WO2015196700A1 - 有机发光二极管像素电路及其驱动方法 - Google Patents

有机发光二极管像素电路及其驱动方法 Download PDF

Info

Publication number
WO2015196700A1
WO2015196700A1 PCT/CN2014/090803 CN2014090803W WO2015196700A1 WO 2015196700 A1 WO2015196700 A1 WO 2015196700A1 CN 2014090803 W CN2014090803 W CN 2014090803W WO 2015196700 A1 WO2015196700 A1 WO 2015196700A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
scan signal
transistor
driving
switching transistor
Prior art date
Application number
PCT/CN2014/090803
Other languages
English (en)
French (fr)
Inventor
杨盛际
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/654,019 priority Critical patent/US9570010B2/en
Publication of WO2015196700A1 publication Critical patent/WO2015196700A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the invention belongs to the technical field of organic light emitting diode display and fingerprint recognition, and particularly relates to an organic light emitting diode pixel circuit and a driving method thereof.
  • the organic light emitting diode display panel is realized by the light emission of the organic light emitting diode; each pixel unit (ie, the sub pixel) of the organic light emitting diode display panel has an organic light emitting diode pixel circuit, and the most basic structure of the organic light emitting diode pixel circuit As shown in FIG. 1, it consists of a switching transistor T, a driving transistor D, a storage capacitor C and an organic light emitting diode OLED (ie, 2T1C), and is driven by the scanning signal Scan, the data signal Data, and the power supply voltage Vdd. . Wherein, the driving transistor D is in a saturated state, so the current passing through it (that is, the pass)
  • the operating current I oled by the organic light emitting diode is:
  • I oled K(V gs -V th ) 2 ;
  • V gs is the gate-source voltage of the driving transistor D
  • V th is the threshold voltage of the driving transistor D.
  • the gate voltage of the driving transistor D is equal to the driving voltage V data provided by the data signal Data for displaying the organic light emitting diode
  • the brightness of the organic light emitting diode OLED ie, its display
  • the content is again determined by its operating current I oled ; thus, the brightness of the organic light emitting diode OLED can be controlled by adjusting the driving voltage V data , that is, controlling the content of its display.
  • the threshold voltage Vth of the driving transistor gradually changes (ie, the threshold voltage drifts), resulting in an unpredictable change in the operating current Ioled under the condition that the driving voltage Vdata is constant, affecting the display. effect.
  • the existing method is in an organic light emitting diode pixel circuit.
  • a compensation circuit is added to eliminate the drift of the threshold voltage, but the compensation circuit often includes a large number of capacitors, thin film transistors, etc., resulting in a complicated structure and high cost of the organic light emitting diode pixel circuit.
  • fingerprint recognition function is one of the commonly used electronic device functions, which is of great significance for enhancing the security of electronic devices, expanding its application range, and increasing its added value.
  • fingerprint recognition function is one of the commonly used electronic device functions, which is of great significance for enhancing the security of electronic devices, expanding its application range, and increasing its added value.
  • most of the current organic light-emitting diode display panels do not have Fingerprint recognition capability, single function; or with fingerprint recognition function, but additional independent fingerprint identification circuit (such as laser fingerprint identification circuit), resulting in complex structure, cost increase, and affect the display function of the OLED display panel itself .
  • the technical problem to be solved by the present invention includes providing a plurality of functions, such as touch, fingerprint recognition, eliminating threshold voltage drift, display, etc., for the problem that the existing OLED pixel circuit has a single function or a complicated structure, and
  • the invention relates to an organic light emitting diode pixel circuit with simple structure and low cost and a driving method thereof.
  • organic light emitting diode pixel circuit which includes:
  • a touch fingerprint detecting module configured to detect whether a touch occurs and whether the touch is caused by the convex portion of the fingerprint or the concave portion of the fingerprint under the control of the first scan signal and the second scan signal, and send the detection result to the reading line; as well as
  • a compensation display module comprising an organic light emitting diode and at least one driving transistor, the compensation display module for canceling a threshold voltage of the at least one driving transistor under control of at least a first scan signal, a second scan signal and a data signal Drift and drive the organic light emitting diode for display.
  • the touch fingerprint detecting module includes a detecting capacitor, a first detecting transistor, a second detecting transistor, and a third detecting transistor, wherein
  • the detecting capacitor includes a first pole for sensing a touch and a second pole opposite to the first pole, and a second pole of the detecting capacitor is configured to receive the second scan signal;
  • the gate of the first detecting transistor is configured to receive the first scan signal, the first pole is for receiving a reference voltage, and the second pole is connected to the first pole of the detecting capacitor;
  • a gate of the second detecting transistor is connected to the first pole of the detecting capacitor, a first pole is for receiving the reference voltage, and a second pole is connected to the first pole of the third detecting transistor;
  • the gate of the third detecting transistor is for receiving the second scan signal, and the second pole is connected to the read line.
  • the compensation display module includes a first storage capacitor, an organic light emitting diode, a first driving transistor, a first switching transistor, a second switching transistor, a third switching transistor, a fourth switching transistor, and a fifth switching transistor, wherein the first driving transistor, all of the switching transistors and all of the detecting transistors are N-type thin film transistors, and
  • the first storage capacitor includes a first pole and a second pole
  • the cathode of the organic light emitting diode is grounded
  • a gate of the first driving transistor is connected to a second pole of the first storage capacitor, and a first pole is connected to an anode of the organic light emitting diode;
  • a gate of the first switching transistor is configured to receive the second scan signal, a first pole is connected to a second pole of the first driving transistor, and a second pole is configured to receive a power voltage;
  • a gate of the second switching transistor is configured to receive the first scan signal, a first pole is connected to a second pole of the first storage capacitor, and a second pole is connected to a second pole of the first driving transistor;
  • a gate of the third switching transistor is configured to receive the first scan signal, a first pole is used to receive the data signal, and a second pole is connected to a first pole of the first storage capacitor;
  • a gate of the fourth switching transistor for receiving the second scan signal, a first pole connected to a first pole of the first storage capacitor, and a second pole connected to an anode of the organic light emitting diode;
  • a gate of the fifth switching transistor for receiving the first scan signal One pole is grounded, and the second pole is connected to the anode of the organic light emitting diode.
  • the compensation display module includes a second storage capacitor, an organic light emitting diode, a second driving transistor, a sixth switching transistor, a seventh switching transistor, an eighth switching transistor, and a ninth switching transistor, wherein the Two driving transistors, all of the switching transistors, and all of the detecting transistors are N-type thin film transistors, and
  • the second storage capacitor includes a first pole and a second pole
  • the cathode of the organic light emitting diode is grounded
  • a gate of the second driving transistor is connected to a second pole of the second storage capacitor, and a first pole is connected to an anode of the organic light emitting diode;
  • a gate of the sixth switching transistor is configured to receive the second scan signal, a first pole is connected to a second pole of the second driving transistor, and a second pole is configured to receive a power voltage;
  • the gate of the seventh switching transistor is configured to receive the first scan signal, the first pole is connected to the second pole of the second storage capacitor, and the second pole is connected to the second pole of the second driving transistor;
  • a gate of the eighth switching transistor for receiving a control signal, a first pole for receiving the data signal, and a second pole for connecting the first pole of the second storage capacitor;
  • the gate of the ninth switching transistor is configured to receive the first scan signal, the first pole is grounded, and the second pole is connected to the anode of the organic light emitting diode.
  • the compensation display module includes a second storage capacitor, an organic light emitting diode, a second driving transistor, a sixth switching transistor, a seventh switching transistor, an eighth switching transistor, and a ninth switching transistor, wherein the The second driving transistor, the sixth switching transistor, the seventh switching transistor, the ninth switching transistor, and all of the detecting transistors are N-type thin film transistors, and the eighth switching transistor is a P-type thin film transistor.
  • the second storage capacitor includes a first pole and a second pole
  • the cathode of the organic light emitting diode is grounded
  • a gate of the second driving transistor is connected to a second pole of the second storage capacitor, and a first pole is connected to an anode of the organic light emitting diode;
  • a gate of the sixth switching transistor is configured to receive the second scan signal, a first pole is connected to a second pole of the second driving transistor, and a second pole is configured to receive a power voltage;
  • the gate of the seventh switching transistor is configured to receive the first scan signal, the first pole is connected to the second pole of the second storage capacitor, and the second pole is connected to the second pole of the second driving transistor;
  • a gate of the eighth switching transistor for receiving the second scan signal, a first pole for receiving the data signal, and a second pole connecting the first pole of the second storage capacitor;
  • the gate of the ninth switching transistor is configured to receive the first scan signal, the first pole is grounded, and the second pole is connected to the anode of the organic light emitting diode.
  • the compensation display module includes a second storage capacitor, an organic light emitting diode, a second driving transistor, a sixth switching transistor, a seventh switching transistor, an eighth switching transistor, and a ninth switching transistor, wherein the The second driving transistor, the seventh switching transistor, the eighth switching transistor, the ninth switching transistor, the first detecting transistor, and the second detecting transistor are all N-type thin film transistors, and the sixth switch The transistor and the third detection transistor are both P-type thin film transistors, and
  • the second storage capacitor includes a first pole and a second pole
  • the cathode of the organic light emitting diode is grounded
  • a gate of the second driving transistor is connected to a second pole of the second storage capacitor, and a first pole is connected to an anode of the organic light emitting diode;
  • a gate of the sixth switching transistor is configured to receive the second scan signal, a first pole is connected to a second pole of the second driving transistor, and a second pole is configured to receive a power voltage;
  • a gate of the seventh switching transistor is configured to receive the first scan signal, One pole is connected to the second pole of the second storage capacitor, and the second pole is connected to the second pole of the second driving transistor;
  • a gate of the eighth switching transistor for receiving the second scan signal, a first pole for receiving the data signal, and a second pole connecting the first pole of the second storage capacitor;
  • the gate of the ninth switching transistor is configured to receive the first scan signal, the first pole is grounded, and the second pole is connected to the anode of the organic light emitting diode.
  • the compensation display module includes a third storage capacitor, an organic light emitting diode, a third driving transistor, a fourth driving transistor, a tenth switching transistor, an eleventh switching transistor, and a twelfth switching transistor, wherein all The driving transistor, all of the switching transistors, and all of the detecting transistors are N-type thin film transistors, and
  • the third storage capacitor includes a first pole and a second pole, and a first pole of the third storage capacitor is grounded;
  • the cathode of the organic light emitting diode is grounded
  • the gate and the second pole of the third driving transistor are both connected to the second pole of the third storage capacitor
  • a gate of the fourth driving transistor is connected to a second electrode of the third storage capacitor
  • a gate of the tenth switching transistor is configured to receive a control signal, a first pole is connected to a second pole of the fourth driving transistor, and a second pole is configured to receive a power voltage;
  • a gate of the eleventh switching transistor is configured to receive the first scan signal, a first pole is connected to a second pole of the third driving transistor, and a second pole is connected to a second pole of the fourth driving transistor; as well as
  • the gate of the twelfth switching transistor is configured to receive the second scan signal, a first pole is used to receive the data signal, and a second pole is connected to a first pole of the third driving transistor.
  • the compensation display module includes a third storage capacitor, An organic light emitting diode, a third driving transistor, a fourth driving transistor, a tenth switching transistor, an eleventh switching transistor, and a twelfth switching transistor, wherein all of the driving transistor, the eleventh switching transistor, the a twelfth switching transistor, all of the detecting transistors are N-type thin film transistors, and the tenth switching transistor is a P-type thin film transistor, and
  • the third storage capacitor includes a first pole and a second pole, and a first pole of the third storage capacitor is grounded;
  • the cathode of the organic light emitting diode is grounded
  • the gate and the second pole of the third driving transistor are both connected to the second pole of the third storage capacitor
  • a gate of the fourth driving transistor is connected to a second electrode of the third storage capacitor
  • a gate of the tenth switching transistor is configured to receive the second scan signal, a first pole is connected to a second pole of the fourth driving transistor, and a second pole is configured to receive a power voltage;
  • a gate of the eleventh switching transistor is configured to receive the first scan signal, a first pole is connected to a second pole of the third driving transistor, and a second pole is connected to a second pole of the fourth driving transistor; as well as
  • the gate of the twelfth switching transistor is configured to receive the second scan signal, a first pole is used to receive the data signal, and a second pole is connected to a first pole of the third driving transistor.
  • the technical solution adopted to solve the technical problem of the present invention is a driving method of the above OLED pixel circuit, which includes:
  • Having the touch fingerprint detection module detect a touch and output a detection result
  • the compensation display module is illuminated and displayed.
  • the driving method comprises:
  • the first scan signal and the second scan signal are both set to a high level
  • the first scan signal is set to a high level
  • the second scan signal is set to a low level
  • the data signal is used as a driving voltage for driving the organic light emitting diode for display; as well as
  • the first scan signal is set to a low level
  • the second scan signal is set to a high level
  • compensation phase further comprising:
  • a buffering phase in which the first scan signal and the second scan signal are both set to a low level.
  • the driving method comprises:
  • the first scan signal and the second scan signal are both set to a high level, and the control signal is set to a low level;
  • the first scan signal is set to a high level
  • the second scan signal is set to a low level
  • the control signal is set to a high level
  • the first scan signal is set to a low level
  • the second scan signal is set to a low level
  • the control signal is set to a high level
  • the data signal is used as a Driving a driving voltage for driving the organic light emitting diode for display
  • the first scan signal is set to a low level
  • the second scan signal is set to a high level
  • the control signal is set to a low level
  • the driving method comprises:
  • the first scan signal and the second scan signal are both set to a high level
  • the first scan signal is set to a high level, and the second scan signal is set to a low level;
  • the first scan signal is set to a low level
  • the second The scan signal is set to a low level
  • the data signal is used as a driving voltage for driving the organic light emitting diode for display
  • the first scan signal is set to a low level
  • the second scan signal is set to a high level
  • the driving method comprises:
  • the first scan signal is set to a high level, and the second scan signal is set to a low level;
  • the first scan signal is set to a high level
  • the second scan signal is set to a high level
  • the first scan signal is set to a low level
  • the second scan signal is set to a high level
  • the data signal is used as a driving voltage for driving the organic light emitting diode for display
  • the first scan signal and the second scan signal are both set to a low level.
  • the driving method comprises:
  • the first scan signal is set to a high level
  • the second scan signal is set to a low level
  • the control signal is set to a high level
  • the first scan signal is set to a low level
  • the second scan signal is set to a high level
  • the control signal is set to a low level
  • the data signal is used as a a driving voltage for driving the display of the organic light emitting diode
  • the first scan signal and the second scan signal are both set to a low level, and the control signal is set to a high level.
  • the driving method comprises:
  • the first scan signal is set to a high level, and the second scan signal is set to a low level;
  • the first scan signal is set to a low level
  • the second scan signal is set to a high level
  • the data signal is set as a driving voltage for driving the organic light emitting diode for display
  • the first scan signal and the second scan signal are both set to a low level.
  • Each "transistor” refers to a thin film transistor, which is a commonly used electronic device.
  • Each thin film transistor includes two electrodes connected by an active region, which are respectively a source and a drain, wherein a current flows into a source. The current flows out as the drain; because in the present invention, many transistors have different current flows at different times, so the source and the drain are no longer distinguished, but the two poles of the transistor are respectively referred to as the first pole and the first The two poles; therefore, the first pole and the second pole are only used to distinguish the names of the two poles of the transistor, and their specific distinction is defined by their connection relationship with other components, and has no corresponding relationship with the source and the drain.
  • the OLED pixel circuit of the present invention includes a touch fingerprint detecting module, which can detect whether a touch occurs to implement a touch function; at the same time, the module can also detect whether the touch is caused by the convex portion of the fingerprint or the concave portion of the fingerprint, so that Combining the judgment results of the plurality of organic light emitting diode pixel circuits, the fingerprint of the touch person can be obtained, thereby implementing fingerprint recognition; in addition, the organic light emitting diode pixel circuit further includes a compensation display module, which can eliminate the threshold voltage of the driving transistor. In the case of drift, the organic light emitting diode is driven for display, thereby achieving a good display effect.
  • the OLED pixel circuit of the present invention simultaneously implements various functions such as touch, fingerprint recognition, elimination of threshold voltage drift, display, etc., which not only has strong functions, but also has a simple structure and low cost.
  • FIG. 1 is a schematic diagram of a conventional OLED pixel circuit
  • FIG. 2 is a schematic diagram of an organic light emitting diode pixel circuit according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram showing driving timing of the OLED pixel circuit of FIG. 2;
  • FIG. 4 is a OLED circuit of an organic light emitting diode according to Embodiment 2 of the present invention; schematic diagram;
  • FIG. 5 is a schematic diagram showing driving timings of the OLED pixel circuit of FIG. 4;
  • FIG. 6 is a schematic diagram of another organic light emitting diode pixel circuit according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram showing driving timing of the OLED pixel circuit of FIG. 6;
  • FIG. 8 is a schematic diagram of another organic light emitting diode pixel circuit according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram showing driving timing of the OLED pixel circuit of FIG. 8;
  • FIG. 10 is a schematic diagram of an organic light emitting diode pixel circuit according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram showing driving timing of the OLED pixel circuit of FIG. 10;
  • FIG. 12 is a schematic diagram of another organic light emitting diode pixel circuit according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram showing driving timing of the OLED pixel circuit of FIG. 12;
  • FIG. 14 is a schematic diagram of detecting a touch by a touch fingerprint detecting module of an OLED pixel circuit of the present invention.
  • FIG. 15 is a schematic diagram of detecting a fingerprint concave portion and a fingerprint convex portion by a touch fingerprint detecting module of the OLED pixel circuit of the present invention
  • the reference numerals are: M1, first detecting transistor; M2, second detecting transistor; M3, third detecting transistor; T, switching transistor; T1, first switching transistor; T2, second switching transistor; T3, third Switching transistor; T4, fourth switching transistor; T5, fifth switching transistor; T6, sixth switching transistor; T7, seventh switching transistor; T8, eighth switching transistor; T9, ninth switching transistor; T10, tenth switch Transistor; T11, eleventh switching transistor; T12, twelfth switching transistor; D, driving transistor; D1, first driving transistor; D2, second driving transistor; D3, third driving transistor; D4, fourth driving transistor C, storage capacitor; Cj, detection capacitor; C1, first storage capacitor; C2, second storage capacitor; C3, third storage capacitor; Cf, touch capacitor; OLED, organic light emitting diode; Scan, scan signal; Scan1 First scan signal; Scan2, second scan signal; Data, data signal; Read, read line; Vdd, power supply voltage; Vc, Reference voltage; EM, control signal; 9, finger; 91, fingerprint conve
  • the embodiment provides an organic light emitting diode pixel circuit and a driving method thereof.
  • the OLED pixel circuit refers to a circuit in a pixel unit (ie, a sub-pixel) of the OLED display panel.
  • all of the pixel units may adopt the OLED pixel circuit of the present invention; but preferably, considering space occupation, preparation difficulty, cost, and the like, Only some of the pixel units employ the OLED pixel circuit of the present invention, and the remaining pixel units take the form of existing pixel circuits without touch and fingerprint recognition functions, for example, every 6 pixel units arranged in 2 rows and 3 columns (ie, Among the 2 ⁇ 3 sub-pixels, there may be only one OLED pixel circuit using the present invention; this is because the sub-pixel size of the OLED display panel is generally small, so even if only one of the plurality of sub-pixels has a touch And the fingerprint recognition function, its accuracy is also fully sufficient.
  • the OLED pixel circuit of this embodiment includes:
  • the touch fingerprint detecting module is configured to detect whether a touch occurs and whether the touch is caused by the fingerprint convex portion 91 or the fingerprint concave portion 92 under the control of the first scan signal Scan1 and the second scan signal Scan2, and send the detection result to the reading Take the line Read;
  • a compensation display module comprising an organic light emitting diode OLED and at least one driving transistor for canceling a threshold voltage of at least one driving transistor under control of at least the first scan signal Scan1, the second scan signal Scan2 and the data signal Data Drift and drive the organic light emitting diode OLED for display.
  • the OLED pixel circuit of the embodiment includes a touch fingerprint detecting module, which can detect whether a touch occurs to implement a touch function. Meanwhile, the module can also detect whether the touch is caused by the fingerprint convex portion 91 or the fingerprint concave portion 92. In this way, by combining the judgment results of the plurality of OLED pixel circuits, the fingerprint of the touch person can be obtained, thereby implementing fingerprint recognition.
  • the OLED pixel circuit further includes a compensation display module, which can eliminate the driving transistor.
  • the organic light emitting diode OLED is driven to display in the case of drift of the threshold voltage, thereby achieving a good display effect.
  • the OLED pixel circuit of the embodiment simultaneously implements various functions such as touch, fingerprint recognition, elimination of threshold voltage drift, display, etc., which not only has strong functions, but also has a simple structure and low cost.
  • the OLED pixel circuit of this embodiment will be described in detail below.
  • the touch fingerprint detecting module includes a detecting capacitor Cj, a first detecting transistor M1, a second detecting transistor M2, and a third detecting transistor M3, wherein all of the transistors are N-type thin film transistors.
  • the detecting capacitor Cj includes a first pole for sensing the touch (point d in the figure), and a second pole opposite to the first pole, and a second pole for receiving the second scan signal Scan2;
  • the gate of the first detecting transistor M1 is for receiving the first scan signal Scan1, the first pole is for receiving the reference voltage Vc, and the second pole is connected to the first pole of the detecting capacitor Cj;
  • the gate of the second detecting transistor M2 is connected to the first pole of the detecting capacitor Cj, the first pole is for receiving the reference voltage Vc, and the second pole is connected to the first pole of the third detecting transistor M3;
  • the gate of the third detecting transistor M3 is for receiving the second scan signal Scan2, and the second pole is connected to the read line Read.
  • the compensation display module comprises a first storage capacitor C1, an organic light emitting diode OLED, a first driving transistor D1, a first switching transistor T1, a second switching transistor T2, a third switching transistor T3, a fourth switching transistor T4 and a Five open Turn off transistor T5, wherein all transistors are also N-type thin film transistors, and
  • the first storage capacitor C1 includes a first pole and a second pole
  • the cathode of the organic light emitting diode OLED is grounded
  • the gate of the first driving transistor D1 is connected to the second pole of the first storage capacitor C1 (point a in the figure), and the first pole is connected to the anode of the organic light emitting diode OLED;
  • the gate of the first switching transistor T1 is for receiving the second scan signal Scan2, the first pole is connected to the second pole of the first driving transistor D1, and the second pole is for receiving the power voltage Vdd;
  • the gate of the second switching transistor T2 is for receiving the first scan signal Scan1, the first pole is connected to the second pole of the first storage capacitor C1, and the second pole is connected to the second pole of the first driving transistor D1;
  • the gate of the third switching transistor T3 is for receiving the first scan signal Scan1, the first pole is for receiving the data signal Data, and the second pole is connected to the first pole of the first storage capacitor C1 (point b in the figure);
  • the gate of the fourth switching transistor T4 is for receiving the second scan signal Scan2, the first pole is connected to the first pole of the first storage capacitor C1, and the second pole is connected to the anode of the organic light emitting diode OLED;
  • the gate of the fifth switching transistor T5 is for receiving the first scan signal Scan1, the first pole is grounded, and the second pole is connected to the anode of the organic light emitting diode OLED.
  • the driving method of the OLED pixel circuit includes: using a touch fingerprint detecting module to detect whether a touch occurs and whether the touch is caused by the fingerprint convex portion 91 or the fingerprint concave portion 92, and transmitting the detection result to the reading line Read And using the compensation display module to eliminate the drift of the threshold voltage of the at least one driving transistor and driving the organic light emitting diode OLED for display.
  • the operation principle of the organic light emitting diode pixel circuit of the present embodiment will be explained below in conjunction with the driving method of the organic light emitting diode pixel circuit.
  • the driving method of the OLED pixel circuit provided by the present invention comprises the steps of:
  • Having the touch fingerprint detection module detect a touch and output a detection result
  • the compensation display module is illuminated and displayed.
  • the operation of the OLED pixel circuit of the embodiment includes a reset phase, a compensation phase, a buffer phase, and a read display phase, and the driving method specifically includes the following steps:
  • Step S101 in the reset phase, the first scan signal Scan1 and the second scan signal Scan2 are both set to a high level; thereby, both the touch fingerprint detecting module and the compensation display module are reset and charged.
  • the first detecting transistor M1, the third detecting transistor M3, the first driving transistor D1, the first switching transistor T1, and the second switching transistor T2 The third switching transistor T3, the fourth switching transistor T4, and the fifth switching transistor T5 are all turned on.
  • the first pole of the detecting capacitor Cj (point d in the figure) is charged to the reference voltage Vc via the first detecting transistor M1, and the second pole thereof is charged to the high voltage of the second scan signal Scan2. Ping, the detection capacitor Cj is reset.
  • the first pole of the sense capacitor Cj is connected to a separate pole piece which has a large area so that when a touch occurs, it can be sensitive to the touch.
  • the pole piece in the figure can be extremely integrated with the first of the detecting capacitor Cj; in short, as long as there is a touch, the detecting capacitor
  • the first pole of Cj can sense the signal of the touch, and the specific structure thereof will not be described in detail herein.
  • the second pole of the first storage capacitor C1 and the gate of the first drive transistor D1 are both charged to the power supply voltage Vdd.
  • the data signal Data can be used as the driving voltage V data for causing the organic light emitting diode OLED to display, thereby charging the first pole (point b in the figure) of the first storage capacitor C1 to the driving voltage via the third switching transistor T3.
  • V data the drive voltage V data can also be input in the next step.
  • Step S102 In the compensation phase, the first scan signal Scan1 is set to a high level, the second scan signal Scan2 is set to a low level, and the data signal Data is used as a driving voltage V data for driving the organic light emitting diode OLED for display. So that the compensation display module gets the correct compensation voltage.
  • the second scan signal Scan2 becomes a low level, so that the first switching transistor T1, the fourth switching transistor T4, and the third detecting transistor M3 are both turned off.
  • the first pole of the first storage capacitor C1 of the compensation display module (point b in the figure) is charged to the driving voltage V data or the driving voltage V data is held , and the second pole (point a in the figure) is via the second switching transistor T2.
  • the first driving transistor D1 and the fifth switching transistor T5 are discharged.
  • the first driving transistor D1 is turned off, the discharging is stopped, and both ends of the first storage capacitor C1 (b)
  • the voltage difference between the point and point a is (V data - V th1 ).
  • step S101 and step S102 since the fifth switching transistor T5 is always on, the current passes through the fifth switching transistor T5 without passing through the organic light emitting diode OLED, and the organic light emitting diode OLED does not emit light, thereby improving the service life thereof. On the other hand, it is also guaranteed that it does not produce incorrect illumination.
  • Step S103 Optionally, in the buffering stage, the first scan signal Scan1 is set to a low level, and the second scan signal Scan2 is set to a low level; thereby compensating the voltage of the compensation display module.
  • the first scan signal Scan1 also goes low, so that each transistor is turned off.
  • the main function of this step is to stabilize the voltage difference across the first storage capacitor C1 (points a and b) in the compensation display module.
  • This step it should be understood that it is also feasible to perform this step.
  • the third switching transistor T3 is turned off, so the data signal Data can no longer be written into the compensation display module, which can be used to provide the driving voltage required for the next row of pixel cells.
  • the fifth switching transistor T5 is also turned off from this step, so the organic light emitting diode OLED is provided with a condition for display.
  • the first scan signal Scan1 is set to a low level
  • the second scan signal Scan2 is set to a high level, so that the touch fingerprint detecting module can detect the touch and output the detection result through the read line Read.
  • the display module is compensated for display.
  • the second scan signal Scan2 becomes a high level, so that the first switching transistor T1, the fourth switching transistor T4, and the third detecting transistor M3 are turned on again.
  • the first detecting transistor M1 is turned off, and the detecting capacitor Cj is no longer discharged externally; when there is a touch, the touched finger 9 forms a touch capacitance Cf with the first pole of the detecting capacitor Cj, and the effect is as follows: As shown in FIG.
  • the capacitance corresponding to the touch capacitor Cf is connected in parallel with the capacitance of the detecting capacitor Cj; therefore, the charge on the first pole of the detecting capacitor Cj is redistributed according to the ratio of the capacitance of the touch capacitor Cf to the detecting capacitor Cj, so that The voltage applied to the gate of the second detecting transistor M2 also changes, so that the detected current flowing through the second detecting transistor M2 also changes (for example, there is current and no current, or the current value is different); the detected current flow After the third detecting transistor M3 is output from the read line Read to the corresponding detecting chip, the detecting chip can determine which pixel unit has touched according to the detecting current, that is, determine the touch position, thereby implementing touch.
  • the fingerprint is actually the concave portion and the convex portion on the surface of the finger 9, and it is obvious that when the fingerprint concave portion 92 and the fingerprint convex portion 91 are touched, the distance between the fingerprint and the first pole of the detecting capacitor Cj is different.
  • the value of the touch capacitance Cf is also different, the value of the touch capacitance Cf corresponding to the fingerprint concave portion 92 is small, and the value of the touch capacitance Cf corresponding to the fingerprint convex portion 91 is large; further, when the fingerprint concave portion 92 and the fingerprint convex portion are When the touch is 91, the voltage applied to the gate of the second detecting transistor M2 is different, resulting in a different detection current. In this way, by comparing the detection electrodes of the pixel units in the touch region, it can be determined which pixel units correspond to the fingerprint recesses 92 and which correspond to the fingerprint convex portions 91, and then according to the positions of the pixel units, the touch can be obtained.
  • the fingerprint shape on the finger 9 also realizes fingerprint recognition.
  • the first switching transistor T1 is turned on, the organic light emitting diode OLED starts to emit light (that is, starts to display), and the anode voltage thereof jumps to the light emitting voltage V oled of the organic light emitting diode OLED, and correspondingly,
  • the first pole of a driving transistor D1 also becomes the illuminating voltage Voled
  • the fourth switching transistor T4 is turned on, so the voltage of the first pole (point b in the figure) of the first storage capacitor C1 also becomes the illuminating voltage.
  • V oled Since the first storage capacitor C1 cannot be discharged, the voltage on the second pole (point a in the figure) is correspondingly raised to (V oled +V th1 -V data ), that is, the first driving transistor D1 The gate voltage becomes (V oled +V th1 -V data ); and the first driving transistor D1 is in a saturated state, so the current (that is, the operating current Ioled by the organic light emitting diode OLED) is expressed as (where K is a coefficient) ):
  • I oled K(V gs -V th1 ) 2
  • the operating current Ioled of the organic light emitting diode OLED is independent of the threshold voltage of the driving transistor, so that the drift of the threshold voltage of the driving transistor can be avoided to affect the luminance of the organic light emitting diode OLED, thereby achieving better display effect.
  • step S101 When the display of the frame image is completed, the process returns to step S101 to start displaying the image of the next frame.
  • the embodiment provides an organic light emitting diode pixel circuit and a driving method thereof.
  • the OLED pixel circuit of the embodiment is similar to the OLED pixel circuit of the embodiment 1, and includes a touch fingerprint detecting module and a compensation display module, and the structure of the touch fingerprint detecting module is the same as that of the first embodiment, and the difference lies in only two.
  • the compensation display module has a different structure.
  • the OLED pixel circuit of the present embodiment (mainly the structure of the compensation display module) will be described in detail below.
  • the compensation display module includes a second storage capacitor C2, an organic light emitting diode OLED, a second driving transistor D2, a sixth switching transistor T6, a seventh switching transistor T7, an eighth switching transistor T8, and a ninth switching transistor T9, wherein All transistors are N-type thin film transistors, and
  • the second storage capacitor C2 includes a first pole and a second pole
  • the cathode of the organic light emitting diode OLED is grounded
  • the gate of the second driving transistor D2 is connected to the second pole of the second storage capacitor C2 (point a in the figure), and the first pole is connected to the anode of the organic light emitting diode OLED;
  • the gate of the sixth switching transistor T6 is for receiving the second scan signal Scan2, the first pole is connected to the second pole of the second driving transistor D2, and the second pole is for receiving the power voltage Vdd;
  • the gate of the seventh switching transistor T7 is for receiving the first scan signal Scan1, the first pole is connected to the second pole of the second storage capacitor C2, and the second pole is connected to the second pole of the second driving transistor D2;
  • the gate of the eighth switching transistor T8 is for receiving the control signal EM, the first pole is for receiving the data signal Data, and the second pole is connected to the first pole of the second storage capacitor C2 (point b in the figure);
  • the gate of the ninth switching transistor T9 is for receiving the first scan signal Scan1, the first pole is grounded, and the second pole is connected to the anode of the organic light emitting diode OLED.
  • the operation principle is explained below in conjunction with the driving method of the above OLED pixel circuit, and the operation of the OLED pixel circuit includes a reset phase, a compensation phase, a writing phase, and a read display phase, and a driving method thereof Specifically, the following steps are included:
  • Step S201 In the reset phase, the first scan signal Scan1 and the second scan signal Scan2 are both set to a high level, and the control signal EM is set to a low level; thereby resetting both the touch fingerprint detecting module and the compensation display module , charging.
  • the first detecting transistor M1, the third detecting transistor M3, the second driving transistor D2, the sixth switching transistor T6, the seventh switching transistor T7, and the ninth switching transistor T10 are all turned on, and the eighth switching transistor T8 is turned off.
  • the first pole of the detecting capacitor Cj (point d in the figure) is charged to the reference voltage Vc via the first detecting transistor M1, and the second pole is charged to the high level of the second scan signal Scan2.
  • the detection capacitor Cj is reset.
  • the second pole of the second storage capacitor C2 (point a in the figure) is charged to the power supply voltage via the sixth switching transistor T6 and the seventh switching transistor T7. Vdd.
  • Step S202 In the compensation phase, the first scan signal Scan1 is set to a high level, the second scan signal Scan2 is set to a low level, and the control signal EM is set to a high level; thereby enabling the compensation display module to obtain a correct compensation. Voltage.
  • the second scan signal Scan2 becomes a low level
  • the control signal EM becomes a high level, so that the sixth switching transistor T6 and the third detecting transistor M3 are both turned off, and the eighth switching transistor T8 is turned on.
  • the first pole of the second storage capacitor C2 of the compensation display module (point b in the figure) is charged to the voltage V p of the data signal Data (which may be 0 or any other value), and the second pole (a in the figure) Point) is discharged via the seventh switching transistor T7, the second driving transistor D2, and the ninth switching transistor T9, and when the voltage thereof is lowered to the threshold voltage Vth2 of the second driving transistor D2, the second driving transistor D2 is turned off, and the discharging is stopped.
  • Step S203 In the writing phase, the first scan signal Scan1 is set to a low level, the second scan signal Scan2 is set to a low level, the control signal EM is set to a high level, and the data signal Data is used as a driving.
  • the organic light emitting diode OLED performs a display driving voltage Vdata; thereby causing the compensation display module to be charged to the correct voltage.
  • the first scan signal Scan1 also becomes a low level, so that all the transistors except the eighth switching transistor T8 are turned off.
  • the data signal Data eighth switching transistor T8 through the first electrode of the second storage capacitor C2 (b in FIG point) from the voltage V p becomes V data, since at this time the second storage capacitor C2 It cannot be discharged, so the voltage of the second pole (point a in the figure) is lifted up to (V th2 +V data -V p ).
  • Step S204 In the read display phase, the first scan signal Scan1 is set to a low level, the second scan signal Scan2 is set to a high level, and the control signal EM is set to a low level; thereby causing the touch fingerprint detection module to output The detection result is made and the compensation display module is illuminated and displayed.
  • the third detecting transistor M3 is turned on, thereby touching the fingerprint detecting module.
  • the detection result can be conducted to the read line Read via the third detecting transistor M3 for touch and fingerprint recognition.
  • the specific operation principle and process are the same as those in the reading display phase in Embodiment 1, and therefore will not be described in detail herein.
  • the eighth switching transistor T8 is turned off, so the data signal Data can no longer be written, and the data signal Data can provide driving signals for other pixel units.
  • the ninth switching transistor T9 is turned off, and the sixth switching transistor T6 is turned on, so the organic light emitting diode OLED starts to emit light (that is, starts to display), and the anode voltage jumps into the illuminating voltage V oled of the organic light emitting diode OLED, correspondingly
  • the voltage of the first pole of the second driving transistor D2 also becomes the lighting voltage Voled , and since the second driving transistor D2 is in a saturated state, the current (that is, the operating current Ioled by the organic light emitting diode OLED) formula For (where K is the coefficient):
  • I oled K(V gs -V th2 ) 2
  • the operating current Ioled of the organic light emitting diode OLED is independent of the threshold voltage of the driving transistor, so that the drift of the threshold voltage of the driving transistor can be avoided to affect the luminance of the organic light emitting diode OLED, thereby achieving better display effect.
  • step S201 When the display of the frame image is completed, the process returns to step S201 to start displaying the image of the next frame.
  • the organic light emitting diode pixel circuit of the embodiment and the driving method thereof can also undergo some changes.
  • the state of the eighth switching transistor T8 is always opposite to the state of the sixth switching transistor T6 controlled by the second scanning signal Scan2, so when When the sixth switching transistor T6 is an N-type thin film transistor, a separate control signal EM control is required. system.
  • the eighth switching transistor T8 becomes a P-type thin film transistor, and its gate becomes a second scanning signal Scan2, so that it can be in other structures (transistor type,
  • the control signal EM is omitted, and the circuit structure is simplified; of course, since the control signal EM is no longer present at this time, the timing chart of the drive signal also becomes as shown in FIG. There is no longer a control signal EM.
  • the eighth switching transistor T8 is configured to receive the second scan signal Scan2, but it is still an N-type thin film transistor, and is also used to receive the sixth switching transistor T6 of the second scan signal Scan2.
  • the third detecting transistor M3 becomes a P-type thin film transistor; at the same time, the timing chart of the driving signal thereof becomes as shown in FIG. 9, that is, the high and low levels of the second scanning signal Scan2 are completely reversed, and a control signal can be omitted.
  • the embodiment provides an organic light emitting diode pixel circuit and a driving method thereof.
  • the OLED pixel circuit of the present embodiment is similar to the OLED pixel circuit of Embodiment 1, and includes a touch fingerprint detecting module and a compensation display module, and the structure of the touch fingerprint detecting module is the same as that of Embodiment 1, except that the difference lies in The compensation display modules of the two have different structures.
  • the OLED pixel circuit of the present embodiment (mainly the structure of the compensation display module) will be described in detail below.
  • the compensation display module includes a third storage capacitor C3, an organic light emitting diode OLED, a third driving transistor D3, a fourth driving transistor D4, a tenth switching transistor T10, an eleventh switching transistor T11, and a twelfth switching transistor T12. , wherein all of the transistors are N-type thin film transistors, and
  • the third storage capacitor C3 includes a first pole and a second pole, the first pole of which is grounded;
  • the cathode of the organic light emitting diode OLED is grounded
  • the gate of the third driving transistor D3 is connected to the second pole of the third storage capacitor C3, and the second pole is connected to the second pole of the third storage capacitor C3;
  • the gate of the fourth driving transistor D4 is connected to the second pole of the third storage capacitor C3;
  • the gate of the tenth switching transistor T10 is for receiving the control signal EM, the first pole is connected to the second pole of the fourth driving transistor D4, and the second pole is for receiving the power voltage Vdd;
  • the gate of the eleventh switching transistor T11 is for receiving the first scan signal Scan1, the first pole is connected to the second pole of the third driving transistor D3, and the second pole is connected to the second pole of the fourth driving transistor D4;
  • the gate of the twelfth switching transistor T12 is for receiving the second scan signal Scan2, the first pole is for receiving the data signal Data, and the second pole is for connecting to the first pole of the third driving transistor D3.
  • the operation of the OLED pixel circuit includes a reset phase, a read compensation phase, and a real phase.
  • the driving method specifically includes the following steps. :
  • Step S301 In the reset phase, the first scan signal Scan1 is set to a high level, the second scan signal Scan2 is set to a low level, and the control signal EM is set to a high level; thereby enabling the touch fingerprint detection module and the compensation
  • the display modules are reset and charged.
  • the first detecting transistor M1, the tenth switching transistor T10 and the eleventh switching transistor T11 are all turned on, and the third detecting transistor M3 and the twelfth switching transistor T12 are both turned off.
  • the first pole of the detecting capacitor Cj (point d in the figure) is charged to the reference voltage Vc via the first detecting transistor M1, the low level of the second extremely second scanning signal Scan2, and the detecting capacitor Cj is The reset is complete.
  • the second pole of the third storage capacitor C3 (point a in the figure) is charged to the power source via the tenth switching transistor T10 and the eleventh switching transistor T11. Press Vdd.
  • Step S302 In the read compensation phase, the first scan signal Scan1 is set to a low level, the second scan signal Scan2 is set to a high level, the control signal EM is set to a low level, and the data signal Data is used as a Driving the organic light emitting diode OLED to perform the display driving voltage V data ; thereby causing the touch fingerprint detecting module to output the detection result thereof, and causing the compensation display module to obtain the correct compensation voltage.
  • the third detecting transistor M3 is turned on, so that the detection result of the touch fingerprint detecting module can be transmitted to the reading line Read via the third detecting transistor M3 for touch and fingerprint recognition.
  • the specific principle of action and process are the same as those of the read display phase in the first embodiment (the only difference is that the voltage value of the second pole of the detecting capacitor Cj is different), and therefore will not be described in detail herein.
  • the data signal Data is charged to the second pole (point a in the figure) of the third storage capacitor C3 through the twelfth switching transistor T12 and the third driving transistor D3 until the gate-source voltage of the third driving transistor D3
  • the difference reaches its threshold voltage V th3 , that is, until the voltage at point a reaches (V th3 +V data ).
  • Step S303 In the display phase, the first scan signal Scan1 and the second scan signal Scan2 are both set to a low level, and the control signal EM is set to a high level; so that the compensation display module emits light and displays.
  • the third detecting transistor M3 is turned off, and the detection result of the touch fingerprint detecting module can no longer be output, which has no other influence on the circuit.
  • the tenth switching transistor T10 is turned on, the organic light emitting diode OLED starts to emit light (that is, starts to display), and the anode voltage jumps to the light emitting voltage V oled of the organic light emitting diode OLED; correspondingly, at this time
  • the operating current I oled of the organic light emitting diode OLED passes through the fourth driving transistor D4, and the voltage of the gate of the fourth driving transistor D4 is equal to the voltage of the second electrode (point a in the figure) of the third storage capacitor C3, that is, equal to (V) Th3 +V data ); and since the fourth driving transistor D4 is in a saturated state, the operating current Ioled formula of the organic light emitting diode OLED is (where K is a coefficient):
  • I oled K(V gs -V th4 ) 2
  • I oled K(V data -V oled ) 2 ;
  • the operating current Ioled of the organic light emitting diode OLED is independent of the threshold voltage of the driving transistor, so that the influence of the drift of the threshold voltage of the driving transistor on the luminance of the organic light emitting diode OLED can be avoided, and a better display effect can be achieved.
  • step S301 When the display of the frame image is completed, the process returns to step S301 to start displaying the image of the next frame.
  • the organic light emitting diode pixel circuit of the embodiment and the driving method thereof can also undergo some changes.
  • the state of the tenth switching transistor T10 is always opposite to the state of the twelfth switching transistor T12 controlled by the second scanning signal Scan2, so
  • the twelfth switching transistor T12 is an N-type thin film transistor, a separate control signal EM is required for control.
  • the tenth switching transistor T10 can also be changed to a P-type thin film transistor, and its gate becomes for receiving the second scanning signal Scan2, so that it can be in other structures (transistor type, The circuit connection mode, etc.) is omitted, a control signal EM is omitted, and the circuit structure is simplified; of course, since the control signal EM is no longer present at this time, the timing chart of the drive signal also becomes as shown in FIG. There is no longer a control signal EM.

Abstract

一种有机发光二极管像素电路及其驱动方法,属于有机发光二极管显示和指纹识别技术领域,可以解决现有的有机发光二极管像素电路功能单一或结构复杂的问题。有机发光二极管像素电路包括:触摸指纹检测模块,用于在第一扫描信号(Scan1)和第二扫描信号(Scan2)的控制下,检测是否发生触摸以及触摸是由指纹凸部(91)引起还是由指纹凹部(92)引起,并将检测结果发给读取线(Read);补偿显示模块,包括有机发光二极管(OLED)和至少一个驱动晶体管(D1),用于至少在第一扫描信号(Scan1)、第二扫描信号(Scan2)、数据信号(Data)的控制下,消除所述驱动晶体管(D1)的阈值电压漂移并驱动有机发光二极管(OLED)进行显示。

Description

有机发光二极管像素电路及其驱动方法 技术领域
本发明属于有机发光二极管显示和指纹识别技术领域,具体涉及一种有机发光二极管像素电路及其驱动方法。
背景技术
有机发光二极管显示面板是依靠有机发光二极管的发光实现显示的;有机发光二极管显示面板的每个像素单元(即子像素)中有一个有机发光二极管像素电路,该有机发光二极管像素电路的最基本结构如图1所示,由一个开关晶体管T、一个驱动晶体管D、一个存储电容器C和一个有机发光二极管OLED组成(即2T1C),并在扫描信号Scan、数据信号Data和电源电压Vdd的驱动下工作。其中,驱动晶体管D处于饱和状态,因此通过其的电流(也就是通
过有机发光二极管的工作电流Ioled)公式为:
Ioled=K(Vgs-Vth)2
其中,K为系数,Vgs为驱动晶体管D的栅源电压,Vth为驱动晶体管D的阈值电压。在源极电压一定的情况下,驱动晶体管D的栅极电压即等于数据信号Data所提供的用于使有机发光二极管进行显示的驱动电压Vdata,而有机发光二极管OLED的亮度(即其显示的内容)又由其工作电流Ioled决定;由此,通过调节驱动电压Vdata即可控制有机发光二极管OLED的亮度,也就是控制其显示的内容。
发明人发现现有技术中至少存在如下问题:
首先,随着时间的推移,驱动晶体管的阈值电压Vth会逐渐变化(即阈值电压漂移),从而导致在驱动电压Vdata不变的情况下,工作电流Ioled产生不可预知的变化,影响显示效果。
为解决上述问题,现有方法是在有机发光二极管像素电路中 增设补偿电路以消除阈值电压的漂移,但该补偿电路中往往包括大量的电容器、薄膜晶体管等,导致有机发光二极管像素电路的结构复杂,成本高。
同时,指纹识别功能是目前常用的电子设备功能之一,其对于增强电子设备的安全性,扩展其应用范围,提高其附加值等均有重要意义;而目前的有机发光二极管显示面板多数不具备指纹识别能力,功能单一;或者虽然具备指纹识别功能,但却要外加独立的指纹识别电路(如激光指纹识别电路),导致其结构复杂,成本提高,并影响有机发光二极管显示面板本身的显示功能。
发明内容
本发明所要解决的技术问题包括,针对现有的有机发光二极管像素电路功能单一或结构复杂的问题,提供一种可实现触控、指纹识别、消除阈值电压的漂移、显示等多种功能,且结构简单、成本低的有机发光二极管像素电路及其驱动方法。
解决本发明技术问题所采用的技术方案是一种有机发光二极管像素电路,其包括:
触摸指纹检测模块,其用于在第一扫描信号和第二扫描信号的控制下,检测是否发生触摸以及触摸是由指纹凸部引起还是由指纹凹部引起,并将检测结果发给读取线;以及
补偿显示模块,包括有机发光二极管和至少一个驱动晶体管,所述补偿显示模块用于至少在第一扫描信号、第二扫描信号和数据信号的控制下,消除所述至少一个驱动晶体管的阈值电压的漂移并驱动有机发光二极管进行显示。
优选的是,所述触摸指纹检测模块包括检测电容器、第一检测晶体管、第二检测晶体管和第三检测晶体管,其中,
所述检测电容器包括用于感受触摸的第一极以及与第一极相对的第二极,所述检测电容器的第二极用于接收所述第二扫描信号;
所述第一检测晶体管的栅极用于接收所述第一扫描信号,第一极用于接收参考电压,第二极连接所述检测电容器的第一极;
第二检测晶体管的栅极连接所述检测电容器的第一极,第一极用于接收所述参考电压,第二极连接所述第三检测晶体管的第一极;以及
所述第三检测晶体管的栅极用于接收所述第二扫描信号,第二极连接读取线。
进一步优选的是,所述补偿显示模块包括第一存储电容器、有机发光二极管、第一驱动晶体管、第一开关晶体管、第二开关晶体管、第三开关晶体管、第四开关晶体管和第五开关晶体管,其中,所述第一驱动晶体管、所有的所述开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,且
所述第一存储电容器包括第一极和第二极;
所述有机发光二极管的阴极接地;
所述第一驱动晶体管的栅极连接所述第一存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
所述第一开关晶体管的栅极用于接收所述第二扫描信号,第一极连接所述第一驱动晶体管的第二极,第二极用于接收电源电压;
所述第二开关晶体管的栅极用于接收所述第一扫描信号,第一极连接所述第一存储电容器的第二极,第二极连接所述第一驱动晶体管的第二极;
所述第三开关晶体管的栅极用于接收所述第一扫描信号,第一极用于接收所述数据信号,第二极连接所述第一存储电容器的第一极;
所述第四开关晶体管的栅极用于接收所述第二扫描信号,第一极连接所述第一存储电容器的第一极,第二极连接所述有机发光二极管的阳极;以及
所述第五开关晶体管的栅极用于接收所述第一扫描信号,第 一极接地,第二极连接所述有机发光二极管的阳极。
进一步优选的是,所述补偿显示模块包括第二存储电容器、有机发光二极管、第二驱动晶体管、第六开关晶体管、第七开关晶体管、第八开关晶体管和第九开关晶体管,其中,所述第二驱动晶体管、所有的所述开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,且
所述第二存储电容器包括第一极和第二极;
所述有机发光二极管的阴极接地;
所述第二驱动晶体管的栅极连接所述第二存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
所述第六开关晶体管的栅极用于接收所述第二扫描信号,第一极连接所述第二驱动晶体管的第二极,第二极用于接收电源电压;
所述第七开关晶体管的栅极用于接收所述第一扫描信号,第一极连接所述第二存储电容器的第二极,第二极连接所述第二驱动晶体管的第二极;
所述第八开关晶体管的栅极用于接收控制信号,第一极用于接收所述数据信号,第二极连接所述第二存储电容器的第一极;以及
所述第九开关晶体管的栅极用于接收所述第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
进一步优选的是,所述补偿显示模块包括第二存储电容器、有机发光二极管、第二驱动晶体管、第六开关晶体管、第七开关晶体管、第八开关晶体管和第九开关晶体管,其中,所述第二驱动晶体管、所述第六开关晶体管、所述第七开关晶体管、所述第九开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,所述第八开关晶体管为P型薄膜晶体管,且
所述第二存储电容器包括第一极和第二极;
所述有机发光二极管的阴极接地;
所述第二驱动晶体管的栅极连接所述第二存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
所述第六开关晶体管的栅极用于接收所述第二扫描信号,第一极连接所述第二驱动晶体管的第二极,第二极用于接收电源电压;
所述第七开关晶体管的栅极用于接收所述第一扫描信号,第一极连接所述第二存储电容器的第二极,第二极连接所述第二驱动晶体管的第二极;
所述第八开关晶体管的栅极用于接收所述第二扫描信号,第一极用于接收所述数据信号,第二极连接所述第二存储电容器的第一极;以及
所述第九开关晶体管的栅极用于接收所述第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
进一步优选的是,所述补偿显示模块包括第二存储电容器、有机发光二极管、第二驱动晶体管、第六开关晶体管、第七开关晶体管、第八开关晶体管和第九开关晶体管,其中,所述第二驱动晶体管、所述第七开关晶体管、所述第八开关晶体管、所述第九开关晶体管、所述第一检测晶体管和所述第二检测晶体管均为N型薄膜晶体管,所述第六开关晶体管和所述第三检测晶体管均为P型薄膜晶体管,且
所述第二存储电容器包括第一极和第二极;
所述有机发光二极管的阴极接地;
所述第二驱动晶体管的栅极连接所述第二存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
所述第六开关晶体管的栅极用于接收所述第二扫描信号,第一极连接所述第二驱动晶体管的第二极,第二极用于接收电源电压;
所述第七开关晶体管的栅极用于接收所述第一扫描信号,第 一极连接所述第二存储电容器的第二极,第二极连接所述第二驱动晶体管的第二极;
所述第八开关晶体管的栅极用于接收所述第二扫描信号,第一极用于接收所述数据信号,第二极连接所述第二存储电容器的第一极;以及
所述第九开关晶体管的栅极用于接收所述第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
进一步优选的是,所述补偿显示模块包括第三存储电容器、有机发光二极管、第三驱动晶体管、第四驱动晶体管、第十开关晶体管、第十一开关晶体管和第十二开关晶体管,其中,所有的所述驱动晶体管、所有的所述开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,且
所述第三存储电容器包括第一极和第二极,所述第三存储电容器的第一极接地;
所述有机发光二极管的阴极接地;
所述第三驱动晶体管的栅极和第二极均连接所述第三存储电容器的第二极;
所述第四驱动晶体管的栅极连接所述第三存储电容器的第二极;
所述第十开关晶体管的栅极用于接收控制信号,第一极连接所述第四驱动晶体管的第二极,第二极用于接收电源电压;
所述第十一开关晶体管的栅极用于接收所述第一扫描信号,第一极连接所述第三驱动晶体管的第二极,第二极连接所述第四驱动晶体管的第二极;以及
所述第十二开关晶体管的栅极用于接收所述第二扫描信号,第一极用于接收所述数据信号,第二极连接所述第三驱动晶体管的第一极。
进一步优选的是,所述补偿显示模块包括第三存储电容器、 有机发光二极管、第三驱动晶体管、第四驱动晶体管、第十开关晶体管、第十一开关晶体管和第十二开关晶体管,其中,所有的所述驱动晶体管、所述第十一开关晶体管、所述第十二开关晶体管、所有的所述检测晶体管均为N型薄膜晶体管,所述第十开关晶体管为P型薄膜晶体管,且
所述第三存储电容器包括第一极和第二极,所述第三存储电容器的第一极接地;
所述有机发光二极管的阴极接地;
所述第三驱动晶体管的栅极和第二极均连接所述第三存储电容器的第二极;
所述第四驱动晶体管的栅极连接所述第三存储电容器的第二极;
所述第十开关晶体管的栅极用于接收所述第二扫描信号,第一极连接所述第四驱动晶体管的第二极,第二极用于接收电源电压;
所述第十一开关晶体管的栅极用于接收所述第一扫描信号,第一极连接所述第三驱动晶体管的第二极,第二极连接所述第四驱动晶体管的第二极;以及
所述第十二开关晶体管的栅极用于接收所述第二扫描信号,第一极用于接收所述数据信号,第二极连接所述第三驱动晶体管的第一极。
解决本发明技术问题所采用的技术方案是一种上述有机发光二极管像素电路的驱动方法,其包括:
使所述触摸指纹检测模块和所述补偿显示模块均重置、充电;
使所述补偿显示模块获得正确的补偿电压;
使所述触摸指纹检测模块检测触摸并输出检测结果;以及
使补偿显示模块发光并显示。
优选的是,所述驱动方法包括:
在重置阶段,将所述第一扫描信号和所述第二扫描信号均置为高电平;
在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平,将所述数据信号作为用于驱动所述有机发光二极管进行显示的驱动电压;以及
在读取显示阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平。
进一步优选的是,在所述补偿阶段和所述读取显示阶段之间,还包括:
缓冲阶段,在该缓冲阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平。
优选的是,所述驱动方法包括:
在重置阶段,将所述第一扫描信号和所述第二扫描信号均置为高电平,将所述控制信号置为低电平;
在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平,将所述控制信号置为高电平;
在写入阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为低电平,将所述控制信号置为高电平,将所述数据信号作为用于驱动所述有机发光二极管进行显示的驱动电压;以及
在读取显示阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述控制信号置为低电平。
优选的是,所述驱动方法包括:
在重置阶段,将所述第一扫描信号和所述第二扫描信号均置为高电平;
在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平;
在写入阶段,将所述第一扫描信号置为低电平,将所述第二 扫描信号置为低电平,将所述数据信号作为用于驱动有机发光二极管进行显示的驱动电压;以及
在读取显示阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平。
优选的是,所述驱动方法包括:
在重置阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号均置为低电平;
在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为高电平;
在写入阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述数据信号作为用于驱动有机发光二极管进行显示的驱动电压;以及
在读取显示阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平。
优选的是,所述驱动方法包括:
在重置阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平,将所述控制信号置为高电平;
在读取补偿阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述控制信号置为低电平,将所述数据信号作为用于驱动有机发光二极管进行显示的驱动电压;以及
在显示阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平,将所述控制信号置为高电平。
优选的是,所述驱动方法包括:
在重置阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平;
在读取补偿阶段,将所述第一扫描信号置为低电平,将所述 第二扫描信号置为高电平,将所述数据信号置为用于驱动有机发光二极管进行显示的驱动电压;以及
在显示阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平。
其中,各“晶体管”均指薄膜晶体管,其是一种常用的电子器件,每个薄膜晶体管包括两个由有源区连接的电极,分别为源极和漏极,其中电流流入的为源极,电流流出的为漏极;因为在本发明中,很多晶体管在不同时刻的电流流向不一样,故不再区分源极和漏极,而只是将晶体管的这两极分别称为第一极和第二极;因此,该第一极和第二极只是用于区分晶体管两极的名称,它们的具体区分由其与其他部件的连接关系限定,而与源极和漏极并无一定的对应关系。
本发明的有机发光二极管像素电路包括触摸指纹检测模块,其可检测是否发生触摸,以实现触控功能;同时,该模块还可检测出触摸是由指纹凸部引起还是由指纹凹部引起,这样,将多个有机发光二极管像素电路的判断结果相结合即可获取触摸者的指纹,从而实现指纹识别;另外,有机发光二极管像素电路中还包括补偿显示模块,其可在消除驱动晶体管的阈值电压的漂移的情况下驱动有机发光二极管进行显示,从而实现良好的显示效果。总之,本发明的有机发光二极管像素电路同时实现了触控、指纹识别、消除阈值电压的漂移、显示等多种功能,其不仅功能强,而且结构简单,成本低。
附图说明
图1为现有的有机发光二极管像素电路的示意图;
图2为本发明的实施例1的一种有机发光二极管像素电路的示意图;
图3为图2的有机发光二极管像素电路的驱动时序示意图;
图4为本发明的实施例2的一种有机发光二极管像素电路的 示意图;
图5为图4的有机发光二极管像素电路的驱动时序示意图;
图6为本发明的实施例2的另一种有机发光二极管像素电路的示意图;
图7为图6的有机发光二极管像素电路的驱动时序示意图;
图8为本发明的实施例2的另一种有机发光二极管像素电路的示意图;
图9为图8的有机发光二极管像素电路的驱动时序示意图;
图10为本发明的实施例3的一种有机发光二极管像素电路的示意图;
图11为图10的有机发光二极管像素电路的驱动时序示意图;
图12为本发明的实施例3的另一种有机发光二极管像素电路的示意图;
图13为图12的有机发光二极管像素电路的驱动时序示意图;
图14为本发明的有机发光二极管像素电路的触摸指纹检测模块对触摸进行检测的原理图;
图15为本发明的有机发光二极管像素电路的触摸指纹检测模块对指纹凹部和指纹凸部进行检测的原理图;
其中附图标记为:M1、第一检测晶体管;M2、第二检测晶体管;M3、第三检测晶体管;T、开关晶体管;T1、第一开关晶体管;T2、第二开关晶体管;T3、第三开关晶体管;T4、第四开关晶体管;T5、第五开关晶体管;T6、第六开关晶体管;T7、第七开关晶体管;T8、第八开关晶体管;T9、第九开关晶体管;T10、第十开关晶体管;T11、第十一开关晶体管;T12、第十二开关晶体管;D、驱动晶体管;D1、第一驱动晶体管;D2、第二驱动晶体管;D3、第三驱动晶体管;D4、第四驱动晶体管;C、存储电容器;Cj、检测电容器;C1、第一存储电容器;C2、第二存储电容器;C3、第三存储电容器;Cf、触摸电容;OLED、有机发光二极管;Scan、扫描信号;Scan1、第一扫描信号;Scan2、第二扫描信号;Data、数据信号;Read、读取线;Vdd、电源电压;Vc、 参考电压;EM、控制信号;9、手指;91、指纹凸部;92、指纹凹部。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1:
如图2、图3、图14、图15所示,本实施例提供一种有机发光二极管像素电路及其驱动方法。
其中,有机发光二极管像素电路是指有机发光二极管显示面板的像素单元(即子像素)中的电路。具体地,对有机发光二极管显示面板而言,其中可以是所有的像素单元均采用本发明的有机发光二极管像素电路;但优选地,从空间占用、制备难度、成本等多方面综合考虑,也可只有部分像素单元采用本发明的有机发光二极管像素电路,而其余像素单元采用没有触摸和指纹识别功能的现有像素电路的形式,例如,在排成2行3列的每6个像素单元(即2×3个子像素)中,可以只有一个采用本发明的有机发光二极管像素电路;这是因为通常而言有机发光二极管显示面板的子像素尺寸都很小,故即使多个子像素中只有一个具有触摸和指纹识别功能,其精度也完全够用。
具体地,本实施例的有机发光二极管像素电路包括:
触摸指纹检测模块,用于在第一扫描信号Scan1和第二扫描信号Scan2的控制下,检测是否发生触摸以及触摸是由指纹凸部91引起还是由指纹凹部92引起,并将检测结果发给读取线Read;以及
补偿显示模块,包括有机发光二极管OLED和至少一个驱动晶体管,用于至少在第一扫描信号Scan1、第二扫描信号Scan2和数据信号Data的控制下,消除至少一个驱动晶体管的阈值电压的 漂移并驱动有机发光二极管OLED进行显示。
本实施例的有机发光二极管像素电路包括触摸指纹检测模块,其可检测是否发生触摸,以实现触控功能;同时,该模块还可检测出触摸是由指纹凸部91引起还是由指纹凹部92引起,这样,将多个有机发光二极管像素电路的判断结果相结合即可获取触摸者的指纹,从而实现指纹识别;另外,有机发光二极管像素电路中还包括补偿显示模块,其可在消除驱动晶体管的阈值电压的漂移的情况下驱动有机发光二极管OLED进行显示,从而实现良好的显示效果。总之,本实施例的有机发光二极管像素电路同时实现了触控、指纹识别、消除阈值电压的漂移、显示等多种功能,其不仅功能强,而且结构简单,成本低。
如图2所示,下面对本实施例的有机发光二极管像素电路进行详细的介绍。
上述触摸指纹检测模块包括检测电容器Cj、第一检测晶体管M1、第二检测晶体管M2和第三检测晶体管M3,其中,全部晶体管均为N型薄膜晶体管。
检测电容器Cj包括用于感受触摸的第一极(图中d点),以及与第一极相对的第二极,其第二极用于接收第二扫描信号Scan2;
第一检测晶体管M1的栅极用于接收第一扫描信号Scan1,第一极用于接收参考电压Vc,第二极连接检测电容器Cj的第一极;
第二检测晶体管M2的栅极连接检测电容器Cj的第一极,第一极用于接收参考电压Vc,第二极连接第三检测晶体管M3的第一极;
第三检测晶体管M3的栅极用于接收第二扫描信号Scan2,第二极连接读取线Read。
相应地,其补偿显示模块包括第一存储电容器C1、有机发光二极管OLED、第一驱动晶体管D1、第一开关晶体管T1、第二开关晶体管T2、第三开关晶体管T3、第四开关晶体管T4和第五开 关晶体管T5,其中,全部晶体管同样均为N型薄膜晶体管,且
第一存储电容器C1包括第一极和第二极;
有机发光二极管OLED的阴极接地;
第一驱动晶体管D1的栅极连接第一存储电容器C1的第二极(图中a点),第一极连接有机发光二极管OLED的阳极;
第一开关晶体管T1的栅极用于接收第二扫描信号Scan2,第一极连接第一驱动晶体管D1的第二极,第二极用于接收电源电压Vdd;
第二开关晶体管T2的栅极用于接收第一扫描信号Scan1,第一极连接第一存储电容器C1的第二极,第二极连接第一驱动晶体管D1的第二极;
第三开关晶体管T3的栅极用于接收第一扫描信号Scan1,第一极用于接收数据信号Data,第二极连接第一存储电容器C1的第一极(图中b点);
第四开关晶体管T4的栅极用于接收第二扫描信号Scan2,第一极连接第一存储电容器C1的第一极,第二极连接有机发光二极管OLED的阳极;
第五开关晶体管T5的栅极用于接收第一扫描信号Scan1,第一极接地,第二极连接有机发光二极管OLED的阳极。
相应地,上述有机发光二极管像素电路的驱动方法包括:用触摸指纹检测模块来检测是否发生触摸以及触摸是由指纹凸部91引起还是由指纹凹部92引起,并将检测结果发给读取线Read;以及用补偿显示模块来消除至少一个驱动晶体管的阈值电压的漂移并驱动有机发光二极管OLED进行显示。
下面结合有机发光二极管像素电路的驱动方法来解释本实施例的有机发光二极管像素电路的运行原理。本发明提供的有机发光二极管像素电路的驱动方法包括步骤:
使所述触摸指纹检测模块和所述补偿显示模块均重置、充电;
使所述补偿显示模块获得正确的补偿电压;
使所述触摸指纹检测模块检测触摸并输出检测结果;以及
使补偿显示模块发光并显示。
需要说明的是,上述各步骤并不一定要求独立地实现,而是可以同时实现两个或更多个步骤,本发明对此不进行限定,只要上述各步骤能够最终实现即可。下面将结合具体实施例进行说明。
如图3所示,本实施例的有机发光二极管像素电路的运行包括重置阶段、补偿阶段、缓冲阶段和读取显示阶段,其驱动方法具体包括以下步骤:
步骤S101;在重置阶段,将第一扫描信号Scan1和第二扫描信号Scan2均置为高电平;从而使触摸指纹检测模块和补偿显示模块均重置、充电。
其中,由于第一扫描信号Scan1和第二扫描信号Scan2均为高电平,故第一检测晶体管M1、第三检测晶体管M3、第一驱动晶体管D1、第一开关晶体管T1、第二开关晶体管T2、第三开关晶体管T3、第四开关晶体管T4和第五开关晶体管T5均导通。
在触摸指纹检测模块中,检测电容器Cj的第一极(图中d点)经第一检测晶体管M1被充电至参考电压Vc,而其第二极则被充电至第二扫描信号Scan2的高电平,检测电容器Cj重置完成。
在图2中,检测电容器Cj的第一极连接一个单独的极片,该极片有较大的面积,从而当有触摸发生时,其可对触摸产生灵敏的感应。当然,应当理解,如果直接用检测电容器Cj的第一极进行上述感应也是可行的(即图中的极片可与检测电容器Cj的第一极为一体);总之,只要当有触摸时,检测电容器Cj的第一极可感应到该触摸的信号即可,在此对其具体结构不再进行详细描述。
在补偿显示模块中,第一存储电容器C1的第二极和第一驱动晶体管D1的栅极(图中a点)均被充电至电源电压Vdd。
同时,可以将数据信号Data作为用于使有机发光二极管OLED进行显示的驱动电压Vdata,从而经过第三开关晶体管T3将第一存储电容器C1的第一极(图中b点)充电至驱动电压Vdata。当 然,驱动电压Vdata也可在下一步骤中输入。
步骤S102:在补偿阶段,将第一扫描信号Scan1置为高电平,将第二扫描信号Scan2值为低电平,将数据信号Data作为用于驱动有机发光二极管OLED进行显示的驱动电压Vdata;从而使补偿显示模块获得正确的补偿电压。
此时第二扫描信号Scan2变为低电平,从而第一开关晶体管T1、第四开关晶体管T4和第三检测晶体管M3均断开。
触摸指纹检测模块的状态无实质性变化。
而补偿显示模块的第一存储电容器C1的第一极(图中b点)被充电至驱动电压Vdata或保持驱动电压Vdata,第二极(图中a点)则经由第二开关晶体管T2、第一驱动晶体管D1和第五开关晶体管T5放电,当其电压降低到第一驱动晶体管D1的阈值电压Vth1时,第一驱动晶体管D1关闭,放电停止,第一存储电容器C1两端(b点和a点)的电压差为(Vdata-Vth1)。
在步骤S101和步骤S102中,由于第五开关晶体管T5一直开启,故电流会经过第五开关晶体管T5而不经过有机发光二极管OLED,有机发光二极管OLED不发光,这样一方面提高了其使用寿命,另一方面也保证了其不会产生不正确的发光。
步骤S103:可选地,在缓冲阶段,将第一扫描信号Scan1置为低电平,将第二扫描信号Scan2置为低电平;从而使补偿显示模块的电压稳定。
此时第一扫描信号Scan1也变为低电平,从而各晶体管均断开。
本步骤的主要作用是使补偿显示模块中的第一存储电容器C1两端(a点和b点)的电压差稳定。当然,应当理解,若不进行本步骤也是可行的。
另外,从本步骤开始,第三开关晶体管T3断开,故数据信号Data不能再被写入补偿显示模块中,其可用于提供下一行像素单元所需的驱动电压。同时,第五开关晶体管T5也从本步骤开始断开,故有机发光二极管OLED具备了进行显示的条件。
S104:在读取显示阶段,将第一扫描信号Scan1置为低电平,将第二扫描信号Scan2置为高电平,从而使触摸指纹检测模块可检测触摸并通过读取线Read输出检测结果,同时补偿显示模块进行显示。
本步骤中,第二扫描信号Scan2变为高电平,从而第一开关晶体管T1、第四开关晶体管T4和第三检测晶体管M3重新导通。
对于触摸指纹检测模块,其第一检测晶体管M1断开,检测电容器Cj不再对外放电;当有触摸时,触摸的手指9会与检测电容器Cj的第一极间形成触摸电容Cf,其效果如图14所示,相当于触摸电容Cf与检测电容器Cj的电容值并联;因此,检测电容器Cj的第一极上的电荷会按照触摸电容Cf与检测电容器Cj的电容值的比例重新分配,这样,加载在第二检测晶体管M2栅极的电压也就会发生变化,从而流经第二检测晶体管M2的检测电流也会发生变化(例如有电流和无电流,或者电流值不同);该检测电流流经第三检测晶体管M3后由读取线Read输出到相应地检测芯片,检测芯片根据该检测电流即可确定哪个像素单元处发生了触摸,也就是确定了触摸位置,从而实现触控。
相应地,如图15所示,指纹实际也就是手指9表面的凹部和凸部,显然,当指纹凹部92和指纹凸部91发生触摸时,其与检测电容器Cj的第一极间的距离不同,相应地,触摸电容Cf的值也不同,指纹凹部92对应的触摸电容Cf的值较小,指纹凸部91对应的触摸电容Cf的值较大;进一步地,当指纹凹部92和指纹凸部91触摸时,加载在第二检测晶体管M2栅极的电压不同,导致检测电流也不同。这样,通过对发生触摸区域中的各像素单元的检测电极的比较,即可得出哪些像素单元对应指纹凹部92,哪些对应指纹凸部91,再根据这些像素单元的位置即可得出进行触摸的手指9上的指纹形态,也就实现了指纹识别。
相应地,在本步骤中,第一开关晶体管T1导通,有机发光二极管OLED开始发光(也就是开始进行显示),其阳极电压跳变为有机发光二极管OLED的发光电压Voled,相应地,第一驱动晶体管 D1的第一极也变为发光电压Voled,且此时第四开关晶体管T4导通,故第一存储电容器C1的第一极(图中b点)的电压也变为发光电压Voled;由于第一存储电容器C1无法放电,故其第二极(图中a点)上的电压相应被举升为(Voled+Vth1-Vdata),也就是第一驱动晶体管D1的栅极电压变为(Voled+Vth1-Vdata);而第一驱动晶体管D1处于饱和状态,故其电流(也就是通过有机发光二极管OLED的工作电流Ioled)公式为(其中K为系数):
Ioled=K(Vgs-Vth1)2
=K[(Voled+Vth1-Vdata)-Voled-Vth1]2
=K(Vdata)2
由此可见,有机发光二极管OLED发光时的工作电流Ioled与驱动晶体管的阈值电压无关,从而其可避免驱动晶体管的阈值电压的漂移对有机发光二极管OLED发光亮度的影响,实现更好的显示效果。
当本帧图像显示完成后,重新返回步骤S101,开始显示下一帧的图像。
实施例2:
本实施例提供一种有机发光二极管像素电路及其驱动方法。
本实施例的有机发光二极管像素电路与实施例1的有机发光二极管像素电路类似,均包括触摸指纹检测模块和补偿显示模块,且其触摸指纹检测模块的结构与实施例1相同,区别仅在于二者的补偿显示模块的结构不同。
如图4所示,下面对本实施例的有机发光二极管像素电路(主要是补偿显示模块的结构)进行详细的介绍。
具体地,补偿显示模块包括第二存储电容器C2、有机发光二极管OLED、第二驱动晶体管D2、第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8和第九开关晶体管T9,其中,全部晶体管均为N型薄膜晶体管,且
第二存储电容器C2包括第一极和第二极;
有机发光二极管OLED的阴极接地;
第二驱动晶体管D2的栅极连接第二存储电容器C2的第二极(图中a点),第一极连接有机发光二极管OLED的阳极;
第六开关晶体管T6的栅极用于接收第二扫描信号Scan2,第一极连接第二驱动晶体管D2的第二极,第二极用于接收电源电压Vdd;
第七开关晶体管T7的栅极用于接收第一扫描信号Scan1,第一极连接第二存储电容器C2的第二极,第二极连接第二驱动晶体管D2的第二极;
第八开关晶体管T8的栅极用于接收控制信号EM,第一极用于接收数据信号Data,第二极连接第二存储电容器C2的第一极(图中b点);
第九开关晶体管T9的栅极用于接收第一扫描信号Scan1,第一极接地,第二极连接有机发光二极管OLED的阳极。
如图5所示,下面结合上述有机发光二极管像素电路的驱动方法解释其运行原理,该有机发光二极管像素电路的运行包括重置阶段、补偿阶段、写入阶段和读取显示阶段,其驱动方法具体包括以下步骤:
步骤S201:在重置阶段,将第一扫描信号Scan1和第二扫描信号Scan2均置为高电平,将控制信号EM置为低电平;从而使触摸指纹检测模块和补偿显示模块均重置、充电。
其中,第一检测晶体管M1、第三检测晶体管M3、第二驱动晶体管D2、第六开关晶体管T6、第七开关晶体管T7和第九开关晶体管T10均导通,第八开关晶体管T8断开。
在触摸指纹检测模块中,检测电容器Cj的第一极(图中d点)经第一检测晶体管M1被充电至参考电压Vc,第二极则被充电至第二扫描信号Scan2的高电平,检测电容器Cj重置完成。
在补偿显示模块中,第二存储电容器C2的第二极(图中a点)经第六开关晶体管T6和第七开关晶体管T7被充电至电源电压 Vdd。
步骤S202:在补偿阶段,将第一扫描信号Scan1置为高电平,将第二扫描信号Scan2置为低电平,将控制信号EM置为高电平;从而使补偿显示模块获得正确的补偿电压。
此时第二扫描信号Scan2变为低电平,控制信号EM变为高电平,从而第六开关晶体管T6和第三检测晶体管M3均断开,而第八开关晶体管T8导通。
此时触摸指纹检测模块的状态无实质性变化。
而补偿显示模块的第二存储电容器C2的第一极(图中b点)被充电至数据信号Data的电压Vp(可为0,也可为任意其他值),第二极(图中a点)则经由第七开关晶体管T7、第二驱动晶体管D2和第九开关晶体管T9放电,当其电压降低到第二驱动晶体管D2的阈值电压Vth2时,第二驱动晶体管D2关闭,放电停止,第二存储电容器C2两端(b点和a点)的电压差为(Vp-Vth2)。
步骤S203:在写入阶段,将第一扫描信号Scan1置为低电平,将第二扫描信号Scan2置为低电平,将控制信号EM置为高电平,将数据信号Data作为用于驱动有机发光二极管OLED进行显示的驱动电压Vdata;从而使补偿显示模块被充电至正确的电压。
此时第一扫描信号Scan1也变为低电平,从而除第八开关晶体管T8外的其他各晶体管均断开。
此时触摸指纹检测模块的状态无实质性变化。
而在补偿显示模块中,数据信号Data经过第八开关晶体管T8使第二存储电容器C2的第一极(图中b点)的电压由Vp变为Vdata,由于此时第二存储电容器C2无法放电,故其第二极(图中a点)的电压被举升至(Vth2+Vdata-Vp)。
步骤S204:在读取显示阶段,将第一扫描信号Scan1值为低电平,将第二扫描信号Scan2置为高电平,将控制信号EM置为低电平;从而使触摸指纹检测模块输出其检测结果,并使补偿显示模块发光并显示。
此时,第三检测晶体管M3导通,从而触摸指纹检测模块的 检测结果可经由第三检测晶体管M3传导到读取线Read上,以进行触控和指纹识别。其具体的作用原理和过程与实施例1中的读取显示阶段相同,故在此不再详细描述。
在补偿显示模块中,第八开关晶体管T8断开,故数据信号Data不能再被写入,数据信号Data可为其他的像素单元提供驱动信号。
同时,第九开关晶体管T9断开,第六开关晶体管T6导通,故有机发光二极管OLED开始发光(也就是开始进行显示),其阳极电压跳变为有机发光二极管OLED的发光电压Voled,相应地,第二驱动晶体管D2的第一极的电压也变为发光电压Voled,又由于第二驱动晶体管D2处于饱和状态,故其电流(也就是通过有机发光二极管OLED的工作电流Ioled)公式为(其中K为系数):
Ioled=K(Vgs-Vth2)2
=K[(Vth2+Vdata-Vp)-Voled-Vth2]2
=K(Vdata-Vp-Voled)2
由此可见,有机发光二极管OLED发光时的工作电流Ioled与驱动晶体管的阈值电压无关,从而其可避免驱动晶体管的阈值电压的漂移对有机发光二极管OLED发光亮度的影响,实现更好的显示效果。
当然,由于此时的工作电流Ioled还与Vp有关,故设定驱动电压Vdata的具体值时,应当考虑到Vp的影响。
当本帧图像显示完成后,重新返回步骤S201,开始显示下一帧的图像。
优选地,本实施例的有机发光二极管像素电路及其驱动方法还可进行一些变化。
例如,从以上的驱动方法可见,本实施例的有机发光二极管像素电路中,第八开关晶体管T8的状态始终与由第二扫描信号Scan2控制的第六开关晶体管T6的状态相反,故当其与第六开关晶体管T6均为N型薄膜晶体管时,需要有单独的控制信号EM控 制。
因此,优选地,也可如图6所示,第八开关晶体管T8变为P型薄膜晶体管,且其栅极变为用于接收第二扫描信号Scan2,这样即可在其他结构(晶体管类型、电路连接方式等)不变的情况下,省去一个控制信号EM,简化电路结构;当然,由于此时不再有控制信号EM,故其驱动信号的时序图也变为如图7所示,其中不再有控制信号EM。
或者,也可如图8所示,第八开关晶体管T8用于接收第二扫描信号Scan2,但其仍为N型薄膜晶体管,而同样用于接收第二扫描信号Scan2的第六开关晶体管T6和第三检测晶体管M3则变为P型薄膜晶体管;同时,其驱动信号的时序图变为如图9所示,即第二扫描信号Scan2的高低电平完全反过来,同样可以省去一个控制信号EM。
应当理解,以上两个方式只是对有机发光二极管像素电路中的部分结构和驱动时序进行了一些变化,但在驱动过程中,其各晶体管的开关状态并无变化,故在此不再对其具体驱动过程进行详细解释。
实施例3:
本实施例提供一种有机发光二极管像素电路及其驱动方法。
本实施例的有机发光二极管像素电路与实施例1的有机发光二极管像素电路类似,均包括触摸指纹检测模块和补偿显示模块,且其触摸指纹检测模块的结构与实施例1的相同,区别仅在于二者的补偿显示模块的结构不同。
如图10所示,下面对本实施例的有机发光二极管像素电路(主要是补偿显示模块的结构)进行详细的介绍。
具体地,其补偿显示模块包括第三存储电容器C3、有机发光二极管OLED、第三驱动晶体管D3、第四驱动晶体管D4、第十开关晶体管T10、第十一开关晶体管T11和第十二开关晶体管T12,其中,所有的晶体管均为N型薄膜晶体管,且
第三存储电容器C3包括第一极和第二极,其第一极接地;
有机发光二极管OLED的阴极接地;
第三驱动晶体管D3的栅极连接第三存储电容器C3的第二极,第二极连接第三存储电容器C3的第二极;
第四驱动晶体管D4的栅极连接第三存储电容器C3的第二极;
第十开关晶体管T10的栅极用于接收控制信号EM,第一极连接第四驱动晶体管D4的第二极,第二极用于接收电源电压Vdd;
第十一开关晶体管T11的栅极用于接收第一扫描信号Scan1,第一极连接第三驱动晶体管D3的第二极,第二极连接第四驱动晶体管D4的第二极;
第十二开关晶体管T12的栅极用于接收第二扫描信号Scan2,第一极用于接收数据信号Data,第二极连接第三驱动晶体管D3的第一极。
如图11所示,下面结合上述有机发光二极管像素电路的驱动方法解释其运行原理,该有机发光二极管像素电路的运行包括重置阶段、读取补偿阶段和现实阶段,其驱动方法具体包括以下步骤:
步骤S301:在重置阶段,将第一扫描信号Scan1置为高电平,将第二扫描信号Scan2置为低电平,将控制信号EM置为高电平;从而使触摸指纹检测模块和补偿显示模块均重置、充电。
其中,第一检测晶体管M1、第十开关晶体管T10和第十一开关晶体管T11均导通,而第三检测晶体管M3和第十二开关晶体管T12均断开。
在触摸指纹检测模块中,检测电容器Cj的第一极(图中d点)经第一检测晶体管M1被充电至参考电压Vc,第二极为第二扫描信号Scan2的低电平,检测电容器Cj被重置完成。
在补偿显示模块中,第三存储电容器C3的第二极(图中a点)经第十开关晶体管T10和第十一开关晶体管T11被充电至电源电 压Vdd。
步骤S302:在读取补偿阶段,将第一扫描信号Scan1置为低电平,将第二扫描信号Scan2置为高电平,将控制信号EM置为低电平,将数据信号Data作为用于驱动有机发光二极管OLED进行显示的驱动电压Vdata;从而使触摸指纹检测模块输出其检测结果,并使补偿显示模块获得正确的补偿电压。
此时全部信号的电平均反转,由此各晶体管的状态也反转。
在触摸指纹检测模块中,第三检测晶体管M3导通,从而触摸指纹检测模块的检测结果可经由第三检测晶体管M3传导到读取线Read上,以进行触控和指纹识别。其具体的作用原理和过程与实施例1中的读取显示阶段相同(区别仅在于检测电容器Cj第二极的电压值不同),故在此不再详细描述。
在补偿显示模块中,数据信号Data经过第十二开关晶体管T12和第三驱动晶体管D3对第三存储电容器C3的第二极(图中a点)充电,直到第三驱动晶体管D3的栅源电压差达到其阈值电压Vth3为止,也就是直到a点电压达到(Vth3+Vdata)为止。
步骤S303:在显示阶段,将第一扫描信号Scan1和第二扫描信号Scan2均置为低电平,将控制信号EM置为高电平;以使补偿显示模块发光并显示。
此时,第三检测晶体管M3断开,触摸指纹检测模块的检测结果不能再被输出,其对电路不产生其他影响。
而在补偿显示模块中,第十开关晶体管T10导通,有机发光二极管OLED开始发光(也就是开始进行显示),其阳极电压跳变为有机发光二极管OLED的发光电压Voled;相应地,此时有机发光二极管OLED的工作电流Ioled经过第四驱动晶体管D4,而第四驱动晶体管D4的栅极的电压等于第三存储电容器C3的第二极(图中a点)的电压,即等于(Vth3+Vdata);又由于第四驱动晶体管D4处于饱和状态,故有机发光二极管OLED的工作电流Ioled公式为(其中K为系数):
Ioled=K(Vgs-Vth4)2
=K[(Vth3+Vdata)-Voled-Vth4]2
显然,该第三驱动晶体管D3和第四驱动晶体管D4的栅极相连,位置接近,具有相同的电气参数,故根据镜像电路原理,可认为它们的阈值电压Vth3与Vth4相等,由此可得到:
Ioled=K(Vdata-Voled)2
可见,有机发光二极管OLED发光时的工作电流Ioled与驱动晶体管的阈值电压无关,从而其可避免驱动晶体管的阈值电压的漂移对有机发光二极管OLED发光亮度的影响,实现更好的显示效果。
当本帧图像显示完成后,重新返回步骤S301,开始显示下一帧的图像。
优选地,本实施例的有机发光二极管像素电路及其驱动方法还可进行一些变化。
例如,从以上的驱动方法可见,本实施例的有机发光二极管像素电路中,第十开关晶体管T10的状态始终与由第二扫描信号Scan2控制的第十二开关晶体管T12的状态相反,故当其与第十二开关晶体管T12均为N型薄膜晶体管时,需要有单独的控制信号EM的控制。
因此,优选地,如图12所示,第十开关晶体管T10也可变为P型薄膜晶体管,且其栅极变为用于接收第二扫描信号Scan2,这样即可在其他结构(晶体管类型、电路连接方式等)不变的情况下省去一个控制信号EM,简化电路结构;当然,由于此时不再有控制信号EM,故其驱动信号的时序图也变为如图13所示,其中不再有控制信号EM。
应当理解,以上方式只是对有机发光二极管像素电路中的部分结构和驱动时序进行了一些变化,但在驱动过程中,其各晶体管的开关状态并无变化,故在此不再对其具体驱动过程进行详细解释。
应当理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本发明的保护范围。

Claims (16)

  1. 一种有机发光二极管像素电路,其特征在于,包括:
    触摸指纹检测模块,用于在第一扫描信号和第二扫描信号的控制下,检测是否发生触摸以及触摸是由指纹凸部引起还是由指纹凹部引起,并将检测结果发给读取线;以及
    补偿显示模块,包括有机发光二极管和至少一个驱动晶体管,用于至少在第一扫描信号、第二扫描信号和数据信号的控制下,消除所述至少一个驱动晶体管的阈值电压的漂移并驱动有机发光二极管进行显示。
  2. 根据权利要求1所述的有机发光二极管像素电路,其特征在于,所述触摸指纹检测模块包括检测电容器、第一检测晶体管、第二检测晶体管和第三检测晶体管,其中,
    所述检测电容器包括用于感受触摸的第一极以及与第一极相对的第二极,所述检测电容器的第二极用于接收第二扫描信号;
    所述第一检测晶体管的栅极用于接收第一扫描信号,第一极用于接收参考电压,第二极连接所述检测电容器的第一极;
    第二检测晶体管的栅极连接所述检测电容器的第一极,第一极用于接收所述参考电压,第二极连接所述第三检测晶体管的第一极;以及
    所述第三检测晶体管的栅极用于接收第二扫描信号,第二极连接读取线。
  3. 根据权利要求2所述的有机发光二极管像素电路,其特征在于,所述补偿显示模块包括第一存储电容器、有机发光二极管、第一驱动晶体管、第一开关晶体管、第二开关晶体管、第三开关晶体管、第四开关晶体管和第五开关晶体管,其中,所述第一驱动晶体管、所有的所述开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,且
    所述第一存储电容器包括第一极和第二极;
    所述有机发光二极管的阴极接地;
    所述第一驱动晶体管的栅极连接所述第一存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
    所述第一开关晶体管的栅极用于接收第二扫描信号,第一极连接所述第一驱动晶体管的第二极,第二极用于接收电源电压;
    所述第二开关晶体管的栅极用于接收第一扫描信号,第一极连接所述第一存储电容器的第二极,第二极连接所述第一驱动晶体管的第二极;
    所述第三开关晶体管的栅极用于接收第一扫描信号,第一极用于接收数据信号,第二极连接所述第一存储电容器的第一极;
    所述第四开关晶体管的栅极用于接收第二扫描信号,第一极连接所述第一存储电容器的第一极,第二极连接所述有机发光二极管的阳极;以及
    所述第五开关晶体管的栅极用于接收第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
  4. 根据权利要求2所述的有机发光二极管像素电路,其特征在于,所述补偿显示模块包括第二存储电容器、有机发光二极管、第二驱动晶体管、第六开关晶体管、第七开关晶体管、第八开关晶体管和第九开关晶体管,其中,所述第二驱动晶体管、所有的所述开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,且
    所述第二存储电容器包括第一极和第二极;
    所述有机发光二极管的阴极接地;
    所述第二驱动晶体管的栅极连接所述第二存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
    所述第六开关晶体管的栅极用于接收第二扫描信号,第一极连接所述第二驱动晶体管的第二极,第二极用于接收电源电压;
    所述第七开关晶体管的栅极用于接收第一扫描信号,第一极 连接所述第二存储电容器的第二极,第二极连接所述第二驱动晶体管的第二极;
    所述第八开关晶体管的栅极用于接收控制信号,第一极用于接收数据信号,第二极连接所述第二存储电容器的第一极;以及
    所述第九开关晶体管的栅极用于接收第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
  5. 根据权利要求2所述的有机发光二极管像素电路,其特征在于,所述补偿显示模块包括第二存储电容器、有机发光二极管、第二驱动晶体管、第六开关晶体管、第七开关晶体管、第八开关晶体管和第九开关晶体管,其中,所述第二驱动晶体管、所述第六开关晶体管、所述第七开关晶体管、所述第九开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,所述第八开关晶体管为P型薄膜晶体管,且
    所述第二存储电容器包括第一极和第二极;
    所述有机发光二极管的阴极接地;
    所述第二驱动晶体管的栅极连接所述第二存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
    所述第六开关晶体管的栅极用于接收第二扫描信号,第一极连接所述第二驱动晶体管的第二极,第二极用于接收电源电压;
    所述第七开关晶体管的栅极用于接收第一扫描信号,第一极连接所述第二存储电容器的第二极,第二极连接所述第二驱动晶体管的第二极;
    所述第八开关晶体管的栅极用于接收第二扫描信号,第一极用于接收数据信号,第二极连接所述第二存储电容器的第一极;以及
    所述第九开关晶体管的栅极用于接收第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
  6. 根据权利要求2所述的有机发光二极管像素电路,其特征 在于,所述补偿显示模块包括第二存储电容器、有机发光二极管、第二驱动晶体管、第六开关晶体管、第七开关晶体管、第八开关晶体管和第九开关晶体管,其中,所述第二驱动晶体管、所述第七开关晶体管、所述第八开关晶体管、所述第九开关晶体管、所述第一检测晶体管和所述第二检测晶体管均为N型薄膜晶体管,所述第六开关晶体管和所述第三检测晶体管均为P型薄膜晶体管,且
    所述第二存储电容器包括第一极和第二极;
    所述有机发光二极管的阴极接地;
    所述第二驱动晶体管的栅极连接所述第二存储电容器的第二极,第一极连接所述有机发光二极管的阳极;
    所述第六开关晶体管的栅极用于接收第二扫描信号,第一极连接所述第二驱动晶体管的第二极,第二极用于接收电源电压;
    所述第七开关晶体管的栅极用于接收第一扫描信号,第一极连接所述第二存储电容器的第二极,第二极连接所述第二驱动晶体管的第二极;
    所述第八开关晶体管的栅极用于接收第二扫描信号,第一极用于接收数据信号,第二极连接所述第二存储电容器的第一极;以及
    所述第九开关晶体管的栅极用于接收第一扫描信号,第一极接地,第二极连接所述有机发光二极管的阳极。
  7. 根据权利要求2所述的有机发光二极管像素电路,其特征在于,所述补偿显示模块包括第三存储电容器、有机发光二极管、第三驱动晶体管、第四驱动晶体管、第十开关晶体管、第十一开关晶体管和第十二开关晶体管,其中,所有的所述驱动晶体管、所有的所述开关晶体管和所有的所述检测晶体管均为N型薄膜晶体管,且
    所述第三存储电容器包括第一极和第二极,所述第三存储电容器的第一极接地;
    所述有机发光二极管的阴极接地;
    所述第三驱动晶体管的栅极和第二极均连接所述第三存储电容器的第二极;
    所述第四驱动晶体管的栅极连接所述第三存储电容器的第二极;
    所述第十开关晶体管的栅极用于接收控制信号,第一极连接所述第四驱动晶体管的第二极,第二极用于接收电源电压;
    所述第十一开关晶体管的栅极用于接收第一扫描信号,第一极连接所述第三驱动晶体管的第二极,第二极连接所述第四驱动晶体管的第二极;以及
    所述第十二开关晶体管的栅极用于接收第二扫描信号,第一极用于接收数据信号,第二极连接所述第三驱动晶体管的第一极。
  8. 根据权利要求2所述的有机发光二极管像素电路,其特征在于,所述补偿显示模块包括第三存储电容器、有机发光二极管、第三驱动晶体管、第四驱动晶体管、第十开关晶体管、第十一开关晶体管和第十二开关晶体管,其中,所有的所述驱动晶体管、所述第十一开关晶体管、所述第十二开关晶体管、所有的所述检测晶体管均为N型薄膜晶体管,所述第十开关晶体管为P型薄膜晶体管,且
    所述第三存储电容器包括第一极和第二极,所述第三存储电容器的第一极接地;
    所述有机发光二极管的阴极接地;
    所述第三驱动晶体管的栅极和第二极均连接所述第三存储电容器的第二极;
    所述第四驱动晶体管的栅极连接所述第三存储电容器的第二极;
    所述第十开关晶体管的栅极用于接收第二扫描信号,第一极连接所述第四驱动晶体管的第二极,第二极用于接收电源电压;
    所述第十一开关晶体管的栅极用于接收第一扫描信号,第一 极连接所述第三驱动晶体管的第二极,第二极连接所述第四驱动晶体管的第二极;以及
    所述第十二开关晶体管的栅极用于接收第二扫描信号,第一极用于接收数据信号,第二极连接所述第三驱动晶体管的第一极。
  9. 一种有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求1至8中任意一项所述的有机发光二极管像素电路;所述驱动方法包括:
    使所述触摸指纹检测模块和所述补偿显示模块均重置、充电;
    使所述补偿显示模块获得正确的补偿电压;
    使所述触摸指纹检测模块检测触摸并输出检测结果;以及
    使补偿显示模块发光并显示。
  10. 根据权利要求9所述的有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求3所述的有机发光二极管像素电路,所述驱动方法包括:
    在重置阶段,将所述第一扫描信号和所述第二扫描信号均置为高电平;
    在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平,将所述数据信号作为用于驱动所述有机发光二极管进行显示的驱动电压;以及
    在读取显示阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平。
  11. 根据权利要求10所述的有机发光二极管像素电路的驱动方法,其特征在于,在所述补偿阶段和所述读取显示阶段之间,还包括:
    缓冲阶段,在该缓冲阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平。
  12. 根据权利要求9所述的有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求4所述的有机发光二极管像素电路,所述驱动方法包括:
    在重置阶段,将所述第一扫描信号和所述第二扫描信号均置为高电平,将所述控制信号置为低电平;
    在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平,将所述控制信号置为高电平;
    在写入阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为低电平,将所述控制信号置为高电平,将所述数据信号作为用于驱动所述有机发光二极管进行显示的驱动电压;以及
    在读取显示阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述控制信号置为低电平。
  13. 根据权利要求9所述的有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求5所述的有机发光二极管像素电路,所述驱动方法包括:
    在重置阶段,将所述第一扫描信号和所述第二扫描信号均置为高电平;
    在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平;
    在写入阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为低电平,将所述数据信号作为用于驱动有机发光二极管进行显示的驱动电压;以及
    在读取显示阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平。
  14. 根据权利要求9所述的有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求6所述的有机发光二极管像素电路,所述驱动方法包括:
    在重置阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号均置为低电平;
    在补偿阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为高电平;
    在写入阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述数据信号作为用于驱动有机发光二极管进行显示的驱动电压;以及
    在读取显示阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平。
  15. 根据权利要求9所述的有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求7所述的有机发光二极管像素电路,所述驱动方法包括:
    在重置阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平,将所述控制信号置为高电平;
    在读取补偿阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述控制信号置为低电平,将所述数据信号作为用于驱动有机发光二极管进行显示的驱动电压;以及
    在显示阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平,将所述控制信号置为高电平。
  16. 根据权利要求9所述的有机发光二极管像素电路的驱动方法,其特征在于,所述有机发光二极管像素电路为根据权利要求8所述的有机发光二极管像素电路,所述驱动方法包括:
    在重置阶段,将所述第一扫描信号置为高电平,将所述第二扫描信号置为低电平;
    在读取补偿阶段,将所述第一扫描信号置为低电平,将所述第二扫描信号置为高电平,将所述数据信号置为用于驱动有机发光二极管进行显示的驱动电压;以及
    在显示阶段,将所述第一扫描信号和所述第二扫描信号均置为低电平。
PCT/CN2014/090803 2014-06-23 2014-11-11 有机发光二极管像素电路及其驱动方法 WO2015196700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/654,019 US9570010B2 (en) 2014-06-23 2014-11-11 Organic light-emitting diode pixel circuit and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410283087.8A CN104103239B (zh) 2014-06-23 2014-06-23 有机发光二极管像素电路及其驱动方法
CN201410283087.8 2014-06-23

Publications (1)

Publication Number Publication Date
WO2015196700A1 true WO2015196700A1 (zh) 2015-12-30

Family

ID=51671336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090803 WO2015196700A1 (zh) 2014-06-23 2014-11-11 有机发光二极管像素电路及其驱动方法

Country Status (3)

Country Link
US (1) US9570010B2 (zh)
CN (1) CN104103239B (zh)
WO (1) WO2015196700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264239A1 (en) * 2016-06-27 2018-01-03 Samsung Display Co., Ltd. Integrated touch display device capable of detecting fingerprint and applied touch pressure

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103239B (zh) * 2014-06-23 2016-05-04 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104200768A (zh) 2014-08-18 2014-12-10 京东方科技集团股份有限公司 阵列基板、驱动方法和显示装置
CN104282265B (zh) 2014-09-26 2017-02-01 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
KR102417266B1 (ko) * 2015-01-27 2022-07-05 삼성디스플레이 주식회사 표시 장치 및 그 접촉 감지 방법
CN104778923B (zh) 2015-04-28 2016-06-01 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN105518863B (zh) * 2015-09-15 2018-10-23 京东方科技集团股份有限公司 阵列基板、显示面板、显示装置
CN105373772A (zh) * 2015-10-09 2016-03-02 京东方科技集团股份有限公司 光学指纹/掌纹识别器件、触控显示面板和显示装置
CN105355171B (zh) * 2015-12-15 2019-01-11 惠州Tcl移动通信有限公司 驱动扫描电路、显示屏及移动终端
CN107093404A (zh) * 2016-02-17 2017-08-25 上海和辉光电有限公司 像素补偿电路和显示装置
JP6684167B2 (ja) * 2016-06-27 2020-04-22 株式会社ジャパンディスプレイ 表示装置
CN106098736B (zh) * 2016-06-28 2019-05-21 京东方科技集团股份有限公司 有机电激光显示基板、显示面板和显示装置
CN106023891B (zh) * 2016-07-22 2018-05-04 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
CN106409224A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 像素驱动电路、驱动电路、显示基板和显示装置
CN106710529B (zh) * 2016-12-19 2019-02-05 上海天马有机发光显示技术有限公司 一种像素驱动电路、驱动方法及有机发光显示面板
CN106778707B (zh) * 2017-02-09 2020-09-11 Oppo广东移动通信有限公司 指纹识别方法、显示屏以及移动终端
KR20180097203A (ko) * 2017-02-22 2018-08-31 삼성디스플레이 주식회사 지문 센서 및 이의 제조 방법
KR102367813B1 (ko) 2017-03-21 2022-03-02 삼성디스플레이 주식회사 지문 센서 및 이의 제조 방법
CN108877649B (zh) * 2017-05-12 2020-07-24 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN107038997A (zh) * 2017-05-26 2017-08-11 京东方科技集团股份有限公司 像素电路、像素驱动方法和显示装置
CN107039002B (zh) * 2017-06-05 2019-09-06 京东方科技集团股份有限公司 一种像素电路及显示面板
CN107220630B (zh) 2017-06-07 2021-09-03 京东方科技集团股份有限公司 显示基板及其驱动方法、显示装置
CN107180611A (zh) 2017-06-23 2017-09-19 京东方科技集团股份有限公司 指纹识别及像素驱动电路以及具有该电路的显示装置
CN107272244B (zh) * 2017-08-15 2020-12-08 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN207474028U (zh) 2017-10-31 2018-06-08 昆山国显光电有限公司 一种像素电路和显示装置
CN109727571A (zh) * 2017-10-31 2019-05-07 昆山国显光电有限公司 一种像素电路和显示装置
CN107749278A (zh) * 2017-11-01 2018-03-02 京东方科技集团股份有限公司 显示面板、像素补偿电路及其控制方法
KR102502201B1 (ko) * 2017-11-17 2023-02-22 삼성디스플레이 주식회사 지문 센서 및 이를 포함한 표시 장치
CN108154844B (zh) * 2018-03-09 2019-07-30 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
CN108399894A (zh) 2018-03-28 2018-08-14 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN108682386B (zh) * 2018-05-14 2020-03-10 京东方科技集团股份有限公司 一种像素电路及显示面板
CN108806603B (zh) * 2018-06-29 2020-03-17 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其驱动方法、有机发光显示装置
TWI773860B (zh) * 2018-08-22 2022-08-11 大陸商廣州印芯半導體技術有限公司 指紋感測裝置以及指紋感測方法
CN111402782B (zh) 2018-12-14 2021-09-03 成都辰显光电有限公司 一种数字驱动像素电路及数字驱动像素的方法
CN110164365B (zh) * 2019-01-28 2021-01-15 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN109872683B (zh) * 2019-03-28 2020-08-25 京东方科技集团股份有限公司 一种像素电路、显示面板及驱动方法
CN110110691B (zh) 2019-05-16 2021-04-02 京东方科技集团股份有限公司 指纹识别驱动电路、装置、触摸屏和驱动方法
CN110223634A (zh) * 2019-06-11 2019-09-10 京东方科技集团股份有限公司 像素电路及其驱动方法和显示面板
US11205363B2 (en) * 2019-10-18 2021-12-21 Apple Inc. Electronic display cross-talk compensation systems and methods
CN111027384B (zh) * 2019-11-07 2022-09-13 厦门天马微电子有限公司 指纹识别检测电路、检测方法及显示装置
CN110827730B (zh) * 2019-11-28 2022-12-13 京东方科技集团股份有限公司 一种检测ltpsamoled显示基板像素区晶体管特性的电路与方法
WO2021109045A1 (zh) * 2019-12-04 2021-06-10 深圳市汇顶科技股份有限公司 屏下指纹采集装置、lcd触摸屏、以及电子设备
TWI754478B (zh) * 2020-06-10 2022-02-01 友達光電股份有限公司 畫素電路
CN111665992B (zh) * 2020-06-16 2022-04-01 武汉华星光电半导体显示技术有限公司 显示模组
KR20220001034A (ko) * 2020-06-26 2022-01-05 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
TWI764608B (zh) * 2020-10-08 2022-05-11 大陸商廣州印芯半導體技術有限公司 一種顯示裝置及其影像感測方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169798A1 (en) * 2009-09-08 2011-07-14 Au Optronics Corp. Active Matrix Organic Light Emitting Diode (OLED) Display, Pixel Circuit and Data Current Writing Method Thereof
US20130069537A1 (en) * 2011-09-19 2013-03-21 Chunghwa Picture Tubes, Ltd. Pixel circuit and driving method thereof
CN103135846A (zh) * 2012-12-18 2013-06-05 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103208255A (zh) * 2013-04-15 2013-07-17 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103218972A (zh) * 2013-04-15 2013-07-24 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103310729A (zh) * 2013-05-29 2013-09-18 京东方科技集团股份有限公司 发光二极管像素单元电路和显示面板
CN103325339A (zh) * 2013-06-21 2013-09-25 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN203232681U (zh) * 2013-04-15 2013-10-09 京东方科技集团股份有限公司 像素电路及显示装置
CN103413521A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN103456267A (zh) * 2013-08-26 2013-12-18 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
CN203366702U (zh) * 2013-07-09 2013-12-25 京东方科技集团股份有限公司 一种触摸显示驱动电路及显示装置
CN104103239A (zh) * 2014-06-23 2014-10-15 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747290B2 (en) * 2000-12-12 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Information device
JP4736954B2 (ja) * 2006-05-29 2011-07-27 セイコーエプソン株式会社 単位回路、電気光学装置、及び電子機器
US8922464B2 (en) * 2011-05-11 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device and driving method thereof
US8994690B2 (en) * 2012-04-29 2015-03-31 Weidong Shi Method and apparatuses of transparent fingerprint imager integrated with touch display device
US8618865B1 (en) * 2012-11-02 2013-12-31 Palo Alto Research Center Incorporated Capacitive imaging device with active pixels
CN103034365B (zh) * 2012-12-13 2016-03-09 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
US9165960B2 (en) * 2013-01-04 2015-10-20 Industrial Technology Research Institute Pixel circuit, active sensing array, sensing device and driving method thereof
JP5953242B2 (ja) * 2013-01-28 2016-07-20 株式会社ジャパンディスプレイ 表示装置
CN103236238B (zh) * 2013-04-26 2015-07-22 北京京东方光电科技有限公司 像素单元控制电路以及显示装置
CN103310728B (zh) * 2013-05-29 2015-05-20 京东方科技集团股份有限公司 发光二极管像素单元电路和显示面板
KR20150073539A (ko) * 2013-12-23 2015-07-01 삼성전자주식회사 전자장치의 입력 감지장치 및 방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169798A1 (en) * 2009-09-08 2011-07-14 Au Optronics Corp. Active Matrix Organic Light Emitting Diode (OLED) Display, Pixel Circuit and Data Current Writing Method Thereof
US20130069537A1 (en) * 2011-09-19 2013-03-21 Chunghwa Picture Tubes, Ltd. Pixel circuit and driving method thereof
CN103135846A (zh) * 2012-12-18 2013-06-05 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置
CN103208255A (zh) * 2013-04-15 2013-07-17 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN103218972A (zh) * 2013-04-15 2013-07-24 京东方科技集团股份有限公司 像素电路、像素电路驱动方法及显示装置
CN203232681U (zh) * 2013-04-15 2013-10-09 京东方科技集团股份有限公司 像素电路及显示装置
CN103310729A (zh) * 2013-05-29 2013-09-18 京东方科技集团股份有限公司 发光二极管像素单元电路和显示面板
CN103325339A (zh) * 2013-06-21 2013-09-25 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN203366702U (zh) * 2013-07-09 2013-12-25 京东方科技集团股份有限公司 一种触摸显示驱动电路及显示装置
CN103413521A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置
CN103456267A (zh) * 2013-08-26 2013-12-18 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
CN104103239A (zh) * 2014-06-23 2014-10-15 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264239A1 (en) * 2016-06-27 2018-01-03 Samsung Display Co., Ltd. Integrated touch display device capable of detecting fingerprint and applied touch pressure
JP2018005910A (ja) * 2016-06-27 2018-01-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. タッチセンサー及びこれを含む表示装置
US10572043B2 (en) 2016-06-27 2020-02-25 Samsung Display Co., Ltd. Touch sensor and display device including the same
JP7045809B2 (ja) 2016-06-27 2022-04-01 三星ディスプレイ株式會社 タッチセンサー及びこれを含む表示装置

Also Published As

Publication number Publication date
CN104103239A (zh) 2014-10-15
US20160260380A1 (en) 2016-09-08
CN104103239B (zh) 2016-05-04
US9570010B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
WO2018076707A1 (zh) 像素驱动电路及其驱动方法、显示基板和显示装置
EP3159882B1 (en) Pixel circuit, driving method therefor and display device
US10068950B2 (en) Pixel circuit, driving method thereof, and display apparatus
WO2016173121A1 (zh) 一种像素电路及其驱动方法、显示装置
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
TWI576742B (zh) 觸控感測器積體顯示裝置及其驅動方法
US9786723B2 (en) Pixel circuit, driving method thereof and display apparatus
US9318540B2 (en) Light emitting diode pixel unit circuit and display panel
WO2016197532A1 (zh) 触控模组的驱动方法、驱动电路、触控模组、面板和装置
WO2016206274A1 (zh) 内嵌式触摸显示屏、其驱动方法及显示装置
US9262966B2 (en) Pixel circuit, display panel and display apparatus
US9645662B2 (en) Pixel circuit, display panel and display apparatus
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016015392A1 (zh) 触控显示电路及显示装置
US9947267B2 (en) Light emitting diode pixel unit circuit and display panel for light emitting diode display
CN108766360B (zh) 显示面板的驱动方法和显示装置
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015188471A1 (zh) 像素电路、显示装置和像素电路的驱动方法
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
WO2020248674A1 (zh) 像素电路及其驱动方法、显示面板
WO2016078282A1 (zh) 像素单元驱动电路和方法、像素单元和显示装置
CN104282268A (zh) 主动矩阵有机发光二极管显示器的像素补偿电路
WO2019037302A1 (zh) 像素内部补偿电路及驱动方法
WO2015180317A1 (zh) 像素电路和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14654019

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14895700

Country of ref document: EP

Kind code of ref document: A1