CN103353814B - 一种触控驱动电路、光学式内嵌触摸屏及显示装置 - Google Patents

一种触控驱动电路、光学式内嵌触摸屏及显示装置 Download PDF

Info

Publication number
CN103353814B
CN103353814B CN201310263585.1A CN201310263585A CN103353814B CN 103353814 B CN103353814 B CN 103353814B CN 201310263585 A CN201310263585 A CN 201310263585A CN 103353814 B CN103353814 B CN 103353814B
Authority
CN
China
Prior art keywords
submodule
transistor
touch
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310263585.1A
Other languages
English (en)
Other versions
CN103353814A (zh
Inventor
聂磊森
祁小敬
周全国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Chengdu BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Chengdu BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Chengdu BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201310263585.1A priority Critical patent/CN103353814B/zh
Publication of CN103353814A publication Critical patent/CN103353814A/zh
Priority to US14/355,121 priority patent/US9846503B2/en
Priority to PCT/CN2013/089457 priority patent/WO2014206030A1/zh
Application granted granted Critical
Publication of CN103353814B publication Critical patent/CN103353814B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen

Abstract

本发明公开了一种触控驱动电路、光学式内嵌触摸屏及显示装置,该触控电路包括:感光子模块、数据写入子模块、驱动子模块和控制子模块。在扫描信号端控制下,数据写入子模块向驱动子模块传输扫描信号端的扫描信号;在扫描信号控制驱动子模块开启时,驱动子模块向控制子模块输出触控感测信号,触控感测信号随着照到感光子模块光强的增大而减小;在控制信号端控制下,控制子模块将触控感测信号输入到触控信号读取端,实现触控功能。与现有光学式内嵌触摸屏的驱动电路相比,用控制子模块控制驱动子模块向触控信号读取端传输触控感测信号,在将各级驱动电路触控信号读取端与同一根触控信号读取线连接时,能避免不同级驱动电路输出的信号相互串扰。

Description

一种触控驱动电路、光学式内嵌触摸屏及显示装置
技术领域
本发明涉及触摸屏技术领域,尤其涉及一种触控驱动电路、光学式内嵌触摸屏及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,内嵌式触摸屏(In Cell Touch Panel)由于将触控部件内嵌在显示屏内部,既可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家的青睐。因此,内嵌式触摸屏的驱动方式也成为人们研究触摸屏的热点。
现有的光学式内嵌触摸屏的驱动电路是由用以实现触控功能的各级驱动电路组成的多级驱动电路。其中,各级驱动电路其触控信号读取端的信号经触控信号读取线输出,通过分析触控信号读取线上的信号,确定出触点的位置。
上述现有的光学式内嵌触摸屏的驱动电路的主要缺点为:若将各级驱动电路的触控信号读取端连接到同一根触控信号读取线上,则不同级驱动电路的触控信号读取端输出的信号相互会发生串扰,从而影响触摸屏触控信号检测的准确率;若对各级驱动电路的触控信号读取端分别配置触控信号读取线,则又会使触摸屏中布线面积增大。
发明内容
本发明实施例提供了一种触控驱动电路、光学式内嵌触摸屏及显示装置,用以实现在不增加触控布线面积的情况下,提高触控信号检测的准确率。
本发明实施例提供了一种触控驱动电路,包括:感光子模块、数据写入子模块、驱动子模块以及控制子模块;其中,
所述感光子模块的第一端与所述第一参考信号端相连,所述感光子模块的第二端分别与所述数据写入子模块的信号输出端和所述驱动子模块的第一信号输入端相连;
所述数据写入子模块的第一信号输入端与扫描信号端相连,所述数据写入子模块的第二信号输入端分别与第二参考信号端和所述驱动子模块的第二信号输入端相连;在所述扫描信号端的控制下,所述数据写入子模块向所述驱动子模块传输所述扫描信号端的扫描信号;
所述驱动子模块的信号输出端与所述控制子模块的第一信号输入端相连;在所述扫描信号控制所述驱动子模块处于开启状态时,所述驱动子模块向所述控制子模块输出触控感测信号,所述触控感测信号随着照射到所述感光子模块光强的增大而减小;
所述控制子模块的第二信号输入端与控制信号端相连,所述控制子模块的信号输出端与触控信号读取端相连;在所述控制信号端的控制下,所述控制子模块将所述驱动子模块输出的触控感测信号输入到所述触控信号读取端。
本发明实施例提供了一种光学式内嵌触摸屏,包括本发明实施例提供的触控驱动电路。
本发明实施例提供了一种显示装置,包括本发明实施例提供的光学式内嵌触摸屏。
本发明实施例的有益效果包括:
本发明实施例提供了一种触控驱动电路、光学式内嵌触摸屏及显示装置,该触控电路包括:感光子模块、数据写入子模块、驱动子模块以及控制子模块;在扫描信号端的控制下,数据写入子模块向驱动子模块传输扫描信号端的扫描信号;在扫描信号控制驱动子模块处于开启状态时,驱动子模块向控制子模块输出触控感测信号,触控感测信号随着照射到感光子模块光强的增大而减小;在控制信号端的控制下,控制子模块将驱动子模块输出的触控感测信号输入到触控信号读取端,实现触控侦测功能。本发明实施例提供的触控驱动电路采用控制子模块控制驱动子模块向触控信号读取端传输触控感测信号,在将各级驱动电路的触控信号读取端连接到同一根触控信号读取线上时,可以避免不同级驱动电路的触控信号读取端输出的信号相互串扰,实现了在不增加触摸屏布线面积的情况下,提高触控信号检测的准确率。
附图说明
图1a至图1b为本发明实施例提供的触控驱动电路的结构示意图;
图2a至图2d为本发明实施例提供的触控驱动电路的具体结构示意图;
图3a至图3d为本发明实施例提供的触控驱动电路的电路时序图。
具体实施方式
下面结合附图,对本发明实施例提供的触控驱动电路、光学式内嵌触摸屏及显示装置的具体实施方式进行详细地说明。
本发明实施例提供的一种触控驱动电路,如图1a所示,包括:感光子模块1、数据写入子模块2、驱动子模块3以及控制子模块4;其中,
感光子模块1的第一端1a与第一参考信号端Ref1相连,感光子模块1的第二端1b分别与数据写入子模块2的信号输出端2a’和驱动子模块3的第一信号输入端3a相连;
数据写入子模块2的第一信号输入端2a与扫描信号端Scan相连,数据写入子模块2的第二信号输入端2b分别与第二参考信号端Ref2和驱动子模块3的第二信号输入端3b相连;在扫描信号端Scan的控制下,数据写入子模块2向驱动子模块3传输扫描信号端Scan的扫描信号;
驱动子模块3的信号输出端3a’与控制子模块4的第一信号输入端4a相连;在扫描信号控制驱动子模块3处于开启状态时,驱动子模块3向控制子模块4输出触控感测信号,该触控感测信号随着照射到感光子模块1光强的增大而减小;
控制子模块4的第二信号输入端4b与控制信号端Select相连,控制子模块4的信号输出端4a’与触控信号读取端Sensor相连;在控制信号端Select的控制下,控制子模块4将驱动子模块3输出的触控感测信号输入到触控信号读取端Sensor。
本发明实施例提供的上述触控驱动电路,采用控制子模块控制驱动子模块向触控信号读取端传输触控感测信号,在将各级驱动电路的触控信号读取端连接到同一根触控信号读取线上时,可以避免不同级驱动电路的触控信号读取端输出的信号相互串扰,实现了在不增加触摸屏布线面积的情况下,提高触控信号检测的准确率。
在具体实施时,本发明实施例提供的上述触控驱动电路中的数据写入子模块2,如图2a至图2d所示,可以具体包括:第一开关晶体管T1和电容Cst;其中,
电容Cst的第一端x与第二参考信号端Ref2相连,电容Cst的第二端y与第一开关晶体管T1的漏极相连;
第一开关晶体管T1的源极与栅极分别与扫描信号端Scan相连。
需要注意的是,在具体实施时,第一开关晶体管T1可以为N型晶体管,如图2a和图2b所示;第一开关晶体管T1也可以为P型晶体管,如图2c和图2d所示,在此不做限定。
进一步地,在具体实施时,当第一开关晶体管T1为N型晶体管时,在扫描信号端Scan的信号为高电平时,第一开关晶体管T1才会处于开启状态;当第一开关晶体管T1为P型晶体管时,在扫描信号端Scan的信号为低电平时,第一开关晶体管T1才会处于开启状态。
具体地,在具体实施时,在本发明实施例提供的上述触控驱动电路中,第一参考信号端Ref1和第二参考信号端Ref2的信号一般都为恒压信号,且第一参考信号端Ref1的信号的电压一般小于第二参考信号端Ref2的信号的电压。
具体地,当写入子模块2处于开启状态时,扫描信号端Scan输出的扫描信号经处于开启状态的第一开关晶体管T1输出到电容Cst的第二端y,第二参考信号端Ref2的信号输入到电容Cst的第一端x,使电容Cst充电。并且,电容Cst的第二端y与驱动子模块2的第一信号输入端相连,因此,在对电容Cst充电的同时实现了将扫描信号写入驱动子模块2。
在具体实施时,在本发明实施例提供的上述触控驱动电路中,驱动子模块3,如图2a至图2d所示,具体可以包括:驱动晶体管T0;其中,
驱动晶体管T0的栅极与第一开关晶体管T1的漏极相连,驱动晶体管T0的源极与第二参考信号端Ref2相连,驱动晶体管T0的漏极与控制子模块4的第一信号输入端相连。
具体地,驱动晶体管T0可以为N型晶体管,如图2a和图2b所示;驱动晶体管T0也可以为P型晶体管,如图2c和图2d所示,在此不做限定。当驱动晶体管T0为N型晶体管管时,在驱动晶体T0栅极的电压为高电平时,即输入到驱动子模块的扫描信号为高电平时,驱动晶体管T0才会处于开启状态;当驱动晶体管T0为P型晶体管管时,在驱动晶体T0栅极的电压为低电平时,即输入到驱动子模块的扫描信号为低电平时,驱动晶体管T0才会处于开启状态。
进一步地,在具体实施时,在本发明实施例提供的上述触控驱动电路中,第一开关晶体管T1和驱动晶体管T0需要同时为N型晶体管,如图2a和图2b所示;或者,第一开关晶体管T1和驱动晶体管T0需要同时为P型晶体管,如图2c和图2d所示,在此不做限定。
具体地,当驱动晶体管T0与第一开关晶体管T1同时为N型晶体管时,在扫描信号端Scan的扫描信号为高电平时,第一开关晶体管T1处于开启状态,开启的第一开关晶体管T1将高电平的扫描信号输入到驱动晶体管T0的栅极,使驱动晶体管T0处于开启状态;当驱动晶体管T0与第一开关晶体管T1同时为P型晶体管时,在扫描信号端Scan的扫描信号为低电平时,第一开关晶体管T1处于开启状态,开启的第一开关晶体管T1将低电平的扫描信号输入到驱动晶体管T0的栅极,使驱动晶体管T0处于开启状态。开启的驱动晶体管T0向控制子模块4输出触控感测信号,该触控感测信号会随着照射到感光子模块1光强的增大而减小。
在具体实施时,在本发明实施例提供的上述触控驱动电路中,感光子模块1,如图2a至图2d所示,具体可以包括:光电二极管PD(Photo Diode);
为了保证光电二极管PD工作时处于反向偏压的状态,在驱动晶体管T0与第一开关晶体管T1为N型晶体管时,如图2a和图2b所示,光电二极管PD的阴极与驱动晶体管T0的栅极相连;在驱动晶体管T0与第一开关晶体管T1为P型晶体管时,如图2c和图2d所示,光电二极管PD的阳极与驱动晶体管T0的栅极相连。
需要说明的是,光电二极管PD在反向偏压且有光照时才会开启。光电二极管PD的工作原理为:处于反向偏压的光电二极管PD在有光照时,即无触摸时,在光电效应的作用下光电二极管PD产生光生载流子,形成较大的反向电流,照射到光电二极管PD的光强越大,光电二极管PD产生的反向电流越大。
具体地,当驱动晶体管T0与第一开关晶体管T1为N型晶体管时,在扫描信号端Scan的扫描信号为高电平时,第一开关晶体管T1和驱动晶体管T0处于开启状态,开启的驱动晶体管T0向控制子模块4输出触控感测信号,此时,若光电二极管PD有光照射时,由于光电效应的作用,光电二极管PD产生的反向电流使驱动晶体管T0栅极的电压降低,导致驱动晶体管T0输出的触控感测信号变小。当驱动晶体管T0与第一开关晶体管T1为P型晶体管时,在扫描信号端的扫描信号为低电平时,第一开关晶体管T1和驱动晶体管T0处于开启状态,开启的驱动晶体管T0向控制子模块4输出触控感测信号,此时,若光电二极管PD有光照射时,由于光电效应的作用,光电二极管PD产生的反向电流使驱动晶体管T0栅极的电压升高,导致驱动晶体管T0输出的触控感测信号变小。
在具体实施时,在本发明实施例提供的上述触控驱动电路中,控制子模块4,如图2a至图2d所示,可以具体包括:第二开关晶体管T2;其中,
第二开关晶体管T2的栅极与控制信号端Selsct相连,第二开关晶体管T2的源极与驱动子模块3的信号输出端相连,第二开关晶体管T2的漏极与触控信号读取端Sensor相连。
具体地,第二开关晶体管T2可以为N型晶体管,如图2a和图2d所示;第二开关晶体管T2也可以为P型晶体管,如图2b和图2c所示,在此不做限定。当第二开关晶体管T2为N型晶体管时,在控制信号端Select的信号为高电平时,第二开关晶体管T2才会处于开启状态;当第二开关晶体管T2为P型晶体管时,在控制信号端Select的信号为低电平时,第二开关晶体管T2才会处于开启状态。处于开启状态的第二开关晶体管T2会将驱动子模块3输出的触控感测信号传输到触控信号读取端Sensor。
进一步地,在本发明实施例提供的触控驱动电路中,采用控制子模块4控制驱动子模块3向触控信号读取端Sensor输出触控感测信号,即在第二开关晶体管T2处于开启状态时,驱动子模块3输出的触控感测信号才会输出到触控信号读取端Sensor;在开关晶体管T2处于关闭状态时,触控信号读取端没有信号输出。这样,在多个上述触控驱动电路组成的多级驱动电路中,各级驱动电路的触控信号读取端连接同一根触控信号读取线时,其中一级驱动电路的控制子模块开启时,其他级驱动电路的控制子模块关闭,仅有该级驱动电路的触控信号读取端输出信号,不会受到其他级驱动电路输出信号的影响,避免了不同级驱动电路的触控信号读取端输出的信号相互串扰,实现了在不增加触摸屏布线面积的情况下,提高触控信号检测的准确率。
进一步地,本发明实施例提供的触控驱动电路,如图1b所示,还可以包括:复位子模块5;其中,
复位子模块5的第一信号输入端5a与复位控制信号端RST相连,复位子模块的第二信号输入端5b与驱动子模块3的第一信号输入端3a相连,复位子模块的信号输出端5a’与复位信号端VG相连;在复位控制信号端RST的控制下,复位子模块5控制驱动子模块3处于关闭状态。在上述触控驱动电路中,采用复位子模块5控制驱动子模块3处于关闭状态,可以使驱动子模块3的栅极电压恢复初始状态。
具体地,具体实施时,在本发明实施例提供的上述触控驱动电路中,复位子模块5,如图2a至图2d所示,具体可以包括:第三开关晶体管T3;其中,
第三开关晶体管T3的栅极与复位控制信号端RST相连,第三开关晶体管T3的源极与驱动子模块3的第一信号输入端相连,第三开关晶体管T3的漏极与复位信号端VG相连。
具体地,第三开关晶体管T3可以为N型晶体管,如图2a和图2d所示;第三开关晶体管T3也可以为P型晶体管,如图2b和图2c所示,在此不做限定。当第三开关晶体管T3为N型晶体管时,在复位控制信号端RST的信号为高电平时,第三开关晶体管T3才会处于开启状态;当第三开关晶体管T3为P型晶体管时,在复位控制信号端RST的信号为低电平时,第三开关晶体管T3才会处于开启状态。处于开启状态的第三晶体管T3会使驱动子模块3的栅极电压恢复初始状态。
需要注意的是,在驱动晶体管T0为N型晶体管时,复位信号端VG的信号应该为低电平,这样,当第三开关晶体管T3处于开启状态时,扫描信号端Scan的高电平扫描信号就直接输入到与第三晶体管T3的漏极相连的复位信号端VG,使驱动晶体管T0栅极的电压降低,从而使驱动晶体管T0处于关闭状态,使驱动晶体管T0的栅极电压恢复初始状态。在驱动晶体管T0为P型晶体管时,复位信号端VG的信号应该为高电平,这样,当第三开关晶体管T3处于开启状态时,与第三晶体管T3的漏极相连的复位信号端VG的高电平信号使驱动晶体管T0栅极的电压增高,从而使驱动晶体管T0处于关闭状态,使驱动晶体管T0的栅极电压恢复初始状态。
需要说明的是,在本发明实施例提供的触控驱动电路中提到的驱动晶体管和开关晶体管可以是薄膜晶体管(TFT,Thin Film Transistor),也可以是金属氧化物半导体场效应管(MOS,Metal Oxide Scmiconductor),在此不做限定。并且这些晶体管的源极和漏极可以互换,不做具体区分。
下面通过几个具体实例对本发明实施例提供的上述触控驱动电路的具体工作原理进行详细的说明。在以下实例中,第一参考信号端Ref1的电压Vss为低电平,第二参考信号端Ref2的电压VDD为高电平;在驱动晶体管T0为N型晶体管时,复位信号端VG的信号为低电平信号,在驱动晶体管T0为P型晶体管时,复位信号端VG的信号为高电平信号。
实例一:
如图2a所示,驱动晶体管T0、第一开关晶体管T1、第二开关晶体管T2和第三开关晶体管T3均为N型晶体管。图3a为图2a的电路时序图,其中,扫描信号端的电压为VScan,复位控制信号端的电压为VRST,控制信号端的电压为VSelect,驱动晶体管T0的漏极在有触摸时电压为VA1,驱动晶体管T0的漏极在无触摸时电压为VA2,触控信号读取端Sensor在有触摸时电压为VB1,触控信号读取端Sensor在无触摸时电压为VB2
具体地,触控驱动电路的工作原理如下:
第一阶段1:扫描信号端的电压VScan处于高电平,复位控制信号端的电压VRST和控制信号端的电压VSelect处于低电平,第一开关晶体管T1处于开启状态;第二开关晶体管T2和第三开关晶体管T3处于关闭状态。在此阶段中,扫描信号端的电压VScan通过开启的第一开关晶体管T1传输到电容Cst的第二端y,同时,第二参考信号端的电压VDD传输到电容的第一端x。由于电容Cst的作用,驱动晶体管T0的栅极电压会缓慢的升高,驱动晶体管T0慢慢处于开启状态,第二参考信号端的电压VDD通过开启的驱动晶体管T0传输到第二开关晶体管T2的源极,由于开关晶体管T2处于关闭状态,触控信号读取端Sensor没有触控感测信号输出。
在此阶段中,当光电二极管PD无光照即有触摸时:由于电容Cst的作用,驱动晶体管T0栅极的电压在缓慢升高后保持在一个高电位,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA1在缓慢升高后保持在高电位。
在此阶段中,当光电二极管PD有光照即无触摸时:由于光电二极管PD在光电效应的作用下会形成较大的反向电流,将输入到驱动晶体管T0栅极的电压拉低,因此,驱动晶体管T0栅极的电压升高的比光电二极管PD无光照时缓慢,且驱动晶体管T0栅极的电压在缓慢升高后保持的电位也比光电二极管PD无光照时低。在驱动晶体管T0栅极电压缓慢升高时,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA2也缓慢的升高并保持在一个电位,该电位比光电二极管PD无光照时驱动晶体管T0漏极的电压VA1所在的电位低。当照射到光电二极管PD的光强越大,驱动晶体管T0栅极的电压越低,驱动晶体管T0漏极的电压VA2也越低。
第二阶段2:扫描信号端的电压VScan和复位控制信号端的电压VRST处于低电平,第一开关晶体管T1和第三开关晶体管T3处于关闭状态。在此阶段中,在控制信号端的电压VSelect处于高电平时,第二开关晶体管T2处于开启状态。无论光电二极管PD有无光照,开启的第二开关晶体管T2都会将驱动晶体管T0漏极的电压输出到触控信号读取端Sensor,即触控信号读取端Sensor有触控感测信号输出。但是,光电二极管PD有触摸时触控信号读取端Sensor输出的触控感测信号比光电二极管PD无触摸时触控信号读取端Sensor输出的触控感测信号大。
第三阶段3:扫描信号端的电压VScan和控制信号端的电压VSelect处于低电平,复位控制信号端的电压VRST处于高电平,第一开关晶体管T1和第二开关晶体管T2处于关闭状态,第三开关晶体管T3处于开启状态。此阶段,由于复位信号端VG的信号为低电平信号,电容Cst第二端y的电压经开启的第三晶体管T3输入到复位信号端VG,使驱动晶体管T0栅极的电压降低,驱动晶体管T0处于关闭状态,恢复到第一阶段之前的状态。而触控信号读取端Sensor由于第二开关晶体管T2处于关闭状态没有触控感测信号输出。
综上,上述触控驱动电路在有触摸时,触控信号读取端Sensor输出的触控感测信号比在无触摸时触控信号读取端Sensor输出的触控感测信号大,通过分析触控驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸,进而确定出触点的位置,实现了触控驱动的功能。
实例二:
如图2b所示,驱动晶体管T0和第一开关晶体管T1为N型晶体管,第二开关晶体管T2和第三开关晶体管T3为P型晶体管。图3b为图2b的电路时序图,其中,扫描信号端的电压为VScan,复位控制信号端的电压为VRST,控制信号端的电压为VSelect,驱动晶体管T0的漏极在有触摸时电压为VA1,驱动晶体管T0的漏极在无触摸时电压为VA2,触控信号读取端Sensor在有触摸时电压为VB1,触控信号读取端Sensor在无触摸时电压为VB2
具体地,触控驱动电路的工作原理如下:
第一阶段1:扫描信号端的电压VScan、复位控制信号端的电压VRST和控制信号端的电压VSelect均处于高电平,第一开关晶体管T1处于开启状态;第二开关晶体管T2和第三开关晶体管T3处于关闭状态。在此阶段中,扫描信号端的电压VScan通过开启的第一开关晶体管T1传输到电容Cst的第二端y,同时,第二参考信号端的电压VDD传输到电容的第一端x。由于电容Cst的作用,驱动晶体管T0的栅极电压会缓慢的升高,驱动晶体管T0慢慢处于开启状态,第二参考信号端的电压VDD通过开启的驱动晶体管T0传输到第二开关晶体管T2的源极,由于开关晶体管T2处于关闭状态,触控信号读取端Sensor没有触控感测信号输出。
在此阶段中,当光电二极管PD无光照即有触摸时:由于电容Cst的作用,驱动晶体管T0栅极的电压在缓慢升高后保持在一个高电位,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA1在缓慢升高后保持在高电位。
在此阶段中,当光电二极管PD有光照即无触摸时:由于光电二极管PD在光电效应的作用下会形成较大的反向电流,将输入到驱动晶体管T0栅极的电压拉低,因此,驱动晶体管T0栅极的电压升高的比光电二极管PD无光照时缓慢,且驱动晶体管T0栅极的电压在缓慢升高后保持的电位也比光电二极管PD无光照时低。在驱动晶体管T0栅极电压缓慢升高时,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA2也缓慢的升高并保持在一个电位,该电位比光电二极管PD无光照时驱动晶体管T0漏极的电压VA1所在的电位低。当照射到光电二极管PD的光强越大,驱动晶体管T0栅极的电压越低,驱动晶体管T0漏极的电压VA2也越低。
第二阶段2:扫描信号端的电压VScan处于低电平,复位控制信号端的电压VRST处于高电平,第一开关晶体管T1和第三开关晶体管T3处于关闭状态。在此阶段中,在控制信号端的电压VSelect处于低电平时,第二开关晶体管T2处于开启状态。无论光电二极管PD有无光照,开启的第二开关晶体管T2都会将驱动晶体管T0漏极的电压输出到触控信号读取端Sensor,即触控信号读取端Sensor有触控感测信号输出。但是,光电二极管PD有触摸时触控信号读取端Sensor输出的触控感测信号比光电二极管PD无触摸时触控信号读取端Sensor输出的触控感测信号大。
第三阶段3:扫描信号端的电压VScan和复位控制信号端的电压VRST处于低电平,控制信号端的电压VSelect处于高电平,第一开关晶体管T1和第二开关晶体管T2处于关闭状态,第三开关晶体管T3处于开启状态。此阶段,由于复位信号端VG的信号为低电平信号,电容Cst第二端y的电压经开启的第三晶体管T3输入到复位信号端VG,使驱动晶体管T0栅极的电压降低,驱动晶体管T0处于关闭状态,恢复到第一阶段之前的状态。而触控信号读取端Sensor由于第二开关晶体管T2处于关闭状态没有触控感测信号输出。
综上,上述触控驱动电路在有触摸时,触控信号读取端Sensor输出的触控感测信号比在无触摸时触控信号读取端Sensor输出的触控感测信号大,通过分析触控驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸,进而确定出触点的位置,实现了触控驱动的功能。
实例三:
如图2c所示,驱动晶体管T0、第一开关晶体管T1、第二开关晶体管T2和第三开关晶体管T3均为P型晶体管。图3c为图2c的电路时序图,其中,扫描信号端的电压为VScan,复位控制信号端的电压为VRST,控制信号端的电压为VSelect,驱动晶体管T0的漏极在有触摸时电压为VA1,驱动晶体管T0的漏极在无触摸时电压为VA2,触控信号读取端Sensor在有触摸时电压为VB1,触控信号读取端Sensor在无触摸时电压为VB2
具体地,触控驱动电路的工作原理如下:
第一阶段1:扫描信号端的电压VScan处于低电平,复位控制信号端的电压VRST和控制信号端的电压VSelect处于高电平,第一开关晶体管T1处于开启状态;第二开关晶体管T2和第三开关晶体管T3处于关闭状态。在此阶段中,扫描信号端的电压VScan通过开启的第一开关晶体管T1传输到电容Cst的第二端y,同时,第二参考信号端的电压VDD传输到电容的第一端x。由于电容Cst的作用,驱动晶体管T0的栅极电压会缓慢的降低,驱动晶体管T0慢慢处于开启状态,第二参考信号端的电压VDD通过开启的驱动晶体管T0传输到第二开关晶体管T2的源极,由于开关晶体管T2处于关闭状态,触控信号读取端Sensor没有触控感测信号输出。
在此阶段中,当光电二极管PD无光照即有触摸时:由于电容Cst的作用,驱动晶体管T0栅极的电压在缓慢降低后保持在一个高电位,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA1在缓慢升高后保持在高电位。
在此阶段中,当光电二极管PD有光照即无触摸时:由于光电二极管PD在光电效应的作用下会形成较大的反向电流,将输入到驱动晶体管T0栅极的电压拉高,因此,驱动晶体管T0栅极的电压降低的比光电二极管PD无光照时缓慢,且驱动晶体管T0栅极的电压在缓慢降低后保持的电位也比光电二极管PD无光照时高。在驱动晶体管T0栅极电压缓慢降低时,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA2也缓慢的升高并保持在一个电位,该电位比光电二极管PD无光照时驱动晶体管T0漏极的电压VA1所在的电位低。当照射到光电二极管PD的光强越大,驱动晶体管T0栅极的电压越高,驱动晶体管T0漏极的电压VA2也越低。
第二阶段2:扫描信号端的电压VScan和复位控制信号端的电压VRST处于高电平,第一开关晶体管T1和第三开关晶体管T3处于关闭状态。在此阶段中,在控制信号端的电压VSelect处于低电平时,第二开关晶体管T2处于开启状态。无论光电二极管PD有无光照,开启的第二开关晶体管T2都会将驱动晶体管T0漏极的电压输出到触控信号读取端Sensor,即触控信号读取端Sensor有触控感测信号输出。但是,光电二极管PD有触摸时触控信号读取端Sensor输出的触控感测信号比光电二极管PD无触摸时触控信号读取端Sensor输出的触控感测信号大。
第三阶段3:扫描信号端的电压VScan和控制信号端的电压VSelect处于高电平,复位控制信号端的电压VRST处于低电平,第一开关晶体管T1和第二开关晶体管T2处于关闭状态,第三开关晶体管T3处于开启状态。此阶段,由于复位信号端VG的信号为高电平信号,复位信号端VG的高电平信号经开启的第三晶体管T3输入到电容Cst的第二端y,使驱动晶体管T0栅极的电压升高,驱动晶体管T0处于关闭状态,恢复到第一阶段之前的状态。而触控信号读取端Sensor由于第二开关晶体管T2处于关闭状态没有触控感测信号输出。
综上,上述触控驱动电路在有触摸时,触控信号读取端Sensor输出的触控感测信号比在无触摸时触控信号读取端Sensor输出的触控感测信号大,通过分析触控驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸,进而确定出触点的位置,实现了触控驱动的功能。
实例四:
如图2d所示,驱动晶体管T0和第一开关晶体管T1为P型晶体管,第二开关晶体管T2和第三开关晶体管T3为N型晶体管。图3d为图2d的电路时序图,其中,扫描信号端的电压为VScan,复位控制信号端的电压为VRST,控制信号端的电压为VSelect,驱动晶体管T0的漏极在有触摸时电压为VA1,驱动晶体管T0的漏极在无触摸时电压为VA2,触控信号读取端Sensor在有触摸时电压为VB1,触控信号读取端Sensor在无触摸时电压为VB2
具体地,触控驱动电路的工作原理如下:
第一阶段1:扫描信号端的电压VScan、复位控制信号端的电压VRST和控制信号端的电压VSelect均处于低电平,第一开关晶体管T1处于开启状态;第二开关晶体管T2和第三开关晶体管T3处于关闭状态。在此阶段中,扫描信号端的电压VScan通过开启的第一开关晶体管T1传输到电容Cst的第二端y,同时,第二参考信号端的电压VDD传输到电容的第一端x。由于电容Cst的作用,驱动晶体管T0的栅极电压会缓慢的降低,驱动晶体管T0慢慢处于开启状态,第二参考信号端的电压VDD通过开启的驱动晶体管T0传输到第二开关晶体管T2的源极,由于开关晶体管T2处于关闭状态,触控信号读取端Sensor没有触控感测信号输出。
在此阶段中,当光电二极管PD无光照即有触摸时:由于电容Cst的作用,驱动晶体管T0栅极的电压在缓慢降低后保持在一个高电位,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA1在缓慢升高后保持在高电位。
在此阶段中,当光电二极管PD有光照即无触摸时:由于光电二极管PD在光电效应的作用下会形成较大的反向电流,将输入到驱动晶体管T0栅极的电压拉高,因此,驱动晶体管T0栅极的电压降低的比光电二极管PD无光照时缓慢,且驱动晶体管T0栅极的电压在缓慢降低后保持的电位也比光电二极管PD无光照时高。在驱动晶体管T0栅极电压缓慢降低时,驱动晶体管T0慢慢处于开启状态,驱动晶体管T0漏极的电压VA2也缓慢的升高并保持在一个电位,该电位比光电二极管PD无光照时驱动晶体管T0漏极的电压VA1所在的电位低。当照射到光电二极管PD的光强越大,驱动晶体管T0栅极的电压越高,驱动晶体管T0漏极的电压VA2也越低。
第二阶段2:扫描信号端的电压VScan处于高电平,复位控制信号端的电压VRST处于低电平,第一开关晶体管T1和第三开关晶体管T3处于关闭状态。在此阶段中,在控制信号端的电压VSelect处于高电平时,第二开关晶体管T2处于开启状态。无论光电二极管PD有无光照,开启的第二开关晶体管T2都会将驱动晶体管T0漏极的电压输出到触控信号读取端Sensor,即触控信号读取端Sensor有触控感测信号输出。但是,光电二极管PD有触摸时触控信号读取端Sensor输出的触控感测信号比光电二极管PD无触摸时触控信号读取端Sensor输出的触控感测信号大。
第三阶段3:扫描信号端的电压VScan和复位控制信号端的电压VRST处于高电平,控制信号端的电压VSelect处于低电平,第一开关晶体管T1和第二开关晶体管T2处于关闭状态,第三开关晶体管T3处于开启状态。此阶段,由于复位信号端VG的信号为高电平信号,复位信号端VG的高电平信号经开启的第三晶体管T3输入到电容Cst的第二端y,使驱动晶体管T0栅极的电压升高,驱动晶体管T0处于关闭状态,恢复到第一阶段之前的状态。而触控信号读取端Sensor由于第二开关晶体管T2处于关闭状态没有触控感测信号输出。
综上,上述触控驱动电路在有触摸时,触控信号读取端Sensor输出的触控感测信号比在无触摸时触控信号读取端Sensor输出的触控感测信号大,通过分析触控驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸,进而确定出触点的位置,实现了触控驱动的功能。
基于同一发明构思,本发明实施例还提供了一种光学式内嵌触摸屏,包括本发明实施例提供的上述触控驱动电路,由于该光学式内嵌触摸屏解决问题的原理与前述一种触控驱动电路相似,因此该光学式内嵌触摸屏的实施可以参见触控驱动电路的实施,重复之处不再赘述。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述光学式内嵌触摸屏,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
本发明实施例提供了一种触控驱动电路、光学式内嵌触摸屏及显示装置,该触控电路包括:包括:感光子模块、数据写入子模块、驱动子模块以及控制子模块;在扫描信号端的控制下,数据写入子模块向驱动子模块传输扫描信号端的扫描信号;在扫描信号控制驱动子模块处于开启状态时,驱动子模块向控制子模块输出触控感测信号,触控感测信号随着照射到感光子模块光强的增大而减小;在控制信号端的控制下,控制子模块将驱动子模块输出的触控感测信号输入到触控信号读取端,实现触控侦测功能。本发明实施例提供的触控驱动电路采用控制子模块控制驱动子模块向触控信号读取端传输触控感测信号,在将各级驱动电路的触控信号读取端连接到同一根触控信号读取线上时,可以避免不同级驱动电路的触控信号读取端输出的信号相互串扰,实现了在不增加触摸屏布线面积的情况下,提高触控信号检测的准确率。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种触控驱动电路,其特征在于,包括:感光子模块、数据写入子模块、驱动子模块以及控制子模块;其中,
所述感光子模块的第一端与第一参考信号端相连,所述感光子模块的第二端分别与所述数据写入子模块的信号输出端和所述驱动子模块的第一信号输入端相连;
所述数据写入子模块的第一信号输入端与扫描信号端相连,所述数据写入子模块的第二信号输入端分别与第二参考信号端和所述驱动子模块的第二信号输入端相连;在所述扫描信号端的控制下,所述数据写入子模块向所述驱动子模块传输扫描信号;
所述驱动子模块的信号输出端与所述控制子模块的第一信号输入端相连;在所述扫描信号控制所述驱动子模块处于开启状态时,所述驱动子模块向所述控制子模块输出触控感测信号,所述触控感测信号随着照射到所述感光子模块光强的增大而减小;
所述控制子模块的第二信号输入端与控制信号端相连,所述控制子模块的信号输出端与触控信号读取端相连;在所述控制信号端的控制下,所述控制子模块将所述驱动子模块输出的触控感测信号输入到所述触控信号读取端;
所述数据写入子模块具体包括:第一开关晶体管和电容;其中,所述电容的第一端与所述第二参考信号端相连,所述电容的第二端与所述第一开关晶体管的源极相连;所述第一开关晶体管的漏极与栅极分别与所述扫描信号端相连;
所述触控驱动电路还包括:复位子模块;所述复位子模块具体包括:第三开关晶体管;其中,所述第三开关晶体管的栅极与复位控制信号端相连,所述第三开关晶体管的源极与所述驱动子模块的第一信号输入端相连,所述第三开关晶体管的漏极与复位信号端相连。
2.如权利要求1所述的触控驱动电路,其特征在于,所述驱动子模块具体包括:驱动晶体管;其中,
所述驱动晶体管的栅极与所述第一开关晶体管的源极相连,所述驱动晶体管的源极与所述第二参考信号端相连,所述驱动晶体管的漏极与所述控制子模块的第一信号输入端相连。
3.如权利要求2所述的触控驱动电路,其特征在于,所述驱动晶体管和所述第一开关晶体管为N型晶体管;或,所述驱动晶体管和所述第一开关晶体管为P型晶体管。
4.如权利要求3所述的触控驱动电路,其特征在于,所述感光子模块具体包括:光电二极管;
在所述驱动晶体管和所述第一开关晶体管为N型晶体管时,所述光电二极管的阴极与所述驱动晶体管的栅极相连;在所述驱动晶体管和所述第一开关晶体管为P型晶体管时,所述光电二极管的阳极与所述驱动晶体管的栅极相连。
5.如权利要求1-4任一项所述的触控驱动电路,其特征在于,所述控制子模块具体包括:第二开关晶体管;其中,
所述第二开关晶体管的栅极与所述控制信号端相连,所述第二开关晶体管的源极与所述驱动子模块的信号输出端相连,所述第二开关晶体管的漏极与所述触控信号读取端相连。
6.一种光学式内嵌触摸屏,其特征在于,包括如权利要求1-5任一项所述的触控驱动电路。
7.一种显示装置,其特征在于,包括如权利要求6所述的光学式内嵌触摸屏。
CN201310263585.1A 2013-06-27 2013-06-27 一种触控驱动电路、光学式内嵌触摸屏及显示装置 Expired - Fee Related CN103353814B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310263585.1A CN103353814B (zh) 2013-06-27 2013-06-27 一种触控驱动电路、光学式内嵌触摸屏及显示装置
US14/355,121 US9846503B2 (en) 2013-06-27 2013-12-14 Touch driver circuit, in-cell optical touch panel comprising the touch driver and display device comprising the in-cell optical touch panel
PCT/CN2013/089457 WO2014206030A1 (zh) 2013-06-27 2013-12-14 一种触控驱动电路、光学式内嵌触摸屏及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310263585.1A CN103353814B (zh) 2013-06-27 2013-06-27 一种触控驱动电路、光学式内嵌触摸屏及显示装置

Publications (2)

Publication Number Publication Date
CN103353814A CN103353814A (zh) 2013-10-16
CN103353814B true CN103353814B (zh) 2016-12-28

Family

ID=49310191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310263585.1A Expired - Fee Related CN103353814B (zh) 2013-06-27 2013-06-27 一种触控驱动电路、光学式内嵌触摸屏及显示装置

Country Status (3)

Country Link
US (1) US9846503B2 (zh)
CN (1) CN103353814B (zh)
WO (1) WO2014206030A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027903B2 (ja) * 2013-01-30 2016-11-16 シナプティクス・ジャパン合同会社 半導体装置
CN103353814B (zh) 2013-06-27 2016-12-28 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN103413522B (zh) * 2013-07-31 2015-04-22 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN103744560B (zh) * 2013-12-27 2017-01-18 深圳市华星光电技术有限公司 光感触控面板及其低功耗驱动的控制方法
CN103761002B (zh) * 2013-12-31 2017-05-10 北京大学深圳研究生院 一种触控电路及其单元和触控显示面板及其装置
CN105046247B (zh) * 2015-08-31 2018-06-22 京东方科技集团股份有限公司 表面结构识别单元、电路及识别方法和电子设备
CN106020533B (zh) * 2016-05-11 2018-09-07 京东方科技集团股份有限公司 一种触控电路、其驱动方法、触摸屏及显示装置
CN106873832B (zh) * 2017-02-16 2020-03-06 京东方科技集团股份有限公司 一种光学感应式触控屏、触控显示装置及触控检测方法
US10318788B2 (en) 2017-04-13 2019-06-11 Boe Technology Group Co., Ltd. Fingerprint identification detection circuit, touch screen and display device
CN106971172B (zh) * 2017-04-13 2019-07-26 京东方科技集团股份有限公司 一种指纹识别检测电路、触摸屏及显示装置
CN106952612B (zh) * 2017-05-22 2019-09-03 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法
CN109872689A (zh) * 2019-03-21 2019-06-11 京东方科技集团股份有限公司 像素电路、触控显示面板和显示装置
CN110299106B (zh) * 2019-06-27 2020-11-27 上海天马有机发光显示技术有限公司 一种光感驱动电路、其驱动方法及显示装置
CN112083593B (zh) * 2020-09-29 2021-12-03 Tcl华星光电技术有限公司 显示面板及显示装置
CN115019725B (zh) * 2021-11-03 2023-01-17 荣耀终端有限公司 感光电路及其驱动方法、显示屏及终端设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378642A (en) * 1993-04-19 1995-01-03 General Electric Company Method of making a silicon carbide junction field effect transistor device for high temperature applications
DE102005038231B3 (de) * 2005-08-12 2007-04-12 Infineon Technologies Ag Verfahren und Vorrichtung zum Einschalten einer Spannungsversorgung einer Halbleiterschaltung und entsprechende Halbleiterschaltung
US8089476B2 (en) * 2007-08-01 2012-01-03 Sony Corporation Liquid crystal device
JP5067753B2 (ja) * 2007-08-01 2012-11-07 株式会社ジャパンディスプレイウェスト 液晶装置および電子機器
JP5721994B2 (ja) * 2009-11-27 2015-05-20 株式会社ジャパンディスプレイ 放射線撮像装置
KR101810608B1 (ko) * 2011-06-22 2017-12-21 삼성전자주식회사 광센싱 장치 및 그 구동 방법, 광센싱 장치를 포함하는 광터치 스크린 장치
TWI467134B (zh) * 2011-08-22 2015-01-01 Ind Tech Res Inst 感測裝置與感測方法
US8922476B2 (en) 2011-08-31 2014-12-30 Lenovo (Singapore) Pte. Ltd. Information handling devices with touch-based reflective display
TWI470509B (zh) * 2011-09-08 2015-01-21 Hannstar Display Corp 光學觸控顯示面板及其觸控感測方法
CN103135846B (zh) * 2012-12-18 2016-03-30 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN203366295U (zh) * 2013-06-27 2013-12-25 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN103353814B (zh) 2013-06-27 2016-12-28 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置

Also Published As

Publication number Publication date
WO2014206030A1 (zh) 2014-12-31
US9846503B2 (en) 2017-12-19
US20150205429A1 (en) 2015-07-23
CN103353814A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
CN103353814B (zh) 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN103413523B (zh) 一种像素电路、有机电致发光显示面板及显示装置
CN103218076B (zh) 一种内嵌式触摸屏及显示装置
CN103413522B (zh) 一种像素电路、有机电致发光显示面板及显示装置
CN107195264B (zh) 光探测器及其驱动方法、显示面板及显示装置
CN109559674B (zh) 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
CN104112427B (zh) 像素电路及其驱动方法和显示装置
KR101721854B1 (ko) 표시 장치 및 전자 기기
CN104699344B (zh) 触控面板及其制造方法、触控显示装置
US9419610B2 (en) Light-sensing circuit, method of operating the light-sensing circuit, and light-sensing apparatus employing the light-sensing circuit
CN109686808A (zh) 二极管及其制作方法、阵列基板、显示面板
KR102422059B1 (ko) 반도체 장치, 촬상 장치, 및 전자 기기
CN103218085B (zh) 光学式触控显示面板
TW200905655A (en) Electro-optical device, semiconductor device, display device, and electronic apparatus having the display device
WO2015078162A1 (zh) 触控电路及其驱动方法、阵列基板、触控显示装置
CN107314813A (zh) 光强检测单元、光强检测方法和显示装置
CN103135861A (zh) 一种光电传感器及光电触摸屏
CN109686301A (zh) 光感电路及其驱动方法、显示面板和显示装置
CN112363642B (zh) 一种光感应显示电路及显示面板
US11515346B2 (en) Touch screen panel for sensing touch using TFT photodetectors integrated thereon
CN103412676A (zh) 一种触摸屏及显示装置
CN102314840B (zh) 图像传感器、电子设备及其背光调节方法
CN101995994B (zh) 传感装置、驱动传感元件的方法以及电子单元
CN103761002B (zh) 一种触控电路及其单元和触控显示面板及其装置
CN203366705U (zh) 一种像素电路、有机电致发光显示面板及显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161228