WO2015014146A1 - 像素电路、有机电致发光显示面板及显示装置 - Google Patents

像素电路、有机电致发光显示面板及显示装置 Download PDF

Info

Publication number
WO2015014146A1
WO2015014146A1 PCT/CN2014/077615 CN2014077615W WO2015014146A1 WO 2015014146 A1 WO2015014146 A1 WO 2015014146A1 CN 2014077615 W CN2014077615 W CN 2014077615W WO 2015014146 A1 WO2015014146 A1 WO 2015014146A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
switching transistor
transistor
sub
terminal
Prior art date
Application number
PCT/CN2014/077615
Other languages
English (en)
French (fr)
Inventor
周全国
祁小敬
杨富成
季斌
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/416,215 priority Critical patent/US9373283B2/en
Publication of WO2015014146A1 publication Critical patent/WO2015014146A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • Pixel circuit organic electroluminescence display panel and display device
  • Embodiments of the present invention relate to a pixel circuit, an organic electroluminescence display panel, and a display device. Background technique
  • OLED Organic Light Emitting Diode
  • the circuits generally used for implementing the display driving and the touch driving are separately designed, that is, one set of circuits is used to implement the touch function, and another set of circuits is used to implement the OLED.
  • the display driving function, and separately setting the display driving circuit and the touch circuit have the disadvantages of high manufacturing cost, heavy display, and relatively thick display. Summary of the invention
  • the embodiment of the present invention provides a pixel circuit, including: a light emitting device, a light sensing device, a driving control sub-module, a data writing sub-module, an illumination control sub-module, and a touch detection sub-module; wherein the driving control sub-module a first end of the data writing sub-module and a first end of the photosensor, respectively, and a second end of the driving control sub-module and a first end of the light-emitting device The third end of the data control sub-module is connected to the first end of the illumination control sub-module and the first end of the touch detection sub-module;
  • the third end of the data writing sub-module is connected to the data signal end, the fourth end of the data writing sub-module is connected to the scanning signal end, and the fifth end of the data writing sub-module is respectively associated with the first reference a signal end, a second end of the light emitting device, and a second end of the light emission control submodule, wherein the sixth end of the data writing submodule is connected to the third end of the light emitting control submodule;
  • the data writing submodule transmits the data signal of the data signal end to the driving control submodule;
  • the fourth end of the illuminating control sub-module is connected to the second reference signal end and the second end of the touch detection sub-module, and the fifth end of the illuminating control sub-module is connected to the illuminating control signal end;
  • the illuminating control sub-module controls the driving control sub-module to drive the illuminating device to emit light under the control of the illuminating control signal end;
  • the third end of the touch detection sub-module is connected to the second end of the photosensor, and the fourth end of the touch detection sub-module is connected to the touch signal read end, and the touch detection is performed.
  • the fifth end of the sub-module is connected to the touch control signal end; the touch detection sub-module controls the drive control sub-module to output to the touch signal read end under the control of the touch control signal end
  • the touch detection signal decreases as the light intensity of the photosensitive device is increased.
  • An organic electroluminescent display panel includes a pixel circuit provided by an embodiment of the invention.
  • a display device includes the organic electroluminescent display panel provided by the embodiment of the invention.
  • a pixel circuit, an organic electroluminescence display panel and a display device include: a light emitting device, a photosensitive device, a driving control submodule, a data writing submodule, an illumination control submodule, and a touch a detecting submodule; wherein the first end of the driving control submodule is respectively connected to the first end of the data writing submodule and the first end of the photosensor, and the second end is respectively associated with the first end of the light emitting device and data writing The second end of the submodule is connected, and the third end is respectively connected to the first end of the illumination control submodule and the first end of the touch detection submodule; the third end of the data writing submodule is connected to the data signal end, The fourth end is connected to the scanning signal end, and the fifth end is respectively connected to the first reference signal end, the second end of the light emitting device and the second end of the illumination control submodule, and the sixth end is connected to the third end of the illumination control submodule;
  • the fourth end is connected to
  • the data writing sub-module When the data writing sub-module is turned on, the data writing sub-module transmits the data signal of the data signal end to the driving control sub-module; when the lighting control sub-module is turned on, the lighting control sub-module controls the driving controller.
  • the module drives the light emitting device to emit light to realize the display function; when the touch detection sub-module is turned on, the touch detection sub-module controls the driving control sub-module to output the touch detection signal to the touch signal reading end, and the touch detection The signal is reduced as the light intensity of the photosensitive device is increased, and the touch detection function is realized.
  • the pixel circuit integrates the touch and display functions, which can save the manufacturing cost of separately setting the display driving circuit and the touch circuit, and can also reduce the thickness of the display panel.
  • FIG. 1 is a schematic structural diagram of a pixel circuit according to an embodiment of the present invention.
  • FIGS. 3a to 3d are circuit timing diagrams of a pixel circuit according to an embodiment of the present invention.
  • a pixel circuit provided by the embodiment of the present invention includes: a light emitting device D1, a photosensitive device PI, a driving control sub-module 1, a data writing sub-module 2, an illumination control sub-module 3, and a touch detection Submodule 4.
  • the first end 1a of the drive control sub-module 1 is connected to the first end 2a of the data writing sub-module 2 and the first end x1 of the photosensitive device P1, respectively, and the second end lb of the driving control sub-module 1 is respectively associated with the light-emitting device D1.
  • the first end yl is connected to the second end 2b of the data writing sub-module 2
  • the third end lc of the driving control sub-module 1 is respectively connected with the first end 3a of the illumination control sub-module 3 and the touch detection sub-module 4 One end 4a is connected.
  • the third end 2c of the data writing sub-module 2 is connected to the data signal end Data
  • the fourth end 2d of the data writing sub-module 2 is connected to the scanning signal end Scan
  • the fifth end 2e of the data writing sub-module 2 Connected to the first reference signal end Ref1, the second end y2 of the illuminating device D1, and the second end 3b of the illuminating control sub-module 3, respectively, the sixth end 2f of the data writing sub-module 2 and the third end of the illuminating control sub-module 3
  • the terminal 3c is connected; under the control of the scanning signal terminal Scan, the data writing sub-module 2 transmits the data signal of the data signal terminal Data to the driving control sub-module 1.
  • the fourth end 3d of the illuminating control sub-module 3 is connected to the second reference end Ref2 and the second end 4b of the touch detection sub-module 4, and the fifth end 3e of the illuminating control sub-module 3 is connected to the illuminating control signal end Emission.
  • the illumination control sub-module 3 controls the drive control sub-module 1 to drive the illumination device D1 to emit light.
  • the third end 4c of the touch detection sub-module 4 is connected to the second end x2 of the photosensitive device P1, and the fourth end 4d of the touch detection sub-module 4 is connected to the touch signal reading end sensor.
  • the fifth end 4e of the module 4 is connected to the touch control signal terminal Select; under the control of the touch control signal terminal Select, the touch detection sub-module 4 controls the drive control sub-module 1 to output the touch to the touch signal reading end sensor.
  • the detection detection signal, the touch detection signal decreases as the light intensity of the photosensitive device P1 is increased.
  • the pixel circuit provided by the embodiment of the invention includes: a light emitting device D1, a photosensitive device P1, a driving control sub-module 1, a data writing sub-module 2, an illumination control sub-module 3, and a touch detection sub-module 4.
  • the data writing sub-module 2 When the data writing sub-module 2 is turned on, the data writing sub-module 2 transmits the data signal of the data signal end Data to the driving control sub-module 1; when the lighting control sub-module 3 is turned on, the lighting control sub-module 3 controls the driving control.
  • the sub-module 1 drives the illumination device D1 to emit light to realize the display function.
  • the touch detection sub-module 4 When the touch detection sub-module 4 is turned on, the touch detection sub-module 4 controls the driving control sub-module 1 to output the touch detection to the touch signal reading end sensor.
  • the measurement signal, the touch detection signal decreases as the light intensity of the photosensitive device P1 increases, and the touch detection function is realized.
  • the pixel circuit integrates touch and display functions, which saves the manufacturing cost of separately setting the display driving circuit and the touch driving circuit, and can also reduce the thickness of the display panel.
  • the first end la and the second end lb of the drive control sub-module 1 are signal input ends, and the third end lc of the drive control sub-module 1 is a signal output end;
  • the first end 2a and the second end 2b of the data writing sub-module 2 are signal output ends, and the third end 2c, the fourth end 2d, the fifth end 2e and the sixth end 2f of the data writing sub-module 2 are signal inputs. End
  • the first end 3a, the second end 3b and the fifth end 3e of the illuminating control sub-module 3 are signal input ends, and the third end 3c and the fourth end 3d of the illuminating control sub-module 3 are signal output ends;
  • the first end 4a and the fifth end 4e of the touch detection sub-module 4 are signal input ends, and the fourth end 4d of the touch detection sub-module 4 is a signal output end;
  • the second end of the touch detection sub-module 4 4b is a signal input end, and the third end 4c is a signal output end, or the second end 4b of the touch detection sub-module 4 is a signal output end, and the third end 4c is a signal input end.
  • the driving control sub-module 1 in the above pixel circuit provided by the embodiment of the present invention may specifically include: a driving transistor T0, wherein, as shown in FIG. 1, the gate of the driving transistor TO is the first end of the driving control sub-module 1 The drain of the driving transistor TO is the second terminal lb of the driving control sub-module 1, and the source of the driving transistor TO drives the third terminal lc of the control sub-module 1.
  • the drive control sub-module 1 can also be other structures capable of implementing its drive control function, which is not limited herein.
  • the light emitting device D1 in the above pixel circuit provided by the embodiment of the present invention is generally an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • the light-emitting device D1 realizes the light-emitting display under the action of the driving transistor TO on-state current.
  • the signal of the first reference signal end Refl is a high level DC signal
  • the signal of the second reference signal end Ref2 is a low level DC signal
  • the anode of the OLED is connected to the first reference signal end Refl.
  • the operation of the above pixel circuit provided by the embodiment of the present invention is divided into two stages of touch and display.
  • the above pixel circuit can perform the work of the touch phase first, and then perform the work of the display phase; or perform the work of the display phase first, and then perform the work of the touch phase, which is not limited herein.
  • the first stage the data writing phase, in which the pixel circuit implements data writing to the gate of the driving transistor TO.
  • the illumination control sub-module 3 and the touch detection sub-module 4 are in a closed state
  • the data writing sub-module 2 is in an on state
  • the data signal outputted by the data signal end Data is loaded to the drive through the data writing sub-module 2.
  • the gate of the transistor TO is the data writing phase, in which the pixel circuit implements data writing to the gate of the driving transistor TO.
  • the second stage the touch detection phase, in which the data writing sub-module 2 and the illumination control sub-module 3 are in a closed state, the touch detection sub-module 4 is in an on state, and the photo-sensitive device P1 is turned on.
  • One end xl is connected to the gate of the driving transistor TO, and the touch detection sub-module 4 controls the driving transistor T0 to output a touch detection signal to the touch signal reading end sensor, and the touch detection signal is irradiated
  • the light intensity of the photosensitive device is increased and reduced, and the detection of the touch is realized.
  • the first stage the data writing phase, in which the pixel circuit implements data writing to the gate of the driving transistor TO.
  • the illumination control sub-module 3 and the touch detection sub-module 4 are in a closed state
  • the data writing sub-module 2 is in an on state
  • the data signal outputted by the data signal end Data is loaded to the drive through the data writing sub-module 2.
  • the gate of the transistor TO is the data writing phase, in which the pixel circuit implements data writing to the gate of the driving transistor TO.
  • the second stage the illuminating driving stage, in which the data writing sub-module 2 and the touch detection sub-module 4 are in a closed state, the illuminating control sub-module 3 is in an on state, and the first end yl and driving of the illuminating device D1
  • the drain of the transistor TO is connected, and the light-emitting control sub-module 3 controls the driving control sub-module 1 to drive the light-emitting device D1 to emit light, thereby realizing the display function.
  • the data writing sub-module 2 may include: a first switching transistor T1, a second switching transistor ⁇ 2, a third switching transistor ⁇ 3, and Capacitor Cst.
  • the gate of the first switching transistor T1 is connected to the scanning signal terminal Scan, the source of the first switching transistor T1 is connected to the data signal terminal Data, and the drain of the first switching transistor T1 is respectively connected to the gate of the driving transistor TO and the capacitor Cst.
  • the first end zl is connected;
  • the gate of the second switching transistor T2 is connected to the scanning signal terminal Scan, the source of the second switching transistor T2 is connected to the first reference signal terminal Refl, and the drain of the second switching transistor T2 is connected to the drain of the driving transistor TO;
  • the gate and the source of the third switching transistor T3 are respectively connected to the drain of the driving transistor TO, and the drain of the third switching transistor T3.
  • the third switching transistor T3 is a P-type transistor, as shown in FIG. 2c and FIG. 2d, the gate and the source of the third switching transistor T3 are respectively connected to the second end z2 of the capacitor
  • the drain of the third switching transistor T3 is connected to the drain of the driving transistor TO.
  • the gate and the source of the third switching transistor T3 are connected, the purpose of which is to make the third switching transistor T3 form a diode structure, and the third switching transistor T3 functioning as a diode compared with the direct diode.
  • the various components can be fabricated in the same layer as the other components of the switching transistors in the pixel circuit, which simplifies the fabrication process and reduces manufacturing costs.
  • the first switching transistor T1 and the second switching transistor T2 may be P-type transistors or N-type transistors, which are not limited herein.
  • the first switching transistor T1 and the second switching transistor T2 are N-type transistors, when the scanning signal terminal Scan outputs a high-level scanning signal, the first switching transistor T1 and the second switching transistor T2 are turned on; When the switching transistor T1 and the second switching transistor T2 are P-type transistors, the first switching transistor T1 and the second switching transistor T2 are turned on when the scanning signal terminal Scan outputs a low-level scanning signal.
  • the threshold voltage of the third switching transistor T3 and the driving transistor TO need to be the same, that is, the third switching transistor T3 and the driving transistor TO need to be N-type transistors at the same time, and the third The structure of the switching transistor T3 and the driving transistor TO are the same; or, the third switching transistor T3 and the driving transistor TO need to be P-type transistors at the same time, and the third switching transistor T3 and the driving transistor TO have the same structure.
  • the threshold voltage ⁇ ⁇ is a positive value
  • the data signal end Data is The data signal in the data writing phase
  • the third switching transistor T3 and the driving transistor TO are P-type transistors
  • the threshold voltage ⁇ ⁇ is a negative value
  • the data signal terminal Data is in the data writing phase.
  • the data signal should be a low level signal.
  • the photosensor P1 may specifically be a photodiode PD ( Photo Diode );
  • the cathode of the photodiode PD is connected to the gate of the driving transistor TO; when the third switching transistor T3 and the driving transistor TO are P-type transistors, as shown in FIG. 2c and FIG. 2d, the anode and the driving of the photodiode PD The gates of the transistors TO are connected.
  • the illuminating control sub-module 3 may include: a fourth switching transistor T4 and a fifth switching transistor T5; wherein, the fourth switching transistor T4 The gate of the fourth switching transistor T4 is connected to the first reference signal terminal Refl, and the drain of the fourth switching transistor T4 is connected to the second terminal z2 of the capacitor Cst;
  • the gate of the fifth switching transistor T5 is connected to the emission control signal terminal Emission, the source of the fifth switching transistor T5 is connected to the third terminal of the driving transistor T0, and the drain of the fifth switching transistor T5 is connected.
  • the pole is connected to the second reference signal terminal R e f2 .
  • the fourth switching transistor T4 and the fifth switching transistor T5 may be N-type transistors, as shown in FIGS. 2a and 2d; the fourth switching transistor T4 and the fifth switching transistor T5 may also be P-type transistors, as shown in FIG. 2b and As shown in FIG. 2c, it is not limited herein.
  • the fourth switching transistor T4 and the fifth switching transistor T5 are N-type transistors
  • the fourth switching transistor T4 and the fifth switch The transistor T5 is turned on; when the fourth switching transistor T4 and the fifth switching transistor T5 are P-type transistors, when the emission control signal terminal Emission outputs a low-level emission control signal, the fourth switching transistor T4 and the fifth switching transistor T5 will open.
  • the touch detection sub-module 4 may include: a sixth switching transistor T6 and a seventh switching transistor T7; wherein, the sixth switch The gate of the transistor T6 is connected to the touch control signal terminal Select, the source of the sixth switching transistor T6 is connected to the third terminal of the driving control sub-module 1, that is, the source of the driving transistor TO, and the drain of the sixth switching transistor T6 is The touch signal reading end sensor is connected;
  • the gate of the seventh switching transistor T7 is connected to the touch control signal terminal Select, the source of the seventh switching transistor T7 is connected to the second end of the photosensitive device P1, and the drain of the seventh switching transistor T7 and the second reference signal terminal Ref2 Connected.
  • the sixth switching transistor T6 and the seventh switching transistor T7 may be N-type transistors, as shown in FIGS. 2a and 2d; the sixth switching transistor T6 and the seventh switching transistor T7 may also be P-type crystals, as shown in FIG. 2b and As shown in FIG. 2c, it is not limited herein.
  • the sixth switching transistor T6 and the seventh switching transistor T7 are N-type transistors
  • the touch control signal terminal Select outputs a high-level touch control signal
  • the sixth switching transistor T6 and the The seventh switching transistor T7 is turned on
  • the sixth switching transistor T6 and the seventh switching transistor T7 are P-type transistors
  • the touch control signal terminal Select outputs a low-level touch control signal
  • the sixth switching transistor T6 and The seventh switching transistor T7 is turned on.
  • the driving transistor and the switching transistor may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS, Metal Oxide).
  • TFT thin film transistor
  • MOS metal oxide semiconductor field effect transistor
  • Semiconductor is not limited here.
  • source and drain of these transistors can be interchanged without specific distinction. The principle is explained in detail.
  • the voltage value of the first reference signal terminal Refl is a high level V DD
  • the voltage value of the second reference signal terminal Ref2 is a low level Vss, typically zero volts.
  • the driving transistor TO and the third transistor T3 are N-type transistors, and the first switching transistor T1, the second switching transistor ⁇ 2, the fourth switching transistor ⁇ 4, the fifth switching transistor ⁇ 5, the sixth switching transistor ⁇ 6, and the The seven-switch transistor ⁇ 7 is also a ⁇ -type transistor.
  • the terminal voltage of the scanning signal to the Vscan voltage, the data signal terminal is V Data
  • the emission control signal terminal voltage is V Emissi.
  • the voltage of the touch control signal terminal is V Selec
  • t the voltage of the second end of the capacitor is V A
  • the voltage of the gate of the driving transistor TO when touched is V B1
  • the gate of the driving transistor TO is without touch The voltage is V B2 .
  • V Scan of the scanning signal end and V Data of the data signal end are at a high level, and V Emissi of the light-emitting control signal end.
  • n and V Selec touch control signal terminal; t is low, then, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, the sixth switching transistor The ⁇ 6 and the seventh switching transistor ⁇ 7 are in a closed state, and the OLED is in a short-circuited state; the voltage V DD of the first reference signal terminal Ref1 directly flows into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that The three transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second end z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is ⁇ , and the voltage value of the second terminal ⁇ 2 of the capacitor Cs
  • the first end z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • the photodiode PD is in an off state, and the gate voltages V B1 and V B2 of the driving transistor TO are both V Data regardless of whether or not the photodiode PD is touched.
  • the touch control signal terminal V Sele (; t is a high level, the V S m of the scanning signal end, the V Data of the data signal end, and the light emission control signal V Emissi at the end.
  • n is low
  • the first switching transistor T1, the second switching transistor ⁇ 2, the fourth switching transistor ⁇ 4, and the fifth switching transistor ⁇ 5 are in a closed state
  • the sixth switching transistor ⁇ 6 and The seventh switching transistor T7 is in an on state, and the photodiode PD and the second reference signal terminal Ref2 are in a connected state.
  • the photodiode PD has no light, there is a touch, that is, the photodiode PD is in an off state, and the gate voltage V B1 of the driving transistor TO remains V Data - Vth. . If the photodiode PD is under illumination, there is no touch. Under the action of the photoelectric effect, the photodiode generates photo-generated carriers to form a photocurrent, which reduces the charge on the capacitor Cst, resulting in the voltage of the first end z1 of the capacitor. The falling, which in turn causes the gate voltage V B2 of the input driving transistor TO to drop, causes the touch detection signal outputted by the driving transistor TO and outputted to the touch signal reading terminal Sensor via the sixth switching transistor T6 to become smaller.
  • the size of the touch detection signal is related to the intensity of the light that is incident on the photodiode. The greater the light intensity, the smaller the touch detection signal.
  • the scan signal terminal V Scan and the data signal Data terminal is high, the light emission control signal V Emissi end. n and a control signal terminal V Seleet touch is low at this time, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, and sixth switching transistors ⁇ 6
  • the seventh switching transistor ⁇ 7 is in an on state, and the OLED is in a short-circuited state;
  • the voltage V DD of the first reference signal terminal Ref1 directly flows into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that the third transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second terminal z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is ⁇ , and the voltage value V A of the second terminal z2 of the capacitor Cst It becomes V DD -Vth3, and the storage of the threshold
  • the first end z1 of Cst is connected to the gate of the driving transistor T0, and the voltage of the gate of the driving transistor T0 is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • the V Emissi of the illumination control signal terminal In the second stage of the display phase of the illumination driving phase of the display phase, the V Emissi of the illumination control signal terminal.
  • n is high level, V S m at the signal end, V Data at the data signal end, and touch control signal
  • the terminal V Selec; t is at a low level, at this time, the first switching transistor T1, the second switching transistor ⁇ 2, the sixth switching transistor ⁇ 6, and the seventh switching transistor ⁇ 7 are in a closed state, the fourth switching transistor ⁇ 4 and the fifth switching transistor ⁇ 5 is in an on state, the third switching transistor ⁇ 3 is reversely turned off, the OLED is turned on, and the voltage V DD of the first reference signal terminal Ref1 flows directly into the second end z2 of the capacitor Cst via the fourth switching transistor T4, and the second end of the capacitor Cst
  • the voltage value V A of z2 becomes V DD .
  • the voltage at the first end of the capacitor zl becomes V DD + ( V Data
  • the on-state current i d of the driving transistor TO satisfies the formula: ( Voata+Vths-Vtho ) 2 , where K is a structural parameter, which is relatively stable in the same structure and can be counted as a constant.
  • the light-emitting device D1 is driven to emit light by using the on-state current id, and the current flowing through the OLEDs is relatively uniform, and the current flowing through the OLEDs is not caused by the unevenness of the threshold voltage ⁇ ⁇ due to the manufacturing process of the backplane. Causes uneven brightness.
  • the driving transistor TO and the third transistor T3 are N-type transistors, and the first switching transistor T1, the second switching transistor ⁇ 2, the fourth switching transistor ⁇ 4, the fifth switching transistor ⁇ 5, the sixth switching transistor ⁇ 6, and the
  • the seven-switch transistor ⁇ 7 is a ⁇ -type transistor.
  • the voltage of the scanning signal terminal is Vscan
  • the voltage of the data signal terminal is V Data
  • the voltage of the lighting control signal terminal is V Emissi .
  • the touch signal terminal of the control voltage V Selec; t the second end of the capacitor voltage is V A
  • the driving voltage of the gate of the transistor TO is touch V B1
  • the gate of the driving transistor at the time TO touchless The voltage is V B2 .
  • V Scan of the scanning signal terminal is low level
  • V Data of the data signal end and V Emissi of the light emitting control signal end.
  • n and V Seleet of the touch control signal terminal are at a high level
  • the first switching transistor T1 and the second switching transistor T2 are at In the on state
  • the fourth switching transistor T4 the fifth switching transistor ⁇ 5, the sixth switching transistor ⁇ 6, and the seventh switching transistor ⁇ 7 are in a closed state, and the OLED is in a short-circuited state
  • the voltage V DD of the first reference signal terminal Ref1 is second.
  • the switching transistor T2 directly flows into the gate and the source of the third switching transistor T3, causes the third transistor T3 to be in an on state, and outputs from the drain of the third transistor T3 to the second terminal z2 of the capacitor Cst, wherein
  • the threshold voltage of the switching transistor is ⁇ , and the voltage value V A of the second terminal z2 of the capacitor Cst becomes V DD - Vth3, realizing the storage of the threshold voltage of the third switching transistor at the second terminal z2 of the capacitor Cst.
  • the first end z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • the photodiode PD is in an off state, and the gate voltage of the driving transistor TO is V Data regardless of whether or not the photodiode PD is touched.
  • V Sele(;t and V Data of the data signal end are low level
  • V S of the scanning signal end (;an and V Emissi of the light-emitting control signal end.
  • n is high level
  • the first switching transistor T1, the second switch The transistor ⁇ 2, the fourth switching transistor ⁇ 4 and the fifth switching transistor ⁇ 5 are in a closed state
  • the sixth switching transistor ⁇ 6 and the seventh switching transistor ⁇ 7 are in an on state
  • the photodiode PD and the second reference signal terminal Ref2 are in a connected state.
  • the capacitor When the voltage is instantaneously turned on, the voltage of the first reference signal terminal Ref1 flows into the gate and the source of the third switching transistor T3 via the OLED, so that the third transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the capacitor.
  • the capacitor first The voltage of the terminal zl corresponds to V DD -V th3 -V th .
  • V Data -V DD +Vth3 V Data -Vth.
  • the photodiode PD If the photodiode PD is under illumination, there is no touch, and the photodiode generates photo-generated carriers under the action of the photoelectric effect to form a photocurrent, which causes the capacitance
  • the charge on Cst is reduced, causing the voltage of the first terminal z1 of the capacitor to drop, which in turn causes the gate voltage V B2 of the input driving transistor TO to drop, resulting in the final output from the driving transistor TO and outputted through the sixth switching transistor T6.
  • the touch detection signal of the control signal reading terminal becomes smaller.
  • the size of the touch detection signal is related to the light intensity of the photodiode, and the greater the light intensity, the smaller the touch detection signal.
  • V Scan of the scanning signal terminal is low level, V Data of the data signal end, and V Emissi of the light emitting control signal end.
  • V Seleet touch is high, this time, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, and sixth switching transistors ⁇ 6
  • the seventh switching transistor ⁇ 7 is in an on state, and the OLED is in a short-circuited state;
  • the voltage V DD of the first reference signal terminal Ref1 directly flows into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that the third transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second terminal z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is ⁇ , and the voltage value V A of the second terminal z2 of the capacitor Cst It becomes V
  • the first end z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • V Emissi The V Data of the n and the data signal end is a low level, and V S (;an of the scanning signal end and V Selec; t of the touch control signal end are at a high level, at this time, the first switching transistor T1 and the second switching transistor ⁇ 2
  • the sixth switching transistor ⁇ 6 and the seventh switching transistor ⁇ 7 are in a closed state, the fourth switching transistor ⁇ 4 and the fifth switching transistor ⁇ 5 are in an on state, the third switching transistor ⁇ 3 is reversely turned off, the OLED is turned on, and the first reference signal terminal Ref1 is
  • the voltage V DD flows directly into the second end z2 of the capacitor Cst via the fourth switching transistor T4, and the voltage value V A of the second terminal z2 of the capacitor Cst becomes V DD .
  • the on-state current i d of the driving transistor TO satisfies the formula: (Voata + Vths-Vtho) 2 , where K is a structure parameter, this value is the same as the structure is relatively stable, it can be regarded as constant.
  • the on-state current of the driving transistor TO 2 ( V Data ) 2 , from the formula derivation, when the threshold voltage of the third switching transistor T3 and the threshold of the driving transistor T0
  • the leakage current flowing through the driving transistor TO is only related to the voltage V Data of the data signal, regardless of the threshold voltage ⁇ ⁇ of the driving transistor TO.
  • the light-emitting device D1 is driven to emit light by using the on-state current id, and the current flowing through the OLEDs is relatively uniform, and the current flowing through the OLEDs is not caused by the unevenness of the threshold voltage ⁇ ⁇ due to the manufacturing process of the backplane. Causes uneven brightness.
  • the driving transistor TO and the third transistor T3 are P-type transistors, and the first switching transistor T1, the second switching transistor ⁇ 2, the fourth switching transistor ⁇ 4, the fifth switching transistor ⁇ 5, the sixth switching transistor ⁇ 6, and the The seven-switch transistor ⁇ 7 is also a ⁇ -type transistor.
  • the voltage of the scanning signal terminal is Vscan
  • the voltage of the data signal terminal is V Data
  • the voltage of the lighting control signal terminal is V Emissi .
  • the voltage of the touch control signal terminal is V Selec
  • t the voltage of the second end of the capacitor is V A
  • the voltage of the gate of the driving transistor TO when touched is V B1
  • the gate of the driving transistor TO is without touch The voltage is V B2 .
  • V Scan of the scanning signal end and V Data of the data signal end are low level, and V Emissi of the light-emitting control signal end.
  • V Seleet touch is high, this time, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, and sixth switching transistors ⁇ 6
  • the seventh switching transistor ⁇ 7 is in a closed state, and the OLED is in a short-circuited state;
  • the voltage V DD of the first reference signal terminal Ref1 flows directly into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that the third transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second terminal z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is ⁇ , and the voltage value V A of the second terminal z2 of the capacitor Cs
  • the first end z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • the photodiode PD is in an off state, and the gate voltage of the driving transistor TO is V Data regardless of whether or not the photodiode PD is touched.
  • the V Selec; t of the touch control signal terminal is a low level, the V S m of the scan signal end, the V Data of the data signal end, and the light control signal end.
  • V Emissi . n is a high level.
  • the first switching transistor T1, the second switching transistor ⁇ 2, the fourth switching transistor ⁇ 4, and the fifth switching transistor ⁇ 5 are in an off state, and the sixth switching transistor ⁇ 6 and the seventh switching transistor ⁇ 7 are in an on state.
  • the photodiode PD is in a connected state with the second reference signal terminal Ref2.
  • the OLED is momentarily turned on, the voltage V D of the first reference signal terminal Ref1: 3 ⁇ 4 OLED flows into the gate and the source of the third switching transistor T3, causes the third transistor T3 to be in an on state, and from the drain of the third transistor T3 Outputted to the second terminal z2 of the capacitor Cst, the voltage value V A of the second terminal z2 of the capacitor Cst becomes VDD-VtM-Vto, where ⁇ ⁇ . It is the threshold voltage of the light-emitting device OLED. According to the principle of conservation of capacitance, the voltage of the first end of the capacitor zl corresponds to V DD -V th3 -V th .
  • Raising which in turn causes the gate voltage V B2 of the input driving transistor TO to rise, resulting in a touch detection signal that is finally output by the driving transistor TO and outputted to the touch signal reading terminal Sensor via the sixth switching transistor T6.
  • the size of the touch detection signal is related to the intensity of the light that is incident on the photodiode. The greater the light intensity, the smaller the touch detection signal.
  • the scan signal terminal V Scan and the data signal terminal V Data is low, the light emission control signal V Emissi end. n and a control signal terminal V Seleet touch is high, this time, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, and sixth switching transistors ⁇ 6
  • the seventh switching transistor ⁇ 7 is in an on state, and the OLED is in a short-circuited state; the voltage V DD of the first reference signal terminal Ref1 directly flows into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that the third transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second terminal z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is ⁇ , and the voltage value V A of the second terminal z2 of the capacitor Cst It becomes V DD -Vth3, and the storage of the threshold voltage
  • the first end z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • the v Emissi of the illumination control signal terminal In the second stage of the display phase of the illumination driving phase of the display phase, the v Emissi of the illumination control signal terminal.
  • n is low, the scanning signal terminal V S (; an, a data end signal V Data and V Seleet touch control signal terminal is high, then, the first switching transistor Tl, [tau] 2 of the second switching transistor, a sixth The switching transistor ⁇ 6 and the seventh switching transistor ⁇ 7 are in a closed state, the fourth switching transistor ⁇ 4 and the fifth switching transistor ⁇ 5 are in an on state, the third switching transistor ⁇ 3 is turned off in reverse, the OLED is turned on, and the voltage V of the first reference signal terminal Ref1
  • the DD flows directly into the second end z2 of the capacitor Cst via the fourth switching transistor T4, and the voltage value V A of the second terminal z2 of the capacitor Cst becomes V DD .
  • the voltage between the source and the gate of the driving transistor TO is
  • the on-state current i d of the driving transistor TO satisfies the formula: ( Voata+Vths-Vtho ) 2 , where K is a structural parameter, which is relatively stable in the same structure and can be counted as a constant.
  • the light-emitting device D1 is driven to emit light by using the on-state current id, and the current flowing through the OLEDs is relatively uniform, and the current flowing through the OLEDs is not caused by the unevenness of the threshold voltage ⁇ ⁇ due to the manufacturing process of the backplane. Causes uneven brightness.
  • the driving transistor TO and the third transistor T3 are P-type transistors, and the first switching transistor T1, the second switching transistor ⁇ 2, the fourth switching transistor ⁇ 4, the fifth switching transistor ⁇ 5, the sixth switching transistor ⁇ 6, and the
  • the seven-switch transistor ⁇ 7 is a ⁇ -type transistor.
  • Vscan the voltage at the data signal end is V Data
  • the voltage at the end of the illumination control signal is V Emissi .
  • the voltage of the touch control signal terminal is V Selec
  • t the voltage of the second end of the capacitor is V A
  • the voltage of the gate of the driving transistor TO when touched is V B1
  • the gate of the driving transistor TO is without touch The voltage is V B2 .
  • the V Scan of the scanning signal terminal It is high level, V Data of the data signal end, and V Emissi of the light control signal end.
  • n and V Selec touch control signal terminal; t is low, then, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, the sixth switching transistor The ⁇ 6 and the seventh switching transistor ⁇ 7 are in a closed state, and the OLED is in a short-circuited state; the voltage V DD of the first reference signal terminal Ref1 directly flows into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that The three transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second end z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is ⁇ , and the voltage value of the second terminal z2 of the capacitor Cst V A becomes V
  • the first end z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • the photodiode PD is in an off state, and the gate voltage of the driving transistor TO is V Data regardless of whether or not the photodiode PD is touched.
  • V Sele(;t and V Data of the data signal terminal are high level, V S of the scanning signal end (;an and V Emissi of the light-emitting control signal end. n is low level, at this time, the first switching transistor T1, the second switch The transistor ⁇ 2, the fourth switching transistor ⁇ 4 and the fifth switching transistor ⁇ 5 are in a closed state, the sixth switching transistor ⁇ 6 and the seventh switching transistor ⁇ 7 are in an on state, and the photodiode PD and the second reference signal terminal Ref2 are in a connected state.
  • the voltage V DD of the first reference signal terminal Ref1 flows into the gate and the source of the third switching transistor T3 via the OLED, causing the third transistor T3 to be in an on state, and outputting from the drain of the third transistor T3 to
  • the second end z2 of the capacitor Cst the voltage value V A of the second end z2 of the capacitor Cst becomes VDD-VtM-Vto, where ⁇ ⁇ is the threshold voltage of the OLED of the light-emitting device.
  • the capacitor The voltage at one end zl corresponds to V DD -V th3 -V th .
  • V Data -V DD +Vth3 V Data -Vth.
  • the photodiode PD If the photodiode PD is under illumination, there is no touch, and the photodiode generates photo-generated carriers under the action of the photoelectric effect to form a photocurrent, and the photocurrent will cause
  • the increase in the charge on the capacitor Cst causes the voltage of the first terminal z1 of the capacitor to rise, which in turn causes the gate voltage V B2 of the input driving transistor TO to rise, resulting in the final output by the driving transistor T0 and via the sixth switching transistor T6.
  • Output to touch The touch detection signal of the signal reading end sensor becomes smaller.
  • the size of the touch detection signal is related to the intensity of the light that is incident on the photodiode. The greater the light intensity, the smaller the touch detection signal.
  • V Scan of the scanning signal terminal is at a high level, V Data of the data signal terminal, and V Emissi of the light-emitting control signal terminal.
  • V Seleet low level signal this time, the first switching transistor T1 and the second switching transistor T2 is in the on state, the fourth switching transistor T4, a fifth switching transistor ⁇ 5, the sixth switching transistor ⁇ 6 And the seventh switching transistor ⁇ 7 is in an on state, the OLED is in a short-circuited state;
  • the voltage V DD of the first reference signal terminal Ref1 flows directly into the gate and the source of the third switching transistor T3 via the second switching transistor T2, so that the third The transistor T3 is in an on state, and is output from the drain of the third transistor T3 to the second terminal z2 of the capacitor Cst, wherein the threshold voltage of the third switching transistor is the voltage value V A of the second terminal z2 of the capacitor Cst
  • the threshold voltage of the third switching transistor is the voltage value V A of the second terminal z2 of the capacitor C
  • the first terminal z1 of Cst is connected to the gate of the driving transistor TO, and the voltage of the gate of the driving transistor TO is also V Data , that is, data writing of V Data is realized at the gate of the driving transistor.
  • V Emissi . n and the data signal terminal V Data is high, the scanning signal terminal V S (; an, and the touch control signal V Selec end; t is low, then, the first switching transistor Tl, [tau] 2 of the second switching transistor, The sixth switching transistor ⁇ 6 and the seventh switching transistor ⁇ 7 are in a closed state, the fourth switching transistor ⁇ 4 and the fifth switching transistor ⁇ 5 are in an on state, the third switching transistor ⁇ 3 is reversely turned off, the OLED is turned on, and the first reference signal terminal Ref1 is The voltage V DD flows directly into the second end z2 of the capacitor Cst via the fourth switching transistor T4, and the voltage value V A of the second terminal z2 of the capacitor Cst becomes V DD .
  • the light-emitting device D1 is driven to emit light by using the on-state current id, and the current flowing through the OLEDs is relatively uniform, and the current flowing through the OLEDs is not caused by the unevenness of the threshold voltage ⁇ ⁇ due to the manufacturing process of the backplane. Causes uneven brightness.
  • an embodiment of the present invention further provides an organic electroluminescence display panel, including the above pixel circuit provided by the embodiment of the present invention, and the principle of solving the problem by the organic electroluminescence display panel and the foregoing pixel circuit
  • the implementation of the organic electroluminescent display panel can be referred to the implementation of the pixel circuit, and the repeated description is omitted.
  • an embodiment of the present invention further provides a display device, which includes the above-mentioned organic electroluminescent display panel provided by the embodiment of the present invention, and the display device may be a display, a mobile phone, a television, a notebook, an all-in-one, etc.
  • the display device may be a display, a mobile phone, a television, a notebook, an all-in-one, etc.
  • Other indispensable components of the display device are understood by those of ordinary skill in the art, and are not to be construed as limiting or limiting the invention.
  • a pixel circuit, an organic electroluminescence display panel and a display device include: a light emitting device, a photosensitive device, a driving control submodule, a data writing submodule, an illumination control submodule, and a touch a detecting submodule; wherein the first end of the driving control submodule is respectively connected to the first end of the data writing submodule and the first end of the photosensor, and the second end is respectively associated with the first end of the light emitting device and data writing The second end of the submodule is connected, and the third end is respectively connected to the first end of the illumination control submodule and the first end of the touch detection submodule; the third end of the data writing submodule is connected to the data signal end, The fourth end is connected to the scanning signal end, and the fifth end is respectively connected to the first reference signal end, the second end of the light emitting device and the second end of the illumination control submodule, and the sixth end is connected to the third end of the illumination control submodule;
  • the fourth end is connected to
  • the data writing sub-module When the data writing sub-module is turned on, the data writing sub-module transmits the data signal of the data signal end to the driving control sub-module; when the lighting control sub-module is turned on, the lighting control sub-module controls the driving control sub-module to drive the light-emitting device to emit light, Implement display function; when the touch detection sub-module is turned on, touch detection
  • the sensor module controls the driving control sub-module to output a touch detection signal to the touch signal reading end, and the touch detection signal decreases as the light intensity of the photosensitive device is increased, thereby implementing the touch detection function.
  • the pixel circuit integrates the touch and display functions, which can save the manufacturing cost of separately setting the display driving circuit and the touch circuit, and can also reduce the thickness of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素电路、有机电致发光显示面板及显示装置。该像素电路包括:发光器件(D1)、光敏器件(P1)、驱动控制子模块(1)、数据写入子模块(2)、发光控制子模块(3)以及触控侦测子模块(4)。在数据写入子模块(2)导通时,数据写入子模块(2)向驱动控制子模块(1)传输数据信号端(Data)的数据信号。在发光控制子模块(3)导通时,发光控制子模块(3)控制驱动控制子模块(1)驱动发光器件(D1)发光,实现显示功能。在触控侦测子模块(4)导通时,触控侦测子模块(4)控制驱动控制子模块(1)向触控信号读取端(Sensor)输出触控侦测信号,触控侦测信号随照射到光敏器件光强的增大而减小,以实现触控侦测功能。像素电路集成了触控与显示功能,这样可以节省分别设置显示驱动电路和触控电路的制作成本,还可以减薄显示面板的厚度。

Description

像素电路、 有机电致发光显示面板及显示装置 技术领域
本发明的实施例涉及一种像素电路、有机电致发光显示面板及显示装置。 背景技术
随着显示器件正朝着轻薄化、 高解析化、 智能化、 节能化的发展, 触摸 屏( Touch Screen Panel )的使用越来越广。 目前,内嵌式触摸屏 ( In Cell Touch Panel )由于将触控部件内嵌在显示屏内部, 可以减薄模组整体的厚度, 又可 以大大降低触摸屏的制作成本, 受到各大面板厂家的青睐。 而有机发光二极 管 ( Organic Light Emitting Diode, OLED )显示面板则因具有功耗低、 亮度 高、 成本低、 视角广, 以及响应速度快等优点, 而备受关注。
在现有的内嵌式触摸屏 OLED显示面板中, 一般用以实现其显示驱动和 触控驱动的电路是分别设计的, 即一套电路用以实现触控功能, 另一套电路 用以实现 OLED的显示驱动功能, 而分别设置显示驱动电路和触控电路, 会 存在制作成本较高, 显示屏较重, 且比较厚的缺点。 发明内容
本发明实施例提供了一种像素电路, 包括: 发光器件、 光敏器件、 驱动 控制子模块、数据写入子模块、发光控制子模块以及触控侦测子模块; 其中, 所述驱动控制子模块的第一端分别与所述数据写入子模块的第一端和所 述光敏器件的第一端相连, 所述驱动控制子模块的第二端分别与所述发光器 件的第一端和所述数据写入子模块的第二端相连, 所述驱动控制子模块的第 三端分别与所述发光控制子模块的第一端和所述触控侦测子模块的第一端相 连;
所述数据写入子模块的第三端与数据信号端相连, 所述数据写入子模块 的第四端与扫描信号端相连, 所述数据写入子模块的第五端分别与第一参考 信号端、 发光器件的第二端以及发光控制子模块的第二端相连, 所述数据写 入子模块的第六端与所述发光控制子模块的第三端相连; 在扫描信号端的控 制下, 所述数据写入子模块向所述驱动控制子模块传输所述数据信号端的数 据信号;
所述发光控制子模块的第四端分别与第二参考信号端和所述触控侦测子 模块的第二端相连, 所述发光控制子模块的第五端与发光控制信号端相连; 在所述发光控制信号端的控制下, 所述发光控制子模块控制所述驱动控制子 模块驱动所述发光器件发光;
所述触控侦测子模块的第三端与所述光敏器件的第二端相连, 所述触控 侦测子模块的第四端与触控信号读取端相连, 所述触控侦测子模块的第五端 与触控控制信号端相连; 在所述触控控制信号端的控制下, 所述触控侦测子 模块控制所述驱动控制子模块向所述触控信号读取端输出触控侦测信号, 所 述触控侦测信号随着照射到所述光敏器件光强的增大而减小。
本发明实施例提供的一种有机电致发光显示面板, 包括本发明实施例提 供的像素电路。
本发明实施例提供的一种显示装置, 包括本发明实施例提供的有机电致 发光显示面板。
本发明实施例的有益效果包括:
本发明实施例提供的一种像素电路、有机电致发光显示面板及显示装置, 该像素电路包括: 发光器件、 光敏器件、 驱动控制子模块、数据写入子模块、 发光控制子模块以及触控侦测子模块; 其中, 驱动控制子模块的第一端分别 与数据写入子模块的第一端和光敏器件的第一端相连, 第二端分别与发光器 件的第一端和数据写入子模块的第二端相连, 第三端分别与发光控制子模块 的第一端和触控侦测子模块的第一端相连; 数据写入子模块的第三端与数据 信号端相连, 第四端与扫描信号端相连, 第五端分别与第一参考信号端、 发 光器件的第二端以及发光控制子模块的第二端相连, 第六端与发光控制子模 块的第三端相连; 发光控制子模块的第四端分别与第二参考信号端和触控侦 测子模块的第二端相连, 发光控制子模块的第五端与发光控制信号端相连; 触控侦测子模块的第三端与光敏器件的第二端相连, 触控侦测子模块的第四 端与触控信号读取端相连,触控侦测子模块的第五端与触控控制信号端相连。 在数据写入子模块导通时, 数据写入子模块向驱动控制子模块传输数据信号 端的数据信号; 在发光控制子模块导通时, 发光控制子模块控制驱动控制子 模块驱动发光器件发光, 实现显示功能; 在触控侦测子模块导通时, 触控侦 测子模块控制驱动控制子模块向触控信号读取端输出触控侦测信号, 触控侦 测信号随着照射到光敏器件光强的增大而减小, 实现触控侦测功能。 像素电 路集成了触控与显示功能, 这样可以节省分别设置显示驱动电路和触控电路 的制作成本, 还可以减薄显示面板的厚度。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例提供的像素电路的结构示意图;
图 2a至图 2d分别为本发明实施例提供的像素电路的结构示意图; 图 3a至图 3d分别为本发明实施例提供的像素电路的电路时序图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的一种像素电路, 如图 1所示, 包括: 发光器件 Dl、 光敏器件 PI、 驱动控制子模块 1、 数据写入子模块 2、 发光控制子模块 3以 及触控侦测子模块 4。
驱动控制子模块 1的第一端 la分别与数据写入子模块 2的第一端 2a和 光敏器件 P1的第一端 xl相连, 驱动控制子模块 1的第二端 lb分别与发光 器件 D1的第一端 yl和数据写入子模块 2的第二端 2b相连, 驱动控制子模 块 1的第三端 lc分别与发光控制子模块 3的第一端 3a和触控侦测子模块 4 的第一端 4a相连。
数据写入子模块 2的第三端 2c与数据信号端 Data相连, 数据写入子模 块 2的第四端 2d与扫描信号端 Scan相连, 数据写入子模块 2的第五端 2e 分别与第一参考信号端 Refl、发光器件 Dl的第二端 y2以及发光控制子模块 3的第二端 3b相连, 数据写入子模块 2的第六端 2f与发光控制子模块 3的 第三端 3c相连; 在扫描信号端 Scan的控制下, 数据写入子模块 2向驱动控 制子模块 1传输数据信号端 Data的数据信号。
发光控制子模块 3的第四端 3d分别与第二参考信号端 Ref2和触控侦测 子模块 4的第二端 4b相连, 发光控制子模块 3的第五端 3e与发光控制信号 端 Emission相连; 在发光控制信号端 Emission的控制下, 发光控制子模块 3 控制驱动控制子模块 1驱动发光器件 D1发光。
触控侦测子模块 4的第三端 4c与光敏器件 P1的第二端 x2相连,触控侦 测子模块 4的第四端 4d与触控信号读取端 Sensor相连, 触控侦测子模块 4 的第五端 4e与触控控制信号端 Select相连;在触控控制信号端 Select的控制 下,触控侦测子模块 4控制驱动控制子模块 1向触控信号读取端 Sensor输出 触控侦测信号, 触控侦测信号随着照射到光敏器件 P1光强的增大而减小。
本发明实施例提供的上述像素电路, 包括: 发光器件 Dl、 光敏器件 Pl、 驱动控制子模块 1、数据写入子模块 2、发光控制子模块 3以及触控侦测子模 块 4。 在数据写入子模块 2导通时, 数据写入子模块 2向驱动控制子模块 1 传输数据信号端 Data的数据信号; 在发光控制子模块 3导通时,发光控制子 模块 3控制驱动控制子模块 1驱动发光器件 D1发光, 实现显示功能; 在触 控侦测子模块 4导通时, 触控侦测子模块 4控制驱动控制子模块 1向触控信 号读取端 Sensor输出触控侦测信号, 触控侦测信号随着照射到光敏器件 P1 光强的增大而减小, 实现触控侦测功能。 像素电路集成了触控与显示功能, 这样可以节省分别设置显示驱动电路和触控驱动电路的制作成本, 还可以减 薄显示面板的厚度。
例如, 在本发明实施例提供的上述像素电路中, 驱动控制子模块 1的第 一端 la和第二端 lb为信号输入端,驱动控制子模块 1的第三端 lc为信号输 出端;
数据写入子模块 2的第一端 2a和第二端 2b为信号输出端, 数据写入子 模块 2的第三端 2c、 第四端 2d、 第五端 2e和第六端 2f为信号输入端;
发光控制子模块 3的第一端 3a、 第二端 3b和第五端 3e为信号输入端, 发光控制子模块 3的第三端 3c和第四端 3d为信号输出端; 触控侦测子模块 4的第一端 4a和第五端 4e为信号输入端, 触控侦测子 模块 4的第四端 4d为信号输出端; 触控侦测子模块 4的第二端 4b为信号输 入端, 第三端 4c为信号输出端, 或, 触控侦测子模块 4的第二端 4b为信号 输出端, 第三端 4c为信号输入端。
例如, 本发明实施例提供的上述像素电路中的驱动控制子模块 1可以具 体包括: 驱动晶体管 T0, 其中, 如图 1所示, 驱动晶体管 TO的栅极为驱动 控制子模块 1的第一端 la, 驱动晶体管 TO的漏极为驱动控制子模块 1的第 二端 lb, 驱动晶体管 TO的源极为驱动控制子模块 1的第三端 lc。 当然, 驱 动控制子模块 1也可以是能够实现其驱动控制功能的其它结构, 在此不做限 定。
例如, 本发明实施例提供的上述像素电路中的发光器件 D1—般为有机 发光二极管 (OLED ) 。 发光器件 D1在驱动晶体管 TO开态电流的作用下实 现发光显示。 具体地, 第一参考信号端 Refl的信号为高电平直流信号, 第二 参考信号端 Ref2的信号为低电平直流信号, OLED的正极与第一参考信号端 Refl相连。
例如, 本发明实施例提供的上述像素电路的工作分为触控和显示两个阶 段。 上述像素电路在工作时可以先执行触控阶段的工作, 然后执行显示阶段 的工作; 也可以先执行显示阶段的工作, 然后执行触控阶段的工作, 在此不 做限定。
下面对本发明实施例提供的上述像素电路的触控阶段和显示阶段的工作 原理进行简要介绍。
在触控阶段, 上述像素电路的工作具体分为两个阶段:
第一阶段: 数据写入阶段,在此阶段中像素电路实现了对驱动晶体管 TO 栅极的数据写入。 在此阶段, 发光控制子模块 3和触控侦测子模块 4处于关 闭状态,数据写入子模块 2处于导通状态,数据信号端 Data输出的数据信号 通过数据写入子模块 2加载到驱动晶体管 TO的栅极。
第二阶段: 触控侦测阶段, 在此阶段中数据写入子模块 2和发光控制子 模块 3处于关闭状态, 触控侦测子模块 4处于导通状态, 导通的光敏器件 P1 的第一端 xl与驱动晶体管 TO的栅极相连, 触控侦测子模块 4控制驱动晶体 管 T0向触控信号读取端 Sensor输出触控侦测信号, 触控侦测信号随着照射 到光敏器件 PI光强的增大而减小, 实现触控的侦测。
在显示阶段, 上述像素电路的工作具体也分为两个阶段:
第一阶段: 数据写入阶段,在此阶段中像素电路实现了对驱动晶体管 TO 栅极的数据写入。 在此阶段, 发光控制子模块 3和触控侦测子模块 4处于关 闭状态,数据写入子模块 2处于导通状态,数据信号端 Data输出的数据信号 通过数据写入子模块 2加载到驱动晶体管 TO的栅极。
第二阶段: 发光驱动阶段, 在此阶段中数据写入子模块 2和触控侦测子 模块 4处于关闭状态, 发光控制子模块 3处于导通状态, 发光器件 D1的第 一端 yl与驱动晶体管 TO的漏极相连, 发光控制子模块 3控制驱动控制子模 块 1驱动发光器件 D1发光, 实现了显示功能。
下面对本发明实施例提供的上述像素电路中的数据写入子模块 2、 发光 控制子模块 3和触摸侦测子模块 4的具体结构和工作原理进行详细说明。
例如, 在本发明实施例提供的像素电路中, 数据写入子模块 2, 如图 2a 至图 2d所示, 可以包括: 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第三开 关晶体管 Τ3和电容 Cst。
第一开关晶体管 T1的栅极与扫描信号端 Scan相连,第一开关晶体管 T1 的源极与数据信号端 Data相连, 第一开关晶体管 T1的漏极分别与驱动晶体 管 TO的栅极和电容 Cst的第一端 zl相连;
第二开关晶体管 T2的栅极与扫描信号端 Scan相连,第二开关晶体管 T2 的源极与第一参考信号端 Refl相连, 第二开关晶体管 T2的漏极与驱动晶体 管 TO的漏极相连;
当第三开关晶体管 T3为 N型晶体管时, 如图 2a和图 2b所示, 第三开 关晶体管 T3的栅极和源极分别与驱动晶体管 TO的漏极相连,第三开关晶体 管 T3的漏极与电容的第二端 z2相连; 当第三开关晶体管 T3为 P型晶体管 时, 如图 2c和图 2d所示, 第三开关晶体管 T3的栅极和源极分别与电容的 第二端 z2相连, 第三开关晶体管 T3的漏极与驱动晶体管 TO的漏极相连。 在上述像素电路中, 将第三开关晶体管 T3 的栅极和源极相连, 其目的是使 第三开关晶体管 T3构成一个二极管结构, 与直接用二极管相比, 作为二极 管作用的第三开关晶体管 T3 的各个部件可以和像素电路中的其他开关晶体 管的各部件同层制备, 这样可以简化制作工艺, 降低制作成本。 需要注意的是, 在具体实施时, 第一开关晶体管 T1 和第二开关晶体管 T2可以为 P型晶体管, 也可以为 N型晶体管, 在此不做限定。 当第一开关 晶体管 T1和第二开关晶体管 T2为 N型晶体管时, 在扫描信号端 Scan输出 高电平的扫描信号时, 第一开关晶体管 T1和第二开关晶体管 T2才会开启; 当第一开关晶体管 T1和第二开关晶体管 T2为 P型晶体管时,在扫描信号端 Scan输出低电平的扫描信号时, 第一开关晶体管 T1 和第二开关晶体管 T2 才会开启。
例如, 在本发明实施例提供的上述像素电路中, 第三开关晶体管 T3 与 驱动晶体管 TO 的阔值电压需要相同, 即第三开关晶体管 T3和驱动晶体管 TO需同时为 N型晶体管, 且第三开关晶体管 T3和驱动晶体管 TO的结构相 同; 或者, 第三开关晶体管 T3和驱动晶体管 TO需同时为 P型晶体管, 且第 三开关晶体管 T3和驱动晶体管 TO的结构相同。
需要说明的是, 例如, 在本发明实施例提供的上述像素电路中, 当第三 开关晶体管 T3与驱动晶体管 TO为 N型晶体管时, 其阔值电压 νΛ为正值, 数据信号端 Data在数据写入阶段的数据信号应该为高电平信号;当第三开关 晶体管 T3与驱动晶体管 TO为 P型晶体管时, 其阔值电压 νΛ为负值, 数据 信号端 Data在数据写入阶段的数据信号应该为低电平信号。
例如, 本发明实施例提供的像素电路, 如图 2a至图 2d所示, 光敏器件 P1具体可以为光电二极管 PD ( Photo Diode ) ;
在第三开关晶体管 T3与驱动晶体管 TO为 N型晶体管时, 如图 2a和图
2b所示, 光电二极管 PD的阴极与驱动晶体管 TO的栅极相连; 在第三开关 晶体管 T3与驱动晶体管 TO为 P型晶体管时, 如图 2c和图 2d所示, 光电二 极管 PD的阳极与驱动晶体管 TO的栅极相连。
例如, 在本发明实施例提供的像素电路中, 发光控制子模块 3, 如图 2a 至图 2d所示, 可以包括: 第四开关晶体管 T4和第五开关晶体管 T5; 其中, 第四开关晶体管 T4的栅极与发光控制信号端 Emission相连, 第四开关 晶体管 T4的源极与第一参考信号端 Refl相连, 第四开关晶体管 T4的漏极 与电容 Cst的第二端 z2相连;
第五开关晶体管 T5的栅极与发光控制信号端 Emission相连, 第五开关 晶体管 T5的源极与驱动晶体管 T0的第三端相连, 第五开关晶体管 T5的漏 极与第二参考信号端 Ref2相连。
例如,第四开关晶体管 T4和第五开关晶体管 T5可以为 N型晶体管,如 图 2a和图 2d所示; 第四开关晶体管 T4和第五开关晶体管 T5也可以为 P型 晶体管, 如图 2b和图 2c所示, 在此不做限定。
需要注意的是, 例如, 当第四开关晶体管 T4和第五开关晶体管 T5为 N 型晶体管时, 在发光控制信号端 Emission输出高电平的发光控制信号时, 第 四开关晶体管 T4和第五开关晶体管 T5才会开启; 当第四开关晶体管 T4和 第五开关晶体管 T5为 P型晶体管时, 在发光控制信号端 Emission输出低电 平的发光控制信号时, 第四开关晶体管 T4和第五开关晶体管 T5才会开启。
例如, 在本发明实施例提供的像素电路中, 触控侦测子模块 4, 如图 2a 至图 2d所示, 可以包括: 第六开关晶体管 T6和第七开关晶体管 T7; 其中, 第六开关晶体管 T6的栅极与触控控制信号端 Select相连, 第六开关晶 体管 T6的源极与驱动控制子模块 1的第三端即驱动晶体管 TO的源极相连, 第六开关晶体管 T6的漏极与触控信号读取端 Sensor相连;
第七开关晶体管 T7的栅极与触控控制信号端 Select相连, 第七开关晶 体管 T7的源极与光敏器件 P1的第二端相连, 第七开关晶体管 T7的漏极与 第二参考信号端 Ref2相连。
例如,第六开关晶体管 T6和第七开关晶体管 T7可以为 N型晶体管,如 图 2a和图 2d所示; 第六开关晶体管 T6和第七开关晶体管 T7也可以为 P型 晶体, 如图 2b和图 2c所示, 在此不做限定。
需要注意的是, 例如, 当第六开关晶体管 T6和第七开关晶体管 T7为 N 型晶体管时, 在触控控制信号端 Select输出高电平的触控控制信号时, 第六 开关晶体管 T6和第七开关晶体管 T7才会开启; 当第六开关晶体管 T6和第 七开关晶体管 T7为 P型晶体管时, 在触控控制信号端 Select输出低电平的 触控控制信号时, 第六开关晶体管 T6和第七开关晶体管 T7才会开启。
需要说明的是在本发明实施例提供的像素电路中, 提到的驱动晶体管和 开关晶体管可以是薄膜晶体管(TFT, Thin Film Transistor ) , 也可以是金属 氧化物半导体场效应管(MOS, Metal Oxide Semiconductor ) ,在此不做限定。 并且这些晶体管的源极和漏极可以互换, 不做具体区分。 原理进行详细的说明。在以下实例中,第一参考信号端 Refl的电压值为高电 平 VDD, 第二参考信号端 Ref2的电压值为低电平 Vss, 通常为零伏。
实例一:
如图 2a所示, 驱动晶体管 TO和第三晶体管 T3为 N型晶体管, 第一开 关晶体管 Tl、第二开关晶体管 Τ2、第四开关晶体管 Τ4、第五开关晶体管 Τ5、 第六开关晶体管 Τ6以及第七开关晶体管 Τ7也为 Ν型晶体管。
在像素电路的电路信号时序图中, 如图 3a所示, 扫描信号端的电压为 Vscan,数据信号端的电压为 VData, 发光控制信号端的电压为 VEmissin, 触控控 制信号端的电压为 VSelec;t, 电容的第二端的电压为 VA, 驱动晶体管 TO的栅 极在触摸时的电压为 VB1, 驱动晶体管 TO的栅极在无触摸时的电压为 VB2
像素电路的工作原理如下:
在触控阶段的数据写入阶段即触控阶段的第一阶段,扫描信号端的 VScan 和数据信号端的 VData为高电平, 发光控制信号端的 VEmissin和触控控制信号 端的 VSelec;t为低电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于关闭状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 ζ2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 TO的栅极相连, 驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。 此时, 光电二极管 PD处于断开状态, 无论光 电二极管 PD有无触摸, 驱动晶体管 TO的栅极电压 VB1和 VB2都为 VData
在触控阶段的触控侦测阶段即触控阶段的第二阶段, 触控控制信号端的 VSele(;t为高电平, 扫描信号端的 VS m、 数据信号端的 VData和发光控制信号端 的 VEmissin为低电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第四 开关晶体管 Τ4和第五开关晶体管 Τ5处于关闭状态, 第六开关晶体管 Τ6和 第七开关晶体管 T7处于开启状态, 光电二级管 PD与第二参考信号端 Ref2 处于连接状态。 OLED瞬时导通, 第一参考信号端 Refl的电压 VD :¾ OLED 流入第三开关晶体管 T3的栅极和源极, 使第三晶体管 T3处于导通状态, 并 从第三晶体管 T3的漏极输出到电容 Cst的第二端 z2, 电容 Cst的第二端 z2 的电压值 VA变为 VDD-VtM-Vto, 其中 νώ。为发光器件 OLED的阔值电压。根 据电容电量守恒的原理, 电容第一端 zl 的电压对应的变为 ^- ^- ^十 ( VData-VDD+Vth3 ) = VData-Vth。。 此时, 若光电二极管 PD无光照即有触摸, 即 光电二极管 PD处于断开状态,驱动晶体管 TO的栅极电压 VB1保持 VData-Vth。。 若光电二极管 PD处于光照下即无触摸, 在光电效应的作用下光电二极管产 生光生载流子, 形成光电流, 该光电流会使电容 Cst上的电荷减少, 导致电 容的第一端 zl的电压下降, 进而导致输入驱动晶体管 TO的栅极电压 VB2下 降, 导致最终由驱动晶体管 TO输出的、 且经第六开关晶体管 T6输出到触控 信号读取端 Sensor的触控侦测信号变小。该触控侦测信号的大小与照射到光 电二极管的光强有关, 光强越大, 触控侦测信号越小。
在显示阶段的数据写入阶段即显示阶段的第一阶段,扫描信号端的 VScan 和数据信号端的 vData为高电平, 发光控制信号端的 VEmissin和触控控制信号 端的 VSeleet为低电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于开启状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 T0的栅极相连, 驱动晶体管 T0的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。
在显示阶段的发光驱动阶段即显示阶段的第二阶段, 发光控制信号端的 VEmissin为高电平, 扫描信号端的 VS m、 数据信号端的 VData和触控控制信号 端的 VSelec;t为低电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第六 开关晶体管 Τ6和第七开关晶体管 Τ7处于关闭状态, 第四开关晶体管 Τ4和 第五开关晶体管 Τ5处于开启状态, 第三开关晶体管 Τ3反向截止, OLED导 通, 第一参考信号端 Refl 的电压 VDD经第四开关晶体管 T4直接流入电容 Cst的第二端 z2, 电容 Cst的第二端 z2的电压值 VA就变为 VDD。 根据电容 电量守恒的原理, 电容第一端 zl 的电压对应变为 VDD+ ( VData-VDD+Vth3 )
=VData+Vth3。 此时, 驱动晶体管 TO 的源极和栅极之间的电压为
Vgs=Vg-Vs=VData+Vth3
由于驱动晶体管 TO工作处于饱和状态, 根据饱和状态电流特性可知, 驱动晶体管 TO的开态电流 id满足公式:
Figure imgf000013_0001
( Voata+Vths-Vtho ) 2, 其中 K为结构参数, 相同结构中此数值相对稳定, 可以算作常量。 当第三开 关晶体管 T3的阔值电压 VtM与驱动晶体管 TO的阔值电压 Vtho相等时, 驱动 晶体管 TO的开态电流
Figure imgf000013_0002
( Voata+VtM-Vtho ) 2= ( VData ) 2, 从公 式推导可知, 当第三开关晶体管 T3的阔值电压 VtM与驱动晶体管 TO的阔值 电压 VtM相等时, 流经驱动晶体管 TO的漏电流仅与数据信号的电压 VData有 关, 与驱动晶体管 TO的阔值电压 νΛ无关。 因此, 用该开态电流 id驱动发光 器件 D1发光, 流经各 OLED的电流相对均匀, 不会因背板制造工艺的原因 导致阔值电压 νΛ不均匀而引起流经各 OLED的电流不同,造成亮度不均匀。
实例二:
如图 2b所示, 驱动晶体管 TO和第三晶体管 T3为 N型晶体管, 第一开 关晶体管 Tl、第二开关晶体管 Τ2、第四开关晶体管 Τ4、第五开关晶体管 Τ5、 第六开关晶体管 Τ6以及第七开关晶体管 Τ7为 Ρ型晶体管。
在像素电路的电路信号时序图中, 如图 3b 所示, 扫描信号端的电压为 Vscan,数据信号端的电压为 VData, 发光控制信号端的电压为 VEmissin, 触控控 制信号端的电压为 VSelec;t, 电容的第二端的电压为 VA, 驱动晶体管 TO的栅 极在触摸时的电压为 VB1, 驱动晶体管 TO的栅极在无触摸时的电压为 VB2
像素电路的工作原理如下:
在触控阶段的数据写入阶段即触控阶段的第一阶段,扫描信号端的 VScan 为低电平, 数据信号端的 VData、 发光控制信号端的 VEmissin和触控控制信号 端的 VSeleet为高电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于关闭状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 TO的栅极相连, 驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。 此时, 光电二极管 PD处于断开状态, 无论光 电二极管 PD有无触摸, 驱动晶体管 TO的栅极电压都为 VData
在触控阶段的触控侦测阶段即触控阶段的第二阶段, 触控控制信号端的
VSele(;t和数据信号端的 VData为低电平, 扫描信号端的 VS(;an和发光控制信号端 的 VEmissin为高电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第四 开关晶体管 Τ4和第五开关晶体管 Τ5处于关闭状态, 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于开启状态, 光电二级管 PD与第二参考信号端 Ref2 处于连接状态。 OLED瞬时导通, 第一参考信号端 Refl的电压 ^经 OLED 流入第三开关晶体管 T3的栅极和源极, 使第三晶体管 T3处于导通状态, 并 从第三晶体管 T3的漏极输出到电容 Cst的第二端 z2, 电容 Cst的第二端 z2 的电压值 VA变为 VDD-VtM-Vto, 其中 νώ。为发光器件 OLED的阔值电压。根 据电容电量守恒的原理, 电容第一端 zl 的电压对应的变为 VDD-Vth3-Vth。+ ( VData-VDD+Vth3 ) = VData-Vth。。 此时, 若光电二极管 PD无光照即有触摸, 即 光电二极管 PD处于断开状态,驱动晶体管 TO的栅极电压 VB1保持 VData-Vth。。 若光电二极管 PD处于光照下即无触摸, 在光电效应的作用下光电二极管产 生光生载流子, 形成光电流, 该光电流会使电容 Cst上的电荷减少, 导致电 容的第一端 zl的电压下降, 进而导致输入驱动晶体管 TO的栅极电压 VB2下 降, 导致最终由驱动晶体管 TO输出的、 且经第六开关晶体管 T6输出到触控 信号读取端 Sensor的触控侦测信号变小。该触控侦测信号的大小与照射到光 电二极管的光强有关, 光强越大, 触控侦测信号越小。 在显示阶段的数据写入阶段即显示阶段的第一阶段,扫描信号端的 VScan 为低电平, 数据信号端的 VData、 发光控制信号端的 VEmissin和触控控制信号 端的 VSeleet为高电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于开启状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 TO的栅极相连, 驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。
在显示阶段的发光驱动阶段即显示阶段的第二阶段, 发光控制信号端的
VEmissin和数据信号端的 VData为低电平, 扫描信号端的 VS(;an和触控控制信号 端的 VSelec;t为高电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第六 开关晶体管 Τ6和第七开关晶体管 Τ7处于关闭状态, 第四开关晶体管 Τ4和 第五开关晶体管 Τ5处于开启状态, 第三开关晶体管 Τ3反向截止, OLED导 通, 第一参考信号端 Refl 的电压 VDD经第四开关晶体管 T4直接流入电容 Cst的第二端 z2, 电容 Cst的第二端 z2的电压值 VA就变为 VDD。 根据电容 电量守恒的原理, 电容第一端 Zl 的电压对应变为 VDD+ ( Voata-VoD+VtM ) =VData+Vth3。 此时, 驱动晶体管 TO 的源极和栅极之间的电压为 Vgs=Vg-Vs=VData+Vth3
由于驱动晶体管 TO工作处于饱和状态, 根据饱和状态电流特性可知, 驱动晶体管 TO的开态电流 id满足公式:
Figure imgf000015_0001
( Voata+Vths-Vtho ) 2, 其中 K为结构参数, 相同结构中此数值相对稳定, 可以算作常量。 当第三开 关晶体管 T3的阔值电压 与驱动晶体管 TO的阔值电压 νΛ()相等时, 驱动 晶体管 TO的开态电流
Figure imgf000015_0002
) 2= ( VData ) 2, 从公 式推导可知, 当第三开关晶体管 T3的阔值电压 与驱动晶体管 T0的阔值 电压 VtM相等时, 流经驱动晶体管 TO的漏电流仅与数据信号的电压 VData有 关, 与驱动晶体管 TO的阔值电压 νΛ无关。 因此, 用该开态电流 id驱动发光 器件 D1发光, 流经各 OLED的电流相对均匀, 不会因背板制造工艺的原因 导致阔值电压 νΛ不均匀而引起流经各 OLED的电流不同,造成亮度不均匀。
实例三:
如图 2c所示, 驱动晶体管 TO和第三晶体管 T3为 P型晶体管, 第一开 关晶体管 Tl、第二开关晶体管 Τ2、第四开关晶体管 Τ4、第五开关晶体管 Τ5、 第六开关晶体管 Τ6以及第七开关晶体管 Τ7也为 Ρ型晶体管。
在像素电路的电路信号时序图中, 如图 3c 所示, 扫描信号端的电压为 Vscan,数据信号端的电压为 VData, 发光控制信号端的电压为 VEmissin, 触控控 制信号端的电压为 VSelec;t, 电容的第二端的电压为 VA, 驱动晶体管 TO的栅 极在触摸时的电压为 VB1, 驱动晶体管 TO的栅极在无触摸时的电压为 VB2
像素电路的工作原理如下:
在触控阶段的数据写入阶段即触控阶段的第一阶段,扫描信号端的 VScan 和数据信号端的 VData为低电平, 发光控制信号端的 VEmissin和触控控制信号 端的 VSeleet为高电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于关闭状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 TO的栅极相连, 驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。 此时, 光电二极管 PD处于断开状态, 无论光 电二极管 PD有无触摸, 驱动晶体管 TO的栅极电压都为 VData
在触控阶段的触控侦测阶段即触控阶段的第二阶段, 触控控制信号端的 VSelec;t为低电平, 扫描信号端的 VS m、 数据信号端的 VData和发光控制信号端 的 VEmissin为高电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第四 开关晶体管 Τ4和第五开关晶体管 Τ5处于关闭状态, 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于开启状态, 光电二级管 PD与第二参考信号端 Ref2 处于连接状态。 OLED瞬时导通, 第一参考信号端 Refl的电压 VD :¾ OLED 流入第三开关晶体管 T3的栅极和源极, 使第三晶体管 T3处于导通状态, 并 从第三晶体管 T3的漏极输出到电容 Cst的第二端 z2, 电容 Cst的第二端 z2 的电压值 VA变为 VDD-VtM-Vto, 其中 νώ。为发光器件 OLED的阔值电压。根 据电容电量守恒的原理, 电容第一端 zl 的电压对应的变为 VDD-Vth3-Vth。+ ( VData-VDD+Vth3 ) = VData-Vth。。 此时, 若光电二极管 PD无光照即有触摸, 即 光电二极管 PD处于断开状态,驱动晶体管 TO的栅极电压 VB1保持 VData-Vth。。 若光电二极管 PD处于光照下即无触摸, 在光电效应的作用下光电二极管产 生光生载流子, 形成光电流, 该光电流会使电容 Cst上的电荷增加, 导致电 容的第一端 zl的电压升高, 进而导致输入驱动晶体管 TO的栅极电压 VB2升 高, 导致最终由驱动晶体管 TO输出的、 且经第六开关晶体管 T6输出到触控 信号读取端 Sensor的触控侦测信号变小。该触控侦测信号的大小与照射到光 电二极管的光强有关, 光强越大, 触控侦测信号越小。
在显示阶段的数据写入阶段即显示阶段的第一阶段,扫描信号端的 VScan 和数据信号端的 VData为低电平, 发光控制信号端的 VEmissin和触控控制信号 端的 VSeleet为高电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于开启状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 TO的栅极相连, 驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。 在显示阶段的发光驱动阶段即显示阶段的第二阶段, 发光控制信号端的 vEmissin为低电平, 扫描信号端的 VS(;an、 数据信号端的 VData和触控控制信号 端的 VSeleet为高电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第六 开关晶体管 Τ6和第七开关晶体管 Τ7处于关闭状态, 第四开关晶体管 Τ4和 第五开关晶体管 Τ5处于开启状态, 第三开关晶体管 Τ3反向截止, OLED导 通, 第一参考信号端 Refl 的电压 VDD经第四开关晶体管 T4直接流入电容 Cst的第二端 z2, 电容 Cst的第二端 z2的电压值 VA就变为 VDD。 根据电容 电量守恒的原理, 电容第一端 Zl 的电压对应变为 VDD+ ( Voata-VoD+VtM ) =VData+Vth3。 此时, 驱动晶体管 TO 的源极和栅极之间的电压为
Figure imgf000018_0001
由于驱动晶体管 TO工作处于饱和状态, 根据饱和状态电流特性可知, 驱动晶体管 TO的开态电流 id满足公式:
Figure imgf000018_0002
( Voata+Vths-Vtho ) 2, 其中 K为结构参数, 相同结构中此数值相对稳定, 可以算作常量。 当第三开 关晶体管 T3的阔值电压 VtM与驱动晶体管 TO的阔值电压 Vtho相等时, 驱动 晶体管 TO的开态电流
Figure imgf000018_0003
( Voata+VtM-Vtho ) 2= ( VData ) 2, 从公 式推导可知, 当第三开关晶体管 T3的阔值电压 与驱动晶体管 TO的阔值 电压 相等时, 流经驱动晶体管 TO的漏电流仅与数据信号的电压 VData有 关, 与驱动晶体管 TO的阔值电压 νΛ无关。 因此, 用该开态电流 id驱动发光 器件 D1发光, 流经各 OLED的电流相对均匀, 不会因背板制造工艺的原因 导致阔值电压 νΛ不均匀而引起流经各 OLED的电流不同,造成亮度不均匀。
实例四:
如图 2d所示, 驱动晶体管 TO和第三晶体管 T3为 P型晶体管, 第一开 关晶体管 Tl、第二开关晶体管 Τ2、第四开关晶体管 Τ4、第五开关晶体管 Τ5、 第六开关晶体管 Τ6以及第七开关晶体管 Τ7为 Ν型晶体管。
在像素电路的电路信号时序图中, 如图 3d所示, 扫描信号端的电压为
Vscan,数据信号端的电压为 VData, 发光控制信号端的电压为 VEmissin, 触控控 制信号端的电压为 VSelec;t, 电容的第二端的电压为 VA, 驱动晶体管 TO的栅 极在触摸时的电压为 VB1, 驱动晶体管 TO的栅极在无触摸时的电压为 VB2
像素电路的工作原理如下:
在触控阶段的数据写入阶段即触控阶段的第一阶段,扫描信号端的 VScan 为高电平, 数据信号端的 VData、 发光控制信号端的 VEmissin和触控控制信号 端的 VSelec;t为低电平, 此时, 第一开关晶体管 T1和第二开关晶体管 T2处于 开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于关闭状态, OLED处于被短路的状态; 第一参考信 号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3的 栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极输 出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 ν , 电容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2 处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即 电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体管 TO的栅极相连, 驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管的 栅极实现了 VData的数据写入。 此时, 光电二极管 PD处于断开状态, 无论光 电二极管 PD有无触摸, 驱动晶体管 TO的栅极电压都为 VData
在触控阶段的触控侦测阶段即触控阶段的第二阶段, 触控控制信号端的
VSele(;t和数据信号端的 VData为高电平, 扫描信号端的 VS(;an和发光控制信号端 的 VEmissin为低电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第四 开关晶体管 Τ4和第五开关晶体管 Τ5处于关闭状态, 第六开关晶体管 Τ6和 第七开关晶体管 Τ7处于开启状态, 光电二级管 PD与第二参考信号端 Ref2 处于连接状态。 OLED瞬时导通, 第一参考信号端 Refl的电压 VDD经 OLED 流入第三开关晶体管 T3的栅极和源极, 使第三晶体管 T3处于导通状态, 并 从第三晶体管 T3的漏极输出到电容 Cst的第二端 z2, 电容 Cst的第二端 z2 的电压值 VA变为 VDD-VtM-Vto, 其中 νώ。为发光器件 OLED的阔值电压。根 据电容电量守恒的原理, 电容第一端 zl 的电压对应的变为 VDD-Vth3-Vth。+ ( VData-VDD+Vth3 ) = VData-Vth。。 此时, 若光电二极管 PD无光照即有触摸, 即 光电二极管 PD处于断开状态,驱动晶体管 TO的栅极电压 VB1保持 VData-Vth。。 若光电二极管 PD处于光照下即无触摸, 在光电效应的作用下光电二极管产 生光生载流子, 形成光电流, 该光电流会使电容 Cst上的电荷增加, 导致电 容的第一端 zl的电压升高, 进而导致输入驱动晶体管 TO的栅极电压 VB2升 高, 导致最终由驱动晶体管 T0输出的、 且经第六开关晶体管 T6输出到触控 信号读取端 Sensor的触控侦测信号变小。该触控侦测信号的大小与照射到光 电二极管的光强有关, 光强越大, 触控侦测信号越小。
在显示阶段的数据写入阶段即显示阶段的第一阶段,扫描信号端的 VScan 为高电平, 数据信号端的 VData、 发光控制信号端的 VEmissin和触控控制信号 端的 VSeleet为低电平信号, 此时, 第一开关晶体管 T1和第二开关晶体管 T2 处于开启状态, 第四开关晶体管 T4、 第五开关晶体管 Τ5、 第六开关晶体管 Τ6和第七开关晶体管 Τ7处于开启状态, OLED处于被短路的状态; 第一参 考信号端 Refl的电压 VDD经第二开关晶体管 T2直接流入第三开关晶体管 T3 的栅极和源极, 使第三晶体管 T3处于导通状态, 并从第三晶体管 T3的漏极 输出到电容 Cst的第二端 z2, 其中, 第三开关晶体管的阔值电压为 电 容 Cst的第二端 z2的电压值 VA变为 VDD-Vth3, 实现了在电容 Cst的第二端 z2处第三开关晶体管的阔值电压的存储。 由数据信号端 Data输出的数据信 号 VData通过第一开关晶体管 T1的源极写入与漏极连接的电容的第一端 zl, 即电容 Cst的第一端 zl的电压变为 VData, 电容 Cst的第一端 zl与驱动晶体 管 TO的栅极相连,驱动晶体管 TO的栅极的电压也为 VData, 即在驱动晶体管 的栅极实现了 VData的数据写入。
在显示阶段的发光驱动阶段即显示阶段的第二阶段, 发光控制信号端的
VEmissin和数据信号端的 VData为高电平, 扫描信号端的 VS(;an和触控控制信号 端的 VSelec;t为低电平, 此时, 第一开关晶体管 Tl、 第二开关晶体管 Τ2、 第六 开关晶体管 Τ6和第七开关晶体管 Τ7处于关闭状态, 第四开关晶体管 Τ4和 第五开关晶体管 Τ5处于开启状态, 第三开关晶体管 Τ3反向截止, OLED导 通, 第一参考信号端 Refl 的电压 VDD经第四开关晶体管 T4直接流入电容 Cst的第二端 z2, 电容 Cst的第二端 z2的电压值 VA就变为 VDD。 根据电容 电量守恒的原理, 电容第一端 Zl 的电压对应变为 VDD+ ( Voata-VoD+VtM ) =VData+Vth3。 此时, 驱动晶体管 TO 的源极和栅极之间的电压为 Vgs=Vg-Vs=VData+Vth3
由于驱动晶体管 TO工作处于饱和状态, 根据饱和状态电流特性可知, 驱动晶体管 TO的开态电流 id满足公式: id=K(Vgs-Vth)2=K ( Voata+Vths-Vtho ) 2, 其中 K为结构参数, 相同结构中此数值相对稳定, 可以算作常量。 当第三开 关晶体管 T3的阔值电压 与驱动晶体管 T0的阔值电压 νΛ()相等时, 驱动 晶体管 TO的开态电流
Figure imgf000021_0001
( Voata+VtM-Vtho ) 2= ( VData ) 2, 从公 式推导可知, 当第三开关晶体管 T3的阔值电压 Vths与驱动晶体管 TO的阔值 电压 VtM相等时, 流经驱动晶体管 TO的漏电流仅与数据信号的电压 VData有 关, 与驱动晶体管 TO的阔值电压 νΛ无关。 因此, 用该开态电流 id驱动发光 器件 D1发光, 流经各 OLED的电流相对均匀, 不会因背板制造工艺的原因 导致阔值电压 νΛ不均匀而引起流经各 OLED的电流不同,造成亮度不均匀。
基于同一发明构思,本发明实施例还提供了一种有机电致发光显示面板, 包括本发明实施例提供的上述像素电路, 由于该有机电致发光显示面板解决 问题的原理与前述一种像素电路相似, 因此该有机电致发光显示面板的实施 可以参见像素电路的实施, 重复之处不再赘述。
基于同一发明构思, 本发明实施例还提供了一种显示装置, 包括本发明 实施例提供的上述有机电致发光显示面板,该显示装置可以是显示器、手机、 电视、 笔记本、 一体机等, 对于显示装置的其它必不可少的组成部分均为本 领域的普通技术人员应该理解具有的, 在此不做赞述, 也不应作为对本发明 的限制。
本发明实施例提供的一种像素电路、有机电致发光显示面板及显示装置, 该像素电路包括: 发光器件、 光敏器件、 驱动控制子模块、数据写入子模块、 发光控制子模块以及触控侦测子模块; 其中, 驱动控制子模块的第一端分别 与数据写入子模块的第一端和光敏器件的第一端相连, 第二端分别与发光器 件的第一端和数据写入子模块的第二端相连, 第三端分别与发光控制子模块 的第一端和触控侦测子模块的第一端相连; 数据写入子模块的第三端与数据 信号端相连, 第四端与扫描信号端相连, 第五端分别与第一参考信号端、 发 光器件的第二端以及发光控制子模块的第二端相连, 第六端与发光控制子模 块的第三端相连; 发光控制子模块的第四端分别与第二参考信号端和触控侦 测子模块的第二端相连, 发光控制子模块的第五端与发光控制信号端相连; 触控侦测子模块的第三端与光敏器件的第二端相连, 触控侦测子模块的第四 端与触控信号读取端相连,触控侦测子模块的第五端与触控控制信号端相连。 在数据写入子模块导通时, 数据写入子模块向驱动控制子模块传输数据信号 端的数据信号; 在发光控制子模块导通时, 发光控制子模块控制驱动控制子 模块驱动发光器件发光, 实现显示功能; 在触控侦测子模块导通时, 触控侦 测子模块控制驱动控制子模块向触控信号读取端输出触控侦测信号, 触控侦 测信号随着照射到光敏器件光强的增大而减小, 实现触控侦测功能。 像素电 路集成了触控与显示功能, 这样可以节省分别设置显示驱动电路和触控电路 的制作成本, 还可以减薄显示面板的厚度。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。
本申请要求于 2013年 7月 31 日递交的中国专利申请第 201310329790.3 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种像素电路, 包括: 发光器件、 光敏器件、 驱动控制子模块、 数据 写入子模块、 发光控制子模块以及触控侦测子模块; 其中,
所述驱动控制子模块的第一端分别与所述数据写入子模块的第一端和所 述光敏器件的第一端相连, 所述驱动控制子模块的第二端分别与所述发光器 件的第一端和所述数据写入子模块的第二端相连, 所述驱动控制子模块的第 三端分别与所述发光控制子模块的第一端和所述触控侦测子模块的第一端相 连;
所述数据写入子模块的第三端与数据信号端相连, 所述数据写入子模块 的第四端与扫描信号端相连, 所述数据写入子模块的第五端分别与第一参考 信号端、 发光器件的第二端以及发光控制子模块的第二端相连, 所述数据写 入子模块的第六端与所述发光控制子模块的第三端相连; 在扫描信号端的控 制下, 所述数据写入子模块向所述驱动控制子模块传输所述数据信号端的数 据信号;
所述发光控制子模块的第四端分别与第二参考信号端和所述触控侦测子 模块的第二端相连, 所述发光控制子模块的第五端与发光控制信号端相连; 在所述发光控制信号端的控制下, 所述发光控制子模块控制所述驱动控制子 模块驱动所述发光器件发光;
所述触控侦测子模块的第三端与所述光敏器件的第二端相连, 所述触控 侦测子模块的第四端与触控信号读取端相连, 所述触控侦测子模块的第五端 与触控控制信号端相连; 在所述触控控制信号端的控制下, 所述触控侦测子 模块控制所述驱动控制子模块向所述触控信号读取端输出触控侦测信号, 所 述触控侦测信号随着照射到所述光敏器件光强的增大而减小。
2、如权利要求 1所述的像素电路, 其中, 所述驱动控制子模块的第一端 和第二端为信号输入端, 所述驱动控制子模块的第三端为信号输出端; 所述数据写入子模块的第一端和第二端为信号输出端, 所述数据写入子 模块的第三端、 第四端、 第五端和第六端为信号输入端;
所述发光控制子模块的第一端、 第二端和第五端为信号输入端, 所述发 光控制子模块的第三端和第四端为信号输出端; 所述触控侦测子模块的第一端和第五端为信号输入端, 所述触控侦测子 模块的第四端为信号输出端; 所述触控侦测子模块的第二端和第三端之一为 信号输入端,所述触控侦测子模块的第二端和第三端的另一者为信号输出端。
3、 如权利要求 2所述的像素电路, 其中, 所述驱动控制子模块包括: 驱 动晶体管, 所述驱动晶体管的栅极为所述驱动控制子模块的第一端, 所述驱 动晶体管的漏极为所述驱动控制子模块的第二端, 所述驱动晶体管的源极为 所述驱动控制子模块的第三端。
4、 如权利要求 3所述的像素电路, 其中, 所述数据写入子模块包括: 第 一开关晶体管、 第二开关晶体管、 第三开关晶体管和电容; 其中,
所述第一开关晶体管的栅极与所述扫描信号端相连, 所述第一开关晶体 管的源极与所述数据信号端相连, 所述第一开关晶体管的漏极分别与所述驱 动晶体管的栅极和所述电容的第一端相连;
所述第二开关晶体管的栅极与所述扫描信号端相连, 所述第二开关晶体 管的源极与所述第一参考信号端相连, 所述第二开关晶体管的漏极与所述驱 动晶体管的漏极相连;
所述第三开关晶体管为 N型晶体管时,所述第三开关晶体管的栅极和源 极分别与所述驱动晶体管的漏极相连, 所述第三开关晶体管的漏极与所述电 容的第二端相连; 所述第三开关晶体管为 P型晶体管时, 所述第三开关晶体 管的栅极和源极分别与所述电容的第二端相连, 所述第三开关晶体管的漏极 与所述驱动晶体管的漏极相连。
5、如权利要求 4所述的像素电路, 其中, 所述第三开关晶体管与所述驱 动晶体管的阔值电压相同。
6、 如权利要求 5所述的像素电路, 其中, 所述光敏器件为光电二极管; 在所述第三开关晶体管与所述驱动晶体管为 N型晶体管时,所述光电二 极管的阴极与所述驱动晶体管的栅极相连; 在所述第三开关晶体管与所述驱 动晶体管为 P型晶体管时, 所述光电二极管的阳极与所述驱动晶体管的栅极 相连。
7、 如权利要求 5所述的像素电路, 其中, 所述发光控制子模块包括: 第 四开关晶体管和第五开关晶体管;
所述第四开关晶体管的栅极与所述发光控制信号端相连, 所述第四开关 晶体管的源极与所述第一参考信号端相连, 所述第四开关晶体管的漏极与所 述电容的第二端相连;
所述第五开关晶体管的栅极与所述发光控制信号端相连, 所述第五开关 晶体管的源极与所述驱动晶体管的源极相连, 所述第五开关晶体管的漏极与 所述第二参考信号端相连。
8、如权利要求 7所述的像素电路, 其中, 所述第四开关晶体管和所述第 五开关晶体管为 N型晶体管; 或, 所述第四开关晶体管和所述第五开关晶体 管为 P型晶体管。
9、 如权利要求 1-8任一项所述的像素电路, 其中, 所述触控侦测子模块 包括: 第六开关晶体管和第七开关晶体管;
所述第六开关晶体管的栅极与所述触控控制信号端相连, 所述第六开关 晶体管的源极与所述驱动控制子模块的第三端相连, 所述第六开关晶体管的 漏极与所述触控信号读取端相连;
所述第七开关晶体管的栅极与所述触控控制信号端相连, 所述第七开关 晶体管的源极与所述光敏器件的第二端相连, 所述第七开关晶体管的漏极与 所述第二参考信号端相连。
10、 如权利要求 9所述的像素电路, 其中, 所述第六开关晶体管和所述 第七开关晶体管为 N型晶体管; 或, 所述第六开关晶体管和所述第七开关晶 体管为 P型晶体管。
11、 一种有机电致发光显示面板, 包括如权利要求 1-10任一项所述的像 素电路。
12、 一种显示装置, 包括如权利要求 11所述的有机电致发光显示面板。
PCT/CN2014/077615 2013-07-31 2014-05-15 像素电路、有机电致发光显示面板及显示装置 WO2015014146A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/416,215 US9373283B2 (en) 2013-07-31 2014-05-15 Pixel circuit, organic electroluminescent display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310329790.3 2013-07-31
CN201310329790.3A CN103413522B (zh) 2013-07-31 2013-07-31 一种像素电路、有机电致发光显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2015014146A1 true WO2015014146A1 (zh) 2015-02-05

Family

ID=49606526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077615 WO2015014146A1 (zh) 2013-07-31 2014-05-15 像素电路、有机电致发光显示面板及显示装置

Country Status (3)

Country Link
US (1) US9373283B2 (zh)
CN (1) CN103413522B (zh)
WO (1) WO2015014146A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413522B (zh) * 2013-07-31 2015-04-22 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN104201187B (zh) * 2014-08-18 2017-07-04 京东方科技集团股份有限公司 一种oled显示装置
CN104269142B (zh) * 2014-10-28 2017-07-07 京东方科技集团股份有限公司 触摸驱动电路及其驱动方法
KR102318265B1 (ko) 2014-11-14 2021-10-27 삼성디스플레이 주식회사 유기 발광 표시 장치
CN104392699B (zh) * 2014-12-15 2018-05-01 合肥鑫晟光电科技有限公司 像素电路及其驱动方法、显示面板和显示装置
CN104835453B (zh) * 2015-05-28 2017-04-05 京东方科技集团股份有限公司 一种像素电路、驱动方法及显示装置
WO2017006954A1 (ja) * 2015-07-09 2017-01-12 シャープ株式会社 タッチパネル付き表示装置
CN106775040B (zh) * 2015-11-20 2019-09-24 京东方科技集团股份有限公司 电致发光触控显示面板的控制装置、触摸屏及显示装置
US11941197B2 (en) 2019-09-06 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
CN114187870B (zh) * 2020-09-14 2023-05-09 京东方科技集团股份有限公司 光电检测电路及其驱动方法、显示装置及其制作方法
TWI760943B (zh) * 2020-11-27 2022-04-11 友達光電股份有限公司 畫素電路及觸控顯示裝置
TWI750049B (zh) * 2021-02-26 2021-12-11 友達光電股份有限公司 畫素驅動電路
US11902366B2 (en) 2022-05-25 2024-02-13 Bank Of America Corporation System for implementing dynamic multi-factor soft lock on user identifiers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085526A (ja) * 2008-09-30 2010-04-15 Casio Computer Co Ltd 表示装置
EP2328178A2 (en) * 2009-11-10 2011-06-01 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
US20130009942A1 (en) * 2008-12-29 2013-01-10 Lee Baek-Woon Display device and driving method thereof
CN103135846A (zh) * 2012-12-18 2013-06-05 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103218972A (zh) * 2013-04-15 2013-07-24 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103413522A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN203366704U (zh) * 2013-07-31 2013-12-25 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958643B1 (ko) * 2008-10-17 2010-05-20 삼성모바일디스플레이주식회사 터치 스크린 디스플레이 장치 및 이의 구동 방법
US8203541B2 (en) * 2009-03-11 2012-06-19 Empire Technology Development Llc OLED display and sensor
KR101022118B1 (ko) * 2009-09-02 2011-03-17 삼성모바일디스플레이주식회사 광 감지회로 및 그 구동방법과 이를 구비한 터치 스크린 패널
US9064460B2 (en) * 2010-05-20 2015-06-23 Sharp Kabushiki Kaisha Display device with touch sensor including photosensor
TWI416387B (zh) * 2010-08-24 2013-11-21 Au Optronics Corp 觸控面板
TWI436322B (zh) * 2010-09-14 2014-05-01 Ind Tech Res Inst 光敏電路以及光敏顯示器系統
TWI470509B (zh) * 2011-09-08 2015-01-21 Hannstar Display Corp 光學觸控顯示面板及其觸控感測方法
US8902135B2 (en) * 2012-02-04 2014-12-02 Integrated Digital Technologies, Inc. Pixel structure of organic electroluminescence device
KR101905793B1 (ko) * 2012-06-04 2018-10-11 삼성디스플레이 주식회사 터치 스크린 패널 일체형 유기전계 발광 표시장치
CN103295525B (zh) * 2013-05-31 2015-09-30 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN103345901B (zh) * 2013-06-26 2016-04-13 京东方科技集团股份有限公司 一种amoled像素电路及其驱动方法、显示装置
CN103354080B (zh) * 2013-06-26 2016-04-20 京东方科技集团股份有限公司 有源矩阵有机发光二极管像素单元电路以及显示面板
CN103325342B (zh) * 2013-06-26 2015-12-09 京东方科技集团股份有限公司 一种amoled像素电路及其驱动方法、显示装置
CN103354078B (zh) * 2013-06-26 2016-01-06 京东方科技集团股份有限公司 有源矩阵有机发光二极管像素单元电路以及显示面板
US9459721B2 (en) * 2013-06-26 2016-10-04 Chengdu Boe Optoelectronics Technology Co., Ltd. Active matrix organic light emitting diode pixel unit circuit, display panel and electronic product
CN103353814B (zh) * 2013-06-27 2016-12-28 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN103383837B (zh) * 2013-07-09 2015-07-01 京东方科技集团股份有限公司 一种触摸显示驱动电路、驱动方法及显示装置
US9330604B2 (en) * 2013-07-31 2016-05-03 Boe Technology Group Co., Ltd. Organic light-emitting diode pixel circuit, drive method thereof, and display device
CN103413523B (zh) * 2013-07-31 2015-05-27 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN103413524B (zh) * 2013-07-31 2015-06-17 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN103700345B (zh) * 2013-12-27 2015-09-23 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085526A (ja) * 2008-09-30 2010-04-15 Casio Computer Co Ltd 表示装置
US20130009942A1 (en) * 2008-12-29 2013-01-10 Lee Baek-Woon Display device and driving method thereof
EP2328178A2 (en) * 2009-11-10 2011-06-01 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN103135846A (zh) * 2012-12-18 2013-06-05 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103218972A (zh) * 2013-04-15 2013-07-24 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103413522A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN203366704U (zh) * 2013-07-31 2013-12-25 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置

Also Published As

Publication number Publication date
US20150317932A1 (en) 2015-11-05
CN103413522B (zh) 2015-04-22
US9373283B2 (en) 2016-06-21
CN103413522A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2015014146A1 (zh) 像素电路、有机电致发光显示面板及显示装置
US9495908B2 (en) Pixel circuit, organic electroluminescent display panel and display device
WO2015003465A1 (zh) 一种触摸显示驱动电路、驱动方法及显示装置
WO2015180373A1 (zh) 像素电路和显示装置
WO2016011707A1 (zh) 像素电路及其驱动方法和显示装置
WO2016045246A1 (zh) 像素电路及其驱动方法、发光显示面板及显示装置
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104091564B (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
WO2016101504A1 (zh) 一种像素电路、有机电致发光显示面板及显示装置
CN104021754B (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
WO2015192503A1 (zh) 像素电路及其驱动方法、显示装置
WO2014205931A1 (zh) 有源矩阵有机发光二极管像素单元电路、显示面板以及电子产品
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2014205950A1 (zh) 有源矩阵有机发光二极管像素单元电路以及显示面板
CN107369413B (zh) 一种像素补偿电路、其驱动方法、显示面板及显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2015196730A1 (zh) 像素电路及其驱动方法和显示装置
WO2014190636A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104299571A (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2019029282A1 (zh) 像素电路及其驱动方法以及触控显示装置
WO2014190621A1 (zh) 一种触摸显示驱动电路、方法和显示装置
WO2014169535A1 (zh) 触控显示电路结构及其驱动方法、阵列基板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14416215

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205N DATED 17.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14832897

Country of ref document: EP

Kind code of ref document: A1