、第七薄膜晶体管、第八薄膜晶体管、第二存储电容、第二驱动晶体管、第三驱动晶体管;其中:
    第六薄膜晶体管的第一极与数据线连接,第六薄膜晶体管的栅极与第二扫描线连接,第六薄膜晶体管的第二极与第二驱动晶体管的第一极连接;
    第七薄膜晶体管的第一极与第二存储电容的第二端连接,第七薄膜晶体管的栅极与第一扫描线连接,第七薄膜晶体管的第二极与第三信号源连接;
    第八薄膜晶体管的第一极与第三驱动晶体管的第二极连接,第八薄膜晶体管的栅极与控制线连接,第八薄膜晶体管的第二极与发光二极管的阳极连接;
    第二驱动晶体管的栅极和第二极与第二存储电容的第二端连接;
    第三驱动晶体管的第一极分别与第二存储电容的第一端、第二信号源连接,第三驱动晶体管的栅极与第二存储电容的第二端连接。
  4. 如权利要求1所述的像素电路,其中,所述指纹识别模块包括:
    重置晶体管、放大晶体管、开关晶体管、第三存储电容以及探测电极;其中:
    重置晶体管的第一极与第四信号源连接,重置晶体管的栅极与第一扫描线连接,重置晶体管的第二极与第三存储电容的第二端连接;
    放大晶体管的第一极与第四信号源连接,放大晶体管的栅极与第三存储电容的第二端连接,放大晶体管的第二极与开关晶体管的第一极连接;
    开关晶体管的栅极与第二扫描线连接,开关晶体管的第二极与信号读取线连接;
    第三存储电容的第一端与第二扫描线连接;
    探测电极与第三存储电容的第二端连接。
  5. 如权利要求2至4任一项所述的像素电路,其中,所述晶体管为P型晶体管,所述第一极为源极,所述第二级为漏极。
  6. 如权利要求1至4任一项所述的像素电路,其中,
    所述第一信号源输入的第一信号为低电平信号或者零电位信号;
    所述第二信号源输入的第二信号为高电平信号;
    所述第三信号源输入的第三信号为低电平信号;和
    所述第四信号源输入的第四信号为具有固定电位的信号。
  7. 根据权利要求1-6中任一项所述的像素电路,其中,所述发光二极管为有机发光二极管。
  8. 一种用于驱动权利要求1-7任一项所述的像素电路的像素驱动方法,包括:
    在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得发光二极管的发光驱动信号与驱动晶体管阈值电压无关;以及
    在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能。
  9. 如权利要求8所述的方法,其中,所述在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得发光二极管的发光驱动信号与驱动晶体管阈值电压无关的过程包括:
    在一时间周期的第一阶段,第三薄膜晶体管处于导通状态,第一薄膜晶体管、第二薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管处于截止状态,以使第一存储电容第二端的电位为第三信号源输入的第三信号的电位;
    在所述时间周期的第二阶段,第二薄膜晶体管、第四薄膜晶体管、第一驱动晶体管处于导通状态,第一薄膜晶体管、第三薄膜晶体管、第五薄膜晶体管处于截止状态,以使数据线输入的数据信号将第一存储电容第二端的电位充电至数据信号的电位与第一驱动晶体管阈值电压的差值;
    在所述时间周期的第三阶段,第一薄膜晶体管、第五薄膜晶体管处于导通状态,第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管处于截止状态,以基于数据信号和第二信号确定发光二极管的发光驱动信号,并利用所述发 光驱动信号驱动发光二极管发光。
  10. 如权利要求8所述的方法,其中,所述在第一扫描线输入的第一扫描信号、第二扫描线输入的第二扫描信号、控制线输入的控制信号的控制下,利用数据线输入的数据信号和第二信号源输入的第二信号进行驱动晶体管阈值电压补偿处理,使得发光二极管的发光驱动信号与驱动晶体管阈值电压无关的过程包括:
    在一时间周期的第一阶段,第七薄膜晶体管处于导通状态,第六薄膜晶体管、第八薄膜晶体管处于截止状态,以使第二存储电容第二端的电位为第三信号源输入的第三信号的电位;
    在所述时间周期的第二阶段,第六薄膜晶体管、第二驱动晶体管处于导通状态,第七薄膜晶体管、第八薄膜晶体管处于截止状态,以使数据线输入的数据信号将第二存储电容第二端的电位充电至数据信号的电位与第二驱动晶体管阈值电压的差值;
    在所述时间周期的第三阶段,第八薄膜晶体管处于导通状态,第六薄膜晶体管、第七薄膜晶体管处于截止状态,以基于数据信号和第二信号确定发光二极管的发光驱动信号,并利用所述发光驱动信号驱动发光二极管发光。
  11. 如权利要求8所述的方法,其中,所述在第一扫描线输入的第一扫描信号和第二扫描线输入的第二扫描信号的控制下,实现指纹识别和触控侦测功能的过程包括:
    在一时间周期的第一阶段,重置晶体管处于导通状态,开关晶体管处于截止状态,以使第三存储电容第二端的电位为第四信号输入端输入的第四信号的电位;
    在所述时间周期的第二阶段,重置晶体管处于截止状态,开关晶体管处于导通状态,放大晶体管基于第三存储电容第二端的电位,处于导通或截止状态,以使信号读取线传输与放大晶体管状态对应的信号,以便于与信号读取线连接的处理器基于信号读取线传输的信号进行指纹识别;
    在所述时间周期的第三阶段,重置晶体管、开关晶体管、放大晶体管处于截止状态。
  12. 如权利要求11所述的方法,其中,所述第二阶段还包括:
    基于第二扫描线信息以及信号读取线的信息,确定指纹识别操作的位置信息。
  13. 如权利要求9至12任一项所述的方法,其中,在所述第一阶段,第一扫描信号为低电平信号,第二扫描线信号为高电平信号,控制信号为高电平信号,数据信号为低电平信号或高电平信号;
    在所述第二阶段,第一扫描信号为高电平信号,第二扫描线信号为低电平信号,控制信号为高电平信号,数据信号为高电平信号;
    在所述第三阶段,第一扫描信号为高电平信号,第二扫描线信号为高电平信号,控制信号为低电平信号,数据信号为低电平信号。
  14. 一种发光显示面板,包括如权利要求1-7任一项所述的像素电路。
  15. 一种显示装置,包括如权利要求14所述的发光显示面板。
PCT/CN2015/070152 2014-09-26 2015-01-06 像素电路及其驱动方法、发光显示面板及显示装置 WO2016045246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/769,399 US9984272B2 (en) 2014-09-26 2015-01-06 Pixel circuit, its driving method, light-emitting diode display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410505051.X 2014-09-26
CN201410505051.XA CN104282265B (zh) 2014-09-26 2014-09-26 像素电路及其驱动方法、有机发光显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2016045246A1 true WO2016045246A1 (zh) 2016-03-31

Family

ID=52257096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070152 WO2016045246A1 (zh) 2014-09-26 2015-01-06 像素电路及其驱动方法、发光显示面板及显示装置

Country Status (3)

Country Link
US (1) US9984272B2 (zh)
CN (1) CN104282265B (zh)
WO (1) WO2016045246A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214267A (zh) * 2017-07-05 2019-01-15 三星显示有限公司 指纹传感器及其驱动方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112120B (zh) * 2014-06-26 2018-09-18 京东方科技集团股份有限公司 指纹识别显示驱动电路和显示装置
CN104464661B (zh) * 2014-11-03 2016-09-21 深圳市华星光电技术有限公司 基于低温多晶硅半导体薄膜晶体管的goa电路
CN104778923B (zh) * 2015-04-28 2016-06-01 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN104835449B (zh) * 2015-05-04 2017-05-17 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN104991364B (zh) * 2015-07-21 2018-10-30 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
WO2017045133A1 (en) * 2015-09-15 2017-03-23 Boe Technology Group Co., Ltd. Array substrate, related display panels, and related display apparatus
CN106710521A (zh) * 2015-11-13 2017-05-24 小米科技有限责任公司 Oled面板、终端及识别控制方法
CN105355171B (zh) * 2015-12-15 2019-01-11 惠州Tcl移动通信有限公司 驱动扫描电路、显示屏及移动终端
CN105702176B (zh) * 2016-04-12 2018-06-15 深圳市华星光电技术有限公司 具有指纹识别的显示面板及显示装置
CN106056047B (zh) 2016-05-20 2019-06-14 京东方科技集团股份有限公司 指纹识别电路、触控装置及指纹识别方法
CN106096514A (zh) * 2016-06-01 2016-11-09 京东方科技集团股份有限公司 指纹识别单元及其驱动方法、显示基板和显示装置
CN106098736B (zh) * 2016-06-28 2019-05-21 京东方科技集团股份有限公司 有机电激光显示基板、显示面板和显示装置
CN106156741B (zh) * 2016-07-04 2019-07-19 信利(惠州)智能显示有限公司 指纹识别单元电路及其控制方法以及指纹识别装置
US20180012069A1 (en) * 2016-07-06 2018-01-11 Samsung Electronics Co., Ltd. Fingerprint sensor, fingerprint sensor package, and fingerprint sensing system using light sources of display panel
US10121048B2 (en) * 2016-07-29 2018-11-06 Elan Microelectronics Corporation Operating method for a fingerprint sensing device and fingerprint sensing system
KR101770521B1 (ko) * 2016-08-26 2017-09-05 한양대학교 산학협력단 정전용량 인셀 터치 패널 및 이에 있어서 리드아웃 방법
CN106409224A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 像素驱动电路、驱动电路、显示基板和显示装置
US10503308B2 (en) * 2016-12-13 2019-12-10 Novatek Microelectronics Corp. Touch apparatus and touch detection integrated circuit thereof
CN106682640B (zh) 2017-01-04 2019-04-05 京东方科技集团股份有限公司 指纹识别电路及其驱动方法、显示装置
CN107194305A (zh) * 2017-02-14 2017-09-22 成都晶砂科技有限公司 指纹和触控相融合的像元、指纹和触控相融合的装置及显示屏
CN108470153B (zh) * 2017-02-23 2021-11-12 矽创电子股份有限公司 指纹辨识面板及其指纹辨识电路
CN108509074B (zh) 2017-02-23 2022-04-01 矽创电子股份有限公司 触控面板及其触控侦测电路
CN106847868A (zh) * 2017-02-27 2017-06-13 信利光电股份有限公司 一种全屏指纹识别和触控一体的amoled显示器
CN108664279B (zh) * 2017-03-29 2021-05-18 上海耕岩智能科技有限公司 一种基于指纹识别同步启动应用的方法和装置
CN108877649B (zh) * 2017-05-12 2020-07-24 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN107092901B (zh) 2017-06-02 2020-04-03 京东方科技集团股份有限公司 一种触控面板的指纹识别方法及制备方法
CN107039002B (zh) * 2017-06-05 2019-09-06 京东方科技集团股份有限公司 一种像素电路及显示面板
CN107134259B (zh) * 2017-06-28 2019-04-30 京东方科技集团股份有限公司 像素电路、驱动方法、显示模组、驱动方法和显示装置
US10579846B2 (en) * 2017-08-15 2020-03-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. AMOLED driving device
KR102488600B1 (ko) * 2017-09-26 2023-01-13 삼성디스플레이 주식회사 지문 감지 장치 및 그 구동 방법
KR102502201B1 (ko) * 2017-11-17 2023-02-22 삼성디스플레이 주식회사 지문 센서 및 이를 포함한 표시 장치
KR102416380B1 (ko) * 2017-12-29 2022-07-01 엘지디스플레이 주식회사 디스플레이 장치
CN108053792B (zh) * 2018-01-19 2019-09-20 昆山国显光电有限公司 一种像素电路及其驱动方法、显示装置
CN108154844B (zh) * 2018-03-09 2019-07-30 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
CN108682386B (zh) * 2018-05-14 2020-03-10 京东方科技集团股份有限公司 一种像素电路及显示面板
CN108806603B (zh) * 2018-06-29 2020-03-17 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其驱动方法、有机发光显示装置
CN109117733B (zh) * 2018-07-17 2020-06-30 武汉华星光电半导体显示技术有限公司 一种指纹识别oled显示面板及显示装置
CN108877677B (zh) * 2018-08-17 2020-12-04 京东方科技集团股份有限公司 像素电路、显示面板、显示装置和驱动像素电路的方法
KR102662881B1 (ko) * 2018-12-31 2024-05-03 엘지디스플레이 주식회사 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치
CN109767713A (zh) * 2019-01-09 2019-05-17 昆山国显光电有限公司 显示屏、显示屏驱动方法及显示装置
CN110214350B (zh) * 2019-04-25 2022-12-06 京东方科技集团股份有限公司 驱动电路、阵列基板、显示装置及驱动方法
CN110097043B (zh) * 2019-05-05 2022-04-15 京东方科技集团股份有限公司 传感器像素、超声传感器、oled显示面板和oled显示装置
CN110008939B (zh) * 2019-05-17 2021-04-13 京东方科技集团股份有限公司 指纹识别像素驱动电路及其驱动方法、显示面板
CN110223634A (zh) * 2019-06-11 2019-09-10 京东方科技集团股份有限公司 像素电路及其驱动方法和显示面板
CN110349542A (zh) * 2019-07-15 2019-10-18 京东方科技集团股份有限公司 一种显示面板、显示装置及其控制方法
CN110728254B (zh) * 2019-10-22 2022-03-01 武汉华星光电半导体显示技术有限公司 光学指纹识别电路及显示装置
CN111027384B (zh) * 2019-11-07 2022-09-13 厦门天马微电子有限公司 指纹识别检测电路、检测方法及显示装置
CN113554985B (zh) * 2020-04-26 2022-11-11 华为技术有限公司 有机发光二极管驱动装置、控制方法和显示设备
CN111415631B (zh) * 2020-04-28 2022-07-12 Tcl华星光电技术有限公司 背光模组和显示设备
US11475701B2 (en) * 2020-06-30 2022-10-18 Focaltech Systems Co., Ltd. Fingerprint display device and integration integrated circuit and method for driving the same
CN111951730B (zh) * 2020-08-21 2022-04-15 Oppo(重庆)智能科技有限公司 显示设备、电子设备、显示控制方法及存储介质
CN112686216A (zh) 2020-09-29 2021-04-20 神盾股份有限公司 感测手指生物特征的光学感测装置及使用其的电子装置
CN112163565B (zh) * 2020-10-28 2023-06-30 武汉华星光电半导体显示技术有限公司 指纹识别电路及oled显示面板
CN116030763B (zh) * 2023-03-30 2023-06-06 惠科股份有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108941A1 (en) * 2004-11-25 2006-05-25 Yang Yil S Voltage/current driven active matrix organic electroluminescent pixel circuit and display device
CN102890910A (zh) * 2012-10-15 2013-01-23 北京大学 同异步双栅tft-oled像素驱动电路及其驱动方法
CN103413521A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN104021756A (zh) * 2014-05-29 2014-09-03 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747290B2 (en) 2000-12-12 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Information device
KR100370286B1 (ko) * 2000-12-29 2003-01-29 삼성에스디아이 주식회사 전압구동 유기발광소자의 픽셀회로
US8144115B2 (en) * 2006-03-17 2012-03-27 Konicek Jeffrey C Flat panel display screen operable for touch position determination system and methods
JP4736954B2 (ja) 2006-05-29 2011-07-27 セイコーエプソン株式会社 単位回路、電気光学装置、及び電子機器
JP5055879B2 (ja) * 2006-08-02 2012-10-24 ソニー株式会社 表示装置および表示装置の駆動方法
KR100975870B1 (ko) 2008-10-17 2010-08-13 삼성모바일디스플레이주식회사 광 센싱 회로, 이의 구동 방법 및 광 센싱 회로를 포함하는터치 패널
GB0908456D0 (en) * 2009-05-18 2009-06-24 L P Touch screen, related method of operation and systems
US8982099B2 (en) * 2009-06-25 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Touch panel and driving method of the same
KR101074795B1 (ko) 2009-07-03 2011-10-19 삼성모바일디스플레이주식회사 광 센싱 회로, 이를 포함하는 터치 패널, 및 광 센싱 회로의 구동 방법
TWI416467B (zh) 2009-09-08 2013-11-21 Au Optronics Corp 主動式矩陣有機發光二極體顯示器及其像素電路與資料電流寫入方法
TWI427515B (zh) * 2009-09-17 2014-02-21 Hannstar Display Corp 感光元件與其驅動方法以及應用此感光元件的液晶顯示器
JP5477385B2 (ja) * 2009-10-05 2014-04-23 富士通株式会社 生体情報処理装置、生体情報処理方法及び生体情報処理用コンピュータプログラム
FR2959998B1 (fr) 2010-05-11 2012-06-01 Arkema France Fluides de transfert de chaleur ternaires comprenant du difluoromethane, du pentafluoroethane et du tetrafluoropropene
JP2012109882A (ja) * 2010-11-19 2012-06-07 Toshiba Corp 通信装置、通信システム
US8922464B2 (en) * 2011-05-11 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device and driving method thereof
TWI470509B (zh) 2011-09-08 2015-01-21 Hannstar Display Corp 光學觸控顯示面板及其觸控感測方法
TW201314656A (zh) 2011-09-19 2013-04-01 Chunghwa Picture Tubes Ltd 畫素電路及其驅動方法
US8994690B2 (en) 2012-04-29 2015-03-31 Weidong Shi Method and apparatuses of transparent fingerprint imager integrated with touch display device
US8618865B1 (en) 2012-11-02 2013-12-31 Palo Alto Research Center Incorporated Capacitive imaging device with active pixels
CN103034365B (zh) 2012-12-13 2016-03-09 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103135846B (zh) 2012-12-18 2016-03-30 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
US9165960B2 (en) 2013-01-04 2015-10-20 Industrial Technology Research Institute Pixel circuit, active sensing array, sensing device and driving method thereof
JP5953242B2 (ja) 2013-01-28 2016-07-20 株式会社ジャパンディスプレイ 表示装置
US9245935B2 (en) * 2013-04-02 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
CN103235846B (zh) 2013-04-10 2016-01-06 北京理工大学 柔性线缆的实时装配仿真方法及装置
CN203232681U (zh) 2013-04-15 2013-10-09 京东方科技集团股份有限公司 像素电路及显示装置
CN103218972B (zh) 2013-04-15 2015-08-05 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103208255B (zh) 2013-04-15 2015-05-20 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103246396B (zh) 2013-04-18 2016-03-30 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103236238B (zh) 2013-04-26 2015-07-22 北京京东方光电科技有限公司 像素单元控制电路以及显示装置
CN103310729B (zh) * 2013-05-29 2015-05-27 京东方科技集团股份有限公司 发光二极管像素单元电路和显示面板
CN103310728B (zh) 2013-05-29 2015-05-20 京东方科技集团股份有限公司 发光二极管像素单元电路和显示面板
CN103325339B (zh) 2013-06-21 2016-05-25 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN203366702U (zh) 2013-07-09 2013-12-25 京东方科技集团股份有限公司 一种触摸显示驱动电路及显示装置
CN103456267B (zh) 2013-08-26 2015-12-02 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
CN203503280U (zh) 2013-08-26 2014-03-26 北京京东方光电科技有限公司 触控显示驱动电路和显示装置
CN203633503U (zh) * 2013-11-06 2014-06-11 深圳葆威道科技有限公司 触摸式电池
KR20150073539A (ko) 2013-12-23 2015-07-01 삼성전자주식회사 전자장치의 입력 감지장치 및 방법
CN103996376B (zh) 2014-05-14 2016-03-16 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
CN103996377B (zh) * 2014-05-30 2016-07-06 京东方科技集团股份有限公司 像素电路和显示装置
US9741286B2 (en) * 2014-06-03 2017-08-22 Apple Inc. Interactive display panel with emitting and sensing diodes
CN104103239B (zh) 2014-06-23 2016-05-04 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104091563B (zh) 2014-06-27 2016-03-09 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104252844B (zh) 2014-09-23 2017-04-05 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108941A1 (en) * 2004-11-25 2006-05-25 Yang Yil S Voltage/current driven active matrix organic electroluminescent pixel circuit and display device
CN102890910A (zh) * 2012-10-15 2013-01-23 北京大学 同异步双栅tft-oled像素驱动电路及其驱动方法
CN103413521A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN104021756A (zh) * 2014-05-29 2014-09-03 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214267A (zh) * 2017-07-05 2019-01-15 三星显示有限公司 指纹传感器及其驱动方法
CN109214267B (zh) * 2017-07-05 2023-05-12 三星显示有限公司 指纹传感器及其驱动方法

Also Published As

Publication number Publication date
US20160253541A1 (en) 2016-09-01
CN104282265B (zh) 2017-02-01
CN104282265A (zh) 2015-01-14
US9984272B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2016045246A1 (zh) 像素电路及其驱动方法、发光显示面板及显示装置
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
US10068950B2 (en) Pixel circuit, driving method thereof, and display apparatus
EP3159882B1 (en) Pixel circuit, driving method therefor and display device
WO2016173121A1 (zh) 一种像素电路及其驱动方法、显示装置
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
EP2887344B1 (en) Touch control display driving circuit, driving method thereof and display device
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016177001A1 (zh) 像素电路及其驱动方法、阵列基板以及显示装置
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
WO2016015392A1 (zh) 触控显示电路及显示装置
WO2015180373A1 (zh) 像素电路和显示装置
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
WO2016101504A1 (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2016004690A1 (zh) 像素结构及其驱动方法、显示装置
KR101576405B1 (ko) 외부 보상 감지 회로와 그 감지 방법 및 디스플레이 디바이스
CN104091564B (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2015184726A1 (zh) 触控显示驱动电路和触控显示装置
WO2014169535A1 (zh) 触控显示电路结构及其驱动方法、阵列基板和显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
WO2014205931A1 (zh) 有源矩阵有机发光二极管像素单元电路、显示面板以及电子产品
WO2015180317A1 (zh) 像素电路和显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
JP2016522434A (ja) 外部補償誘導回路及びその誘導方法、表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14769399

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843395

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15843395

Country of ref document: EP

Kind code of ref document: A1