WO2015180373A1 - 像素电路和显示装置 - Google Patents

像素电路和显示装置 Download PDF

Info

Publication number
WO2015180373A1
WO2015180373A1 PCT/CN2014/088683 CN2014088683W WO2015180373A1 WO 2015180373 A1 WO2015180373 A1 WO 2015180373A1 CN 2014088683 W CN2014088683 W CN 2014088683W WO 2015180373 A1 WO2015180373 A1 WO 2015180373A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
module
switching element
pixel
line
Prior art date
Application number
PCT/CN2014/088683
Other languages
English (en)
French (fr)
Inventor
杨盛际
王海生
许静波
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP14864997.3A priority Critical patent/EP3154050B1/en
Priority to US14/649,841 priority patent/US9720535B2/en
Publication of WO2015180373A1 publication Critical patent/WO2015180373A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present disclosure relates to a pixel circuit and a display device.
  • the existing display device with touch function can be divided into an on-cell touch panel and an in-cell touch panel.
  • the in-cell touch panel has a thinner thickness and a higher light transmittance.
  • OLED Organic Light Emitting Diode
  • PMOLED passive matrix driving OLED
  • AMOLED active matrix driving OLED
  • each OLED relies on a driving circuit composed of a plurality of thin film transistor (TFT) switches in one pixel unit on the array substrate to drive light to realize display.
  • TFT thin film transistor
  • the touch screen panel is a sensor and a driving circuit to be used for touch, and is also fabricated in each pixel unit on the array substrate by an array process. If the sensor and driving circuit of the TSP are superimposed on the AMOLED pixel, a certain number of driving circuit TFTs need to be added, so that an additional space of a certain pixel unit is required, and the pixel unit has a limited space, which greatly limits the in-line type.
  • the touch panel circuit is fabricated simultaneously with the AMOLED driving circuit.
  • An object of the present disclosure is to provide a pixel circuit and a display device, which can improve the integration degree of the in-cell touch circuit and the pixel driving circuit.
  • the present disclosure provides a pixel circuit, including: a pixel compensation module, a light emitting module, and a touch detection module; the pixel compensation module is connected to the light emitting module, and the pixel compensation module is connected to the first scan signal. a second scan signal line, a third scan signal line, and a fourth scan signal line; the touch detection module is connected to the second scan signal line and the third scan signal line;
  • the pixel compensation module is further configured to connect the working voltage line and the data voltage line, and is configured to drive the light emitting module to perform light emitting display according to the input of the connected scan signal line, and to eliminate the influence of the driving threshold voltage on the working circuit of the light emitting module;
  • the touch detection module is further connected to the data voltage line and the touch signal read line for detecting the touch signal according to the input of the connected scan signal line, and inputting the detected touch signal to the touch signal read Take the line.
  • the illumination module comprises an electroluminescent element, the electroluminescent element being coupled to the pixel compensation module.
  • the pixel compensation module includes: a reset unit, a pixel driving unit, and a lighting control unit;
  • the reset unit is connected to the pixel driving unit, and is connected to the first scan signal line and the second scan signal line for resetting the pixel driving unit according to the input of the connected scan signal line;
  • the pixel driving unit is connected to the working voltage line, the data scanning signal line, the second scanning signal line, the third scanning signal line, and the fourth scanning signal line, and is configured to input a data voltage signal according to the input of the scanning signal line.
  • the data signal input by the line is amplified to generate a driving current for driving the illumination of the electroluminescent element;
  • the illuminating control unit is connected between the pixel driving unit and the electroluminescent element, and is connected to the third scanning signal line for conducting the driving current generated by the pixel driving unit according to the input of the third scanning signal line. To the electroluminescent element.
  • the reset unit includes a second switching element and a fourth switching element
  • the pixel driving unit includes a first switching element, a third switching element, a fifth switching element, an energy storage element, and a driving amplification element
  • the illumination control unit includes a sixth switching element
  • the first switching element is connected between the working voltage line and the input end of the driving amplifying element, and the control end Connecting a fourth scan signal line;
  • the second switching element is connected between the ground line and the first end of the energy storage element, and the fifth switching element is connected between the second end of the energy storage element and the output end of the driving amplification element; the second switching element and the fifth switch The control ends of the components are connected to the second scan signal line;
  • the third switching element is connected between the first end of the energy storage element and the data voltage line; the sixth switching element is connected between the driving amplifying element and the electroluminescent element; and the control ends of the third switching element and the sixth switching element are connected To the third scan signal line;
  • One end of the fourth switching element is connected to the second end of the energy storage element, the other end is grounded, and the control end is connected to the first scanning signal line;
  • the control end of the drive amplifying element is also connected to the second end of the energy storage element.
  • the energy storage element is a first capacitor.
  • the touch detection module includes an initial sub-module, a photo-inductance sub-module module, and an output sub-module; wherein the initial sub-module is connected between the photo-sensing sub-module module and the data voltage line, And connecting a second scan signal line for initializing the photo-sensing sub-module according to an input of the second scan signal line; the photo-sensing sub-module is configured to generate electricity when the received light intensity changes
  • the output sub-module is connected between the photo-sensing sub-module module and the touch signal reading line, and is connected to the third scanning signal line for measuring the photo-electrical inductance according to the input of the third scanning signal line
  • the electrical signal generated by the submodule is input to the touch signal reading line.
  • the photo-sensing sub-module module includes a phototransistor and a second capacitor, a first end of the second capacitor is connected to the initialization sub-module, a second end is connected to the output sub-module, and A phototransistor is connected for recording a threshold voltage of the phototransistor.
  • the phototransistor is an N-channel transistor having a source and a gate connected to a first end of the second capacitor and a drain connected to a second end of the second capacitor.
  • the initial sub-module includes a seventh switching element connected between the first end of the second capacitor and the data voltage line, and the control end is connected to the second scan signal line;
  • the output sub-module includes an eighth switching element connected between the second end of the second capacitor and the touch signal reading line, and the control end is connected to the third scanning signal line.
  • the initial sub-module further includes a ninth switching element, the first end of the ninth switching element is connected to the first end of the second capacitor, the second end is grounded, and the control end is connected to the first scan signal line .
  • the driving amplifying element and each switching element are specifically P-channel type thin film field effect
  • the control terminal of the driving amplifying component is the gate of the thin film field effect transistor, the input terminal is the source, and the output terminal is the drain; the control terminal of each switching component is the gate of the thin film field effect transistor, and the other ends correspond to Source and drain.
  • the present disclosure also provides a display device comprising the pixel circuit of any of the above.
  • the pixel circuits are periodically distributed in the display device.
  • the pixel circuit and the display device provided by the present disclosure integrate a pixel compensation module and a touch detection module in the pixel circuit, and the pixel compensation module and the touch detection module share the data voltage line and the scan signal line. This reduces the number of signal lines, thereby significantly reducing the pixel pitch and reducing the cost of the IC, resulting in higher pixel density.
  • FIG. 1 is a schematic structural diagram of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic circuit diagram of a pixel circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic circuit diagram of another pixel circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a timing diagram of key signals in a driving method of a pixel circuit according to an embodiment of the present disclosure
  • 5a-5d are schematic diagrams showing current flow directions and voltage values of pixel circuits at different timings in an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing a positional relationship between a pixel circuit and a pixel in a display device according to an embodiment of the present disclosure.
  • FIG. 1 schematically shows the structure of a pixel circuit provided in an embodiment of the present disclosure.
  • the pixel circuit includes a pixel compensation module 100 , a light emitting module 200 , and a touch detection module 300 .
  • the pixel compensation module 100 is connected to the light emitting module 200, and the pixel compensation module 100 is connected to the first scan signal line Scan[1], the second scan signal line Scan[2], the third scan signal line Scan[3], and the fourth scan signal.
  • the touch detection module 300 is connected to the second scan signal line Scan[2] and the third scan signal line Scan[3].
  • the pixel compensation module 100 is further connected to the working voltage line Vdd and the data voltage line Vdata for
  • the input of the connected scan signal line (Scan[1], Scan[2], Scan[3], Scan[4]) drives the light-emitting module 200 to perform light-emitting display, and is used for eliminating the driving threshold voltage to the working circuit of the light-emitting module 200. influences.
  • the touch detection module 300 is further connected to the data voltage line Vdata and the touch signal read line Y-read Line for detecting the touch signal according to the input of the connected scan signal lines (Scan[2], Scan[3]). And inputting the detected touch signal to the touch signal reading line Y-read Line.
  • the pixel circuit of the embodiment integrates the pixel compensation module and the touch detection module in the pixel circuit, and the pixel compensation module and the touch detection module share the data line and the scan signal line. This reduces the number of signal lines, thereby significantly reducing the pixel pitch and reducing the cost of the IC, resulting in higher pixel density.
  • FIG. 2 schematically shows a circuit configuration of a pixel circuit of an embodiment of the present disclosure.
  • the light emitting module 200 may include an electroluminescent element OLED connected to the pixel compensation module 100.
  • the light-emitting module may be a plurality of current-driven light-emitting devices including a Light Emitting Diode (LED) or an Organic Light Emitting Diode (OLED) in the prior art.
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • an OLED is taken as an example for description.
  • the pixel compensation module 100 can include:
  • the reset unit 110 the pixel driving unit 120, and the light emission control unit 130.
  • the reset unit 110 is connected to the pixel driving unit 120, and is connected to the scanning signal lines Scan[1] and Scan[2] for resetting the pixel driving unit 130 according to the input of the connected scanning signal line.
  • the pixel driving unit 120 is connected to the working voltage line Vdd, the data scanning signal line Vdata, and the scanning signal lines Scan[2], Scan[3], Scan[4] for inputting the data voltage signal according to the input of the connected scanning signal line.
  • the data signal input by the line Vdata is amplified to generate a driving current for driving the OLED to emit light;
  • the illumination control unit 130 is connected between the pixel driving unit 120 and the electroluminescent element, and is connected to the third scanning signal line Scan[3] for generating the pixel driving unit 120 according to the input of the third scanning signal line Scan[3].
  • the drive current is delivered to the OLED.
  • the reset unit 110 includes a second switching element T2 and a fourth switching element T4;
  • the pixel driving unit 120 includes a first switching element T1, a third The switching element T3, the fifth switching element T5, the energy storage element C1, and the driving amplification element DT;
  • the light emission control unit 130 includes a sixth switching element T6.
  • the first end of the second switching element T2 is connected to the first end a1 of the energy storage element C1, and the second end is grounded.
  • the first end of the fifth switching element T5 is connected to the output end of the DT, and the second end thereof is connected to the second end b of the energy storage element C1.
  • the control terminals of T2 and T5 are connected to the second scanning signal line Scan[2].
  • the first end of the third switching element T3 is connected to the data voltage line Vdata, and the second end is connected to the first end a1 of the energy storage element C1.
  • the first end of the sixth switching element T6 is connected to the output end of the pixel driving unit DT, and the second end is connected to the electroluminescent element L.
  • the control terminals of the third switching element T3 and the sixth switching element T6 are both connected to the third scanning signal line Scan[3].
  • the first end of the fourth switching element T4 is connected to the second end b of the energy storage element C1, the second end is grounded, and the control end is connected to the first scanning signal line Scan[1];
  • the control terminal of the drive amplifying element DT is also connected to the second end b of the energy storage element C1.
  • the energy storage element C1 is a capacitor.
  • other components with energy storage functions can also be used according to design requirements.
  • the photo-sensing sub-module 320 includes a phototransistor PTFT and a second capacitor C2.
  • the first end a2 end of the second capacitor C2 is connected to the initialization sub-module 310, and the second end b2 is connected to the output sub-module 330.
  • the first end a2 of the second capacitor C2 is also connected to the gate of the phototransistor PTFT, and the second end a2 is also connected to the source of the phototransistor PTFT for recording the threshold voltage of the phototransistor.
  • the phototransistor PTFT is an N-channel transistor having a drain and a gate connected to the first end a2 of the second capacitor, and a source connected to the second capacitor C2. Two end b2 end.
  • the phototransistor can also adopt a P-channel transistor, and the corresponding connection form will not be described in detail herein.
  • the touch detection module 300 includes an initial sub-module 310, a photo-sensing sub-module 320, and an output sub-module 330.
  • the first end of the initial sub-module 310 is connected to the data voltage line Vdata, and the second The terminal is connected to the photo-sensing sub-module 320, and the control end is connected to the second scanning signal line Scan[2] for setting the voltage of the first end of the photo-sensing sub-module 320 to be based on the input of the second scanning signal line [2].
  • the voltage on the data voltage line Vdata that is, the first end of the photo-sensing sub-module 320 is initialized.
  • the photo-inductance detector module 320 is configured to generate an electrical signal when the received illumination intensity changes.
  • the first end of the output sub-module 330 is connected to the second end of the photo-sensing sub-module 320, the second end is connected to the touch signal read line Y-read Line, and the control end is connected to the third scan signal line Scan[3] for Inputting the electrical signal generated by the photo-sensing sub-module 320 to the touch signal according to the input of the third scanning signal line Scan[3] Read line Y-read Line.
  • the initial sub-module 310 includes a seventh switching element T7.
  • the first end of the seventh switching element T7 is connected to the data voltage line Vdata, the second end is connected to the first end a2 of the second capacitor C2, and the control end is connected to the second scanning signal line Scan[2].
  • the output sub-module 330 includes an eighth switching element T8.
  • the first end of the eighth switching element T8 is connected to the second end of the second capacitor C2, the second end is connected to the touch signal read line Y-read Line, and the control end is connected to the third scan signal line Scan[3].
  • FIG. 3 schematically shows a circuit configuration of another pixel circuit of an embodiment of the present disclosure.
  • the initial sub-module 310 in the pixel circuit of the present embodiment further includes a ninth switching element T9.
  • the first end of the ninth switching element T9 is connected to the first end a2 end of the second capacitor C2 (not shown), the second end is grounded, and the control end is connected to the first scanning signal line Scan[1].
  • the a2 terminal of the capacitor C2 can be grounded by controlling the ninth switching element T9 to be turned on during the initialization process.
  • the voltage at the a2 terminal of the capacitor C2 is then set to the voltage on the data voltage line Vdata. In this way, the initialization of the capacitor C2 can be made faster and more thorough.
  • the voltage of the a2 terminal can be initialized when the data voltage line Vdata is connected to the a2 terminal of the capacitor C2.
  • the pixel driving unit DT and each of the switching elements may be P-channel type thin film field effect transistors.
  • the control terminal of the pixel driving unit is the gate of the thin film field effect transistor
  • the input terminal is the source
  • the output terminal is the drain.
  • the control terminals of the respective switching elements are the gates of the thin film field effect transistors, and the other ends correspond to the source and the drain.
  • the process can be unified to improve the yield of the product.
  • the types of the transistors may not be exactly the same, for example, T2, T5, T7, T3, T6, T8 may be N-channel transistors, and T3, T6, T8.
  • the present invention can provide a P-channel transistor, and the technical solution provided by the present application can be implemented as long as the on/off states of the two switching elements connected to the same scanning signal line are the same. It should not be construed as limiting the scope of the disclosure.
  • FIG. 4 shows timings of key signals in a driving method of a pixel circuit of an embodiment of the present disclosure.
  • Figures 5a-5d schematically illustrate current flow and voltage values for pixel circuits at different timings in embodiments of the present disclosure. The operation of the pixel circuit of FIG. 3 will be described below with reference to FIG. 4 and FIGS. 5a-5d.
  • each of the switching elements and the driving unit is a P-channel type TFT
  • the energy storage element is a capacitor
  • the photo transistor is an N-channel type.
  • FIG. 4 is a timing diagram of scan signals of respective scan signal lines that may be performed in a frame during operation of the pixel circuit provided in the embodiment of the present disclosure. The working sequence can be divided into four phases. In FIG.
  • the first scan signal line Scan[1] is at a low level, and the other scan signal lines are at a high level.
  • T4 is turned on in the pixel compensation module.
  • the b1 point is reset to ground, and the potential is 0V, and the voltage signal of the previous frame in the capacitor C1 is reset.
  • T9 is turned on to reset C2 and the phototransistor PTFT, and the potential at the a2 point is 0 after reset. It can be seen that the first scan signal line Scan[1] is equivalent to the reset scan signal line Reset line of the pixel compensation module and the touch detection module.
  • the second scan signal line Scan[2] and Em are at a low level, and the other scan signal lines are at a high level.
  • T1, T2, and T5 are turned on, and T3, T4, and T6 are turned off. Since the previous b1 point is grounded, the driving DT is turned on, and the Vdd signal starts to charge the b1 point through T1 ⁇ DT ⁇ T5, and always charges the b1 point to Vdd–Vth (satisfying the voltage difference between the two poles of the DT gate source is Vth) .
  • T8 and T9 are turned off, and T7 is turned on.
  • the data voltage line Vdata sets the voltage at the a2 terminal of the capacitor C2 to the voltage on the data voltage Vdata (assumed to be Vdata).
  • T7 and T9 are turned off, and T8 is turned on.
  • the PTFT is turned on, and the capacitor C2 is turned on.
  • the PTFT is discharged to the touch signal read line Y-read line until the voltage at the a2 terminal falls to Vth' (Vth' is the threshold voltage of the PTFT).
  • Vth' is the threshold voltage of the PTFT.
  • the Y-direction signal is collected by the Y-Read Line
  • the Scan[3] has the acquisition function as the horizontal (X-direction) scan signal. It is possible to acquire a signal in the Y direction only when Scan[3] is low, and Scan[3] in a specific pixel at a specific time is a low level signal, so that it can be based on the collected Y direction.
  • the moment of the signal determines the X coordinate). This determines the X, Y coordinates of the finger touch position. In this process, as long as the finger participates in the touch (the light intensity changes), the coordinate position can be acquired at any time.
  • Em and Scan[3] are at a low level, and other scan signal lines are at a high level.
  • T1, T3, and T6 are turned on, and the other TFTs are turned off.
  • Vdd supplies power to the OLED along T1 ⁇ DT ⁇ T6, so that the OLED starts to emit light.
  • the touch detection module only T8 is turned on at this time, and other switch TFTs are turned off. If a touch occurs at this time, the corresponding current signal can still be read by the Y-read line to determine the position of the touch point.
  • the TFT saturation current formula can be obtained:
  • a display device is also provided in the embodiment of the present disclosure, including the pixel circuit in any of the above embodiments.
  • the display device here can be: electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator and the like with any display product or component.
  • the pixel circuits are periodically distributed in the display device.
  • it is not necessary to use the pixel circuit provided by the embodiment of the present disclosure in a position corresponding to each pixel for example, one pixel circuit provided by the embodiment of the present disclosure is disposed in three pixels, and an ordinary pixel circuit is disposed in other pixels. ), the detection of the touch signal can also be realized.
  • FIG. 6 schematically shows a positional relationship of a pixel circuit and a pixel in a display device of an embodiment of the present disclosure.
  • a pixel circuit (PU) provided in the embodiment of the present disclosure is provided for every 9 (3*3) pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路和显示装置,该像素电路包括:像素补偿模块(100)、发光模块(200)和触控检测模块(300)。通过在像素电路中集成像素补偿模块(100)和触控检测模块(300),并使像素补偿模块(100)和触控检测模块(300)共用数据电压线和扫描信号线,可减少信号线路的数目,从而大幅缩减像素间距大小并降低IC成本,从而获得更高的像素密度。

Description

像素电路和显示装置 技术领域
本公开涉及一种像素电路和显示装置。
背景技术
随着显示技术的急速进步,具有触控功能的显示装置由于其所具有的可视化操作等优点而逐渐得到越来越多的应用。根据触控面板与显示面板相对位置的不同,一般可以将现有的具有触控功能的显示装置分为外挂式(on cell)触控面板与内嵌式(in cell)触控面板两种。与外挂式触控面板相比,内嵌式触控面板具有更薄的厚度与更高的光透过率。
而对于现有的显示装置而言,有机发光二极管(Organic Light Emitting Diode,OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。OLED显示装置按照驱动方式的不同可分为无源矩阵驱动有机发光二极管(Passive Matrix Driving OLED,PMOLED)和有源矩阵驱动有机发光二极管(Active Matrix Driving OLED,AMOLED)两种,由于AMOLED显示器具有低制造成本、高应答速度、省电、可用于便携式设备的直流驱动、工作温度范围大等等优点而可望成为取代液晶显示器(liquid crystal display,LCD)的下一代新型平面显示器。因此,具有内嵌式触控功能的AMOLED显示面板已越来越多地得到人们的青睐。
在现有的AMOLED显示面板中,每个OLED均依靠阵列基板上一个像素单元内的多个薄膜晶体管(Thin Film Transistor,TFT)开关所组成的驱动电路驱动发光实现显示。
而内嵌式触控面板(Touch Screen Panel,简称TSP)是将用于触摸的传感器及驱动电路,同样利用阵列工艺制作在阵列基板上的每个像素单元内。如果将TSP的传感器及驱动电路叠加在AMOLED像素中,则需要加入一定数量的驱动电路TFT,从而需要额外占用一定像素单元的空间,而像素单元中空余空间有限,这极大地限制了内嵌式触控面板电路与AMOLED驱动电路的同时制作。
发明内容
本公开的目的是提供一种像素电路和显示装置,可以提高内嵌式触控电路与像素驱动电路的集成度。
为了达到上述目的,本公开提供了一种像素电路,包括:像素补偿模块、发光模块和触控检测模块;所述像素补偿模块与所述发光模块相连,所述像素补偿模块连接第一扫描信号线、第二扫描信号线、第三扫描信号线和第四扫描信号线;所述触控检测模块连接第二扫描信号线和第三扫描信号线;
所述像素补偿模块还连接工作电压线和数据电压线,用于根据所连接的扫描信号线的输入驱动所述发光模块进行发光显示,并且用于消除驱动阈值电压对发光模块工作电路的影响;
所述触控检测模块,还连接数据电压线、触控信号读取线,用于根据所连接的扫描信号线的输入检测触控信号,并将检测到的触控信号输入到触控信号读取线。
可替换地,所述发光模块包括电致发光元件,所述电致发光元件与所述像素补偿模块相连。
可替换地,所述像素补偿模块包括:复位单元、像素驱动单元、发光控制单元;
其中,所述复位单元与所述像素驱动单元相连,并连接第一扫描信号线和第二扫描信号线,用于根据所连接的扫描信号线的输入对所述像素驱动单元进行复位;
所述像素驱动单元,与工作电压线、数据扫描信号线以及第二扫描信号线、第三扫描信号线、第四扫描信号线相连,用于根据所连接的扫描信号线的输入对数据电压信号线输入的数据信号放大,产生用于驱动电致发光元件发光的驱动电流;
所述发光控制单元连接在所述像素驱动单元与所述电致发光元件之间,并连接第三扫描信号线,用于根据第三扫描信号线的输入将像素驱动单元产生的驱动电流导通到电致发光元件。
可替换地,所述复位单元包括第二开关元件和第四开关元件;所述像素驱动单元包括第一开关元件、第三开关元件、第五开关元件、储能元件、驱动放大元件;所述发光控制单元包括第六开关元件;
第一开关元件连接在工作电压线与驱动放大元件的输入端之间,控制端 连接第四扫描信号线;
第二开关元件连接在接地线与储能元件的第一端之间,第五开关元件连接在储能元件的第二端与驱动放大元件的输出端之间;第二开关元件和第五开关元件的控制端均连接第二扫描信号线;
第三开关元件连接储能元件的第一端与数据电压线之间;第六开关元件连接在驱动放大元件与电致发光元件之间;第三开关元件和第六开关元件的控制端均连接到第三扫描信号线;
第四开关元件的一端连接在储能元件的第二端,另一端接地,控制端连接第一扫描信号线;
驱动放大元件的控制端还与储能元件的第二端相连。
可替换地,所述储能元件为第一电容。
可替换地,所述触控检测模块包括初始子模块、光电感测子模块和输出子模块;其中,所述初始子模块连接在所述光电感测子模块与所述数据电压线之间,并连接第二扫描信号线,用于根据第二扫描信号线的输入对所述光电感测子模块进行初始化;所述光电感测子模块,用于在接收到的光照强度发生变化时产生电信号;所述输出子模块连接在所述光电感测子模块与触控信号读取线之间,并连接第三扫描信号线,用于根据第三扫描信号线的输入将所述光电感测子模块生成的电信号输入到触控信号读取线。
可替换地,所述光电感测子模块包括一个感光晶体管和第二电容,所述第二电容的第一端连接所述初始化子模块,第二端连接所述输出子模块,并与所述感光晶体管相连,用于记录所述感光晶体管的阈值电压。
可替换地,所述感光晶体管为N沟道型晶体管,其源极和栅极连接在所述第二电容的第一端,漏极连接在所述第二电容的第二端。
可替换地,所述初始子模块包括第七开关元件,所述第七开关元件连接在所述第二电容的第一端与所述数据电压线之间,控制端连接第二扫描信号线;所述输出子模块包括第八开关元件,所述第八开关元件连接在所述第二电容的第二端与触控信号读取线之间,控制端连接第三扫描信号线。
可替换地,所述初始子模块还包括第九开关元件,所述第九开关元件的第一端连接所述第二电容的第一端,第二端接地,控制端连接第一扫描信号线。
可替换地,所述驱动放大元件以及各个开关元件具体为P沟道型薄膜场效 应晶体管;驱动放大元件的控制端为薄膜场效应晶体管的栅极,输入端为源极,输出端为漏极;各个开关元件的控制端为薄膜场效应晶体管的栅极,其他两端对应于源极和漏极。
本公开还提供了一种显示装置,其特征在于,包括上述任一项所述的像素电路。
可替换地,所述像素电路在所述显示装置中呈周期性分布。
本公开提供的像素电路和显示装置,在像素电路中集成像素补偿模块和触控检测模块,并使像素补偿模块和触控检测模块共用数据电压线和扫描信号线。这样就能减少信号线路的数目,从而大幅缩减像素间距大小并降低IC成本,从而获得更高的像素密度。
附图说明
图1为本公开实施例的像素电路的结构示意图;
图2为本公开实施例的一种像素电路的电路结构示意图;
图3为本公开实施例的另一种像素电路的电路结构示意图;
图4为本公开实施例的像素电路的驱动方法中关键信号的时序图;
图5a-5d为本公开实施例中的像素电路在不同时序下的电流流向和电压值的示意图;
图6为本公开实施例的显示装置中像素电路与像素的一种位置关系的示意图。
具体实施方式
下面结合附图和实施例,对本公开的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本公开的技术方案,而不能以此来限制本公开的保护范围。
图1示意性地示出了本公开实施例中提供的一种像素电路的结构。如图1所示,该像素电路包括:像素补偿模块100、发光模块200和触控检测模块300。像素补偿模块100与发光模块200相连,并且像素补偿模块100连接第一扫描信号线Scan[1]、第二扫描信号线Scan[2]、第三扫描信号线Scan[3]和第四扫描信号线Em。触控检测模块300连接第二扫描信号线Scan[2]和第三扫描信号线Scan[3]。
像素补偿模块100还连接工作电压线Vdd和数据电压线Vdata,用于根据所 连接的扫描信号线的输入(Scan[1]、Scan[2]、Scan[3]、Scan[4])驱动发光模块200进行发光显示,并且用于消除驱动阈值电压对发光模块200工作电路的影响。
触控检测模块300还连接数据电压线Vdata、触控信号读取线Y-read Line,用于根据所连接的扫描信号线(Scan[2]、Scan[3])的输入来检测触控信号,并将检测到的触控信号输入到触控信号读取线Y-read Line。
本实施例的像素电路在像素电路中集成像素补偿模块和触控检测模块,并使像素补偿模块和触控检测模块共用数据线和扫描信号线。这样就能减少信号线路的数目,从而大幅缩减像素间距大小并降低IC成本,从而获得更高的像素密度。
图2示意性地示出了本公开实施例的一种像素电路的电路结构。如图2所示,发光模块200可以包括电致发光元件OLED,OLED与像素补偿模块100相连。
实际应用中,发光模块可以是现有技术中包括发光二极管(Light Emitting Diode,LED)或有机发光二极管(Organic Light Emitting Diode,OLED)在内的多种电流驱动发光器件。在本公开实施例中,是以OLED为例进行说明的。
例如,如图2所示,像素补偿模块100可以包括:
复位单元110、像素驱动单元120、发光控制单元130。
图2中,复位单元110与像素驱动单元120相连,并连接扫描信号线Scan[1]和Scan[2],用于根据所连接的扫描信号线的输入对像素驱动单元130进行复位。
像素驱动单元120与工作电压线Vdd、数据扫描信号线Vdata以及扫描信号线Scan[2]、Scan[3]、Scan[4]相连,用于根据所连接的扫描信号线的输入对数据电压信号线Vdata输入的数据信号放大,产生用于驱动OLED发光的驱动电流;
发光控制单元130连接在像素驱动单元120与电致发光元件之间,并连接第三扫描信号线Scan[3],用于根据第三扫描信号线Scan[3]的输入将像素驱动单元120产生的驱动电流传送到OLED。
进一步地,如图2所示,在像素补偿模块100中,复位单元110包括第二开关元件T2和第四开关元件T4;像素驱动单元120包括第一开关元件T1、第三 开关元件T3、第五开关元件T5、储能元件C1和驱动放大元件DT;发光控制单元130包括第六开关元件T6。
第二开关元件T2的第一端连接储能元件C1的第一端a1,第二端接地。第五开关元件T5的第一端连接DT的输出端,其第二端连接储能元件C1的第二端b。T2和T5的控制端均连接第二扫描信号线Scan[2]。
第三开关元件T3的第一端连接数据电压线Vdata,第二端连接储能元件C1的第一端a1。第六开关元件T6的第一端连接像素驱动单元DT的输出端,第二端连接电致发光元件L。第三开关元件T3和第六开关元件T6的控制端均连接第三扫描信号线Scan[3]。
第四开关元件T4的第一端连接在储能元件C1的第二端b,第二端接地,控制端连接第一扫描信号线Scan[1];
驱动放大元件DT的控制端还与储能元件C1的第二端b相连。
进一步地,储能元件C1为电容。当然,在实际应用中,根据设计需要也可以采用其他具有储能功能的元件。
进一步地,光电感测子模块320包括一个感光晶体管PTFT和第二电容C2。第二电容C2的第一端a2端连接初始化子模块310,第二端b2端连接输出子模块330。同时,第二电容C2的第一端a2还与感光晶体管PTFT的栅极相连,第二端a2还与感光晶体管PTFT的源极相连,用于记录感光晶体管的阈值电压。
进一步地,如图2或图4所示,感光晶体管PTFT为N沟道型晶体管,其漏极和栅极连接在第二电容的第一端a2端,源极连接在第二电容C2的第二端b2端。当然实际应用中,该感光晶体管也可以采用P沟道型晶体管,相应的连接形式在此不再详细说明。
进一步地,如图2所示,触控检测模块300包括初始子模块310、光电感测子模块320和输出子模块330;其中,初始子模块310的第一端连接数据电压线Vdata,第二端连接光电感测子模块320,控制端连接第二扫描信号线Scan[2],用于根据第二扫描信号线Scan[2]的输入将光电感测子模块320第一端的电压置为数据电压线Vdata上的电压,即对光电感测子模块320的第一端进行初始化。光电感测子模块320用于在接收到的光照强度发生变化时产生电信号。输出子模块330的第一端连接光电感测子模块320的第二端,第二端连接触控信号读取线Y-read Line,控制端连接第三扫描信号线Scan[3],用于根据第三扫描信号线Scan[3]的输入将光电感测子模块320生成的电信号输入到触控信号 读取线Y-read Line。
进一步地,如图2所示,初始子模块310包括第七开关元件T7。第七开关元件T7的第一端连接数据电压线Vdata,第二端连接第二电容C2的第一端a2,其控制端连接第二扫描信号线Scan[2]。输出子模块330包括第八开关元件T8。第八开关元件T8的第一端连接在第二电容C2的第二端,第二端连接触控信号读取线Y-read Line,其控制端连接第三扫描信号线Scan[3]。
图3示意性地示出了本公开实施例的另一种像素电路的电路结构。如图3所示,在图2所示的像素电路的基础上,本实施例的像素电路中初始子模块310还包括第九开关元件T9。第九开关元件T9的第一端连接第二电容C2的第一端a2端(未示出),第二端接地,控制端连接第一扫描信号线Scan[1]。
这样,可以在初始化过程中,通过控制第九开关元件T9导通,使电容C2的a2端接地。之后在电容C2的a2端的电压被置为数据电压线Vdata上的电压。通过这种方式能够使得对电容C2的初始化更快速,更彻底。
不难理解,本公开实施例中,即使初始化子模块310不包含T9,数据电压线Vdata与电容C2的a2端连接时也可以将a2端的电压初始化。
进一步地,像素驱动单元DT以及各个开关元件可以为P沟道型薄膜场效应晶体管。此时,像素驱动单元的控制端为薄膜场效应晶体管的栅极,输入端为源极,输出端为漏极。各个开关元件的控制端为薄膜场效应晶体管的栅极,其他两端对应与源极和漏极。
使用同一类型的晶体管,能够实现工艺流程的统一,从而提高产品的良品率。本领域技术人员可以理解的是,在实际应用中,各个晶体管的类型也可以不完全相同,比如T2、T5、T7、T3、T6、T8可以为N沟道型晶体管,而T3、T6、T8可以为P沟道型晶体管,只要能够使控制端连接到同一扫描信号线的两个开关元件的导通/关断状态相同,即可实现本申请提供的技术方案,本公开的可替换实施方式不应理解为对本公开保护范围的限定。
图4示出本公开实施例的像素电路的驱动方法中关键信号的时序。图5a-5d示意性示出本公开实施例中的像素电路在不同时序下的电流流向和电压值。下面结合图4和图5a-5d对图3中的像素电路的工作原理进行说明。为了方便说明,假设各个开关元件和驱动单元为P沟道型TFT,储能元件为电容,感光晶体管为N沟道型。图4为本公开实施例中提供的像素电路工作时可能的各个扫描信号线的扫描信号在一帧内的时序图。该工作时序可分为四个阶段, 在图4中分别表示为第一阶段W1、第二阶段W2、第三阶段W3,第四阶段W4。在各个阶段中,像素电路的电流流向和电压值分别如图5a、图5b、图5c、图5d所示。
在第一阶段W1,参见图4,此时第一扫描信号线Scan[1]为低电平,其他扫描信号线为高电平。参见图5a,在像素补偿模块中,仅T4导通,此时b1点复位接地,电势为0V,将电容C1中上一帧的电压信号复位。在触控检测模块300中,T9导通,实现对C2和感光晶体管PTFT的复位,复位以后a2点的电势为0。可见,第一扫描信号线Scan[1]相当于像素补偿模块和触控检测模块的复位扫描信号线Reset line。
在第二阶段W2,参见图4,此时第二扫描信号线Scan[2]和Em为低电平,其他扫描信号线为高电平。参见图5b,在像素补偿模块中,T1、T2、T5导通,T3、T4、T6断开。由于之前b1点接地,所以驱动DT开启,Vdd信号通过T1→DT→T5开始对b1点进行充电,一直将b1点充电到Vdd–Vth为止(满足DT栅源两极之间的压差为Vth)。该过程中,由于a1点接地电位始终为0,所以当充电完毕以后,b1点的电位会一直维持在Vdd–Vth。另外,由于T6的关闭使得电流不会通过OLED,间接降低了OLED的寿命损耗。
在触控检测模块中,参见图5b中,T8和T9关闭,T7导通。此时数据电压线Vdata将电容C2的a2端的电压置为数据电压Vdata上的电压(假设为Vdata)。
在第三阶段W3,如图4所示,仅Scan[3]为低电平,其他扫描信号线为高电平。如图5c所示,在像素补偿模块中,此时T3、T6导通,其他TFT断开。此时a1点电势由原来的0V→Vdata,而b1点为浮接状态,因此要维持a1、b1两点原来的压差(Vdd-Vth),DT的栅极b1点电势会发生等压跳变,b1点电势跳变变为Vdd–Vth+Vdata固定不变,并为下一阶段做准备。
而在触控检测模块中,参见图5c,T7和T9关断,T8导通,在该阶段的初始时刻,由于电容C2的a2端的电压为高电平Vdata,则PTFT会导通,电容C2经过PTFT向触控信号读取线Y-read line放电,直到a2端的电压降至Vth’(Vth’为PTFT的阈值电压)。在此过程中,如果有光照射到感光晶体管PTFT,PTFT会产生光敏电流,从而影响触控信号读取线Y-read line读取到的电流信号。这样,通过将采集到的电流信号放大后与没有进行触控时采集到的电流信号的放大值进行比较,即可判断是否在该点有触控发生。其中,Y方向的信号由Y-Read Line采集,而Scan[3]作为横向(X方向)扫描信号就有采集功能(因 为仅在Scan[3]为低电平的时刻能够采集到Y方向的信号,且在特定的时刻特定的像素中的Scan[3]为低电平信号,这样就能够根据采集到的Y方向信号的时刻确定X坐标)。这样就确定了手指触摸位置的X、Y坐标。此过程只要手指参与触控(光照强度发生变化),随时都可以采集到坐标位置。
在第四阶段W4,如图4所示,Em和Scan[3]为低电平,其他扫描信号线为高电平。如图5d所示,在像素补偿模块中,此时T1、T3、T6导通,其他TFT断开。Vdd沿T1→DT→T6向OLED供电,使得OLED开始发光。
在触控检测模块中,此时仅T8导通,其他开关TFT断开。如果此时有触控发生,相应的电流信号仍能被Y-read line读取到,从而确定触摸点的位置。
由TFT饱和电流公式可以得到:
IOLED=K(VGS–Vth)2=K[Vdd–(Vdd–Vth+Vdata)–Vth]2
=K(Vdata)2
由上式中可以看到此时工作电流IOLED已经不受Vth的影响,只与Vdata有关。彻底解决了驱动TFT由于工艺制程及长时间的操作造成阈值电压(Vth)漂移的问题,消除其对IOLED的影响,保证OLED的正常工作。
本公开实施例中还提供了一种显示装置,包括上述任一实施例中的像素电路。
这里的显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可替换地,所述的像素电路在显示装置中呈周期性分布。实际应用中,并不需要在每个像素对应的位置都采用本公开实施例提供的像素电路(比如三个像素中设置一个本公开实施例提供的像素电路,在其他像素中设置普通的像素电路),同样能够实现对触控信号的检测。
图6示意性地示出了本公开实施例的显示装置中像素电路与像素的一种位置关系。如图6所示,作为举例说明,为每9(3*3)个像素设置一个本公开实施例中提所供的像素电路(PU)。
以上所述仅是本公开的示例性实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
本申请要求于2014年5月30日递交的中国专利申请第201410240360.9号的优先权,在此全文引用该中国专利申请公开的内容作为本申请的一部分。

Claims (13)

  1. 一种像素电路,包括:
    像素补偿模块,连接第一扫描信号线、第二扫描信号线、第三扫描信号线和第四扫描信号线;
    发光模块,与所述像素补偿模块相连;
    触控检测模块,连接第二扫描信号线和第三扫描信号线,还连接工作电压线和数据电压线,用于根据所连接的扫描信号线的输入驱动所述发光模块进行发光显示,并且用于消除驱动阈值电压对发光模块工作电路的影响,
    其中,所述触控检测模块还连接数据电压线、触控信号读取线,用于根据所连接的扫描信号线的输入检测触控信号,并将检测到的触控信号输入到触控信号读取线。
  2. 如权利要求1所述的像素电路,其中,所述触控检测模块包括:
    光电感测子模块,用于在接收到的光照强度发生变化时产生电信号;
    初始子模块,连接所述第二扫描信号线,并连接在所述光电感测子模块与所述数据电压线之间,用于根据所述第二扫描信号线的输入对所述光电感测子模块进行初始化;和
    输出子模块,连接在所述光电感测子模块与触控信号读取线之间,并连接第三扫描信号线,用于根据第三扫描信号线的输入将所述光电感测子模块生成的电信号输入到触控信号读取线。
  3. 如权利要求1或2所述的像素电路,其中,所述像素补偿模块包括:
    像素驱动单元,与工作电压线、数据扫描信号线以及第二扫描信号线、第三扫描信号线、第四扫描信号线相连,用于根据所连接的扫描信号线的输入对数据电压信号线输入的数据信号放大,产生用于驱动电致发光元件发光的驱动电流;
    复位单元,与所述像素驱动单元相连,并连接第一扫描信号线和第二扫描信号线,用于根据所连接的扫描信号线的输入对所述像素驱动单元进行复位;
    发光控制单元,连接在所述像素驱动单元与所述电致发光元件之间,并连接第三扫描信号线,用于根据第三扫描信号线的输入将像素驱动单元产生的驱动电流导通到电致发光元件。
  4. 如权利要求3所述的像素电路,其中,所述复位单元包括第二开关元件和第四开关元件;所述像素驱动单元包括第一开关元件、第三开关元件、第五开关元件、储能元件、驱动放大元件;所述发光控制单元包括第六开关元件;
    第一开关元件连接在工作电压线与驱动放大元件的输入端之间,控制端连接第四扫描信号线;
    第二开关元件连接在接地线与储能元件的第一端之间,第五开关元件连接在储能元件的第二端与驱动放大元件的输出端之间;第二开关元件和第五开关元件的控制端均连接第二扫描信号线;
    第三开关元件连接储能元件的第一端与数据电压线之间;第六开关元件连接在驱动放大元件与电致发光元件之间;第三开关元件和第六开关元件的控制端均连接到第三扫描信号线;
    第四开关元件的一端连接在储能元件的第二端,另一端接地,控制端连接第一扫描信号线;
    驱动放大元件的控制端还与储能元件的第二端相连。
  5. 如权利要求4所述的像素电路,其中,
    所述储能元件为第一电容。
  6. 如权利要求1-5之一所述的像素电路,其中,
    所述发光模块包括电致发光元件,所述电致发光元件与所述像素补偿模块相连。
  7. 如权利要求2-6之一所述的像素电路,其中,
    所述光电感测子模块包括一个感光晶体管和第二电容,所述第二电容的第一端连接所述初始化子模块,第二端连接所述输出子模块,并与所述感光晶体管相连,用于记录所述感光晶体管的阈值电压。
  8. 如权利要求7所述的像素电路,其中,所述感光晶体管为N沟道型晶体管,其源极和栅极连接在所述第二电容的第一端,漏极连接在所述第二电容的第二端。
  9. 如权利要求8所述的像素电路,其中,所述初始子模块包括第七开关元件,所述第七开关元件连接在所述第二电容的第一端与所述数据电压线之间,控制端连接第二扫描信号线;所述输出子模块包括第八开关元件,所述第八开关元件连接在所述第二电容的第二端与触控信号读取线之间,控制端连接第三 扫描信号线。
  10. 如权利要求9所述的像素电路,其中,所述初始子模块还包括第九开关元件,所述第九开关元件的第一端连接所述第二电容的第一端,第二端接地,控制端连接第一扫描信号线。
  11. 如权利要求9或10所述的像素电路,其中,所述驱动放大元件以及各个开关元件具体为P沟道型薄膜场效应晶体管;驱动放大元件的控制端为薄膜场效应晶体管的栅极,输入端为源极,输出端为漏极;各个开关元件的控制端为薄膜场效应晶体管的栅极,其他两端对应于源极和漏极。
  12. 一种显示装置,其中,包括如权利要求1-11任一项所述的像素电路。
  13. 如权利要求12所述的显示装置,其中,所述像素电路在所述显示装置中呈周期性分布。
PCT/CN2014/088683 2014-05-30 2014-10-15 像素电路和显示装置 WO2015180373A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14864997.3A EP3154050B1 (en) 2014-05-30 2014-10-15 Pixel circuit and display device
US14/649,841 US9720535B2 (en) 2014-05-30 2014-10-15 Pixel circuit and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410240360.9 2014-05-30
CN201410240360.9A CN103996377B (zh) 2014-05-30 2014-05-30 像素电路和显示装置

Publications (1)

Publication Number Publication Date
WO2015180373A1 true WO2015180373A1 (zh) 2015-12-03

Family

ID=51310523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088683 WO2015180373A1 (zh) 2014-05-30 2014-10-15 像素电路和显示装置

Country Status (4)

Country Link
US (1) US9720535B2 (zh)
EP (1) EP3154050B1 (zh)
CN (1) CN103996377B (zh)
WO (1) WO2015180373A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115240586A (zh) * 2022-06-27 2022-10-25 惠科股份有限公司 显示驱动电路及显示装置
US11941210B2 (en) * 2021-12-27 2024-03-26 Innolux Corporation Sensing circuit improving magnification in pixel circuit and reducing influence of shift in threshold voltage preliminary class

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996376B (zh) * 2014-05-14 2016-03-16 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
CN104036723B (zh) * 2014-05-26 2016-04-06 京东方科技集团股份有限公司 像素电路和显示装置
CN103996377B (zh) 2014-05-30 2016-07-06 京东方科技集团股份有限公司 像素电路和显示装置
CN104217677B (zh) 2014-07-30 2016-08-24 京东方科技集团股份有限公司 触控显示电路及显示装置
CN104217679B (zh) * 2014-08-26 2016-08-31 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN104252844B (zh) * 2014-09-23 2017-04-05 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104282265B (zh) * 2014-09-26 2017-02-01 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
US10026771B1 (en) 2014-09-30 2018-07-17 Apple Inc. Image sensor with a cross-wafer capacitor
CN104393024B (zh) * 2014-12-03 2017-04-12 京东方科技集团股份有限公司 Oled像素结构及其制备方法、紫外光检测方法和装置
CN104835449B (zh) * 2015-05-04 2017-05-17 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN105118438B (zh) * 2015-09-21 2017-07-25 京东方科技集团股份有限公司 像素驱动电路、方法、像素电路和显示装置
CN107492351B (zh) * 2016-06-13 2019-12-10 上海和辉光电有限公司 显示装置、像素驱动电路及其驱动方法
CN107180611A (zh) 2017-06-23 2017-09-19 京东方科技集团股份有限公司 指纹识别及像素驱动电路以及具有该电路的显示装置
CN107274831A (zh) 2017-08-08 2017-10-20 京东方科技集团股份有限公司 显示装置以及具有光学触控功能的像素驱动电路和方法
US10423286B1 (en) * 2018-03-09 2019-09-24 Int Tech Co., Ltd. Circuit for fingerprint sensing and electronic device comprising the circuit
US11073712B2 (en) * 2018-04-10 2021-07-27 Apple Inc. Electronic device display for through-display imaging
CN110473497B (zh) * 2018-05-09 2021-01-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN109872682A (zh) * 2019-03-28 2019-06-11 武汉华星光电半导体显示技术有限公司 像素补偿电路及显示装置
WO2020215281A1 (zh) * 2019-04-25 2020-10-29 京东方科技集团股份有限公司 驱动电路、阵列基板、显示装置及驱动方法
CN112397037B (zh) * 2019-08-16 2022-12-30 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板
CN111722756A (zh) * 2020-06-29 2020-09-29 南京中电熊猫液晶显示科技有限公司 一种内嵌触控模组及其驱动方法、触控面板
CN112289256B (zh) * 2020-10-26 2022-07-12 武汉华星光电半导体显示技术有限公司 一种像素电路、显示面板及其光学式触控识别方法
US11619857B2 (en) 2021-05-25 2023-04-04 Apple Inc. Electrically-tunable optical filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325342A (zh) * 2013-06-26 2013-09-25 京东方科技集团股份有限公司 一种amoled像素电路及其驱动方法、显示装置
CN103325341A (zh) * 2013-06-26 2013-09-25 京东方科技集团股份有限公司 一种amoled像素电路及其驱动方法、显示装置
CN103413524A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN203503280U (zh) * 2013-08-26 2014-03-26 北京京东方光电科技有限公司 触控显示驱动电路和显示装置
CN103996377A (zh) * 2014-05-30 2014-08-20 京东方科技集团股份有限公司 像素电路和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177709A (ja) * 2001-12-13 2003-06-27 Seiko Epson Corp 発光素子用の画素回路
CN101763822B (zh) * 2006-12-26 2012-10-03 乐金显示有限公司 有机发光二极管板
KR101074795B1 (ko) * 2009-07-03 2011-10-19 삼성모바일디스플레이주식회사 광 센싱 회로, 이를 포함하는 터치 패널, 및 광 센싱 회로의 구동 방법
TWI421751B (zh) * 2009-08-25 2014-01-01 Au Optronics Corp 觸控裝置、顯示器基板、液晶顯示器以及光感測器之操作方法
CN103246396B (zh) * 2013-04-18 2016-03-30 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103383837B (zh) * 2013-07-09 2015-07-01 京东方科技集团股份有限公司 一种触摸显示驱动电路、驱动方法及显示装置
CN103456267B (zh) * 2013-08-26 2015-12-02 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
CN104036723B (zh) * 2014-05-26 2016-04-06 京东方科技集团股份有限公司 像素电路和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325342A (zh) * 2013-06-26 2013-09-25 京东方科技集团股份有限公司 一种amoled像素电路及其驱动方法、显示装置
CN103325341A (zh) * 2013-06-26 2013-09-25 京东方科技集团股份有限公司 一种amoled像素电路及其驱动方法、显示装置
CN103413524A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN203503280U (zh) * 2013-08-26 2014-03-26 北京京东方光电科技有限公司 触控显示驱动电路和显示装置
CN103996377A (zh) * 2014-05-30 2014-08-20 京东方科技集团股份有限公司 像素电路和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3154050A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11941210B2 (en) * 2021-12-27 2024-03-26 Innolux Corporation Sensing circuit improving magnification in pixel circuit and reducing influence of shift in threshold voltage preliminary class
CN115240586A (zh) * 2022-06-27 2022-10-25 惠科股份有限公司 显示驱动电路及显示装置
CN115240586B (zh) * 2022-06-27 2023-07-14 惠科股份有限公司 显示驱动电路及显示装置

Also Published As

Publication number Publication date
EP3154050B1 (en) 2023-05-03
CN103996377A (zh) 2014-08-20
CN103996377B (zh) 2016-07-06
US9720535B2 (en) 2017-08-01
EP3154050A1 (en) 2017-04-12
EP3154050A4 (en) 2018-02-28
US20160266688A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2015180373A1 (zh) 像素电路和显示装置
US10068950B2 (en) Pixel circuit, driving method thereof, and display apparatus
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
EP3159882B1 (en) Pixel circuit, driving method therefor and display device
WO2016015392A1 (zh) 触控显示电路及显示装置
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
EP3163561B1 (en) Pixel circuit and drive method therefor, organic light-emitting display panel and display device
WO2016173121A1 (zh) 一种像素电路及其驱动方法、显示装置
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016045246A1 (zh) 像素电路及其驱动方法、发光显示面板及显示装置
WO2015180317A1 (zh) 像素电路和显示装置
WO2015184726A1 (zh) 触控显示驱动电路和触控显示装置
CN103295525A (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015196730A1 (zh) 像素电路及其驱动方法和显示装置
US9778800B2 (en) Pixel circuit, display panel and display apparatus
WO2015014146A1 (zh) 像素电路、有机电致发光显示面板及显示装置
WO2015192528A1 (zh) 像素电路和显示装置
CN104091564A (zh) 一种像素电路、有机电致发光显示面板及显示装置
US11106295B2 (en) Touch-control pixel-driving circuit and method thereof, a touch-control display apparatus
WO2016004713A1 (zh) 像素电路和显示装置
WO2016004693A1 (zh) 像素电路及其驱动方法和显示装置
CN203250518U (zh) 像素电路、有机发光显示面板及显示装置
CN203870951U (zh) 像素电路、有机发光显示面板及显示装置
CN203858846U (zh) 像素电路、有机发光显示面板及显示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014864997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14649841

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE