WO2016173121A1 - 一种像素电路及其驱动方法、显示装置 - Google Patents

一种像素电路及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2016173121A1
WO2016173121A1 PCT/CN2015/084090 CN2015084090W WO2016173121A1 WO 2016173121 A1 WO2016173121 A1 WO 2016173121A1 CN 2015084090 W CN2015084090 W CN 2015084090W WO 2016173121 A1 WO2016173121 A1 WO 2016173121A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
signal
pole
voltage
module
Prior art date
Application number
PCT/CN2015/084090
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
王海生
刘英明
赵卫杰
丁小梁
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/122,631 priority Critical patent/US9978312B2/en
Publication of WO2016173121A1 publication Critical patent/WO2016173121A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a pixel circuit, a driving method thereof, and a display device.
  • OLED organic light emitting diode
  • OLEDs can be classified into two types: PMOLED (Passive Matrix Driving OLED) and AMOLED (Active Matrix Driving OLED), which have low manufacturing cost and high performance. Responsive speed, power saving, DC drive for portable devices, large operating temperature range, etc., are expected to become the next generation of new flat panel displays that replace LCD (liquid crystal display).
  • each OLED includes a plurality of TFT (Thin Film Transistor) switching circuits.
  • TFT Thin Film Transistor
  • amorphous silicon TFTs have been widely used as an important electronic device due to their superior static electrical properties, and have been widely used in liquid crystal display, matrix image sensors and the like.
  • the instability of amorphous silicon TFTs has been a problem to be solved.
  • One of the main instability of amorphous silicon TFTs is that they exhibit a shift in the threshold voltage of the TFT in a state where a DC gate bias is applied for a long time.
  • the threshold voltage drift is caused by the trap gate electric field after the trap in the insulating layer captures the charge; in the low voltage region (generally the operating voltage of the amorphous silicon TFT), the threshold voltage drift is Caused by the generation or removal of a dangling state due to a bias voltage in the active layer.
  • the above-mentioned drift of the threshold voltage causes the luminance of the AMOLED display to decrease, thereby affecting the brightness constancy of the display.
  • the TFT in the AMOLED is biased for a long time, which accelerates the rate of TFT attenuation, thereby reducing the life of the display device.
  • the fingerprint recognition function is one of the commonly used functions of electronic devices, and it is of great significance for enhancing the security of electronic devices and expanding the scope of application thereof.
  • Most of the current AMOLED displays do not have the fingerprint recognition function; or the external fingerprint recognition circuit is used to achieve the purpose of fingerprint recognition, but this will make the structure complicated and the cost increased.
  • Embodiments of the present invention provide a pixel circuit, a driving method thereof, and a display device capable of enabling a display device having the pixel circuit to have fingerprint recognition while avoiding an influence of drift of a threshold voltage on brightness uniformity and constancy of the display Features.
  • An aspect of the present invention provides a pixel circuit including a display driving module, a compensation module, a light emitting module, and a fingerprint recognition module;
  • the compensation module is respectively connected to the display driving module, the first signal end, the second signal end, the third signal end, the first voltage end, the data signal end and the common voltage end, for the first signal end Under the control of the second signal end and the third signal end, the display voltage is compensated by the threshold voltage by the first voltage terminal and the signal input by the data signal end;
  • the display driving module is further connected to the light emitting module, and the display driving module is used to drive the light emitting module to emit light after being compensated by a threshold voltage;
  • the illuminating module is further connected to the enabling signal end, the first voltage end and the second voltage end for controlling at the enabling signal end, the first voltage end and the second voltage end Lighting is performed by driving of the display driving module;
  • the fingerprint identification module is respectively connected to the fourth signal end, the fifth signal end, and the read signal line; and is configured to collect fingerprint information under the control of the fourth signal end and the fifth signal end, and The collected fingerprint information is transmitted to the read signal line;
  • the third signal end is connected to the fifth signal end to the third scan signal line, and the second signal end is connected to the fourth signal end to the second scan signal line;
  • the second signal end and the fifth signal end are connected to the second scan signal line, and the first signal end and the fourth signal end are connected to the first scan signal line;
  • the third signal end and the fifth signal end are connected to the third scan signal line, and the first signal end and the fourth signal end are connected to the first scan signal line, and the compensation The module is also connected to the second voltage terminal.
  • a display device comprising any one of the pixel circuits as described above, and a signal receiving device connected to the read signal line for receiving fingerprint information output by the read signal line .
  • the first scanning signal line inputs a signal to the first signal end, and the display driving module performs resetting to clear the residual voltage
  • the second scan signal line inputs a signal to the second signal end and the fourth signal end, resets the fingerprint identification module, and collects the fingerprint information; the signal pair input by the common voltage end
  • the compensation module performs charging;
  • the third scan signal line inputs a signal to the third signal end and the fifth signal end, and the compensation module remains in an open state, according to the signal input by the first voltage end and the data signal end, Performing compensation of a threshold voltage on the display driving module;
  • the fingerprint identification module transmits the collected fingerprint information to a read signal line
  • the enable signal terminal input signal turns on the light emitting module, and the display driving module drives the light emitting module to emit light.
  • a driving method of a pixel circuit for driving any one of the pixel circuits as described above, when the second signal end and the fifth signal end are connected to the second scanning signal line, the first signal end When the first scan signal line is connected to the fourth signal end, the method includes:
  • the first scan signal line inputs signals to the first signal end and the fourth signal end, and the display driving module and the fingerprint recognition module perform resetting to clear the residual voltage;
  • the second scan signal line inputs signals to the second signal end and the fifth signal end, the fingerprint identification module collects fingerprint information, and collects the collected fingerprint information. Transmitted to the read signal line; the signal input by the first voltage terminal charges the compensation module;
  • the third scan signal line inputs a signal to the third signal end, and the compensation module remains in an open state, according to the signal input by the first voltage end and the data signal end,
  • the display driving module performs compensation of a threshold voltage
  • the enable signal terminal input signal turns on the light emitting module, and the display driving module drives the light emitting module to emit light.
  • the first scan signal line inputs signals to the first signal end and the fourth signal end, and the display driving module and the fingerprint recognition module perform resetting to clear the residual voltage;
  • the second scanning signal line inputs a signal to the second signal end
  • the fingerprint identification module collects the fingerprint information
  • the signal input by the second voltage end charges the compensation module
  • the third scan signal line inputs a signal to the third signal end and the fifth signal end, and the compensation module remains in an open state, according to the signal input by the first voltage end and the data signal end, Performing compensation of a threshold voltage on the display driving module;
  • the fingerprint identification module transmits the collected fingerprint information to a read signal line
  • the enable signal terminal input signal turns on the light emitting module, and the display driving module drives the light emitting module to emit light.
  • Embodiments of the present invention provide a pixel circuit, a driving method thereof, and a display device.
  • the pixel circuit includes a display driving module, a compensation module, a lighting module, and a fingerprint recognition module.
  • the compensation module is respectively connected to the display driving module, the first signal end, the second signal end, the third signal end, the first voltage end, the data signal end, and the common voltage end, for the first signal end and the second signal
  • the threshold voltage is compensated for the display driving module by the signal input from the first voltage terminal and the data signal terminal.
  • the display driving module is further connected to the light emitting module, and the display driving module is used to drive the light emitting module to emit light after being compensated by the threshold voltage.
  • the light emitting module is further connected to the enable signal end, the first voltage end and the second voltage end, and is configured to emit light by driving of the display driving module under the control of the enable signal end, the first voltage end and the second voltage end.
  • the fingerprint identification module is respectively connected to the fourth signal end, the fifth signal end and the read signal line; for collecting the fingerprint information under the control of the fourth signal end and the fifth signal end, and transmitting the collected fingerprint information To the read signal line.
  • the third signal end and the fifth signal end are connected to the third scan signal
  • the second signal end and the fourth signal end are connected to the second scan signal line.
  • the second signal end and the fifth signal end are connected to the second scan signal line
  • the first signal end and the fourth signal end are connected to the first scan signal line.
  • the third signal end and the fifth signal end are connected to the third scan signal line, the first signal end and the fourth signal end are connected to the first scan signal line, and the compensation module is further connected to the second voltage end.
  • the same signal can be input to the third signal end and the fifth signal end through the third scan signal line, and the same signal can be input to the second signal end and the fourth signal end through the second scan signal line; or Inputting the same signal to the second signal end and the fifth signal end through the second scan signal line, inputting the same signal to the first signal end and the fourth signal end through the first scan signal line; or through the third scan signal line
  • the third signal end inputs the same signal as the fifth signal end, and inputs the same signal to the first signal end and the fourth signal end through the first scanning signal line.
  • the first signal end, the second signal end, and the third signal end are connected to the compensation module, and the fourth signal end and the fifth signal end are connected to the fingerprint module.
  • the threshold voltage can be compensated for the display driving module by the signal input by the first voltage end and the data signal end, so that the display driving module drives the light emitting module to emit light.
  • the drive current is prevented from being affected by the threshold voltage offset, thereby providing brightness constancy of the display; on the other hand, any two of the first scan signal line, the second scan signal line, and the third scan signal line can also pass
  • the fourth signal end and the fifth signal end connected to the fingerprint identification module control the fingerprint identification module to collect the fingerprint information, and transmit the collected fingerprint information to the read signal line, thereby achieving the purpose of fingerprint recognition.
  • the compensation module and the fingerprint recognition can be simultaneously controlled by multiplexing the first scan signal line, the second scan signal line, and the third scan signal line.
  • the module makes the structure of the display with identification function simple and enhances the brightness constancy of the display by the compensation of the threshold voltage.
  • FIG. 1 is a schematic structural diagram of a pixel circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a specific structure of each module of the pixel circuit shown in FIG. 1;
  • FIG. 3 is a timing diagram of respective control signals during operation of the pixel circuit shown in FIG. 1;
  • 4a-4d are the pixel circuits shown in FIG. 2, corresponding to the equivalent circuit diagrams of the respective stages of the P1-P4 phase in FIG. 3;
  • FIG. 5a is a schematic diagram showing a capacitance formed between a ridge line and a valley line of a finger fingerprint and a detecting electrode respectively during operation of the fingerprint recognition module;
  • FIG. 5b is a schematic diagram of the fingerprint identification module collecting fingerprint information when the fingerprint valley line is in contact with the screen in FIG. 5a;
  • FIG. 5c is a schematic diagram of the fingerprint identification module collecting fingerprint information when the fingerprint ridge line is in contact with the screen in FIG. 5a;
  • FIG. 6 is another schematic structural diagram of each module of the pixel circuit shown in FIG. 1;
  • FIG. 7 is a schematic diagram showing still another specific structure of each module of the pixel circuit shown in FIG. 1;
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method for driving a pixel circuit according to an embodiment of the present invention.
  • FIG. 10 is a flow chart showing a driving method of the pixel circuit shown in FIG. 2;
  • FIG. 11 is a flow chart showing a driving method of the pixel circuit shown in FIG. 6;
  • FIG. 12 is a flow chart showing a driving method of the pixel circuit shown in FIG.
  • the embodiment of the invention provides a pixel circuit, as shown in FIG. 1 , which may include a display driving module 10 , a compensation module 30 , a light emitting module 20 , and a fingerprint recognition module 40 .
  • the compensation module 30 can be respectively connected to the display driving module 10, the first signal terminal S1, the second signal terminal S2, the third signal terminal S3, the first voltage terminal V1, the data signal terminal Vdata, and the common voltage terminal Vcom, for Under the control of the first signal terminal S1, the second signal terminal S2, and the third signal terminal S3, the compensation module 30 is charged, and the signal input through the first voltage terminal V1 and the data signal terminal Vdata is applied to the display driving module 10. Threshold power Pressure Vth compensation.
  • the display driving module 10 can also be connected to the light emitting module 20. When the display driving module 10 obtains the compensation of the threshold voltage Vth, it is used to drive the light emitting module 20 to emit light.
  • the illumination module 20 can also be connected to the enable signal terminal EM, the first voltage terminal V1 and the second voltage terminal V2 for displaying by the control signal terminal EM, the first voltage terminal V1 and the second voltage terminal V2.
  • the drive of the drive module 10 illuminates.
  • the fingerprint identification module 40 can be connected to the fourth signal end S4, the fifth signal end S5, and the read signal line RL, respectively, for collecting fingerprint information under the control of the fourth signal end S4 and the fifth signal end S5, and The collected fingerprint information is transmitted to the read signal line RL.
  • the third signal terminal S3 and the fifth signal terminal S5 are connected to the third scanning signal line Scan3, and the second signal terminal S2 and the fourth signal terminal S4 are connected to the second scanning signal line Scan2.
  • the second signal terminal S2 and the fifth signal terminal S5 are connected to the second scanning signal line Scan2, and the first signal terminal S1 and the fourth signal terminal S4 are connected to the first scanning signal line Scan1.
  • the third signal terminal S3 and the fifth signal terminal S5 are connected to the third scanning signal line Scan3, the first signal terminal S1 and the fourth signal terminal S4 are connected to the first scanning signal line Scan1, and the 30 compensation module can also be connected.
  • the first voltage terminal V1 is grounded to GND, and the second voltage terminal V2 is connected to the power supply voltage terminal Vdd as an example.
  • the fingerprint information is related to the ridge or valley line of the fingerprint.
  • Embodiments of the present invention provide a pixel circuit, including a display driving module, a compensation module, a lighting module, and a fingerprint identification module.
  • the compensation module is respectively connected to the display driving module, the first signal end, the second signal end, the third signal end, the first voltage end, the data signal end, and the common voltage end, for the first signal end and the second signal
  • the threshold voltage is compensated for the display driving module by the signal input from the first voltage terminal and the data signal terminal.
  • the display driving module is further connected to the light emitting module, and the display driving module is used to drive the light emitting module to emit light after being compensated by the threshold voltage.
  • the light emitting module is further connected to the enable signal end, the first voltage end and the second voltage end, and is configured to emit light by driving of the display driving module under the control of the enable signal end, the first voltage end and the second voltage end.
  • the fingerprint identification module is respectively connected to the fourth signal end, the fifth signal end and the read signal line; for collecting the fingerprint information under the control of the fourth signal end and the fifth signal end, and transmitting the collected fingerprint information To the read signal line.
  • the third signal end and the fifth signal end are connected to the third scan signal line, and the second signal end is connected to the fourth signal end. Scan the signal line.
  • the second signal end and the fifth signal end are connected to the second scan signal line, and the first signal end and the fourth signal end are connected to the first scan signal line.
  • the third signal end and the fifth signal end are connected to the third scan signal line, the first signal end and the fourth signal end are connected to the first scan signal line, and the compensation module is further connected to the second voltage end.
  • the same signal can be input to the third signal end and the fifth signal end through the third scan signal line, and the same signal can be input to the second signal end and the fourth signal end through the second scan signal line; or Inputting the same signal to the second signal end and the fifth signal end through the second scan signal line, inputting the same signal to the first signal end and the fourth signal end through the first scan signal line; or through the third scan signal line
  • the third signal end inputs the same signal as the fifth signal end, and inputs the same signal to the first signal end and the fourth signal end through the first scanning signal line.
  • the first signal end, the second signal end, and the third signal end are connected to the compensation module, and the fourth signal end and the fifth signal end are connected to the fingerprint module.
  • the threshold voltage can be compensated for the display driving module by the signal input by the first voltage end and the data signal end, so that the display driving module drives the light emitting module to emit light.
  • the drive current is prevented from being affected by the threshold voltage offset, thereby providing brightness constancy of the display; on the other hand, any two of the first scan signal line, the second scan signal line, and the third scan signal line can also pass
  • the fourth signal end and the fifth signal end connected to the fingerprint identification module control the fingerprint identification module to collect the fingerprint information, and transmit the collected fingerprint information to the read signal line, thereby achieving the purpose of fingerprint recognition.
  • the compensation module and the fingerprint recognition can be simultaneously controlled by multiplexing the first scan signal line, the second scan signal line, and the third scan signal line.
  • the module makes the structure of the display with identification function simple and enhances the brightness constancy of the display by the compensation of the threshold voltage.
  • the third signal terminal S3 of the compensation module 30 and the fifth signal terminal S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scan signal.
  • the line Scan3, and the second signal terminal S2 of the compensation module 30 and the fourth signal terminal S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the second scanning signal line Scan2 is taken as an example. Thereby achieving the third scanning signal line Scan3 and the second The scanning signal line Scan2 is used for multiplexing purposes.
  • the display driving module 10 may include a driving transistor Td.
  • the gate of the driving transistor Td is connected to the compensation module 30, and the first pole and the second pole are connected to the light emitting module 20.
  • the display driving module 10 described above may further include a plurality of driving transistors Td connected in parallel. Alternatively, it may further include a capacitor whose one end is connected to the gate of the driving transistor Td and the other end is connected to the drain of the driving transistor Td.
  • the foregoing is only an illustration of the display driving module 10. Other structures having the same functions as those of the display driving module 10 are not described herein again, but all should fall within the protection scope of the present invention.
  • the light emitting module 20 may include a first transistor T1, a second transistor T2, and a light emitting device.
  • the light-emitting device in the embodiment of the present invention may be a plurality of current-driven light-emitting devices including LED (Light Emitting Diode) or OLED (Organic Light Emitting Diode) in the prior art.
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • an OLED is taken as an example for description.
  • the gate of the first transistor T1 is connected to the enable signal terminal EM, the first pole is connected to the display driving module 10, and the second pole is connected to the second voltage terminal V2.
  • the first electrode of the first transistor T1 is connected to the first electrode of the driving transistor Td.
  • the gate of the second transistor T2 is connected to the enable signal terminal EM, the first pole is connected to the anode of the light emitting device OLED, and the second pole is connected to the display driving module 10.
  • the second electrode of the second transistor T2 is connected to the second electrode of the driving transistor Td.
  • the cathode of the light emitting device OLED is connected to the first voltage terminal V1, that is, the ground GND.
  • the light emitting module 20 may further include a plurality of switching transistors connected in parallel with the first transistor T1 or the second transistor T2.
  • the foregoing is only an illustration of the light-emitting module 20, and other structures having the same functions as those of the light-emitting module 20 are not described herein again, but all should fall within the scope of protection of the present invention.
  • the fingerprint identification module 40 may include an eighth transistor T8, a ninth transistor T9, a tenth transistor T10, a second capacitor C2, and a detecting electrode D.
  • the gate of the eighth transistor T8 is connected to the fourth signal terminal S4, the first pole is connected to the common voltage terminal Vcom, and the second pole is connected to one end of the second capacitor C2.
  • the gate of the ninth transistor T9 is connected to the one end of the second capacitor C2, the first pole is connected to the common voltage terminal Vcom, and the second pole is connected to the first pole of the tenth transistor T10.
  • the gate of the tenth transistor T10 is connected to the fifth signal terminal S5, and the second electrode is connected to the read signal line RL.
  • the detecting electrode D is connected to the one end of the second capacitor C2.
  • the other end of the second capacitor C2 is connected to the fifth signal terminal S5.
  • the fingerprint identification module 40 may further include a plurality of switching transistors connected in parallel with the eighth transistor T8 or the ninth transistor T9.
  • the foregoing is only an example of the fingerprint identification module 40.
  • Other structures having the same functions as the fingerprint identification module 40 are not described herein again, but all should fall within the scope of protection of the present invention.
  • the compensation module 30 may include a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, a seventh transistor T7, and a first capacitor C1.
  • the gate of the third transistor T3 is connected to the third signal terminal S3, the first pole is connected to the data signal terminal Vdata, and the second pole is connected to one end of the first capacitor C1.
  • the gate of the fourth transistor T4 is connected to the second signal terminal S2, the first pole is connected to the common voltage terminal Vcom, and the second pole is connected to the one end of the first capacitor C1.
  • the gate of the fifth transistor T5 is connected to the first signal terminal S1, the first electrode is connected to the first electrode of the seventh transistor T7, and the second electrode is connected to the first voltage terminal V1 (ground GND).
  • the gate of the sixth transistor T6 is connected to the second signal terminal S2, the first electrode is connected to the display driving module 10, and the second electrode is connected to the common voltage terminal Vcom.
  • the first electrode of the sixth transistor T6 is connected to the second electrode of the driving transistor Td.
  • the gate of the seventh transistor T7 is connected to the second signal terminal S2, the first pole is connected to the other end of the first capacitor C1, and the second pole is connected to the display driving module 10.
  • the second electrode of the seventh transistor T7 is connected to the first electrode of the driving transistor Td.
  • the compensation module 30 may further include a plurality of switching transistors connected in parallel with the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6 or the seventh transistor T7.
  • the foregoing is only an illustration of the compensation module 30.
  • Other structures having the same functions as the compensation module 30 are not described herein again, but all should fall within the scope of protection of the present invention.
  • the present invention has transistors other than the driving transistor Td (both are switching crystals)
  • the first pole and the second pole of the tube are not limited, the first pole may be a drain, the second pole may be a source, or the first pole may be a source, and the second pole may be a drain.
  • the driving transistor Td is a P-type transistor, since the source voltage of the P-type transistor is higher than the drain voltage, the first source of the driving transistor Td is the first source and the second terminal is the drain.
  • the driving transistor Td is an N-type transistor, it is exactly the opposite of the P-type transistor.
  • the equivalent circuit diagram of the pixel circuit shown in FIG. 2 is as shown in FIG. 4a.
  • the transistor in the off state is indicated by “ ⁇ ”.
  • the first scanning signal line Scan1 inputs a signal to the first signal terminal S1, the fifth transistor turns on T5, and the voltage of the first voltage terminal V1 (ground GND) resets the gate of the driving transistor Td through the fifth transistor T5. Therefore, during the display of the previous frame, the voltage remaining in the gate (node b) of the driving transistor Td is released, thereby avoiding the influence of the residual voltage on the display of the frame of the frame.
  • the equivalent circuit diagram is as shown in FIG. 4b.
  • the second signal end S2 of the compensation module 30 and the fourth signal end S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the second scanning signal line Scan2.
  • the second scan signal line Scan2 inputs a signal to the second signal terminal S2, so that the fourth transistor T4, the sixth transistor T6, and the seventh transistor T7 are turned on, and the input signal of the common voltage terminal Vcom charges the first capacitor C1. .
  • the first transistor T1, the second transistor T2, the third transistor T3, and the fifth transistor T5 are in an off state.
  • the second scanning signal line Scan2 inputs a signal to the fourth signal terminal S4, so that The eighth transistor T8 is turned on, and the second capacitor C2 is discharged through the eighth transistor T8, thereby resetting the fingerprint recognition module 40.
  • a coupling capacitance Cf is formed between the valley line of the fingerprint and the detecting electrode D.
  • the coupling capacitance Cf is sufficiently small with respect to the second capacitance C2 and the coupling capacitance Ct of the ninth transistor T9 itself as the amplification transistor.
  • the gate potential of the ninth transistor T9 is increased, and since the ninth transistor T9 is a P-type transistor, the ninth transistor T9 is in an off state.
  • a coupling capacitance Cf' is formed between the ridge line of the fingerprint and the detecting electrode D.
  • the coupling capacitance Cf' is sufficiently large with respect to the second capacitance C2 and the coupling capacitance Ct of the ninth transistor T9 itself as the amplification transistor.
  • the gate potential of the ninth transistor T9 is lowered, and since the ninth transistor T9 is a P-type transistor, the ninth transistor T9 is in an on state.
  • the ninth transistor T9 amplifies the signal of the common voltage terminal Vcom.
  • the fingerprint identification module 40 completes the collection of fingerprint information.
  • the fingerprint information is related to the valley line and the ridge line of the fingerprint.
  • the collected fingerprint information is the valley line of the fingerprint
  • the second extremely amplified signal of the ninth transistor T9 the collected fingerprint information is the ridge of the fingerprint. line.
  • the equivalent circuit diagram is as shown in FIG. 4c, and the third signal terminal S3 of the compensation module 30 and the fifth signal terminal S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scanning signal line Scan3.
  • the third scanning signal line Scan3 inputs a signal to the third signal terminal S3, turns on the third transistor T3, and outputs a signal input from the data voltage terminal Vdata to one end of the first capacitor C1.
  • the voltage at the other end of the first capacitor C1 that is, the voltage of the node b
  • the voltage of the node b ie, the gate voltage of the driving transistor Td
  • Vg needs to jump to Vdata. -Vth, and keep it fixed.
  • the third scanning signal line Scan3 inputs a signal to the fifth signal terminal S5 to turn on the tenth transistor T10.
  • the initial current signal of the second pole of the ninth transistor passes through the tenth transistor.
  • T10 is transmitted to the read signal line RL.
  • the signal receiving device is enabled to receive the signal on the read signal line RL. Since the receiving device receives the initial current signal collected by the read signal line RL, it can be determined that the valley line of the fingerprint is in contact with the pixel area.
  • the ninth transistor T9 When the ninth transistor T9 is in the on state as shown in FIG. 5c, the ninth transistor amplifies the signal of the common voltage terminal Vcom and transmits it to the read signal line RL through the tenth transistor T10. Thereby the signal receiving device is enabled to receive the signal on the read signal line RL. Since the receiving device receives the amplified signal collected by the read signal line RL, it can be determined that the ridge line of the fingerprint is in contact with the pixel area.
  • the third scanning signal line Scan3 is the abscissa of the pixel unit corresponding to the fingerprint information (ridge line or valley line), and the reading signal line RL is the ordinate of the pixel unit corresponding to the fingerprint information (ridge line or valley line).
  • the equivalent circuit diagram is shown in Figure 4d.
  • the enable signal terminal EM input signal turns on the first transistor T1 and the second transistor T2, and the current flowing through the first transistor T1, the driving transistor Td, and the second transistor T2 drives the light emitting device to emit light.
  • the saturation current formula of the driving transistor Td can be obtained:
  • I OLED K(Vgs-
  • the operating current I OLED flowing through the light emitting device OLED is not affected by the threshold voltage Vth, and only the voltage input to the second voltage terminal V2 (ie, the power supply voltage Vdd) and the voltage input from the data voltage terminal Vdata. related. Therefore, the problem that the threshold voltage Vth of the driving transistor Td drifts due to process manufacturing and long-time operation can be completely solved, the influence of the drift of the threshold voltage Vth on the operating current I OLED is eliminated, the normal operation of the OLED of the light-emitting device is ensured, and the brightness of the display device is improved. Constancy.
  • the fingerprint identification module 40 also includes the eighth transistor T8 and the ninth transistor. T9, the tenth transistor T10, the second capacitor C2, and the detecting electrode D.
  • the embodiment is based on the compensation module 30.
  • the second signal terminal S2 is connected to the same signal line as the fifth signal terminal S5 of the fingerprint identification module 40, that is, the second scanning signal line Scan2, and the first signal end S1 of the compensation module 30 and the fourth signal end of the fingerprint identification module 40.
  • S4 is connected to the same signal line, that is, the first scanning signal line Scan1 is taken as an example. Thereby, the purpose of multiplexing the second scanning signal line Scan2 and the first scanning signal line Scan1 is achieved.
  • the specific structure of the compensation module 30 in this embodiment may include: a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, a seventh transistor T7, and a first capacitor C1.
  • the gate of the third transistor T3 is connected to the third signal terminal S3, the first pole is connected to the data signal terminal Vdata, and the second pole is connected to one end of the first capacitor C1.
  • the gate of the fourth transistor V4 is connected to the second signal terminal S2, the first pole is connected to the first voltage terminal V1 (ie, the ground terminal GND), and the second pole is connected to the one end of the first capacitor C1.
  • the gate of the fifth transistor T5 is connected to the first signal terminal S1, the first pole is connected to the other end of the first capacitor C1, and the second pole is connected to the first voltage terminal V1.
  • the gate of the sixth transistor T6 is connected to the second signal terminal S2, the first electrode is connected to the display driving module 10, and the second electrode is connected to the common voltage terminal Vcom.
  • the first electrode of the sixth transistor T6 is connected to the second electrode of the driving transistor Td.
  • the gate of the seventh transistor T7 is connected to the second signal terminal S2, the first pole is connected to the other end of the first capacitor C1, and the second pole is connected to the display driving module 10.
  • the second electrode of the seventh transistor T7 is connected to the first electrode of the driving transistor Td.
  • the first signal end S1 of the compensation module 30 and the fourth signal end S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the first scanning signal line Scan1.
  • the first scanning signal line Scan1 inputs a signal to the first signal terminal S1, and the fifth transistor T5 is turned on, and the voltage of the first voltage terminal V1 is reset by the fifth transistor T5 to the gate of the driving transistor Td.
  • the first scanning signal line Scan1 inputs a signal to the fourth signal terminal S4, the eighth transistor T8 is turned on, and the second capacitor C2 is reset by the eighth transistor.
  • the embodiment is completed at the same time in the first phase P1. It becomes the reset process of the compensation module 30 and the fingerprint identification module 40.
  • the second signal end S2 of the compensation module 30 and the fifth signal end S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the second scanning signal line Scan2.
  • the second scan signal line Scan2 inputs a signal to the second signal terminal S2, and turns on the fourth transistor T4, the sixth transistor T6, and the seventh transistor T7, and the input signal of the first voltage terminal V1 is performed on the first capacitor C1. Charging.
  • the first transistor T1, the second transistor T2, the third transistor T3, and the fifth transistor T5 are turned off.
  • a coupling capacitance Cf is formed between the valley line of the fingerprint and the detecting electrode D, so that the ninth transistor is in an off state; or, in the process of touch, the ridge line and detection of the fingerprint
  • a coupling capacitor Cf' is formed between the electrodes D such that the ninth transistor is in an on state.
  • the second scan signal line Scan2 inputs a signal to the fifth signal terminal S5, and the tenth transistor T10 is turned on.
  • the ninth transistor T9 is in an off state, the initial current signal of the second pole of the ninth transistor T9 passes through the tenth transistor.
  • T10 is transmitted to the read signal line RL; when the ninth transistor T9 is in the on state, the ninth transistor T9 amplifies the signal input from the common voltage terminal Vcom, and transmits it to the read signal line RL through the tenth transistor T10. .
  • the process of collecting and transmitting the fingerprint information by the fingerprint identification module 40 is the same as that of the first embodiment, and details are not described herein again. The difference is that, in the first embodiment, the fingerprint identification module 40 collects and transmits the fingerprint information in the second phase P2 at the same time.
  • the third scanning signal line Scan3 inputs a signal to the third signal terminal S3, the third transistor T3 is turned on, and the signal input from the data voltage terminal Vdata is output to one end of the first capacitor C1.
  • the voltage at the other end of the first capacitor C1 jumps to cause the gate voltage of the driving transistor Td to jump.
  • the specific hopping process is the same as the hopping process of the node b in the third phase P3 of the first embodiment, and details are not described herein again.
  • the signal EM input signal is enabled to turn on the first transistor T1 and the second transistor T2, and the current flowing through the first transistor T1, the driving transistor Td and the second transistor T2 drives the light emitting device to emit light.
  • the specific illuminating process is the same as the embodiment, and will not be described here.
  • the fingerprint identifying module 40 also includes an eighth transistor T8, a ninth transistor T9, a tenth transistor T10, a second capacitor C2, and a detecting electrode D.
  • the third signal terminal S3 of the compensation module 30 and the fifth signal terminal S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scanning signal line Scan3, and
  • the first signal terminal S1 of the compensation module 30 and the fourth signal terminal S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the first scanning signal line Scan1 is taken as an example.
  • the compensation module 30 in this embodiment specifically includes: a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, a seventh transistor T7, and a first capacitor C1.
  • the gate of the third transistor T3 is connected to the third signal terminal S3, the first pole is connected to the data signal terminal Vdata, and the second pole is connected to one end of the first capacitor C1.
  • the gate of the fourth transistor T4 is connected to the second signal terminal S2, the first pole is connected to the second voltage terminal V2, and the second pole is connected to the one end of the first capacitor C1.
  • the gate of the fifth transistor T5 is connected to the first signal terminal S1, the first pole is connected to the other end of the first capacitor C1, and the second pole is connected to the first voltage terminal V1.
  • the gate of the sixth transistor T6 is connected to the second signal terminal S2, the first electrode is connected to the display driving module 10, and the second electrode is connected to the common voltage terminal Vcom.
  • the first electrode of the sixth transistor T6 is connected to the second electrode of the driving transistor Td.
  • the gate of the seventh transistor T7 is connected to the second signal terminal S2, the first pole is connected to the other end of the first capacitor C2, and the second pole is connected to the display driving module 10.
  • the second electrode of the seventh transistor T7 is connected to the first electrode of the driving transistor Td.
  • the first signal end S1 of the compensation module 30 and the fourth signal end S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the first scanning signal line Scan1.
  • the first scan signal line Scan1 inputs a signal to the first signal terminal S1, turns on the fifth transistor T5, and the voltage of the first voltage terminal V1 is driven by the fifth transistor T5.
  • the gate of the transistor Td is reset.
  • the first scanning signal line Scan1 inputs a signal to the fourth signal terminal S4, the eighth transistor T8 is turned on, and the second capacitor C2 is reset by the eighth transistor T8.
  • the present embodiment completes the resetting process of the compensation module 30 and the fingerprint identification module 40 at the same time in the first phase P1.
  • the second scan signal line Scan2 inputs a signal to the second signal terminal S2, and turns on the fourth transistor T4, the sixth transistor T6, and the seventh transistor T7, and the input signal of the second voltage terminal V2 is opposite to the first capacitor.
  • C1 is charged.
  • the first transistor T1, the second transistor T2, the third transistor T3, and the fifth transistor T5 are turned off.
  • a coupling capacitance Cf is formed between the valley line of the fingerprint and the detecting electrode D, so that the ninth transistor is in an off state; or, in the process of touch, the ridge line of the fingerprint and the detecting electrode D are A coupling capacitor Cf' is formed such that the ninth transistor is in an on state.
  • the third signal end S3 of the compensation module 30 and the fifth signal end S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scanning signal line Scan3.
  • the third scanning signal line Scan3 inputs a signal to the third signal terminal S3, the third transistor T3 is turned on, and the signal input from the data voltage terminal Vdata is output to one end of the first capacitor C1.
  • the voltage at the other end of the first capacitor C1 jumps to cause the gate voltage of the driving transistor Td to jump.
  • the specific hopping process is the same as the hopping process of the node b in the third phase P3 of the first embodiment, and details are not described herein again.
  • the third scan signal line Scan3 inputs a signal to the fifth signal terminal S5, and the tenth transistor T10 is turned on.
  • the ninth transistor T9 is in an off state, the initial current signal of the second pole of the ninth transistor T9 passes through the tenth.
  • the transistor T10 is transmitted to the read signal line RL; when the ninth transistor T9 is in the on state, the ninth transistor T9 amplifies the signal input from the common voltage terminal Vcom, and transmits it to the read signal line through the tenth transistor T10. RL.
  • the process of transmitting the fingerprint information by the fingerprint identification module 40 is the same as that of the first embodiment, and details are not described herein again.
  • the signal EM input signal is enabled to turn on the first transistor T1 and the second transistor T2, and the current flowing through the first transistor T1, the driving transistor Td and the second transistor T2 drives the light emitting device to emit light.
  • the specific illuminating process is the same as the embodiment, and will not be described here.
  • An embodiment of the present invention provides a display device including any of the pixel circuits as described above, and a signal receiving device 50 (shown in FIG. 8) connected to the read signal line for receiving the read signal line output. Fingerprint information.
  • the signal receiving device 50 can read the signal line, such as the first read signal line RL1 and the second read signal line RL2 in FIG. 8, and the fingerprint recognition module 40 in the pixel circuit in the pixel unit 01. Connected.
  • the specific receiving process of the signal receiving device 50 will be described below.
  • the fingerprint recognition module 40 collects the fingerprint information.
  • the fingerprint information is related to the valley line and the ridge line of the fingerprint. If the second extreme initial current signal of the ninth transistor T9, the collected fingerprint information is the valley line of the fingerprint.
  • the tenth transistor T10 is turned on, if the ninth transistor T9 is in an off state as shown in FIG. 5b, the initial current signal of the second pole of the ninth transistor is transmitted to the read signal through the tenth transistor T10. Line RL.
  • the signal receiving device 50 receives the initial current signal output by the read signal line RL, and identifies the signal, so that the pixel unit displays the valley line of the fingerprint according to the coordinates of the collected fingerprint information.
  • the fingerprint identification module 40 collects the fingerprint information. If the second extremely amplified signal of the ninth transistor T9 is used, the collected fingerprint information is the ridge line of the fingerprint.
  • the tenth transistor T10 is turned on, if the ninth transistor T9 is in an on state as shown in FIG. 5c, the ninth transistor amplifies the signal of the common voltage terminal Vcom and transmits it to the device through the tenth transistor T10.
  • the read signal line RL is described.
  • the signal receiving device 50 receives the amplified signal output by the read signal line RL, and identifies the signal, so that the pixel unit displays the ridge line of the fingerprint according to the coordinates of the collected fingerprint information.
  • the fingerprint recognition module 40 described above may be provided in a pixel circuit within each of the pixel units 01.
  • the above fingerprint recognition may also be set in the pixel circuit in the partial pixel unit 01.
  • the module 40 for example, as shown in FIG. 8, is provided with a fingerprint recognition module 40 for every two pixel units in the first row of pixel units and the third row of pixel units.
  • the fingerprint recognition module 40 need not be provided in the pixel circuit in the pixel unit 01 of the second row.
  • the above is only an example of the method for setting the fingerprint identification module 40. Other arrangements are not repeated here, but all should belong to the protection scope of the present invention.
  • the above display device has the same advantageous effects as the pixel circuit provided by the foregoing embodiments of the present invention. Since the pixel circuit has been described in detail in the foregoing embodiments, details are not described herein again.
  • the display device provided by the embodiment of the present invention may be a display device having a current-driven light-emitting device including an LED display or an OLED display.
  • An embodiment of the present invention provides a method for driving a pixel circuit, which is used to drive any of the pixel circuits as described above.
  • the method may include:
  • Step S101 The first signal terminal S1 inputs a signal, and the display driving module 10 performs resetting to clear the residual voltage.
  • Step S102 The second signal terminal S2 inputs a signal, and the signal input by the common voltage terminal Vcom charges the compensation module 30.
  • Step S103 The fourth signal terminal S4 inputs a signal, resets the fingerprint identification module 40, and collects the fingerprint information.
  • Step S104 The third signal terminal S3 inputs a signal, and the compensation module 30 maintains an on state, and compensates the display driving module 10 for the threshold voltage according to the signal input by the first voltage terminal V1 and the data signal terminal Vdata.
  • Step S105 The fifth signal terminal S5 inputs a signal, and the fingerprint identification module 40 transmits the collected fingerprint information to the read signal line RL.
  • Step S106 Enable the signal terminal EM input signal to turn on the light emitting module 20, and the display driving module 10 drives the light emitting module 20 to emit light.
  • steps S101 to S105 are not limited to the chronological order of execution of the method steps.
  • step S101 and step S102 or step S104 and step S105 may be performed at the same time period.
  • Embodiments of the present invention provide a driving method of a pixel circuit, including: a first signal input signal, a display driving module resetting, and a residual voltage; a second signal input signal, and a signal input from a common voltage terminal to the compensation module Charging; the fourth signal input signal resets the fingerprint recognition module and collects the fingerprint information; the third signal terminal loses Incoming signal, the compensation module remains in an open state, and the threshold voltage is compensated according to the signal input by the first voltage end and the data signal end; the fifth signal end input signal, and the fingerprint identification module collects the fingerprint information.
  • the signal is transmitted to the read signal line; the signal input signal is enabled, the light emitting module is turned on, and the display driving module drives the light emitting module to emit light.
  • the same signal is input to the third signal terminal and the fifth signal terminal through the third scanning signal line, and the same signal is input to the second signal terminal and the fourth signal terminal through the second scanning signal line; or,
  • the second scanning signal line inputs the same signal to the second signal end and the fifth signal end, and inputs the same signal to the first signal end and the fourth signal end through the first scanning signal line; or, through the third scanning signal line
  • the three signals are input to the same signal as the fifth signal terminal, and the same signal is input to the first signal terminal and the fourth signal terminal through the first scanning signal line.
  • the first signal end, the second signal end, and the third signal end are connected to the compensation module, and the fourth signal end and the fifth signal end are connected to the fingerprint module.
  • the threshold voltage can be compensated for the display driving module by the signal input by the first voltage end and the data signal end, so that the display driving module drives the light emitting module to emit light.
  • the drive current is prevented from being affected by the threshold voltage offset, thereby providing brightness constancy of the display; on the other hand, any two of the first scan signal line, the second scan signal line, and the third scan signal line can also pass
  • the fourth signal end and the fifth signal end connected to the fingerprint identification module control the fingerprint identification module to collect the fingerprint information, and transmit the collected fingerprint information to the read signal line, thereby achieving the purpose of fingerprint recognition.
  • the compensation module and the fingerprint can be simultaneously controlled by multiplexing the first scan signal line, the second scan signal line, and the third scan signal line.
  • the identification module makes the structure of the display having the identification function simple and enhances the brightness constancy of the display by the compensation of the threshold voltage.
  • the driving method for driving the above pixel circuit will be described in detail below by way of a specific embodiment.
  • the driving method of the pixel circuit provided in this embodiment is that the third signal terminal S3 of the compensation module 30 and the fifth signal terminal S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scanning signal line Scan3, and the compensation module.
  • the second signal terminal S2 of 30 is connected to the same signal line as the fourth signal terminal S4 of the fingerprint identification module 40, that is, the second scanning signal line Scan2 An example is given. Thereby, the purpose of multiplexing the third scanning signal line Scan3 and the second scanning signal line Scan2 is achieved.
  • the method is as shown in FIG. 10 and may include:
  • Step S201 In the first stage, the first scanning signal line Scan1 inputs a signal to the first signal terminal S1, and the display driving module 10 performs resetting to clear the residual voltage.
  • the first scan signal line Scan1 inputs a signal to the first signal terminal S1, the fifth transistor turns on T5, and the voltage of the first voltage terminal V1 (ground GND) is heavy to the gate of the driving transistor Td through the fifth transistor T5.
  • the voltage remaining in the gate (node b) of the driving transistor Td is released, thereby avoiding the influence of the residual voltage on the display of the frame of the frame.
  • Step S202 In the second stage, the second scan signal line Scan2 inputs signals to the second signal end S2 and the fourth signal end S4, resets the fingerprint identification module 40, and collects the fingerprint information; the common voltage terminal Vcom inputs The signal charges the compensation module 30.
  • the second signal end S2 of the compensation module 30 and the fourth signal end S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the second scan signal line Scan2.
  • the second scan signal line Scan2 inputs a signal to the second signal terminal S2, so that the fourth transistor T4, the sixth transistor T6, and the seventh transistor T7 are turned on, and the input signal of the common voltage terminal Vcom charges the first capacitor C1. .
  • the first transistor T1, the second transistor T2, the third transistor T3, and the fifth transistor T5 are in an off state.
  • the second scanning signal line Scan2 inputs a signal to the fourth signal terminal S4 such that the eighth transistor T8 is turned on, and the second capacitor C2 is discharged through the eighth transistor T8, thereby resetting the fingerprint recognition module 40.
  • a coupling capacitance Cf is formed between the valley line of the fingerprint and the detecting electrode D.
  • the coupling capacitance Cf is sufficiently small with respect to the second capacitance C2 and the coupling capacitance Ct of the ninth transistor T9 itself as the amplification transistor.
  • the gate potential of the ninth transistor T9 is increased, and since the ninth transistor T9 is a P-type transistor, the ninth transistor T9 is in an off state.
  • a coupling capacitance Cf' is formed between the ridge line of the fingerprint and the detecting electrode D.
  • the coupling capacitance Cf' is sufficiently large with respect to the second capacitance C2 and the coupling capacitance Ct of the ninth transistor T9 itself as the amplification transistor.
  • the gate potential of the ninth transistor T9 is lowered, and since the ninth transistor T9 is a P-type transistor, the ninth transistor T9 is in an on state.
  • the ninth transistor T9 amplifies the signal of the common voltage terminal Vcom.
  • the fingerprint identification module 40 completes the collection of fingerprint information.
  • the fingerprint information is related to the valley line and the ridge line of the fingerprint.
  • the collected fingerprint information is the valley line of the fingerprint
  • the second extremely amplified signal of the ninth transistor T9 the collected fingerprint information is the ridge of the fingerprint. line.
  • Step S203 In the third stage, the third scan signal line Scan3 inputs signals to the third signal terminal S3 and the fifth signal terminal S5, and the compensation module 30 remains in an open state, and the signal is input according to the first voltage terminal V1 and the data signal terminal Vdata.
  • the display driving module 10 is compensated for the threshold voltage.
  • the fingerprint identification module 40 transmits the collected fingerprint information to the read signal line RL.
  • the third signal end S3 of the compensation module 30 and the fifth signal end S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scan signal line Scan3.
  • the third scanning signal line Scan3 inputs a signal to the third signal terminal S3, turns on the third transistor T3, and outputs a signal input from the data voltage terminal Vdata to one end of the first capacitor C1.
  • the voltage at the other end of the first capacitor C1 that is, the voltage of the node b
  • the voltage of the node b ie, the gate voltage of the driving transistor Td
  • Vg needs to jump to Vdata. -Vth, and keep it fixed.
  • the third scanning signal line Scan3 inputs a signal to the fifth signal terminal S5 to turn on the tenth transistor T10.
  • the signal receiving device When the tenth transistor T10 is turned on, when the ninth transistor T9 is as shown in FIG. 5b, In the off state, the initial current signal of the second pole of the ninth transistor is transmitted to the read signal line RL through the tenth transistor T10. Thereby the signal receiving device is enabled to receive the signal on the read signal line RL. Since the receiving device receives the initial current signal collected by the read signal line RL, it can be determined that the valley line of the fingerprint is in contact with the pixel area.
  • the ninth transistor T9 When the ninth transistor T9 is in the on state as shown in FIG. 5c, the ninth transistor amplifies the signal of the common voltage terminal Vcom and transmits it to the read signal line RL through the tenth transistor T10. Thereby the signal receiving device is enabled to receive the signal on the read signal line RL. Since the receiving device receives the illuminating signal collected by the reading signal line RL, it can be determined that the ridge line of the fingerprint is in contact with the pixel region.
  • the third scanning signal line Scan3 is the abscissa of the pixel unit corresponding to the fingerprint information (ridge line or valley line), and the reading signal line RL is the ordinate of the pixel unit corresponding to the fingerprint information (ridge line or valley line). .
  • the fingerprint information corresponds to a specific position of the display panel. Thereby, the fingerprint information matching the specific position can be displayed on the display screen, thereby achieving the purpose of fingerprint recognition.
  • Step S204 In the fourth stage P4, the enable signal terminal EM input signal turns on the light emitting module 20, and the display driving module 10 drives the light emitting module 20 to emit light.
  • the enable signal terminal EM input signal turns on the first transistor T1 and the second transistor T2, and the current flowing through the first transistor T1, the driving transistor Td, and the second transistor T2 drives the light emitting device to emit light.
  • the saturation current formula of the driving transistor Td can be obtained:
  • I OLED K(Vgs-
  • the operating current I OLED flowing through the light emitting device OLED is not affected by the threshold voltage Vth, and only the voltage input to the second voltage terminal V2 (ie, the power supply voltage Vdd) and the voltage input from the data voltage terminal Vdata. related. Therefore, the problem that the threshold voltage Vth of the driving transistor Td drifts due to process manufacturing and long-time operation can be completely solved, the influence of the drift of the threshold voltage Vth on the operating current I OLED is eliminated, the normal operation of the OLED of the light-emitting device is ensured, and the brightness of the display device is improved. Constancy.
  • the second signal terminal S2 of the compensation module 30 and the fifth signal terminal S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the second scanning signal line Scan2
  • the first signal terminal S1 of the compensation module 30 and the fourth signal terminal S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the first scanning signal line Scan1 is taken as an example.
  • the method is as shown in FIG. 11 and may include:
  • Step S301 In the first stage P1, the first scanning signal line Scan1 inputs signals to the first signal terminal S1 and the fourth signal terminal S4, and the display driving module 10 and the fingerprint recognition module 40 perform resetting to clear the residual voltage.
  • the first signal end S1 of the compensation module 30 and the fourth signal end S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the first scan signal line Scan1.
  • the first scanning signal line Scan1 inputs a signal to the first signal terminal S1, and the fifth transistor T5 is turned on, and the voltage of the first voltage terminal V1 is reset by the fifth transistor T5 to the gate of the driving transistor Td.
  • the first scanning signal line Scan1 inputs a signal to the fourth signal terminal S4, the eighth transistor T8 is turned on, and the second capacitor C2 is reset by the eighth transistor.
  • the present embodiment completes the resetting process of the compensation module 30 and the fingerprint identification module 40 at the same time in the first phase P1.
  • Step S302 In the second phase P2, the second scan signal line Scan2 inputs signals to the second signal end S2 and the fifth signal end S5, and the fingerprint identification module 40 collects the fingerprint information, and transmits the collected fingerprint information to the The signal line RL is read; the signal input by the first voltage terminal V1 charges the compensation module 30.
  • the second signal end S2 of the compensation module 30 and the fifth signal end S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the second scan signal line Scan2.
  • the second scan signal line Scan2 inputs a signal to the second signal terminal S2, and turns on the fourth transistor T4, the sixth transistor T6, and the seventh transistor T7, and the input signal of the first voltage terminal V1 is performed on the first capacitor C1. Charging.
  • the first transistor T1, the second transistor T2, the third transistor T3, and the fifth transistor T5 are turned off.
  • a coupling capacitance Cf is formed between the valley line of the fingerprint and the detecting electrode D, so that the ninth transistor is in an off state; or, in the process of touch, the ridge line and detection of the fingerprint
  • a coupling capacitor Cf' is formed between the electrodes D such that the ninth transistor is in an on state.
  • the second scan signal line Scan2 inputs a signal to the fifth signal terminal S5, and the tenth transistor T10 is turned on.
  • the ninth transistor T9 is in an off state, the ninth transistor T9 is The initial current signal of the two poles is transmitted to the read signal line RL through the tenth transistor T10; when the ninth transistor T9 is in the on state, the ninth transistor T9 amplifies the signal input by the common voltage terminal Vcom and passes the tenth The transistor T10 is transmitted to the read signal line RL.
  • the process of collecting and transmitting the fingerprint information by the fingerprint identification module 40 is the same as that of the fourth embodiment, and details are not described herein again. The difference is that, in the fourth embodiment, the fingerprint identification module 40 collects and transmits the fingerprint information in the second stage P2 at the same time.
  • Step S303 In the third stage P3, the third scan signal line Scan3 inputs a signal to the third signal terminal S3, and the compensation module 30 maintains an on state, and displays the signal according to the signal input by the first voltage terminal V1 and the data signal terminal Vdata.
  • the drive module 10 performs compensation of the threshold voltage.
  • the third scan signal line Scan3 inputs a signal to the third signal terminal S3, the third transistor T3 is turned on, and the signal input from the data voltage terminal Vdata is output to one end of the first capacitor C1.
  • the voltage at the other end of the first capacitor C1 jumps to cause the gate voltage of the driving transistor Td to jump.
  • the specific hopping process is the same as the hopping process of the node b in the third phase P3 of the fourth embodiment, and details are not described herein again.
  • Step S304 In the fourth stage P4, the enable signal terminal EM input signal turns on the light emitting module, and the display driving module 10 drives the light emitting module 20 to emit light.
  • the signal input terminal EM inputs a signal to turn on the first transistor T1 and the second transistor T2, and the current flowing through the first transistor T1, the driving transistor Td, and the second transistor T2 drives the light emitting device to emit light.
  • the specific illuminating process is the same as the embodiment, and will not be described here.
  • the third signal terminal S3 of the compensation module 30 and the fifth signal terminal S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scanning signal line Scan3, and the first signal terminal S1 of the compensation module 30 and The fourth signal terminal S4 of the fingerprint identification module 40 is connected to the same signal line, that is, the first scanning signal line Scan1 is taken as an example.
  • the purpose of multiplexing the third scanning signal line Scan3 and the first scanning signal line Scan1 is achieved.
  • the method is as shown in FIG. 12 and may include:
  • Step S401 In the first stage P1, the first scanning signal line Scan1 inputs signals to the first signal terminal S1 and the fourth signal terminal S4, and the display driving module 10 and the fingerprint recognition module 40 perform resetting to clear the residual voltage.
  • the first signal end S1 of the compensation module 30 and the fourth signal end S4 of the fingerprint identification module 40 are connected to the same signal line, that is, the first scan signal line Scan1.
  • the first scanning signal line Scan1 inputs a signal to the first signal terminal S1, turns on the fifth transistor T5, and the voltage of the first voltage terminal V1 resets the gate of the driving transistor Td through the fifth transistor T5.
  • the first scanning signal line Scan1 inputs a signal to the fourth signal terminal S4, the eighth transistor T8 is turned on, and the second capacitor C2 is reset by the eighth transistor T8.
  • the present embodiment completes the resetting process of the compensation module 30 and the fingerprint identification module 40 at the same time in the first phase P1.
  • Step S402 In the second phase P2, the second scan signal line Scan2 inputs a signal to the second signal terminal S2, the fingerprint recognition module 40 collects the fingerprint information, and the signal input by the second voltage terminal V2 charges the compensation module 30.
  • the second scan signal line Scan2 inputs a signal to the second signal terminal S2, and turns on the fourth transistor T4, the sixth transistor T6, and the seventh transistor T7, and the input signal of the second voltage terminal V2 is performed on the first capacitor C1. Charging.
  • the first transistor T1, the second transistor T2, the third transistor T3, and the fifth transistor T5 are turned off.
  • a coupling capacitance Cf is formed between the valley line of the fingerprint and the detecting electrode D, so that the ninth transistor is in an off state; or, in the process of touch, the ridge line of the fingerprint and the detecting electrode D are A coupling capacitor Cf' is formed such that the ninth transistor is in an on state.
  • Step S403 In the third stage P3, the third scan signal line Scan3 inputs signals to the third signal terminal S3 and the fifth signal terminal S5, and the compensation module 40 remains in an open state according to the first voltage terminal V1 and the data signal terminal Vdata.
  • the input signal compensates the display drive module 10 for the threshold voltage.
  • the fingerprint identification module 40 transmits the collected fingerprint information to the read signal line RL.
  • the third signal end S3 of the compensation module 30 and the fifth signal end S5 of the fingerprint identification module 40 are connected to the same signal line, that is, the third scan signal line Scan3.
  • the third scanning signal line Scan3 inputs a signal to the third signal terminal S3, the third transistor T3 is turned on, and the signal input from the data voltage terminal Vdata is output to one end of the first capacitor C1.
  • the voltage at the other end of the first capacitor C1 jumps to cause the gate voltage of the driving transistor Td to jump.
  • the hopping process of the node b is the same, and will not be described in detail here.
  • the third scan signal line Scan3 inputs a signal to the fifth signal terminal S5, and the tenth transistor T10 is turned on.
  • the ninth transistor T9 is in an off state, the initial current signal of the second pole of the ninth transistor T9 passes through the tenth.
  • the transistor T10 is transmitted to the read signal line RL; when the ninth transistor T9 is in the on state, the ninth transistor T9 amplifies the signal input from the common voltage terminal Vcom, and transmits it to the read signal line through the tenth transistor T10. RL.
  • the process of transmitting the fingerprint information by the fingerprint identification module 40 is the same as that of the fourth embodiment, and details are not described herein again.
  • Step S404 In the fourth stage P4, the enable signal terminal EM input signal turns on the light emitting module 20, and the display driving module 10 drives the light emitting module 20 to emit light.
  • the signal input terminal EM inputs a signal to turn on the first transistor T1 and the second transistor T2, and the current flowing through the first transistor T1, the driving transistor Td, and the second transistor T2 drives the light emitting device to emit light.
  • the specific illuminating process is the same as the embodiment, and will not be described here.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

提供一种像素电路及其驱动方法、显示装置,能够在避免阈值电压的漂移对显示器的亮度均匀性和恒定性产生影响的同时,使得具有该像素电路的显示装置具备指纹识别功能。该像素电路包括显示驱动模块(10)、补偿模块(30)、发光模块(20)以及指纹识别模块(40)。其中,补偿模块(30)分别连接显示驱动模块(10)、第一信号端(S1)、第二信号端(S2)、第三信号端(S3)、第一电压端(V1)、数据信号端(Vdata)以及公共电压端(Vcom);显示驱动模块(10)还连接发光模块(20);发光模块(20)还连接使能信号端(EM)、第一电压端(V1)以及第二电压端(V2);指纹识别模块(40)分别连接第四信号端(S4)、第五信号端(S5)以及读取信号线(RL)。

Description

一种像素电路及其驱动方法、显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种像素电路及其驱动方法、显示装置。
背景技术
随着显示技术的急速进步,作为显示装置核心的半导体元件技术也随之得到了飞跃性的进步。对于现有的显示装置而言,有机发光二极管(Organic Light Emitting Diode,OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。
OLED按驱动方式可分为PMOLED(Passive Matrix Driving OLED,无源矩阵驱动有机发光二极管)和AMOLED(Active Matrix Driving OLED,有源矩阵驱动有机发光二极管)两种,由于AMOLED显示器具有低制造成本、高应答速度、省电、可用于便携式设备的直流驱动、工作温度范围大等等优点而可望成为取代LCD(liquid crystal display,液晶显示器)的下一代新型平面显示器。在现有的AMOLED显示面板中,每个OLED均包括多个TFT(Thin Film Transistor,薄膜晶体管)开关电路。其中,非晶硅TFT由于其具有优越的静态电学特性,被作为一种重要的电子器件,并且在液晶显示、矩阵图像传感器等方面已经得到广泛的应用。
然而现有技术中,非晶硅TFT的不稳定性一直是人们有待解决的问题。非晶硅TFT一个主要的不稳定性是其在长时间施加直流栅偏压的状态下,会出现TFT阈值电压的漂移。具体地,在高压区(一般大于25V),阈值电压漂移是由于绝缘层中的陷阱捕获电荷后屏蔽栅电场引起的;在低压区域(一般即非晶硅TFT的工作电压),阈值电压漂移是在有源层中由于偏压所造成的悬键态的产生或移去引起的。上述阈值电压的漂移会造成AMOLED显示器的发光亮度下降,从而影响到显示器的亮度恒定性。此外,工作状态下AMOLED中的TFT由于会长时间处于偏压状态,加快了TFT衰减的速率,从而降低了显示装置的寿命。
此外,指纹识别功能是目前电子设备常用的功能之一,其对于增强电子设备的安全性,扩展其应用范围等均有重要意义。而目前的AMOLED显示器大多不具备指纹识别功能;或者通过外加独立的指纹识别电路来达到指纹识别的目的,但是这样会使得结构复杂,成本提高。
发明内容
本发明的实施例提供一种像素电路及其驱动方法、显示装置,能够在避免阈值电压的漂移对显示器的亮度均匀性和恒定性产生影响的同时,使得具有该像素电路的显示装置具备指纹识别功能。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明的一方面,提供一种像素电路,包括显示驱动模块、补偿模块、发光模块以及指纹识别模块;
所述补偿模块,分别连接所述显示驱动模块、第一信号端、第二信号端、第三信号端、第一电压端、数据信号端以及公共电压端,用于在所述第一信号端、所述第二信号端、所述第三信号端的控制下,通过所述第一电压端以及所述数据信号端输入的信号,对所述显示驱动模块进行阈值电压的补偿;
所述显示驱动模块,还连接所述发光模块,所述显示驱动模块得到阈值电压的补偿后,用于驱动所述发光模块进行发光;
所述发光模块,还连接所述使能信号端、所述第一电压端以及第二电压端,用于在所述使能信号端、所述第一电压端以及所述第二电压端的控制下,通过所述显示驱动模块的驱动进行发光;
所述指纹识别模块,分别连接第四信号端、第五信号端以及读取信号线;用于在所述第四信号端和所述第五信号端的控制下,对指纹信息进行采集,并将采集到的所述指纹信息传出至所述读取信号线;
其中,所述第三信号端与所述第五信号端连接第三扫描信号线,所述第二信号端与所述第四信号端连接第二扫描信号线;或者,
所述第二信号端与所述第五信号端连接所述第二扫描信号线,所述第一信号端与所述第四信号端连接第一扫描信号线;或者,
所述第三信号端与所述第五信号端连接所述第三扫描信号线,所述第一信号端与所述第四信号端连接所述第一扫描信号线,所述补偿 模块还连接所述第二电压端。
本发明的另一方面,提供一种显示装置,包括如上所述的任意一种像素电路,以及与读取信号线相连接的信号接收装置,用于接收所述读取信号线输出的指纹信息。
本发明的又一方面,提供一种像素电路的驱动方法,用于驱动如上所述的任意一种像素电路,当第三信号端与第五信号端连接第三扫描信号线,第二信号端与第四信号端连接第二扫描信号线时,所述方法包括:
在第一阶段,第一扫描信号线向第一信号端输入信号,显示驱动模块进行重置,清除残留电压;
在第二阶段,所述第二扫描信号线向所述第二信号端和所述第四信号端输入信号,将指纹识别模块重置,并对指纹信息进行采集;公共电压端输入的信号对所述补偿模块进行充电;
在第三阶段,所述第三扫描信号线向所述第三信号端和所述第五信号端输入信号,所述补偿模块保持开启状态,根据第一电压端以及数据信号端输入的信号,对所述显示驱动模块进行阈值电压的补偿;
所述指纹识别模块将采集到的所述指纹信息传出至读取信号线;
在第四阶段,所述使能信号端输入信号开启发光模块,所述显示驱动模块驱动所述发光模块进行发光。
本发明的又一方面,提供一种像素电路的驱动方法,用于驱动如上所述的任意一种像素电路,当第二信号端与第五信号端连接第二扫描信号线,第一信号端与第四信号端连接第一扫描信号线时,所述方法包括:
在第一阶段,所述第一扫描信号线向所述第一信号端和所述第四信号端输入信号,显示驱动模块和指纹识别模块进行重置,清除残留电压;
在第二阶段,所述第二扫描信号线向所述第二信号端和所述第五信号端输入信号,所述指纹识别模块并对指纹信息进行采集,并将采集到的所述指纹信息传出至读取信号线;第一电压端输入的信号对所述补偿模块进行充电;
在第三阶段,第三扫描信号线向第三信号端输入信号,所述补偿模块保持开启状态,根据第一电压端以及数据信号端输入的信号,对 所述显示驱动模块进行阈值电压的补偿;
在第四阶段,所述使能信号端输入信号开启发光模块,所述显示驱动模块驱动所述发光模块进行发光。
本发明的又一方面,提供一种像素电路的驱动方法,用于驱动如上所述的任意一种像素电路,当第三信号端与第五信号端连接第三扫描信号线,第一信号端与第四信号端连接第一扫描信号线时,所述方法包括:
在第一阶段,所述第一扫描信号线向所述第一信号端和所述第四信号端输入信号,显示驱动模块和指纹识别模块进行重置,清除残留电压;
在第二阶段,第二扫描信号线向第二信号端输入信号,指纹识别模块对指纹信息进行采集;第二电压端输入的信号对所述补偿模块进行充电;
在第三阶段,所述第三扫描信号线向所述第三信号端和所述第五信号端输入信号,所述补偿模块保持开启状态,根据第一电压端以及数据信号端输入的信号,对所述显示驱动模块进行阈值电压的补偿;
所述指纹识别模块将采集到的所述指纹信息传出至读取信号线;
在第四阶段,所述使能信号端输入信号开启发光模块,所述显示驱动模块驱动所述发光模块进行发光。
本发明实施例提供一种像素电路及其驱动方法、显示装置。所述像素电路包括显示驱动模块、补偿模块、发光模块以及指纹识别模块。具体地,补偿模块分别连接显示驱动模块、第一信号端、第二信号端、第三信号端、第一电压端、数据信号端以及公共电压端,用于在第一信号端、第二信号端、第三信号端的控制下,通过第一电压端以及数据信号端输入的信号,对显示驱动模块进行阈值电压的补偿。显示驱动模块还连接发光模块,显示驱动模块得到阈值电压的补偿后,用于驱动发光模块进行发光。发光模块还连接使能信号端、第一电压端以及第二电压端,用于在使能信号端、第一电压端以及第二电压端的控制下,通过显示驱动模块的驱动进行发光。指纹识别模块分别连接第四信号端、第五信号端以及读取信号线;用于在第四信号端和第五信号端的控制下,对指纹信息进行采集,并将采集到的指纹信息传出至所述读取信号线。其中,第三信号端与第五信号端连接第三扫描信号 线,第二信号端与第四信号端连接第二扫描信号线。或者,第二信号端与第五信号端连接第二扫描信号线,第一信号端与第四信号端连接第一扫描信号线。或者,第三信号端与第五信号端连接第三扫描信号线,第一信号端与第四信号端连接第一扫描信号线,所述补偿模块还连接第二电压端。
这样一来,通过第三扫描信号线可以向第三信号端和第五信号端输入相同的信号,通过第二扫描信号线可以向第二信号端与第四信号端输入相同的信号;或者,通过第二扫描信号线向第二信号端与第五信号端输入相同的信号,通过第一扫描信号线向第一信号端与第四信号端输入相同的信号;或者通过第三扫描信号线向第三信号端与第五信号端输入相同的信号,通过第一扫描信号线向第一信号端与第四信号端输入相同的信号。由于第一信号端、第二信号端、第三信号端与补偿模块相连接,第四信号端、第五信号端与指纹模块相连接,因此,一方面,在第一扫描信号线、第二扫描信号线以及第三扫描信号线的控制下,可以通过第一电压端和数据信号端输入的信号对显示驱动模块进行阈值电压的补偿,使得显示驱动模块在驱动发光模块进行发光的过程中,避免驱动电流受到阈值电压偏移的影响,从而提供了显示器的亮度恒定性;另一方面,第一扫描信号线、第二扫描信号线以及第三扫描信号线中的任意两条,还可以通过与指纹识别模块相连接的第四信号端和第五信号端,控制指纹识别模块对指纹信息进行采集,并将采集到的指纹信息传出至读取信号线,从而达到指纹识别的目的。因此,本发明提供的集成有补偿模块和指纹识别模块的像素电路中,通过对第一扫描信号线、第二扫描信号线以及第三扫描信号线的复用,可以同时控制补偿模块和指纹识别模块,使得具有识别功能的显示器的结构简单,并通过阈值电压的补偿提高了该显示器的亮度恒定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种像素电路的结构示意图;
图2为图1所示的像素电路的各个模块的一种具体结构示意图;
图3为图1所示的像素电路工作过程中各个控制信号的时序图;
图4a-图4d为图2所示的像素电路,分别对应图3中P1-P4阶段各个阶段的等效电路图;
图5a为指纹识别模块工作过程中,手指指纹的脊线和谷线分别与探测电极之间形成电容的示意图;
图5b为图5a中指纹谷线与屏幕接触时,指纹识别模块对指纹信息的采集原理图;
图5c为图5a中指纹脊线与屏幕接触时,指纹识别模块对指纹信息的采集原理图;
图6为图1所示的像素电路的各个模块的另一种具体结构示意图;
图7为图1所示的像素电路的各个模块的又一种具体结构示意图;
图8为本发明实施例提供的一种显示装置的结构示意图;
图9为本发明实施例提供的一种像素电路的驱动方法流程图;
图10为图2所示的像素电路的驱动方法流程图;
图11为图6所示的像素电路的驱动方法流程图;
图12为图7所示的像素电路的驱动方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种像素电路,如图1所示,可以包括显示驱动模块10、补偿模块30、发光模块20以及指纹识别模块40。
具体地,补偿模块30可以分别连接显示驱动模块10、第一信号端S1、第二信号端S2、第三信号端S3、第一电压端V1、数据信号端Vdata以及公共电压端Vcom,用于在第一信号端S1、第二信号端S2、第三信号端S3的控制下,对补偿模块30进行充电,并且通过第一电压端V1以及数据信号端Vdata输入的信号,对显示驱动模块10进行阈值电 压Vth的补偿。
显示驱动模块10还可以连接发光模块20。当显示驱动模块10得到阈值电压Vth的补偿后,用于驱动发光模块20进行发光。
发光模块20还可以连接使能信号端EM、第一电压端V1以及第二电压端V2,用于在使能信号端EM、第一电压端V1以及第二电压端V2的控制下,通过显示驱动模块10的驱动进行发光。
指纹识别模块40可以分别连接第四信号端S4、第五信号端S5以及读取信号线RL;用于在第四信号端S4和第五信号端S5的控制下,对指纹信息进行采集,并将采集到的指纹信息传出至读取信号线RL。
其中,第三信号端S3与第五信号端S5连接第三扫描信号线Scan3,第二信号端S2与第四信号端S4连接第二扫描信号线Scan2。
或者,第二信号端S2与第五信号端S5连接第二扫描信号线Scan2,第一信号端S1与第四信号端S4连接第一扫描信号线Scan1。
或者,第三信号端S3与第五信号端S5连接第三扫描信号线Scan3,第一信号端S1与所述第四信号端S4连接第一扫描信号线Scan1,并且30补偿模块还可以连接第二电压端V2。
需要说明的是,第一、本发明实施例均是以第一电压端V1接地GND,第二电压端V2连接供电电压端Vdd为例进行的说明。
第二、上述指纹信息与指纹的脊线或谷线有关。
本发明实施例提供一种像素电路,包括显示驱动模块、补偿模块、发光模块以及指纹识别模块。具体地,补偿模块分别连接显示驱动模块、第一信号端、第二信号端、第三信号端、第一电压端、数据信号端以及公共电压端,用于在第一信号端、第二信号端、第三信号端的控制下,通过第一电压端以及数据信号端输入的信号,对显示驱动模块进行阈值电压的补偿。显示驱动模块还连接发光模块,显示驱动模块得到阈值电压的补偿后,用于驱动发光模块进行发光。发光模块还连接使能信号端、第一电压端以及第二电压端,用于在使能信号端、第一电压端以及第二电压端的控制下,通过显示驱动模块的驱动进行发光。指纹识别模块分别连接第四信号端、第五信号端以及读取信号线;用于在第四信号端和第五信号端的控制下,对指纹信息进行采集,并将采集到的指纹信息传出至所述读取信号线。其中,第三信号端与第五信号端连接第三扫描信号线,第二信号端与第四信号端连接第二 扫描信号线。或者,第二信号端与第五信号端连接第二扫描信号线,第一信号端与第四信号端连接第一扫描信号线。或者,第三信号端与第五信号端连接第三扫描信号线,第一信号端与第四信号端连接第一扫描信号线,所述补偿模块还连接第二电压端。
这样一来,通过第三扫描信号线可以向第三信号端和第五信号端输入相同的信号,通过第二扫描信号线可以向第二信号端与第四信号端输入相同的信号;或者,通过第二扫描信号线向第二信号端与第五信号端输入相同的信号,通过第一扫描信号线向第一信号端与第四信号端输入相同的信号;或者通过第三扫描信号线向第三信号端与第五信号端输入相同的信号,通过第一扫描信号线向第一信号端与第四信号端输入相同的信号。由于第一信号端、第二信号端、第三信号端与补偿模块相连接,第四信号端、第五信号端与指纹模块相连接,因此,一方面,在第一扫描信号线、第二扫描信号线以及第三扫描信号线的控制下,可以通过第一电压端和数据信号端输入的信号对显示驱动模块进行阈值电压的补偿,使得显示驱动模块在驱动发光模块进行发光的过程中,避免驱动电流受到阈值电压偏移的影响,从而提供了显示器的亮度恒定性;另一方面,第一扫描信号线、第二扫描信号线以及第三扫描信号线中的任意两条,还可以通过与指纹识别模块相连接的第四信号端和第五信号端,控制指纹识别模块对指纹信息进行采集,并将采集到的指纹信息传出至读取信号线,从而达到指纹识别的目的。因此,本发明提供的集成有补偿模块和指纹识别模块的像素电路中,通过对第一扫描信号线、第二扫描信号线以及第三扫描信号线的复用,可以同时控制补偿模块和指纹识别模块,使得具有识别功能的显示器的结构简单,并通过阈值电压的补偿提高了该显示器的亮度恒定性。
以下通过具体的实施例对上述像素电路的结构进行详细的举例说明。
实施例一
本实施例提供的像素电路的结构中,如图2所示,是以补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3,以及补偿模块30的第二信号端S2与指纹识别模块40的第四信号端S4连接相同的信号线,即第二扫描信号线Scan2为例进行的说明。从而达到将第三扫描信号线Scan3和第二 扫描信号线Scan2进行复用的目的。
以下对上述各个模块中的具体结构进行举例说明。
显示驱动模块10可以包括:驱动晶体管Td。
该驱动晶体管Td的栅极连接补偿模块30,第一极和第二极与发光模块20相连接。
需要说明的是,上述显示驱动模块10还可以包括并联的多个驱动晶体管Td。或者,还可以包括一端与驱动晶体管Td的栅极相连接,另一端与驱动晶体管Td的漏极相连接的电容。上述仅仅是对显示驱动模块10的举例说明,其它与该显示驱动模块10功能相同的结构在此不再一一赘述,但都应当属于本发明的保护范围。
发光模块20可以包括:第一晶体管T1、第二晶体管T2和发光器件。
需要说明的是,本发明实施例中的发光器件可以是现有技术中包括LED(Light Emitting Diode,发光二极管)或OLED(Organic Light Emitting Diode,有机发光二极管)在内的多种电流驱动发光器件。在本发明实施例中,是以OLED为例进行的说明
第一晶体管T1的栅极连接使能信号端EM,第一极连接显示驱动模块10,第二极与第二电压端V2相连接。当该显示驱动模块10为上述结构时,第一晶体管T1的第一极连接所述驱动晶体管Td的第一极。
第二晶体管T2的栅极连接使能信号端EM,第一极连接发光器件OLED的阳极,第二极与显示驱动模块10相连接。当该显示驱动模块10为上述结构时,第二晶体管T2第二极与所述驱动晶体管Td的第二极相连接。
发光器件OLED的阴极连接第一电压端V1,即接地GND。
需要说明的是,该发光模块20还可以包括多个与第一晶体管T1或第二晶体管T2并联的开关晶体管。上述仅仅是对发光模块20的举例说明,其它与该发光模块20功能相同的结构在此不再一一赘述,但都应当属于本发明的保护范围。
指纹识别模块40可以包括:第八晶体管T8、第九晶体管T9、第十晶体管T10、第二电容C2以及探测电极D。
第八晶体管T8的栅极连接第四信号端S4,第一极连接公共电压端Vcom,第二极与所述第二电容C2的一端相连接。
第九晶体管T9的栅极连接第二电容C2的所述一端,第一极连接公共电压端Vcom,第二极与第十晶体管T10的第一极相连接。
第十晶体管T10的栅极连接第五信号端S5,第二极与读取信号线RL相连接。
探测电极D与第二电容C2的所述一端相连接。
第二电容C2的另一端连接第五信号端S5。
需要说明的是,该指纹识别模块40还可以包括多个与第八晶体管T8或第九晶体管T9并联的开关晶体管。上述仅仅是对指纹识别模块40的举例说明,其它与该指纹识别模块40功能相同的结构在此不再一一赘述,但都应当属于本发明的保护范围。
补偿模块30可以包括:第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7以及第一电容C1。
第三晶体管T3的栅极连接第三信号端S3,第一极连接数据信号端Vdata,第二极与第一电容C1的一端相连接。
第四晶体管T4的栅极连接第二信号端S2,第一极连接公共电压端Vcom,第二极与第一电容C1的所述一端相连接。
第五晶体管T5的栅极连接第一信号端S1,第一极连接第七晶体管T7的第一极,第二极与第一电压端V1(接地GND)相连接。
第六晶体管T6的栅极连接第二信号端S2,第一极连接显示驱动模块10,第二极与公共电压端Vcom相连接。当该显示驱动模块10的结构如上所述时,所述第六晶体管T6的第一极连接所述驱动晶体管Td的第二极。
第七晶体管T7的栅极连接第二信号端S2,第一极连接第一电容C1的另一端,第二极与显示驱动模块10相连接。当该显示驱动模块10的结构如上所述时,所述第七晶体管T7的第二极与所述驱动晶体管Td的第一极相连接。
需要说明的是,该补偿模块30还可以包括多个与第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6或第七晶体管T7并联的开关晶体管。上述仅仅是对补偿模块30的举例说明,其它与该补偿模块30功能相同的结构在此不再一一赘述,但都应当属于本发明的保护范围。
此外,本发明对除了驱动晶体管Td以外的晶体管(均为开关晶体 管)的第一极、第二极不做限定,第一极可以是漏极,第二极可以是源极;或者第一极可以是源极,第二极可以是漏极。当驱动晶体管Td为P型晶体管时,由于P型晶体管的源极电压高于漏极电压,因此,驱动晶体管Td的第一极为源极,第二极为漏极。当驱动晶体管Td为N型晶体管时,与P型晶体管正好相反。
当图2中的所有晶体管均为P型晶体管时结合如图3所示的时序图,对如图2所示的像素电路的工作过程进行详细的描述。
第一阶段P1,图2所示的像素电路的等效电路图如图4a所示,其中,本发明实施例提供的等效电路图中,处于截止状态的晶体管以打“×”表示。
第一扫描信号线Scan1向第一信号端S1输入信号,第五晶体管导通T5,第一电压端V1(接地GND)的电压通过第五晶体管T5对驱动晶体管Td的栅极进行重置。从而将上一帧画面显示过程中,残留于驱动晶体管Td栅极(节点b)的电压进行释放,避免残留电压对本帧画面显示的影响。
第二阶段P2,等效电路图如图4b所示,补偿模块30的第二信号端S2与指纹识别模块40的第四信号端S4连接相同的信号线,即第二扫描信号线Scan2。
一方面,第二扫描信号线Scan2向第二信号端S2输入信号,使得第四晶体管T4、第六晶体管T6以及第七晶体管T7导通,公共电压端Vcom的输入信号对第一电容C1进行充电。第一晶体管T1、第二晶体管T2、第三晶体管T3、第五晶体管T5处于截止状态。
由于在上一阶段,驱动晶体管Td的栅极(节点b)接接地端GND(即第一电压端),因此驱动晶体管Td处于导通状态。此时,公共电压端输入的信号通过第六晶体管T6、驱动晶体管Td以及第七晶体管T7对节点b进行反向充电,一直到节点b的电压Vg=Vcom-|Vth|,以满足驱动晶体管Td源极、漏极两端的电压差为驱动晶体管Td的阈值电压Vth。由于驱动晶体管Td为P型晶体管,因此阈值电压为负值,所以在计算节点b的电压Vg时,需要以阈值电压Vth的绝对值进行计算。此外,由于第四晶体管T4处于导通状态,因此节点a的电位Va=Vcom。
另一方面,第二扫描信号线Scan2向第四信号端S4输入信号,使 得第八晶体管T8导通,第二电容C2通过第八晶体管T8进行放电,从而对指纹识别模块40进行重置。
此时,如果人的手指与显示屏接触,那么在触控的过程中,如图5a所示,指纹的谷线与探测电极D之间形成耦合电容Cf。该耦合电容Cf相对于第二电容C2和作为放大晶体管的第九晶体管T9自身的耦合电容Ct而言,足够小。这样一来,如图5b所示,第九晶体管T9的栅极电势会增加,由于第九晶体管T9为P型晶体管,因此第九晶体管T9会处于截止状态。第九晶体管T9的第二极为初始电流信号。
或者,在触控的过程中,如图5a所示,指纹的脊线与探测电极D之间形成耦合电容Cf’。该耦合电容Cf’相对于第二电容C2和作为放大晶体管的第九晶体管T9自身的耦合电容Ct而言,足够大。这样一来,如图5c所示,第九晶体管T9的栅极电势会降低,由于第九晶体管T9为P型晶体管,因此第九晶体管T9会处于导通状态。第九晶体管T9会将公共电压端Vcom的信号进行放大。
综上所述,指纹识别模块40完成了对指纹信息的采集。该指纹信息与指纹的谷线和脊线有关。当第九晶体管T9的第二极为初始电流信号时,该采集到的指纹信息为指纹的谷线,当第九晶体管T9的第二极为放大后的信号时,采集到的指纹信息为指纹的脊线。
在第三阶段P3,等效电路图如图4c所示,补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3。
一方面,第三扫描信号线Scan3向第三信号端S3输入信号,将第三晶体管T3导通,数据电压端Vdata输入的信号输出至第一电容C1的一端。根据第一电容C1的自举作用,第一电容C1另一端的电压,即节点b的电压发生跳变,以使得驱动晶体管Td的栅极电压发生跳变。具体地,在该阶段,由于节点a的电压Va=Vdata,为了使得第一电容C1两端的电压保持Vcom-Vth,节点b的电压(即驱动晶体管Td的栅极电压)Vg需要跳变为Vdata-Vth,并保持固定。
另一方面,第三扫描信号线Scan3向第五信号端S5输入信号,将第十晶体管T10导通。
当第十晶体管T10导通时,当第九晶体管T9如图5b所示,处于截止状态时,则第九晶体管第二极的初始电流信号会通过第十晶体管 T10传出至所述读取信号线RL。从而使得信号接收装置能够接收读取信号线RL上的信号。由于接收装置接收到的是读取信号线RL采集的初始电流信号,因此可以判断出与该像素区域相接触的为指纹的谷线。
当第九晶体管T9如图5c所示,处于导通状态时,则第九晶体管将公共电压端Vcom的信号进行放大,并通过第十晶体管T10传出至所述读取信号线RL。从而使得信号接收装置能够接收读取信号线RL上的信号。由于接收装置接收到的是读取信号线RL采集的放大信号,因此可以判断出与该像素区域相接触的为指纹的脊线。
第三扫描信号线Scan3为上述指纹信息(脊线或谷线)对应的像素单元的横坐标,读取信号线RL为上述指纹信息(脊线或谷线)对应的像素单元的纵坐标。通过上述坐标可以确定出该指纹信息对应于显示面板的具体位置。从而可以在显示屏上显示与该具体位置匹配的指纹信息,从而达到指纹识别的目的。
在第四阶段P4,等效电路图如图4d所示。使能信号端EM输入信号将第一晶体管T1、第二晶体管T2导通,流过第一晶体管T1、驱动晶体管Td以及第二晶体管T2的电流驱动发光器件进行发光。
具体地,由驱动晶体管Td饱和电流公式可得:
IOLED=K(Vgs-|Vth|)2
=K[V2-(Vdata-|Vth|)-|Vth|]2
=K(V2-Vdata)2
由上式中可以看到流过发光器件OLED的工作电流IOLED已经不受阈值电压Vth的影响,只与第二电压端V2(即供电电压Vdd)输入的电压和数据电压端Vdata输入的电压有关。从而可以彻底解决驱动晶体管Td由于工艺制造及长时间的操作造成阈值电压Vth漂移的问题,消除由于阈值电压Vth漂移对工作电流IOLED的影响,保证发光器件OLED的正常工作,提高显示器件的亮度恒定性。
实施例二
本实施例提供的像素电路的结构中,相对于实施例一而言,显示驱动模块10和发光模块20的具体结构与实施例一相同,指纹识别模块40同样包括第八晶体管T8、第九晶体管T9、第十晶体管T10、第二电容C2以及探测电极D。
与实施例一不同的是,如图6所示,本实施例是以补偿模块30的 第二信号端S2与指纹识别模块40的第五信号端S5连接相同的信号线,即第二扫描信号线Scan2,以及补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1为例进行的说明。从而达到将第二扫描信号线Scan2和第一扫描信号线Scan1进行复用的目的。
此外,本实施例中的补偿模块30的具体结构可以包括:第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7以及第一电容C1。
具体地,第三晶体管T3的栅极连接第三信号端S3,第一极连接数据信号端Vdata,第二极与第一电容C1的一端相连接。
第四晶体管V4的栅极连接第二信号端S2,第一极连接第一电压端V1(即接地端GND),第二极与第一电容C1的所述一端相连接。
第五晶体管T5的栅极连接第一信号端S1,第一极连接第一电容C1的另一端,第二极与第一电压端V1相连接。
第六晶体管T6的栅极连接第二信号端S2,第一极连接显示驱动模块10,第二极与公共电压端Vcom相连接。当显示驱动模块10的结构如上所述时,第六晶体管T6的第一极与驱动晶体管Td的第二极相连接。
第七晶体管T7的栅极连接第二信号端S2,第一极连接第一电容C1的另一端,第二极与显示驱动模块10相连接。当显示驱动模块10的结构如上所述时,第七晶体管T7的第二极与驱动晶体管Td的第一极相连接。
当图6中的所有晶体管均为P型晶体管时结合如图3所示的时序图,对如图6所示的像素电路的工作过程进行描述。
第一阶段P1,补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1。
一方面,第一扫描信号线Scan1向第一信号端S1输入信号,第五晶体管T5导通,第一电压端V1的电压通过第五晶体管T5对驱动晶体管Td的栅极进行重置。
另一方面,第一扫描信号线Scan1向第四信号端S4输入信号,第八晶体管T8导通,第二电容C2通过第八晶体管进行重置。
综上所述,相对于实施例一而言,本实施例在第一阶段P1同时完 成了补偿模块30和指纹识别模块40的重置过程。
第二阶段P2,补偿模块30的第二信号端S2与指纹识别模块40的第五信号端S5连接相同的信号线,即第二扫描信号线Scan2。
一方面,第二扫描信号线Scan2向第二信号端S2输入信号,将第四晶体管T4、第六晶体管T6以及第七晶体管T7导通,第一电压端V1的输入信号对第一电容C1进行充电。第一晶体管T1、第二晶体管T2、第三晶体管T3、第五晶体管T5截止。
另一方面,当手指与屏幕相接触时,指纹的谷线与探测电极D之间形成耦合电容Cf,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极D之间形成耦合电容Cf’,使得第九晶体管处于导通状态。
此时,第二扫描信号线Scan2向第五信号端S5输入信号,第十晶体管T10导通,当第九晶体管T9处于截止状态时,第九晶体管T9第二极的初始电流信号通过第十晶体管T10传出至读取信号线RL;当第九晶体管T9处于导通状态时,第九晶体管T9将公共电压端Vcom输入的信号进行放大,并通过第十晶体管T10传出至读取信号线RL。
其中,指纹识别模块40对指纹信息的采集和传输过程与实施例一原理相同,此处不再赘述。不同的是相对于实施例一而言,本实施例中指纹识别模块40对指纹信息的采集和传输在第二阶段P2中同时进行。
第三阶段P3,第三扫描信号线Scan3向第三信号端S3输入信号,第三晶体管T3导通,数据电压端Vdata输入的信号输出至第一电容C1的一端。根据第一电容C1的自举作用,第一电容C1另一端的电压发生跳变,以使得驱动晶体管Td的栅极电压发生跳变。具体的跳变过程与实施例一第三阶段P3中,节点b的跳变过程同理,此处不再详细赘述。
第四阶段P4,使能信号端EM输入信号,将第一晶体管T1、第二晶体管T2导通,流过第一晶体管T1、驱动晶体管Td以及第二晶体管T2的电流驱动发光器件进行发光。具体的发光过程与实施例一同理,此处不再赘述。
实施例三
本实施例提供的像素电路的结构中,相对于实施例一而言,显示 驱动模块10和发光模块20的具体结构与实施例一相同,指纹识别模块40同样包括第八晶体管T8、第九晶体管T9、第十晶体管T10、第二电容C2以及探测电极D。
不同的是,如图7所示,本实施例是以补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3,以及补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1为例进行的说明。从而达到将第三扫描信号线Scan3和第一扫描信号线Scan1进行复用的目的。
此外,本实施例中的补偿模块30具体包括:第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7以及第一电容C1。
具体地,第三晶体管T3的栅极连接第三信号端S3,第一极连接数据信号端Vdata,第二极与第一电容C1的一端相连接。
第四晶体管T4的栅极连接第二信号端S2,第一极连接第二电压端V2,第二极与第一电容C1的所述一端相连接。
第五晶体管T5的栅极连接第一信号端S1,第一极连接第一电容C1的另一端,第二极与第一电压端V1相连接。
第六晶体管T6的栅极连接第二信号端S2,第一极连接显示驱动模块10,第二极与公共电压端Vcom相连接。当所述显示驱动模块10的结构如上所述时,第六晶体管T6的第一极与驱动晶体管Td的第二极相连接。
第七晶体管T7的栅极连接第二信号端S2,第一极连接第一电容C2的另一端,第二极与显示驱动模块10相连接。当所述显示驱动模块10的结构如上所述时,第七晶体管T7的第二极与驱动晶体管Td的第一极相连接。
当图7中的所有晶体管均为P型晶体管时结合如图3所示的时序图,对如图7所示的像素电路的工作过程进行描述。
第一阶段P1,补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1。
一方面,第一扫描信号线Scan1向第一信号端S1输入信号,将第五晶体管T5导通,第一电压端V1的电压通过第五晶体管T5对驱动 晶体管Td的栅极进行重置。
另一方面,第一扫描信号线Scan1向第四信号端S4输入信号,第八晶体管T8导通,第二电容C2通过第八晶体管T8进行重置。
综上所述,相对于实施例一而言,本实施例在第一阶段P1同时完成了补偿模块30和指纹识别模块40的重置过程。
在第二阶段,第二扫描信号线Scan2向第二信号端S2输入信号,将第四晶体管T4、第六晶体管T6以及第七晶体管T7导通,第二电压端V2的输入信号对第一电容C1进行充电。第一晶体管T1、第二晶体管T2、第三晶体管T3、第五晶体管T5截止。
当手指与屏幕相接触时,指纹的谷线与探测电极D之间形成耦合电容Cf,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极D之间形成耦合电容Cf’,使得第九晶体管处于导通状态。其中,指纹识别模块40对指纹信息的采集过程与实施例一原理相同,此处不再赘述。
第三阶段P3,补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3。
一方面,第三扫描信号线Scan3向第三信号端S3输入信号,第三晶体管T3导通,数据电压端Vdata输入的信号输出至第一电容C1的一端。根据第一电容C1的自举作用,第一电容C1另一端的电压发生跳变,以使得驱动晶体管Td的栅极电压发生跳变。具体的跳变过程与实施例一第三阶段P3中,节点b的跳变过程同理,此处不再详细赘述。
另一方面,第三扫描信号线Scan3向第五信号端S5输入信号,第十晶体管T10导通,当第九晶体管T9处于截止状态时,第九晶体管T9第二极的初始电流信号通过第十晶体管T10传出至读取信号线RL;当第九晶体管T9处于导通状态时,第九晶体管T9将公共电压端Vcom输入的信号进行放大,并通过第十晶体管T10传出至读取信号线RL。其中,指纹识别模块40对指纹信息的传输过程与实施例一原理相同,此处不再赘述。
第四阶段P4,使能信号端EM输入信号,将第一晶体管T1、第二晶体管T2导通,流过第一晶体管T1、驱动晶体管Td以及第二晶体管T2的电流驱动发光器件进行发光。具体的发光过程与实施例一同理,此处不再赘述。
需要说明的是,上述本发明实施例,均是以像素电路中所有晶体管均为P型晶体管为例进行的说明。当上述所有晶体管均为N型晶体管时,需要将图3中的时序信号进行翻转,而其工作原理同上,此处不再赘述。
本发明实施例提供一种显示装置,包括如上所述的任意一种像素电路,以及与读取信号线相连接的信号接收装置50(如图8所示),用于接收读取信号线输出的指纹信息。
具体地,该信号接收装置50可以通过读取信号线,例如图8中的第一读取信号线RL1、第二读取信号线RL2,与像素单元01内的像素电路中的指纹识别模块40相连接。以下对信号接收装置50具体的接收过程进行说明。
当人的手指与显示屏接触时,指纹识别模块40对指纹信息的采集。该指纹信息与指纹的谷线和脊线有关。如果第九晶体管T9的第二极为初始电流信号时,该采集到的指纹信息为指纹的谷线。当第十晶体管T10导通时,如果第九晶体管T9如图5b所示,处于截止状态时,则第九晶体管第二极的初始电流信号会通过第十晶体管T10传出至所述读取信号线RL。所述信号接收装置50接收所述读取信号线RL输出的初始电流信号,并对信号进行识别,使得像素单元根据采集的指纹信息的坐标,将指纹的谷线进行显示。
当人的手指与显示屏接触时,对应指纹识别模块40对指纹信息的采集,如果第九晶体管T9的第二极为放大后的信号时,采集到的指纹信息为指纹的脊线。当第十晶体管T10导通时,如果第九晶体管T9如图5c所示,处于导通状态时,则第九晶体管将公共电压端Vcom的信号进行放大,并通过第十晶体管T10传出至所述读取信号线RL。所述信号接收装置50接收所述读取信号线RL输出的放大信号,并对信号进行识别,使得像素单元根据采集的指纹信息的坐标,将指纹的脊线进行显示。
上述仅仅是对信号接收装置50的举例说明,其它与该信号接收装置50功能相同的结构在此不再一一赘述,但都应当属于本发明的保护范围。
此外,可以在每个像素单元01内的像素电路中设置上述指纹识别模块40。也可以在部分像素单元01内的像素电路中设置上述指纹识别 模块40,例如如图8所示,在第一行像素单元和第三行像素单元中,每间隔两个像素单元,设置有一个指纹识别模块40。而在第二行像素单元01内的像素电路中均无需设置指纹识别模块40。当然上述仅仅是对指纹识别模块40设置方法的举例说明,其它设置方式在此不再一一赘述,但都应当属于本发明的保护范围。
上述显示装置具有与本发明前述实施例提供的像素电路相同的有益效果,由于像素电路在前述实施例中已经进行了详细说明,此处不再赘述。
具体地,本发明实施例所提供的显示装置可以是包括LED显示器或OLED显示器在内的具有电流驱动发光器件的显示装置。
本发明实施例提供一种像素电路的驱动方法,用于驱动如上所述的任意一种像素电路,所述方法如图9所示可以包括:
步骤S101:第一信号端S1输入信号,显示驱动模块10进行重置,清除残留电压。
步骤S102:第二信号端S2输入信号,公共电压端Vcom输入的信号对补偿模块30进行充电。
步骤S103:第四信号端S4输入信号,将指纹识别模块40重置,并对指纹信息进行采集。
步骤S104:第三信号端S3输入信号,补偿模块30保持开启状态,根据第一电压端V1以及数据信号端Vdata输入的信号,对显示驱动模块10进行阈值电压的补偿。
步骤S105:第五信号端S5输入信号,指纹识别模块40将采集到的所述指纹信息传出至读取信号线RL。
步骤S106:使能信号端EM输入信号,开启发光模块20,显示驱动模块10驱动发光模块20进行发光。
需要说明的是,上述步骤S101~步骤S105并不是对方法步骤执行的时间顺序的限定。例如步骤S101和步骤S102或者,步骤S104和步骤S105可以在同一时间段进行。
本发明实施例提供一种像素电路的驱动方法,包括:第一信号端输入信号,显示驱动模块进行重置,清除残留电压;第二信号端输入信号,公共电压端输入的信号对补偿模块进行充电;第四信号端输入信号,将指纹识别模块重置,并对指纹信息进行采集;第三信号端输 入信号,补偿模块保持开启状态,根据第一电压端以及数据信号端输入的信号,对显示驱动模块进行阈值电压的补偿;第五信号端输入信号,指纹识别模块将采集到的所述指纹信息传出至读取信号线;使能信号端输入信号,开启发光模块,显示驱动模块驱动发光模块进行发光。
这样一来,通过第三扫描信号线向第三信号端和第五信号端输入相同的信号,通过第二扫描信号线向第二信号端与第四信号端输入相同的信号;或者,通过第二扫描信号线向第二信号端与第五信号端输入相同的信号,通过第一扫描信号线向第一信号端与第四信号端输入相同的信号;或者,通过第三扫描信号线向第三信号端与第五信号端输入相同的信号,通过第一扫描信号线向第一信号端与第四信号端输入相同的信号。由于第一信号端、第二信号端、第三信号端与补偿模块相连接,第四信号端、第五信号端与指纹模块相连接,因此,一方面,在第一扫描信号线、第二扫描信号线以及第三扫描信号线的控制下,可以通过第一电压端和数据信号端输入的信号对显示驱动模块进行阈值电压的补偿,使得显示驱动模块在驱动发光模块进行发光的过程中,避免驱动电流受到阈值电压偏移的影响,从而提供了显示器的亮度恒定性;另一方面,第一扫描信号线、第二扫描信号线以及第三扫描信号线中的任意两条,还可以通过与指纹识别模块相连接的第四信号端和第五信号端,控制指纹识别模块对指纹信息进行采集,并将采集到的指纹信息传出至读取信号线,从而达到指纹识别的目的。因此,在驱动上述集成有补偿模块和指纹识别模块的像素电路的过程中,通过对第一扫描信号线、第二扫描信号线以及第三扫描信号线的复用,可以同时控制补偿模块和指纹识别模块,使得具有识别功能的显示器的结构简单,并通过阈值电压的补偿提高了该显示器的亮度恒定性。
以下通过具体的实施例对用于驱动上述像素电路的驱动方法进行详细的描述。
实施例四
本实施例提供的像素电路的驱动方法,是以补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3,以及补偿模块30的第二信号端S2与指纹识别模块40的第四信号端S4连接相同的信号线,即第二扫描信号线Scan2 为例进行的说明。从而达到将第三扫描信号线Scan3和第二扫描信号线Scan2进行复用的目的。
所述方法如图10所示,可以包括:
步骤S201:在第一阶段,第一扫描信号线Scan1向第一信号端S1输入信号,显示驱动模块10进行重置,清除残留电压。
具体地,第一扫描信号线Scan1向第一信号端S1输入信号,第五晶体管导通T5,第一电压端V1(接地GND)的电压通过第五晶体管T5对驱动晶体管Td的栅极进行重置。从而将上一帧画面显示过程中,残留于驱动晶体管Td栅极(节点b)的电压进行释放,避免残留电压对本帧画面显示的影响。
步骤S202:在第二阶段,第二扫描信号线Scan2向第二信号端S2和第四信号端S4输入信号,将指纹识别模块40重置,并对指纹信息进行采集;公共电压端Vcom输入的信号对补偿模块30进行充电。
具体地,补偿模块30的第二信号端S2与指纹识别模块40的第四信号端S4连接相同的信号线,即第二扫描信号线Scan2。
一方面,第二扫描信号线Scan2向第二信号端S2输入信号,使得第四晶体管T4、第六晶体管T6以及第七晶体管T7导通,公共电压端Vcom的输入信号对第一电容C1进行充电。第一晶体管T1、第二晶体管T2、第三晶体管T3、第五晶体管T5处于截止状态。
由于在上一阶段,驱动晶体管Td的栅极(节点b)接接地端GND(即第一电压端),因此驱动晶体管Td处于导通状态。此时,公共电压端输入的信号通过第六晶体管T6、驱动晶体管Td以及第七晶体管T7对节点b进行反向充电,一直到节点b的电压Vg=Vcom-|Vth|,以满足驱动晶体管Td源极、漏极两端的电压差为驱动晶体管Td的阈值电压Vth。由于驱动晶体管Td为P型晶体管,因此阈值电压为负值,所以在计算节点b的电压Vg时,需要以阈值电压Vth的绝对值进行计算。此外,由于第四晶体管T4处于导通状态,因此节点a的电位Va=Vcom。
另一方面,第二扫描信号线Scan2向第四信号端S4输入信号,使得第八晶体管T8导通,第二电容C2通过第八晶体管T8进行放电,从而对指纹识别模块40进行重置。
此时,如果人的手指与显示屏接触,那么在触控的过程中,如图 5a所示,指纹的谷线与探测电极D之间形成耦合电容Cf。该耦合电容Cf相对于第二电容C2和作为放大晶体管的第九晶体管T9自身的耦合电容Ct而言,足够小。这样一来,如图5b所示,第九晶体管T9的栅极电势会增加,由于第九晶体管T9为P型晶体管,因此第九晶体管T9会处于截止状态。第九晶体管T9的第二极为初始电流信号。
或者,在触控的过程中,如图5a所示,指纹的脊线与探测电极D之间形成耦合电容Cf’。该耦合电容Cf’相对于第二电容C2和作为放大晶体管的第九晶体管T9自身的耦合电容Ct而言,足够大。这样一来,如图5c所示,第九晶体管T9的栅极电势会降低,由于第九晶体管T9为P型晶体管,因此第九晶体管T9会处于导通状态。第九晶体管T9会将公共电压端Vcom的信号进行放大。
综上所述,指纹识别模块40完成了对指纹信息的采集。该指纹信息与指纹的谷线和脊线有关。当第九晶体管T9的第二极为初始电流信号时,该采集到的指纹信息为指纹的谷线,当第九晶体管T9的第二极为放大后的信号时,采集到的指纹信息为指纹的脊线。
步骤S203:在第三阶段,第三扫描信号线Scan3向第三信号端S3和第五信号端S5输入信号,补偿模块30保持开启状态,根据第一电压端V1以及数据信号端Vdata输入的信号,对显示驱动模块10进行阈值电压的补偿。
指纹识别模块40将采集到的指纹信息传出至读取信号线RL。
具体地,补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3。
一方面,第三扫描信号线Scan3向第三信号端S3输入信号,将第三晶体管T3导通,数据电压端Vdata输入的信号输出至第一电容C1的一端。根据第一电容C1的自举作用,第一电容C1另一端的电压,即节点b的电压发生跳变,以使得驱动晶体管Td的栅极电压发生跳变。具体地,在该阶段,由于节点a的电压Va=Vdata,为了使得第一电容C1两端的电压保持Vcom-Vth,节点b的电压(即驱动晶体管Td的栅极电压)Vg需要跳变为Vdata-Vth,并保持固定。
另一方面,第三扫描信号线Scan3向第五信号端S5输入信号,将第十晶体管T10导通。
当第十晶体管T10导通时,当第九晶体管T9如图5b所示,处于 截止状态时,则第九晶体管第二极的初始电流信号会通过第十晶体管T10传出至所述读取信号线RL。从而使得信号接收装置能够接收读取信号线RL上的信号。由于接收装置接收到的是读取信号线RL采集的初始电流信号,因此可以判断出与该像素区域相接触的为指纹的谷线。
当第九晶体管T9如图5c所示,处于导通状态时,则第九晶体管将公共电压端Vcom的信号进行放大,并通过第十晶体管T10传出至所述读取信号线RL。从而使得信号接收装置能够接收读取信号线RL上的信号。由于接收装置接收到的是读取信号线RL采集的发光信号,因此可以判断出与该像素区域相接触的为指纹的脊线。
其中,第三扫描信号线Scan3为上述指纹信息(脊线或谷线)对应的像素单元的横坐标,读取信号线RL为上述指纹信息(脊线或谷线)对应的像素单元的纵坐标。通过上述坐标可以确定出该指纹信息对应于显示面板的具体位置。从而可以在显示屏上显示与该具体位置匹配的指纹信息,从而达到指纹识别的目的。
步骤S204:在第四阶段P4,使能信号端EM输入信号开启发光模块20,显示驱动模块10驱动发光模块20进行发光。
具体地,使能信号端EM输入信号将第一晶体管T1、第二晶体管T2导通,流过第一晶体管T1、驱动晶体管Td以及第二晶体管T2的电流驱动发光器件进行发光。
具体地,由驱动晶体管Td饱和电流公式可得:
IOLED=K(Vgs-|Vth|)2
=K[V2-(Vdata-|Vth|)-|Vth|]2
=K(V2-Vdata)2
由上式中可以看到流过发光器件OLED的工作电流IOLED已经不受阈值电压Vth的影响,只与第二电压端V2(即供电电压Vdd)输入的电压和数据电压端Vdata输入的电压有关。从而可以彻底解决驱动晶体管Td由于工艺制造及长时间的操作造成阈值电压Vth漂移的问题,消除由于阈值电压Vth漂移对工作电流IOLED的影响,保证发光器件OLED的正常工作,提高显示器件的亮度恒定性。
实施例五
本实施例是以补偿模块30的第二信号端S2与指纹识别模块40的第五信号端S5连接相同的信号线,即第二扫描信号线Scan2,以及补 偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1为例进行的说明。从而达到将第二扫描信号线Scan2和第一扫描信号线Scan1进行复用的目的。
所述方法如图11所示,可以包括:
步骤S301:在第一阶段P1,第一扫描信号线Scan1向第一信号端S1和第四信号端S4输入信号,显示驱动模块10和指纹识别模块40进行重置,清除残留电压。
具体地,补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1。
一方面,第一扫描信号线Scan1向第一信号端S1输入信号,第五晶体管T5导通,第一电压端V1的电压通过第五晶体管T5对驱动晶体管Td的栅极进行重置。
另一方面,第一扫描信号线Scan1向第四信号端S4输入信号,第八晶体管T8导通,第二电容C2通过第八晶体管进行重置。
综上所述,相对于实施例四而言,本实施例在第一阶段P1同时完成了补偿模块30和指纹识别模块40的重置过程。
步骤S302:在第二阶段P2,第二扫描信号线Scan2向第二信号端S2和第五信号端S5输入信号,指纹识别模块40对指纹信息进行采集,并将采集到的指纹信息传出至读取信号线RL;第一电压端V1输入的信号对补偿模块30进行充电。
具体地,补偿模块30的第二信号端S2与指纹识别模块40的第五信号端S5连接相同的信号线,即第二扫描信号线Scan2。
一方面,第二扫描信号线Scan2向第二信号端S2输入信号,将第四晶体管T4、第六晶体管T6以及第七晶体管T7导通,第一电压端V1的输入信号对第一电容C1进行充电。第一晶体管T1、第二晶体管T2、第三晶体管T3、第五晶体管T5截止。
另一方面,当手指与屏幕相接触时,指纹的谷线与探测电极D之间形成耦合电容Cf,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极D之间形成耦合电容Cf’,使得第九晶体管处于导通状态。
此时,第二扫描信号线Scan2向第五信号端S5输入信号,第十晶体管T10导通,当第九晶体管T9处于截止状态时,第九晶体管T9第 二极的初始电流信号通过第十晶体管T10传出至读取信号线RL;当第九晶体管T9处于导通状态时,第九晶体管T9将公共电压端Vcom输入的信号进行放大,并通过第十晶体管T10传出至读取信号线RL。
其中,指纹识别模块40对指纹信息的采集和传输过程与实施例四原理相同,此处不再赘述。不同的是相对于实施例四而言,本实施例中指纹识别模块40对指纹信息的采集和传输在第二阶段P2中同时进行。
步骤S303:在第三阶段P3,第三扫描信号线Scan3向第三信号端S3输入信号,所述补偿模块30保持开启状态,根据第一电压端V1以及数据信号端Vdata输入的信号,对显示驱动模块10进行阈值电压的补偿。
具体地,第三扫描信号线Scan3向第三信号端S3输入信号,第三晶体管T3导通,数据电压端Vdata输入的信号输出至第一电容C1的一端。根据第一电容C1的自举作用,第一电容C1另一端的电压发生跳变,以使得驱动晶体管Td的栅极电压发生跳变。具体的跳变过程与实施例四第三阶段P3中,节点b的跳变过程同理,此处不再详细赘述。
步骤S304:在第四阶段P4,使能信号端EM输入信号开启发光模块,所述显示驱动模块10驱动发光模块20进行发光。
具体地,使能信号端EM输入信号,将第一晶体管T1、第二晶体管T2导通,流过第一晶体管T1、驱动晶体管Td以及第二晶体管T2的电流驱动发光器件进行发光。具体的发光过程与实施例一同理,此处不再赘述。
实施例六
本实施例是以补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3,以及补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1为例进行的说明。从而达到将第三扫描信号线Scan3和第一扫描信号线Scan1进行复用的目的。
所述方法如图12所示,可以包括:
步骤S401:在第一阶段P1,第一扫描信号线Scan1向第一信号端S1和第四信号端S4输入信号,显示驱动模块10和指纹识别模块40进行重置,清除残留电压。
具体地,补偿模块30的第一信号端S1与指纹识别模块40的第四信号端S4连接相同的信号线,即第一扫描信号线Scan1。
一方面,第一扫描信号线Scan1向第一信号端S1输入信号,将第五晶体管T5导通,第一电压端V1的电压通过第五晶体管T5对驱动晶体管Td的栅极进行重置。
另一方面,第一扫描信号线Scan1向第四信号端S4输入信号,第八晶体管T8导通,第二电容C2通过第八晶体管T8进行重置。
综上所述,相对于实施例四而言,本实施例在第一阶段P1同时完成了补偿模块30和指纹识别模块40的重置过程。
步骤S402:在第二阶段P2,第二扫描信号线Scan2向第二信号端S2输入信号,指纹识别模块40对指纹信息进行采集;第二电压端V2输入的信号对补偿模块30进行充电。
具体地,第二扫描信号线Scan2向第二信号端S2输入信号,将第四晶体管T4、第六晶体管T6以及第七晶体管T7导通,第二电压端V2的输入信号对第一电容C1进行充电。第一晶体管T1、第二晶体管T2、第三晶体管T3、第五晶体管T5截止。
当手指与屏幕相接触时,指纹的谷线与探测电极D之间形成耦合电容Cf,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极D之间形成耦合电容Cf’,使得第九晶体管处于导通状态。其中,指纹识别模块40对指纹信息的采集过程与实施例一原理相同,此处不再赘述。
步骤S403:在第三阶段P3,第三扫描信号线Scan3向所述第三信号端S3和第五信号端S5输入信号,补偿模块40保持开启状态,根据第一电压端V1以及数据信号端Vdata输入的信号,对显示驱动模块10进行阈值电压的补偿。
指纹识别模块40将采集到的所述指纹信息传出至读取信号线RL。
具体地,补偿模块30的第三信号端S3与指纹识别模块40的第五信号端S5连接相同的信号线,即第三扫描信号线Scan3。
一方面,第三扫描信号线Scan3向第三信号端S3输入信号,第三晶体管T3导通,数据电压端Vdata输入的信号输出至第一电容C1的一端。根据第一电容C1的自举作用,第一电容C1另一端的电压发生跳变,以使得驱动晶体管Td的栅极电压发生跳变。具体的跳变过程与 实施例四第三阶段P3中,节点b的跳变过程同理,此处不再详细赘述。
另一方面,第三扫描信号线Scan3向第五信号端S5输入信号,第十晶体管T10导通,当第九晶体管T9处于截止状态时,第九晶体管T9第二极的初始电流信号通过第十晶体管T10传出至读取信号线RL;当第九晶体管T9处于导通状态时,第九晶体管T9将公共电压端Vcom输入的信号进行放大,并通过第十晶体管T10传出至读取信号线RL。其中,指纹识别模块40对指纹信息的传输过程与实施例四原理相同,此处不再赘述。
步骤S404:在第四阶段P4,使能信号端EM输入信号开启发光模块20,显示驱动模块10驱动发光模块20进行发光。
具体地,使能信号端EM输入信号,将第一晶体管T1、第二晶体管T2导通,流过第一晶体管T1、驱动晶体管Td以及第二晶体管T2的电流驱动发光器件进行发光。具体的发光过程与实施例一同理,此处不再赘述。
需要说明的是,上述本发明实施例,均是以像素电路中所有晶体管均为P型晶体管为例进行的说明,当上述所有晶体管均为N型晶体管时,需要将图3中的时序信号进行翻转,而其工作原理同上,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变型或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所附权利要求书的保护范围为准。

Claims (12)

  1. 一种像素电路,包括显示驱动模块、补偿模块、发光模块以及指纹识别模块;
    所述补偿模块,分别连接所述显示驱动模块、第一信号端、第二信号端、第三信号端、第一电压端、数据信号端以及公共电压端,用于在所述第一信号端、所述第二信号端、所述第三信号端的控制下,通过所述第一电压端以及所述数据信号端输入的信号,对所述显示驱动模块进行阈值电压的补偿;
    所述显示驱动模块,还连接所述发光模块,所述显示驱动模块得到阈值电压的补偿后,用于驱动所述发光模块进行发光;
    所述发光模块,还连接所述使能信号端、所述第一电压端以及第二电压端,用于在所述使能信号端、所述第一电压端以及所述第二电压端的控制下,通过所述显示驱动模块的驱动进行发光;
    所述指纹识别模块,分别连接第四信号端、第五信号端以及读取信号线;用于在所述第四信号端和所述第五信号端的控制下,对指纹信息进行采集,并将采集到的所述指纹信息传出至所述读取信号线;
    其中,所述第三信号端与所述第五信号端连接第三扫描信号线,所述第二信号端与所述第四信号端连接第二扫描信号线;或者,
    所述第二信号端与所述第五信号端连接所述第二扫描信号线,所述第一信号端与所述第四信号端连接第一扫描信号线;或者,
    所述第三信号端与所述第五信号端连接所述第三扫描信号线,所述第一信号端与所述第四信号端连接所述第一扫描信号线,所述补偿模块还连接所述第二电压端。
  2. 根据权利要求1所述的像素电路,其中,所述显示驱动模块包括:驱动晶体管;
    所述驱动晶体管的栅极连接所述补偿模块,第一极和第二极与所述发光模块相连接。
  3. 根据权利要求1所述的像素电路,其中,所述发光模块包括:第一晶体管、第二晶体管和发光器件;
    所述第一晶体管的栅极连接所述使能信号端,第一极连接所述显示驱动模块,第二极与所述第二电压端相连接;
    所述第二晶体管的栅极连接所述使能信号端,第一极连接所述发光器件的阳极,第二极与所述显示驱动模块相连接;
    所述发光器件的阴极连接所述第一电压端。
  4. 根据权利要求1所述的像素电路,其中,所述指纹识别模块包括:第八晶体管、第九晶体管、第十晶体管、第二电容以及探测电极;
    所述第八晶体管的栅极连接所述第四信号端,第一极连接所述公共电压端,第二极与所述第二电容的一端相连接;
    所述第九晶体管的栅极连接所述第二电容的所述一端,第一极连接所述公共电压端,第二极与所述第十晶体管的第一极相连接;
    所述第十晶体管的栅极连接所述第五信号端,第二极与所述读取信号线相连接;
    所述探测电极与所述第二电容的所述一端相连接;
    所述第二电容的另一端连接所述第五信号端。
  5. 根据权利要求1-4中任一项所述的像素电路,其中,所述补偿模块包括:第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管以及第一电容;
    所述第三晶体管的栅极连接所述第三信号端,第一极连接所述数据信号端,第二极与所述第一电容的一端相连接;
    所述第四晶体管的栅极连接所述第二信号端,第一极连接所述公共电压端,第二极与所述第一电容的所述一端相连接;
    所述第五晶体管的栅极连接所述第一信号端,第一极连接所述第七晶体管的第一极,第二极与所述第一电压端相连接;
    所述第六晶体管的栅极连接所述第二信号端,第一极连接所述显示驱动模块,第二极与所述公共电压端相连接;
    所述第七晶体管的栅极连接所述第二信号端,第一极连接所述第一电容的另一端,第二极与所述显示驱动模块相连接。
  6. 根据权利要求1-4中任一项所述的像素电路,其中,所述补偿模块包括:第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管以及第一电容;
    所述第三晶体管的栅极连接所述第三信号端,第一极连接所述数据信号端,第二极与所述第一电容的一端相连接;
    所述第四晶体管的栅极连接所述第二信号端,第一极连接所述第 一电压端,第二极与所述第一电容的所述一端相连接;
    所述第五晶体管的栅极连接所述第一信号端,第一极连接所述第一电容的另一端,第二极与所述第一电压端相连接;
    所述第六晶体管的栅极所述第二信号端,第一极连接所述显示驱动模块,第二极与所述公共电压端相连接;
    所述第七晶体管的栅极连接所述第二信号端,第一极连接所述第一电容的所述另一端,第二极与所述显示驱动模块相连接。
  7. 根据权利要求1-4中任一项所述的像素电路,其中,所述补偿模块包括:第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管以及第一电容;
    所述第三晶体管的栅极连接所述第三信号端,第一极连接所述数据信号端,第二极与所述第一电容的一端相连接;
    所述第四晶体管的栅极连接所述第二信号端,第一极连接所述第二电压端,第二极与所述第一电容的所述一端相连接;
    所述第五晶体管的栅极连接所述第一信号端,第一极连接所述第一电容的另一端,第二极与所述第一电压端相连接;
    所述第六晶体管的栅极连接所述第二信号端,第一极连接所述显示驱动模块,第二极与所述公共电压端相连接;
    所述第七晶体管的栅极连接所述第二信号端,第一极连接所述第一电容的所述另一端,第二极与所述显示驱动模块相连接。
  8. 一种显示装置,包括权利要求1-7中任一项所述的像素电路,以及与读取信号线相连接的信号接收装置,用于接收所述读取信号线输出的指纹信息。
  9. 一种像素电路的驱动方法,用于驱动如权利要求1-7中任一项所述的像素电路,所述方法包括:
    第一信号端输入信号,显示驱动模块进行重置,清除残留电压;
    第二信号端输入信号,公共电压端输入的信号对所述补偿模块进行充电;
    第四信号端输入信号,将指纹识别模块重置,并对指纹信息进行采集;
    第三信号端输入信号,所述补偿模块保持开启状态,根据第一电压端以及数据信号端输入的信号,对所述显示驱动模块进行阈值电压 的补偿;
    第五信号端输入信号,所述指纹识别模块将采集到的所述指纹信息传出至读取信号线;
    使能信号端输入信号,开启发光模块,所述显示驱动模块驱动所述发光模块进行发光。
  10. 根据权利要求9所述的像素电路的驱动方法,其中,当所述第三信号端与所述第五信号端连接第三扫描信号线,所述第二信号端与所述第四信号端连接第二扫描信号线时,所述方法包括:
    在第一阶段,所述第一扫描信号线向所述第一信号端输入信号,第五晶体管导通,第一电压端的电压通过所述第五晶体管对驱动晶体管的栅极进行重置;
    在第二阶段,所述第二扫描信号线向所述第二信号端输入信号,第四晶体管、第六晶体管以及第七晶体管导通,公共电压端的输入信号对第一电容进行充电;第一晶体管、第二晶体管、第三晶体管、第五晶体管截止;
    所述第二扫描信号线向所述第四信号端的输入信号,第八晶体管导通,第二电容通过所述第八晶体管进行放电;
    在触控的过程中,指纹的谷线与探测电极之间形成耦合电容,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极之间形成耦合电容,使得第九晶体管处于导通状态;
    在第三阶段,所述第三扫描信号线向所述第三信号端输入信号,第三晶体管导通,数据电压端输入的信号输出至第一电容的一端,根据所述第一电容的自举作用,所述第一电容另一端的电压发生跳变,以使得所述驱动晶体管的栅极电压发生跳变;
    所述第三扫描信号线向所述第五信号端输入信号,所述第十晶体管导通,当所述第九晶体管处于截止状态时,所述第九晶体管第二极的初始电流信号通过所述第十晶体管传出至所述读取信号线;当所述第九晶体管处于导通状态时,所述第九晶体管将所述公共电压端输入的信号进行放大,并通过所述第十晶体管传出至所述读取信号线;
    在第四阶段,所述使能信号端输入信号将第一晶体管、第二晶体管导通,流过所述第一晶体管、所述驱动晶体管以及所述第二晶体管的电流驱动发光器件进行发光。
  11. 根据权利要求9所述的像素电路的驱动方法,其中,当所述第二信号端与所述第五信号端连接所述第二扫描信号线,所述第一信号端与所述第四信号端连接第一扫描信号线时,所述方法包括:
    在第一阶段,所述第一扫描信号线向所述第一信号端输入信号,第五晶体管导通,第一电压端的电压通过所述第五晶体管对驱动晶体管的栅极进行重置;
    所述第一扫描信号线向所述第四信号端输入信号,第八晶体管导通,第二电容通过所述第八晶体管进行重置;
    在第二阶段,所述第二扫描信号线向所述第二信号端输入信号,第四晶体管、第六晶体管以及第七晶体管导通,第一电压端的输入信号对第一电容进行充电;第一晶体管、第二晶体管、第三晶体管、第五晶体管截止;
    在触控的过程中,指纹的谷线与探测电极之间形成耦合电容,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极之间形成耦合电容,使得第九晶体管处于导通状态;
    所述第二扫描信号线向所述第五信号端输入信号,所述第十晶体管导通,当所述第九晶体管处于截止状态时,所述第九晶体管第二极的初始电流信号通过所述第十晶体管传出至所述读取信号线;当所述第九晶体管处于导通状态时,所述第九晶体管将所述公共电压端输入的信号进行放大,并通过所述第十晶体管传出至所述读取信号线;
    在第三阶段,所述第三扫描信号线向所述第三信号端输入信号,第三晶体管导通,数据电压端输入的信号输出至第一电容的一端,根据所述第一电容的自举作用,所述第一电容另一端的电压发生跳变,以使得所述驱动晶体管的栅极电压发生跳变;
    在第四阶段,所述使能信号端输入信号,将第一晶体管、第二晶体管导通,流过所述第一晶体管、所述驱动晶体管以及所述第二晶体管的电流驱动发光器件进行发光。
  12. 根据权利要求9所述的像素电路的驱动方法,其中,当所述第三信号端与所述第五信号端连接所述第三扫描信号线,所述第一信号端与所述第四信号端连接所述第一扫描信号线,所述补偿模块还连接所述第二电压端时,所述方法包括:
    在第一阶段,所述第一扫描信号线向第一信号端输入信号,第五 晶体管导通,第一电压端的电压通过所述第五晶体管对驱动晶体管的栅极进行重置;
    所述第一扫描信号线向所述第四信号端输入信号,第八晶体管导通,第二电容通过所述第八晶体管进行重置;
    在第二阶段,所述第二扫描信号线向所述第二信号端输入信号,第四晶体管、第六晶体管以及第七晶体管导通,第二电压端的输入信号对第一电容进行充电;第一晶体管、第二晶体管、第三晶体管、第五晶体管截止;
    在触控的过程中,指纹的谷线与探测电极之间形成耦合电容,使得第九晶体管处于截止状态;或者,在触控的过程中,指纹的脊线与探测电极之间形成耦合电容,使得第九晶体管处于导通状态;
    在第三阶段,所述第三扫描信号线向所述第三信号端输入信号,第三晶体管导通,数据电压端输入的信号输出至第一电容的一端,根据所述第一电容的自举作用,所述第一电容另一端的电压发生跳变,以使得所述驱动晶体管的栅极电压发生跳变;
    所述第三扫描信号线向所述第五信号端输入信号,所述第十晶体管导通,当所述第九晶体管处于截止状态时,所述第九晶体管第二极的初始电流信号通过所述第十晶体管传出至所述读取信号线;当所述第九晶体管处于导通状态时,所述第九晶体管将所述公共电压端输入的信号进行放大,并通过所述第十晶体管传出至所述读取信号线;
    在第四阶段,所述使能信号端输入信号将第一晶体管、第二晶体管导通,流过所述第一晶体管、所述驱动晶体管以及所述第二晶体管的电流驱动发光器件进行发光。
PCT/CN2015/084090 2015-04-28 2015-07-15 一种像素电路及其驱动方法、显示装置 WO2016173121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,631 US9978312B2 (en) 2015-04-28 2015-07-15 Pixel circuit and a driving method thereof, a display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510209479.4 2015-04-28
CN201510209479.4A CN104778923B (zh) 2015-04-28 2015-04-28 一种像素电路及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016173121A1 true WO2016173121A1 (zh) 2016-11-03

Family

ID=53620354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084090 WO2016173121A1 (zh) 2015-04-28 2015-07-15 一种像素电路及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US9978312B2 (zh)
CN (1) CN104778923B (zh)
WO (1) WO2016173121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214267A (zh) * 2017-07-05 2019-01-15 三星显示有限公司 指纹传感器及其驱动方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105095874B (zh) 2015-07-31 2018-10-16 京东方科技集团股份有限公司 指纹识别电路、驱动控制电路、显示基板和显示装置
CN106486051B (zh) * 2015-08-25 2020-07-31 群创光电股份有限公司 像素结构
CN105046247B (zh) 2015-08-31 2018-06-22 京东方科技集团股份有限公司 表面结构识别单元、电路及识别方法和电子设备
CN106710521A (zh) * 2015-11-13 2017-05-24 小米科技有限责任公司 Oled面板、终端及识别控制方法
CN105355171B (zh) * 2015-12-15 2019-01-11 惠州Tcl移动通信有限公司 驱动扫描电路、显示屏及移动终端
CN105702176B (zh) * 2016-04-12 2018-06-15 深圳市华星光电技术有限公司 具有指纹识别的显示面板及显示装置
US10503931B2 (en) * 2016-05-09 2019-12-10 Arris Enterprises Llc Method and apparatus for dynamic executable verification
CN106156741B (zh) * 2016-07-04 2019-07-19 信利(惠州)智能显示有限公司 指纹识别单元电路及其控制方法以及指纹识别装置
CN106023891B (zh) * 2016-07-22 2018-05-04 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
CN106409224A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 像素驱动电路、驱动电路、显示基板和显示装置
CN106782272B (zh) * 2017-01-18 2021-01-15 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN106847868A (zh) * 2017-02-27 2017-06-13 信利光电股份有限公司 一种全屏指纹识别和触控一体的amoled显示器
US10375278B2 (en) * 2017-05-04 2019-08-06 Apple Inc. Noise cancellation
CN108877649B (zh) * 2017-05-12 2020-07-24 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN107016960B (zh) * 2017-06-01 2019-04-09 京东方科技集团股份有限公司 Oled触控驱动电路及方法、触控面板
CN107039002B (zh) * 2017-06-05 2019-09-06 京东方科技集团股份有限公司 一种像素电路及显示面板
CN107180611A (zh) 2017-06-23 2017-09-19 京东方科技集团股份有限公司 指纹识别及像素驱动电路以及具有该电路的显示装置
KR102503174B1 (ko) * 2017-07-27 2023-02-27 삼성디스플레이 주식회사 지문센서, 이를 포함하는 표시장치 및 상기 지문센서의 구동방법
CN107452339B (zh) * 2017-07-31 2019-08-09 上海天马有机发光显示技术有限公司 像素电路、其驱动方法、有机发光显示面板及显示装置
CN107358917B (zh) * 2017-08-21 2020-04-28 上海天马微电子有限公司 一种像素电路、其驱动方法、显示面板及显示装置
CN107908310B (zh) 2017-11-13 2019-12-06 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN109841189B (zh) * 2017-11-29 2020-08-14 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板和显示装置
CN108376250B (zh) * 2018-02-26 2020-06-02 京东方科技集团股份有限公司 一种指纹识别器件及其制备方法、触控面板
CN108154844B (zh) * 2018-03-09 2019-07-30 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
TWI695248B (zh) * 2018-03-28 2020-06-01 瑞鼎科技股份有限公司 應用於顯示驅動電路之省電控制裝置及省電控制方法
CN108648691B (zh) * 2018-05-14 2020-03-20 上海天马有机发光显示技术有限公司 显示面板及其驱动方法、显示装置
CN108682386B (zh) * 2018-05-14 2020-03-10 京东方科技集团股份有限公司 一种像素电路及显示面板
CN108417149B (zh) * 2018-05-23 2020-06-19 武汉天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN108399890B (zh) * 2018-05-30 2020-08-18 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其驱动方法、有机发光显示装置
CN109117733B (zh) * 2018-07-17 2020-06-30 武汉华星光电半导体显示技术有限公司 一种指纹识别oled显示面板及显示装置
CN109767713A (zh) * 2019-01-09 2019-05-17 昆山国显光电有限公司 显示屏、显示屏驱动方法及显示装置
WO2020215281A1 (zh) * 2019-04-25 2020-10-29 京东方科技集团股份有限公司 驱动电路、阵列基板、显示装置及驱动方法
US11488529B2 (en) 2019-05-16 2022-11-01 Apple Inc. Display compensation using current sensing across a diode without user detection
CN110110691B (zh) * 2019-05-16 2021-04-02 京东方科技集团股份有限公司 指纹识别驱动电路、装置、触摸屏和驱动方法
CN110008939B (zh) * 2019-05-17 2021-04-13 京东方科技集团股份有限公司 指纹识别像素驱动电路及其驱动方法、显示面板
CN110223634A (zh) * 2019-06-11 2019-09-10 京东方科技集团股份有限公司 像素电路及其驱动方法和显示面板
KR102591507B1 (ko) * 2019-07-22 2023-10-23 삼성디스플레이 주식회사 화소 및 이를 포함하는 표시 장치
US11205380B2 (en) * 2019-07-22 2021-12-21 Samsung Display Co., Ltd. Pixel that compensates for a threshold voltage of a driving transistor using a power source voltage and display device having the same
CN112837649B (zh) * 2019-11-01 2022-10-11 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置
CN111027384B (zh) * 2019-11-07 2022-09-13 厦门天马微电子有限公司 指纹识别检测电路、检测方法及显示装置
CN111108513B (zh) * 2019-12-04 2023-09-05 深圳市汇顶科技股份有限公司 屏下指纹采集装置、lcd触摸屏、以及电子设备
CN111489696A (zh) * 2020-06-12 2020-08-04 中国科学院微电子研究所 可应用于同时发光的像素电路及其驱动方法、显示装置
CN113158742B (zh) * 2021-01-29 2024-02-02 合肥维信诺科技有限公司 指纹识别电路及其驱动方法、指纹识别设备
TWI779651B (zh) * 2021-06-08 2022-10-01 友達光電股份有限公司 驅動電路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016407A (ja) * 2002-06-14 2004-01-22 Canon Inc 画像検出装置および携帯機器
CN101364262A (zh) * 2007-08-10 2009-02-11 统宝光电股份有限公司 显示装置以及电子装置
CN102119408A (zh) * 2008-09-30 2011-07-06 夏普株式会社 显示装置
CN103530609A (zh) * 2013-10-11 2014-01-22 北京京东方光电科技有限公司 一种指纹识别元件、显示屏及显示装置
CN104103239A (zh) * 2014-06-23 2014-10-15 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104112120A (zh) * 2014-06-26 2014-10-22 京东方科技集团股份有限公司 指纹识别显示驱动电路和显示装置
CN104155785A (zh) * 2014-08-07 2014-11-19 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置
CN104200768A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 阵列基板、驱动方法和显示装置
CN104282265A (zh) * 2014-09-26 2015-01-14 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144115B2 (en) * 2006-03-17 2012-03-27 Konicek Jeffrey C Flat panel display screen operable for touch position determination system and methods
KR101518742B1 (ko) * 2008-09-19 2015-05-11 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
GB0908456D0 (en) * 2009-05-18 2009-06-24 L P Touch screen, related method of operation and systems
TWI427515B (zh) * 2009-09-17 2014-02-21 Hannstar Display Corp 感光元件與其驅動方法以及應用此感光元件的液晶顯示器
JP5477385B2 (ja) * 2009-10-05 2014-04-23 富士通株式会社 生体情報処理装置、生体情報処理方法及び生体情報処理用コンピュータプログラム
CN103034365B (zh) * 2012-12-13 2016-03-09 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103208255B (zh) * 2013-04-15 2015-05-20 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103310729B (zh) * 2013-05-29 2015-05-27 京东方科技集团股份有限公司 发光二极管像素单元电路和显示面板
CN203503280U (zh) * 2013-08-26 2014-03-26 北京京东方光电科技有限公司 触控显示驱动电路和显示装置
CN103996376B (zh) * 2014-05-14 2016-03-16 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
CN104036723B (zh) * 2014-05-26 2016-04-06 京东方科技集团股份有限公司 像素电路和显示装置
US9741286B2 (en) * 2014-06-03 2017-08-22 Apple Inc. Interactive display panel with emitting and sensing diodes
CN105225636B (zh) * 2014-06-13 2017-05-31 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
CN104091563B (zh) * 2014-06-27 2016-03-09 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104217679B (zh) * 2014-08-26 2016-08-31 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
KR102380303B1 (ko) * 2014-12-18 2022-03-30 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 구동 방법
CN104808867A (zh) * 2015-05-25 2015-07-29 京东方科技集团股份有限公司 一种内嵌触摸显示屏及触摸显示系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016407A (ja) * 2002-06-14 2004-01-22 Canon Inc 画像検出装置および携帯機器
CN101364262A (zh) * 2007-08-10 2009-02-11 统宝光电股份有限公司 显示装置以及电子装置
CN102119408A (zh) * 2008-09-30 2011-07-06 夏普株式会社 显示装置
CN103530609A (zh) * 2013-10-11 2014-01-22 北京京东方光电科技有限公司 一种指纹识别元件、显示屏及显示装置
CN104103239A (zh) * 2014-06-23 2014-10-15 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104112120A (zh) * 2014-06-26 2014-10-22 京东方科技集团股份有限公司 指纹识别显示驱动电路和显示装置
CN104155785A (zh) * 2014-08-07 2014-11-19 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置
CN104200768A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 阵列基板、驱动方法和显示装置
CN104282265A (zh) * 2014-09-26 2015-01-14 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214267A (zh) * 2017-07-05 2019-01-15 三星显示有限公司 指纹传感器及其驱动方法
CN109214267B (zh) * 2017-07-05 2023-05-12 三星显示有限公司 指纹传感器及其驱动方法

Also Published As

Publication number Publication date
US9978312B2 (en) 2018-05-22
CN104778923A (zh) 2015-07-15
CN104778923B (zh) 2016-06-01
US20170103706A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2016173121A1 (zh) 一种像素电路及其驱动方法、显示装置
US9983755B2 (en) Pixel circuit, driving methods thereof, organic light emitting diode display panel, and display device
US9318540B2 (en) Light emitting diode pixel unit circuit and display panel
EP2887344B1 (en) Touch control display driving circuit, driving method thereof and display device
US10481730B2 (en) Driving method and driving circuit of touch control module, touch control module, touch control panel and touch control device
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
KR101643483B1 (ko) 터치 디스플레이 회로, 그 구동 방법, 어레이 기판, 및 디스플레이 장치
US9799268B2 (en) Active matrix organic light-emitting diode (AMOLED) pixel driving circuit, array substrate and display apparatus
US10068950B2 (en) Pixel circuit, driving method thereof, and display apparatus
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
US9262966B2 (en) Pixel circuit, display panel and display apparatus
WO2016015392A1 (zh) 触控显示电路及显示装置
US9947267B2 (en) Light emitting diode pixel unit circuit and display panel for light emitting diode display
WO2016045246A1 (zh) 像素电路及其驱动方法、发光显示面板及显示装置
WO2020140717A1 (zh) 像素电路及其驱动方法、显示面板、显示装置
US9645662B2 (en) Pixel circuit, display panel and display apparatus
KR101576405B1 (ko) 외부 보상 감지 회로와 그 감지 방법 및 디스플레이 디바이스
WO2015180373A1 (zh) 像素电路和显示装置
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2015176474A1 (zh) 像素电路及驱动方法、有机电致发光显示面板及显示装置
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
CN104036725A (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122631

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890500

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15890500

Country of ref document: EP

Kind code of ref document: A1