WO2015188471A1 - 像素电路、显示装置和像素电路的驱动方法 - Google Patents

像素电路、显示装置和像素电路的驱动方法 Download PDF

Info

Publication number
WO2015188471A1
WO2015188471A1 PCT/CN2014/085833 CN2014085833W WO2015188471A1 WO 2015188471 A1 WO2015188471 A1 WO 2015188471A1 CN 2014085833 W CN2014085833 W CN 2014085833W WO 2015188471 A1 WO2015188471 A1 WO 2015188471A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
transistor
light emitting
turned
driving unit
Prior art date
Application number
PCT/CN2014/085833
Other languages
English (en)
French (fr)
Inventor
胡祖权
公伟刚
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015188471A1 publication Critical patent/WO2015188471A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of LED display, and in particular to an LED pixel circuit, a display device, and a driving method of a pixel circuit.
  • OLED Organic Light Emitting Diode
  • OLED-based organic features due to its self-luminous, fast response, wide viewing angle, and fabrication on a flexible substrate.
  • the illuminating display is about to become the mainstream technology in the display field.
  • Each display unit of the organic light emitting display system is composed of an OLED.
  • the organic light emitting display can be divided into an active organic light emitting display and a passive organic light emitting display according to a driving manner, wherein the active organic light emitting display means that each OLED is controlled by a Thin Film Transistor (TFT) circuit to flow through the OLED.
  • TFT Thin Film Transistor
  • the current, and the OLED and the TFT circuit for driving the OLED constitute a pixel circuit.
  • a typical pixel circuit is shown in FIG. 1, and includes two TFT transistors M1 and M2, one storage capacitor C, and one OLED.
  • the gate of the TFT M2 is connected to the scan signal line Vscan
  • the drain of the M2 is connected to the data signal line Vdata
  • the source of the M2 is connected to the gate of the TFT M1
  • the drain of the M1 is connected to the cathode of the OLED
  • the pole is connected to the low level Vss
  • the two ends of the storage capacitor C are respectively connected between the gate and the source of the M1
  • the anode of the OLED is connected to the high level Vdd.
  • the TFTs in Fig. 1 are all described using an n-type TFT as an example.
  • FIG. 2 is a timing chart showing driving signals of the pixel circuit shown in FIG.
  • the working process of the pixel circuit is as follows: during the time period t1, Vscan is at a high level, so the TFT M2 is turned on, and the high level of Vdata is written to the storage capacitor C and the gate of the TFT M1.
  • the TFT M1 is turned on, the cathode of the OLED is connected to the low level Vss, and the OLED starts to emit light; during the time t2, Vscan is at a low level, so the TFT M2 is turned off, and at this time, due to the charge retention of the storage capacitor C, the TFT M1 The gate will continue to maintain a high state, so that TFT M1 continues to be turned on, and the OLED will continue to emit light until the high level signal of Vscan arrives at a later time, the OLED's illumination state may change.
  • Vscan is a high level signal at a later time, and Vdata is also a high level signal, the OLED continues to emit light, indicating that pixel illumination is required during both periods; and if at some later time Vscan is high level
  • the TFT M2 controls the writing of the data line voltage Vdata, so the TFT M2 is generally called a switching transistor (Switch TFT); and the TFT M1 controls the operating state of the OLED, so the TFT M1 is called a driving transistor (Driver TFT).
  • the storage capacitor C mainly serves as a voltage holding function for holding the data voltage.
  • the above is a working process of a pixel circuit of an active matrix/organic light emitting diode (AMOLED), which has the following problem: the operation of the ON state for a long time causes the threshold voltage of the driving TFT M1 to drift.
  • the luminance of the OLED is closely related to the threshold voltage of M1. That is, the threshold voltage variation of the TFT M1 affects the brightness uniformity of the OLED, thereby affecting the display effect of the AMOLED panel.
  • An object of the present invention is to provide a pixel circuit, a display device, and a driving method of a pixel circuit, which can solve the problem of threshold voltage drift of a driving transistor caused by working in an on state for a long time, and reduce the influence of threshold voltage drift of a driving transistor on display. And improve the display effect of the display device.
  • a pixel circuit comprising: a light-emitting element; at least two sets of driving units for driving the light-emitting elements; and a coupling unit for alternately turning on the at least two groups of driving units When the light emitting elements are driven such that a group of driving units drive the light emitting elements to emit light, the remaining sets of driving units are in a threshold voltage recovery state.
  • the driving unit at least includes: a switching transistor for controlling data signal input, a storage capacitor for storing the data signal, and a driving transistor for driving the light emitting element.
  • the driving unit is two groups, which are respectively a first driving unit and a second driving unit;
  • the control electrode of the switching transistor is connected to the first scanning signal line, the first pole of the switching transistor is connected to the data signal line, and the second pole of the switching transistor and the driving crystal thereof
  • the control electrode of the body tube is connected, the first pole of the driving transistor is connected to the second pole of the light emitting element, the second pole of the driving transistor is connected to the low level signal line, and two ends of the storage capacitor are respectively connected thereto
  • the control electrode of the driving transistor and the second electrode the first electrode of the light emitting element is connected to the operating voltage signal line;
  • the control electrode of the switching transistor is connected to the second scanning signal line, and the switching transistor thereof
  • the first pole is connected to the data signal line
  • the second pole of the switching transistor is connected to the control electrode of the driving transistor
  • the first pole of the driving transistor is connected to the second pole of the light emitting element, and the second pole of the driving transistor Connected to the low-level signal line, the two ends of the storage capacitor are respectively connected between the control electrode of the driving transistor and
  • the coupling unit comprises:
  • a first thin film transistor having a control electrode connected to a gate of the driving transistor in the first driving unit, a second electrode connected to the low level signal line, and a first electrode connected to the driving transistor in the second driving unit Control pole,
  • a second thin film transistor having a control electrode connected to a control electrode of the driving transistor in the second driving unit, a second electrode connected to the low level signal line, and a first electrode connected to the driving transistor in the first driving unit The control pole.
  • the driving transistor, the switching transistor, the first thin film transistor, and the second thin film transistor are all N-type thin film transistors, are depletion thin film transistors, or both are enhancement thin film transistors.
  • the light emitting element is an organic light emitting diode, wherein a first electrode of the light emitting element is an anode of the organic light emitting diode, and a second of the light emitting element is a cathode of the organic light emitting diode.
  • the present invention also provides a display device comprising any of the pixel circuits described above.
  • the present invention also provides a driving method of a pixel circuit, comprising: alternately turning on at least two sets of driving circuits to drive a light emitting element of the pixel circuit, such that when a group of driving units drive the light emitting element to emit light, The remaining groups of drive units are in a threshold voltage recovery state.
  • the at least two sets of driving circuits are alternately turned on to drive the light emitting element, specifically comprising:
  • the first scan signal is at a high level
  • the second scan signal is at a low level
  • the switching transistor of the first driving circuit is turned on
  • the high level of the data line signal line is written to the node a
  • the node a is a control electrode of the driving transistor in the first driving circuit, so that the capacitance of the first driving circuit is charged
  • the driving transistor of the first driving circuit is turned on, the light emitting element starts to emit light, and at this time, the switching transistor of the second driving circuit is turned off, and the first thin film transistor in the coupling unit is turned on, so that the control electrode of the driving transistor in the second driving circuit Connected to the low-level signal line, the node b is low level and the driving transistor of the second driving circuit is in an off state, and the node b is a control electrode of the driving transistor in the second driving circuit,
  • the first scan signal and the second scan signal are both low, so the switching transistors in the first and second driving circuits are all turned off, because the charge of the capacitor in the first driving circuit is maintained.
  • the node a is still maintained at a high level
  • the first thin film transistor in the coupling unit continues to be turned on
  • the node b is still at a low level
  • the driving transistor of the second driving circuit is still in an off state
  • the light emitting element remains in a light emitting state
  • the first scan signal is at a low level
  • the second scan signal is at a high level
  • the switching transistor of the first driving circuit is turned off
  • the switching transistor of the second driving circuit is turned on
  • data The high level of the line signal line is written to the node b, so that the storage capacitor of the second driving circuit is charged and the driving transistor of the second driving circuit is turned on, and the light emitting element starts to emit light.
  • the first thin film transistor in the coupling unit is turned off. Breaking, the second thin film transistor is turned on, so that the control electrode of the driving transistor in the first driving circuit is connected to the low-level signal line, the node a becomes the low level, and the driving transistor of the first driving circuit is in the off state,
  • the first scan signal and the second scan signal are both low, so the switching transistors of the first and second driving circuits are all turned off, due to the charge of the capacitor in the second driving circuit.
  • the node b is still maintained at the high level
  • the second thin film transistor in the coupling unit continues to be turned on
  • the node a is still at the low level
  • the driving transistor of the first driving circuit is still in the off state
  • the light emitting element remains in the light emitting state.
  • N is a non-zero natural number.
  • the pixel circuit, the display device and the driving method of the pixel circuit provided by the present invention have pixel circuits provided with at least two sets of driving units, and each group of driving units alternately drives the light emitting elements during operation.
  • each group of driving units is in an inoperative state, the driving transistor of the corresponding driving circuit is in a threshold voltage recovery state, and thus the circuit design can effectively improve the threshold voltage drift problem caused by the driving transistor operating in an on state for a long time. Thereby improving the display effect of the display device.
  • 1 is a schematic structural view of a conventional prime circuit
  • FIG. 2 is a driving timing diagram of a conventional pixel circuit
  • FIG. 3 is a schematic diagram of a driving unit in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pixel circuit according to an embodiment of the present invention.
  • FIG. 5 is a timing chart of driving of the pixel circuit shown in FIG. 4;
  • FIG. 6 is a flowchart of a driving method of a pixel circuit according to an embodiment of the present invention.
  • Embodiments of the present invention provide a pixel circuit, a display device, and a driving method of a pixel circuit, which can solve the problem of threshold voltage drift of a driving transistor caused by working in an on state for a long time, and reduce the influence of threshold voltage drift of the driving transistor on display. Improve the display of the display device
  • the source of the transistor mentioned in the embodiment of the present invention may be the drain of the transistor, and the drain of the transistor is also Can be the source of the transistor.
  • An embodiment of the present invention provides a pixel circuit.
  • the circuit includes: a light emitting element 14; at least two sets of driving units 11 and 12 for driving the light emitting element; and a coupling unit 13 for alternately The at least two sets of driving units 11 and 12 alternately drive the light emitting elements 14 such that when one set of driving units drives the light emitting elements to emit light, the remaining sets of driving units are in a threshold voltage recovery state.
  • the embodiment of the invention provides an AMOLED pixel circuit design, which adopts at least two sets of driving unit designs, and when one of the groups is in a driving state, the remaining groups are in an inoperative state, thereby making the driving circuit in the inoperative state
  • the driving transistor is in a threshold voltage recovery state, and the circuit design can effectively improve the threshold voltage drift problem of the driving transistor and improve the display effect of the AMOLED panel.
  • each set of driving circuits includes at least: a switching transistor for controlling data signal input, a storage capacitor for storing a data signal, and a driving transistor for driving the light emitting element.
  • the specific circuit structure of the driving unit does not affect the specific implementation effect of the embodiment, the specific circuit structure of the driving circuit is not limited in this embodiment, but in order to ensure the uniformity of the display effect, the "at least two groups of driving units" Each drive unit in the circuit should use the same circuit design.
  • the coupling unit when a group of units is alternately selected in two or more driving units to be in an operating state to drive the light-emitting elements, various designs are easily conceivable by those skilled in the art.
  • the coupling unit also has various designs, and the specific connection relationship of the light-emitting element, the at least two groups of driving units, and the coupling unit depends on the specific design principle of the coupling unit.
  • the pixel circuit of the embodiment of the present invention includes two sets of driving units, which are a first driving unit 11 and a second driving unit 12, respectively, both of which are typical 2T1C structures; 11.
  • the control electrode of the switching transistor T3 is connected to the first scanning signal line Vscan1, the first electrode of the switching transistor T3 is connected to the data signal line Vdata, and the second electrode of the switching transistor T3 is connected to the control electrode of the driving transistor T4.
  • the first pole of the driving transistor T4 is connected to the cathode of the light emitting element OLED, and the second pole of the driving transistor T4 is connected to the low level signal line Vss, and the two ends of the storage capacitor C1 are respectively connected to the control poles of the driving transistor T4 thereof.
  • the control electrode of the switching transistor T5 is connected to the second scanning signal line Vscan2, and the first electrode of the switching transistor T5 is connected to the data signal line Vdata, and the switching transistor T5 thereof
  • the second pole is connected to the control electrode of the driving transistor T6, and the first pole of the driving transistor T6 is connected to the cathode of the light emitting element OLED, and the second pole and the low level signal of the driving transistor T6 Line Vss is connected to both ends of the storage capacitor C2 is connected between the control electrode of the driving transistor T6 and the second electrode.
  • the anode of the light emitting element OLED is input with an operating voltage VDD.
  • the coupling unit 13 includes a first thin film transistor T1 whose control electrode is connected to the control electrode of the driving transistor T4 in the first driving circuit 11, and whose second pole is connected to the low-level signal line Vss, and the first pole thereof is connected to
  • the second driving circuit 12 drives the control electrode of the transistor T6;
  • the second thin film transistor T2 has a control electrode connected to the control electrode of the driving transistor T6 in the second driving circuit 12, and the second pole and the low
  • the level signal line Vss is connected, and its first pole is connected to the gate electrode of the driving transistor T4 in the first driving circuit 11.
  • the light emitting element 14 may be an organic light emitting diode (OLED).
  • FIG. 5 shows a pixel driving timing diagram corresponding to FIG.
  • the operation of the pixel circuit in the following different time periods will now be explained with reference to the timing chart of FIG.
  • the following is an example of the working process of the pixel circuit in N frames and N+1 frames (N is a non-zero natural number):
  • the TFT T1 Since the gate of the TFT T1 is connected to the node a, the TFT T1 is also turned on, so that the first pole is connected to the low level Vss, that is, the gate of the driving TFT T6 is connected to the low level Vss, and the TFT T6 is turned off.
  • the state, that is, the TFT T6 is in the threshold voltage recovery state; at the time t2, at this time, both Vscan1 and Vscan2 are at a low level, so the switching TFTs T3 and T5 are both turned off, and the node a is maintained due to the charge retention of the storage capacitor C1.
  • TFT T1 When it is high, TFT T1 continues to be turned on, node b is still low, TFT T6 is in the off state, and the OLED operation state is maintained. At this time, the TFT T2 is always in the off state, and both ends of the storage capacitor C2 are at the low level Vss.
  • the TFT T3 Since the TFT T3 is turned off and the gate electrode of the TFT T2 is connected to the node b, the TFT T2 is turned on, the node a is connected to the low level Vss, and the driving TFT T4 is turned off, that is, the driving TFT T4 is in the threshold voltage recovery state. Since the gate of the TFT T1 is connected to the node a, the TFT T1 is turned off, and both ends of the storage capacitor C1 are at the low level Vss.
  • the six thin film transistors (T1 to T6) shown in Fig. 4 are all N-type thin film transistors. For ease of manufacture, it is preferable to use an N-type thin film transistor of the same specification. Further, the driving transistors T4 and T6, the switching transistors T3 and T5, the first thin film transistor T1 and the second thin film transistor T2 are both depletion thin film transistors or both enhancement type thin film transistors.
  • the light emitting element is an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • the specific model of each of the thin film transistors ie, each thin film transistor is N-type or P-type, which is depleted or enhanced
  • the first driving unit is constituted by the TFTs T3, T4 and the capacitor C1
  • the second driving unit is constituted by the TFTs T5, T6 and the capacitor C2
  • the first driving unit and the second driving unit alternately operate to drive the light-emitting elements
  • the driving transistor in the driving unit in the working state is in an on state
  • the driving transistor corresponding to the driving circuit in the inoperative state is in an off state, that is, in a threshold voltage recovery state. Therefore, the circuit design can effectively improve the threshold voltage drift problem caused by the driving transistor operating in the on state for a long time, thereby improving the display effect of the display device.
  • the first and second driving units described above may also be replaced with the driving unit having the compensation function shown in FIG. 3.
  • the driving timing increases the control signals PR and ER on the basis of FIG. 4 (the control signals PR and ER are not related to the present invention), and the specific working process (limited to the relevant part of the present invention) is substantially similar to the above description, and will not be described in detail herein. .
  • first and second sets of driving units in parallel are taken as an example in the embodiment, it can be understood that the driving unit is not limited to two groups, for example, in the pixel circuit described in this embodiment, It is also possible to set three sets of driving units, and the working principle is basically similar: one frame is divided into three periods, and each period controls the on/off of the switching transistors in the first, second and third driving units by the frame scanning signals. A selection of drive units is selected to work in turn for each time period. When one of the driving units is in operation, the control electrode of the driving transistor in the remaining group of driving units is connected to the low level Vss through the coupling unit, so that the threshold voltage is restored.
  • the embodiment of the invention further provides a display device comprising any of the above pixel circuits. Since the pixel circuit is provided with at least two sets of driving units, each group of driving units rotates to work to drive the light-emitting elements during operation, and when each group of driving units is in an inoperative state, a driving crystal of the corresponding driving unit The circuit is in a threshold voltage recovery state, and thus the circuit design can effectively improve the threshold voltage drift problem caused by the driving transistor operating in the on state for a long time. Therefore, the display device of the embodiment has uniform brightness and better display effect.
  • the display device may be any product or component having a display function, such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the present invention also provides a driving method suitable for a pixel circuit, comprising: alternately controlling the at least two sets of driving units to drive light emitting elements of the pixel circuit.
  • the corresponding driving transistor is in the threshold voltage recovery state, so that the threshold voltage drift problem caused by the driving transistor operating in the on state for a long time can be effectively improved, thereby improving the display effect of the display device.
  • the driving method of the pixel circuit provided by the present invention is specifically as shown in FIG. 6, and includes:
  • the first scan signal Vscan1 is at a high level
  • the second scan signal Vscan2 is at a low level
  • the switching transistor T3 of the first driving circuit is turned on
  • the data line signal line Vdata is high.
  • the node a is the control electrode of the driving transistor T4 in the first driving circuit, so that the storage capacitor C1 of the first driving circuit is charged and the driving transistor T4 of the first driving circuit is turned on, and the light emitting element OLED starts Illuminating, at this time, the switching transistor T5 of the second driving circuit is turned off, and the first thin film transistor T1 in the coupling unit is turned on, so that the control electrode of the driving transistor T6 in the second driving circuit is connected to the low-level signal line Vss, node b
  • the driving transistor T6 of the second driving circuit is in an off state, and the node b is a gate electrode of the driving transistor T6 in the second driving circuit.
  • the first scan signal Vscan1 and the second scan signal Vscan2 are both low levels, so the switching transistors T3 and T5 in the first and second driving circuits are all turned off, due to the first In the driving circuit, the charge of the storage capacitor C1 is maintained, the node a remains at the high level, the first thin film transistor T1 in the coupling unit continues to be turned on, the node b remains at the low level, and the driving transistor T6 of the second driving circuit remains In an off state, the light emitting element OLED remains in a light emitting state;
  • the first scan signal Vscan1 is at a low level
  • the second scan signal Vscan2 is at a high level
  • the switching transistor T3 of the first driving circuit is turned off
  • the second driving circuit is The switching transistor T5 is turned on, the high level of the data line signal line Vdata is written to the node b, so that the storage capacitor C2 of the second driving circuit is charged and the driving transistor T6 of the second driving circuit is turned on, and the light emitting element OLED starts to emit light.
  • the first thin film transistor T1 in the coupling unit is turned off, and the second thin film transistor T2 is turned on, so that the control electrode of the driving transistor T4 in the first driving circuit is connected to the low-level signal line, and the node a becomes the low level.
  • the driving transistor T4 of the first driving circuit is in an off state;
  • the second scan signal Vscan1 and the second scan signal Vscan2 are both low in the second period of the N+1 frame, so the switching transistors T3 and T5 of the first and second driving units are all turned off.
  • the charge holding function of the storage capacitor C2 in the two driving units the node b is still maintained at the high level, the second thin film transistor T2 in the coupling unit continues to be turned on, the node a is still at the low level, and the driving transistor T4 of the first driving unit Still in the off state, the light emitting element OLED remains in a light-emitting state, where N is a non-zero natural number.
  • the driving method of the pixel circuit provided by the present invention is applicable to a pixel circuit provided with at least two sets of driving units, and each group driving circuit operates to drive the light emitting element in operation, wherein the driving transistor of the driving circuit in an inoperative state is at a threshold voltage
  • the recovery state and thus the circuit design can effectively improve the threshold voltage drift problem caused by the driving transistor operating in the on state for a long time, thereby improving the display effect of the display device.

Abstract

一种像素电路、显示装置和像素电路的驱动方法,所述像素电路包括:发光元件(14);至少两组驱动单元(11、12),用于驱动所述发光元件(14);耦合单元(13),用于控制所述至少两组驱动单元(11、12)交替地驱动所述发光元件(14)。所述的像素电路、显示装置和像素电路的驱动方法,可以解决长时间在接通状态下工作导致的驱动晶体管(T4、T6)阈值电压漂移问题,降低驱动晶体管(T4、T6)的阈值电压漂移对显示的影响,并且提高AMOLED面板的显示效果。

Description

像素电路、显示装置和像素电路的驱动方法
本申请要求了2014年6月11日提交的、申请号为201410261475.6、发明名称为“像素电路、显示装置和像素电路的驱动方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及LED显示领域,尤其涉及一种LED像素电路、显示装置和像素电路的驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)是一种电流驱动的主动发光型器件,因其具有自发光、快速响应、宽视角和可制作在柔性衬底上等特点,以OLED为基础的有机发光显示即将成为显示领域的主流技术。
有机发光显示系统的每个显示单元都是由OLED构成的。有机发光显示按驱动方式可分为有源有机发光显示和无源有机发光显示,其中有源有机发光显示是指每个OLED都由薄膜晶体管(Thin Film Transistor,TFT)电路来控制流过OLED的电流,并且OLED和用于驱动OLED的TFT电路构成像素电路。
一种典型的像素电路如图1所示,包括2个TFT晶体管M1和M2、1个存储电容C和1个OLED。其中,TFT M2的栅极与扫描信号线Vscan相连,M2的漏极与数据信号线Vdata相连,M2的源极与TFT M1的栅极相连,M1的漏极与OLED的阴极相连,M1的源极与低电平Vss相连;存储电容C的两端分别跨接在M1的栅极与源极之间;OLED的阳极与高电平Vdd相连。图1中的TFT均是采用n型TFT作为示例进行说明的。
图2示出了图1所述像素电路的驱动信号时序图。如图2所示,像素电路的工作过程如下:在t1时间段,Vscan处于高电平,因此TFT M2接通,这时Vdata的高电平写入到存储电容C以及TFT M1的栅极,使得TFT M1接通,OLED的阴极与低电平Vss相连,OLED开始发光;在t2时间段,Vscan处于低电平,因此TFT M2关断,此时由于存储电容C的电荷保持作用,TFT M1 的栅极将继续维持高电平状态,使得TFT M1继续接通,OLED将继续发光,直到后面某个时刻Vscan的高电平信号到来时,OLED的发光状态才可能会改变。如果在后面某个时刻Vscan是高电平信号,并且Vdata也为高电平信号,则OLED继续发光,表示在这两个时段都需要像素发光;而如果在后面某个时刻Vscan是高电平信号,而Vdata为低电平信号,则电容器C存储的电荷放电,M1关断,从而OLED停止发光,表示在这一个时间段不需要像素发光。由上可知,TFT M2控制着数据线电压Vdata的写入,因此TFT M2通常称为开关晶体管(Switch TFT);而TFT M1控制着OLED的工作状态,因此TFT M1称为驱动晶体管(Driver TFT)。存储电容C主要起着电压保持作用,用于保持数据电压。
以上为一般有源矩阵有机发光二极管(AMOLED:Active Matrix/Organic Light Emitting Diode)像素电路的工作过程,其存在如下问题:长时间在接通状态下工作会导致驱动TFT M1的阈值电压发生漂移,而OLED的发光亮度与M1的阈值电压密切相关。也即TFT M1的阈值电压变化会影响OLED的亮度均一性,进而影响AMOLED面板的显示效果。
发明内容
本发明的目的在于提供一种像素电路、显示装置和像素电路的驱动方法,可以解决长时间在接通状态下工作导致的驱动晶体管阈值电压漂移问题,降低驱动晶体管的阈值电压漂移对显示的影响,并且提高显示装置的显示效果。
根据本发明的一个方面,提出了一种像素电路,包括:发光元件;至少两组驱动单元,用于驱动所述发光元件;耦合单元,用于交替地接通所述至少两组驱动单元以驱动所述发光元件,使得一组驱动单元驱动所述发光元件发光时,其余组的驱动单元处于阈值电压恢复状态。
可选地,所述驱动单元至少包括:用于控制数据信号输入的开关晶体管,用于储存数据信号的存储电容,以及用于驱动所述发光元件的驱动晶体管。
具体地,所述驱动单元为两组,分别为第一驱动单元和第二驱动单元;
对于所述第一驱动单元,其开关晶体管的控制极连接到第一扫描信号线,其开关晶体管的第一极连接到数据信号线,其开关晶体管的第二极与其驱动晶 体管的控制极相连,其驱动晶体管的第一极与所述发光元件的第二极相连,其驱动晶体管的第二极与低电平信号线相连,其存储电容的两端分别连接在其驱动晶体管的控制极与第二极之间,发光元件的第一极与工作电压信号线相连;对于所述第二驱动单元,其开关晶体管的控制极连接到第二扫描信号线,其开关晶体管的第一极连接到数据信号线,其开关晶体管的第二极与其驱动晶体管的控制极相连,其驱动晶体管的第一极与所述发光元件的第二极相连,其驱动晶体管的第二极与低电平信号线相连,其存储电容的两端分别连接在其驱动晶体管的控制极与第二极之间。
可选地,所述耦合单元包括:
第一薄膜晶体管,其控制极连接到所述第一驱动单元中驱动晶体管的控制极,其第二极与低电平信号线相连,其第一极连接到所述第二驱动单元中驱动晶体管的控制极,
第二薄膜晶体管,其控制极连接到所述第二驱动单元中驱动晶体管的控制极,其第二极与低电平信号线相连,其第一极连接到所述第一驱动单元中驱动晶体管的控制极。
可选地,所述驱动晶体管、所述开关晶体管、所述第一薄膜晶体管和所述第二薄膜晶体管均为N型薄膜晶体管、均为耗尽型薄膜晶体管、或者均为增强型薄膜晶体管。
可选地,所述发光元件为有机发光二极管,其中,所述发光元件的第一极为有机发光二极管的阳极,所述发光元件的第二极为有机发光二极管的阴极。
本发明还提供一种显示装置,包括如上所述的任一像素电路。
另一方面,本发明还提供一种像素电路的驱动方法,包括:交替地接通至少两组驱动电路以驱动所述像素电路的发光元件,使得一组驱动单元驱动所述发光元件发光时,其余组的驱动单元处于阈值电压恢复状态。
优选地,交替地接通所述至少两组驱动电路以驱动所述发光元件,具体包括:
在N帧的第一时间段,第一扫描信号为高电平,第二扫描信号为低电平,第一驱动电路的开关晶体管接通,数据线信号线的高电平写入到节点a,所述节点a为第一驱动电路中驱动晶体管的控制极,使得第一驱动电路的电容充电 并且第一驱动电路的驱动晶体管接通,发光元件开始发光,此时第二驱动电路的开关晶体管关断,耦合单元中的第一薄膜晶体管接通,使得第二驱动电路中驱动晶体管的控制极与低电平信号线相连,节点b为低电平且第二驱动电路的驱动晶体管处于关断状态,所述节点b为第二驱动电路中驱动晶体管的控制极,
在N帧的第二时间段,第一扫描信号和第二扫描信号均为低电平,因此第一、第二驱动电路中的开关晶体管均关断,由于第一驱动电路中电容的电荷保持作用,节点a仍然维持为高电平,耦合单元中的第一薄膜晶体管继续接通,节点b仍然为低电平,第二驱动电路的驱动晶体管仍处于关断状态,发光元件保持发光状态;
在N+1帧的第一时间段,第一扫描信号为低电平,第二扫描信号为高电平,第一驱动电路的开关晶体管关断,第二驱动电路的开关晶体管接通,数据线信号线的高电平写入到节点b,使得第二驱动电路的存储电容充电并且第二驱动电路的驱动晶体管接通,发光元件开始发光,此时,耦合单元中的第一薄膜晶体管关断,第二薄膜晶体管接通,使得第一驱动电路中驱动晶体管的控制极与低电平信号线相连,节点a变为低电平且第一驱动电路的驱动晶体管处于关断状态,
在N+1帧的第二时间段,第一扫描信号和第二扫描信号均为低电平,因此第一、第二驱动电路的开关晶体管均关断,由于第二驱动电路中电容的电荷保持作用,节点b仍然维持为高电平,耦合单元中的第二薄膜晶体管继续接通,节点a仍然为低电平,第一驱动电路的驱动晶体管仍处于关断状态,发光元件保持发光状态,其中,N为非零自然数。
本发明提供的像素电路、显示装置和像素电路的驱动方法,其像素电路设置有至少两组驱动单元,工作时各组驱动单元交替地驱动发光元件。当各组驱动单元处于不工作状态的时候,对应驱动电路的驱动晶体管处于阈值电压恢复状态,因而该种电路设计能够有效改善驱动晶体管因长时间在接通状态下工作导致的阈值电压漂移问题,从而提高显示装置的显示效果。
附图说明
图1为现有素电路的结构示意图;
图2为现有像素电路的驱动时序图;
图3为本发明实施例中的驱动单元示意图;
图4为本发明实施例提供的像素电路示意图;
图5为图4所示像素电路的驱动时序图;
图6为本发明实施例中像素电路的驱动方法流程图。
具体实施方式
本发明实施例提供一种像素电路、显示装置和像素电路的驱动方法,可以解决长时间在接通状态下工作导致的驱动晶体管阈值电压漂移问题,降低驱动晶体管的阈值电压漂移对显示的影响,提高显示装置的显示效果
下面结合附图对本发明实施例进行详细描述。此处所描述的具体实施方式是为了解释而不是限制本发明。
需要说明的是,对于液晶显示领域的晶体管来说,漏极和源极没有明确的区别,因此本发明实施例中所提到的晶体管的源极可以为晶体管的漏极,晶体管的漏极也可以为晶体管的源极。
本发明实施例提供一种像素电路,参照图4所示,该电路包括:发光元件14;至少两组驱动单元11和12,用于驱动所述发光元件;耦合单元13,用于交替地所述至少两组驱动单元11和12交替地驱动发光元件14,使得一组驱动单元驱动所述发光元件发光时,其余组的驱动单元处于阈值电压恢复状态。
本发明实施例提出一种AMOLED像素电路设计,该电路采用至少两组驱动单元设计,并使得其中的一组处于驱动状态时,其余组处于不工作状态,从而使不工作状态的驱动电路中的驱动晶体管处于阈值电压恢复状态,该种电路设计能够有效改善驱动晶体管的阈值电压漂移问题以及提高AMOLED面板的显示效果。
现有技术中使用一级像素驱动电路进行驱动,而本实施例采用并行的至少两组驱动单元。本实施例所述的“驱动单元”,包括但不限于本领域技术人员所熟知的任意像素驱动电路,例如,所述的“驱动单元”可以是图1所示的典型像素驱动电路,包括2个TFT晶体管M1和M2,1个电容C和1个OLED;也可以是更复杂的像素驱动电路,如还可以如图3所示带有补偿功能的像素驱 动电路。一般而言,每组驱动电路至少包括:用于控制数据信号输入的开关晶体管,用于储存数据信号的存储电容,以及用于驱动发光元件的驱动晶体管。
虽然驱动单元的具体电路结构并不影响本实施例的具体实施效果,本实施例对驱动电路的具体电路结构也不做限定,但为保证显示效果的统一,所述“至少两组驱动单元”中的每一驱动单元均应采用相同的电路设计。
需要说明的是,在两组以上驱动单元中轮流选择一组单元,使之处于工作状态以驱动发光元件时,本领域技术人员很容易想到多种设计方案。对应地,耦合单元也存在多种设计,而发光元件、至少两组驱动单元、耦合单元具体的连接关系依赖于耦合单元的具体设计原理。
为了便于对本实施例进一步理解,现结合附图及具体的实施实例对本发明实施例进行详述说明。
如图4所示,具体地,本发明实施例所述像素电路包括两组驱动单元,分别为第一驱动单元11和第二驱动单元12,均为典型的2T1C结构;对于第一驱单元路11,其开关晶体管T3的控制极连接到第一扫描信号线Vscan1,其开关晶体管T3的第一极连接到数据信号线Vdata,其开关晶体管T3的第二极与其驱动晶体管T4的控制极相连,其驱动晶体管T4的第一极与发光元件OLED的阴极相连,其驱动晶体管T4的第二极与低电平信号线Vss相连,其存储电容C1的两端分别连接在其驱动晶体管T4的控制极与第二极之间;对于第二驱动电路12,其开关晶体管T5的控制极连接到第二扫描信号线Vscan2,其开关晶体管T5的第一极连接到数据信号线Vdata,其开关晶体管T5的第二极与其驱动晶体管T6的控制极相连,其驱动晶体管T6的第一极与发光元件OLED的阴极相连,其驱动晶体管T6的第二极与低电平信号线Vss相连,其存储电容C2的两端分别连接在其驱动晶体管T6的控制极与第二极之间。其中,发光元件OLED的阳极输入工作电压VDD。
所述耦合单元13包括:第一薄膜晶体管T1,其控制极连接到第一驱动电路11中驱动晶体管T4的控制极,其第二极与低电平信号线Vss相连,其第一极连接到第二驱动电路12中驱动晶体管T6的控制极;第二薄膜晶体管T2,其控制极连接到第二驱动电路12中驱动晶体管T6的控制极,其第二极与低 电平信号线Vss相连,其第一极连接到第一驱动电路11中驱动晶体管T4的控制极。发光元件14可以是有机发光二极管(OLED)。
图5给出了对应图4的像素驱动时序图。现在参考图5的时序图来阐述在以下不同时间段像素电路的工作过程。下面以像素电路在N帧和N+1帧(N为非零自然数)的工作过程为例分别进行说明:
如图5所示,在前面的N帧时,当在t1时间段,Vsca1为高电平,Vscan2为低电平,因此TFT T3接通,TFT T5关断,数据线信号Vdata高电平通过TFT T3写入到节点a,存储电容C1充电,因此驱动TFT T4接通,OLED的阴极与低电平Vss相连,OLED开始工作发光。由于TFT T1的控制极与节点a相连,因此TFT T1也接通,故其第一极与低电平Vss相连,也即驱动TFT T6的控制极与低电平Vss相连,TFT T6处于关断状态,也即TFT T6处于阈值电压恢复状态;在t2时间段,此时Vscan1和Vscan2均为低电平,因此开关TFTT3和T5均关断,由于存储电容C1的电荷保持作用,节点a仍然维持为高电平,TFT T1继续接通,节点b仍然为低电平,TFT T6处于关断状态,OLED工作状态保持。这时TFT T2一直处于关断状态,存储电容C2的两端均处于低电平Vss。
在后面的N+1帧时,当在t3时间段时,此时Vscan1为低电平,Vscan2为高电平,因此开关TFT T5接通,TFT T3关断,数据线信号Vdata高电平通过TFT T5写入到节点b,存储电容C2充电,因此驱动TFT T6接通,OLED工作状态调整为由另一驱动单元驱动的另一发光状态。由于TFT T3关断以及TFT T2的控制极与节点b相连,因此TFT T2接通,节点a与低电平Vss相连,驱动TFT T4关断,也即驱动TFT T4处于阈值电压恢复状态。由于TFT T1的控制极与节点a相连,因此TFT T1关断,存储电容C1的两端均处于低电平Vss。
通过前面的N帧和N+1帧时间内像素驱动的工作过程可知,当其中的一组驱动单元,比如TFT T3、T4和存储电容C1以及耦合TFT T1处于工作状态时,另外的一组驱动单元,比如TFT T5、T6和存储电容C2以及耦合TFT T2就处于不工作状态,其中的驱动TFT T3(T1)处于阈值电压恢复状态,反之,亦然。
图4中所示6个薄膜晶体管(T1~T6)均为N型薄膜晶体管。为便于制造,优选地,采用相同规格的N型薄膜晶体管。进一步地,驱动晶体管T4和T6、开关晶体管T3和T5、第一薄膜晶体管T1和第二薄膜晶体管T2均为耗尽型薄膜晶体管或者均为增强型薄膜晶体管。可选地,发光元件为有机发光二极管(OLED)。在本发明实施例中,所述各薄膜晶体管的具体型号(即各薄膜晶体管是N型或P型,是耗尽型或增强型)并不能用于限定像素电路,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各薄膜晶体管的选型变化及因选型变化产生的连接变动,也在本发明的保护范围之内。
在上文描述中,由TFT T3、T4和电容C1构成第一驱动单元,由TFT T5、T6和电容C2构成第二驱动单元,第一驱动单元和第二驱动单元交替工作驱动发光元件,其中处于工作状态的驱动单元中的驱动晶体管处于接通状态,而处于不工作状态的驱动电路对应的驱动晶体管处于关断状态,即处于阈值电压恢复状态。因而该种电路设计能够有效改善驱动晶体管因长时间在接通状态下工作导致的阈值电压漂移问题,从而提高显示装置的显示效果。
上述的第一、第二驱动单元也可替换为图3所示具有补偿功能的驱动单元。驱动时序在图4基础上增加控制信号PR和ER(控制信号PR和ER与本发明没有关系),其具体工作过程(限与本发明相关部分)与上面叙述大致类似,在此不再详述。
此外,虽然本实施例中以并行的第一、第二两组驱动单元为例进行说明,但可以理解的是,驱动单元的并不限于两组,例如,本实施例所述像素电路中,还可以设置三组驱动单元,工作原理基本类似:将一帧分为三个时段,每一时段通过帧扫描信号控制第一、第二和第三驱动单元中开关晶体管的接通/关断,实现每一时段选择轮流选择一组驱动单元进行工作。其中一组驱动单元工作时,通过耦合单元将其余组驱动单元中驱动晶体管的控制极连接低电平Vss,使其处于阈值电压恢复状态。
本发明实施例还提供了一种显示装置,包括上述的任意一种像素电路。由于所述像素电路设置有至少两组驱动单元,工作时各组驱动单元轮流工作驱动发光元件,当各组驱动单元处于不工作状态的时候,对应驱动单元的驱动晶体 管处于阈值电压恢复状态,因而该种电路设计能够有效改善驱动晶体管因长时间在接通状态工作导致的阈值电压漂移问题,因此本实施例所述显示装置亮度均一,显示效果更好。所述显示装置可以为:电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
另一方面,本发明还提供一种适用于像素电路的驱动方法,包括:交替地控制所述至少两组驱动单元以驱动所述像素电路的发光元件。处于不工作状态的驱动电路,其对应的驱动晶体管处于阈值电压恢复状态,因而能够有效改善驱动晶体管因长时间在接通状态下工作导致的阈值电压漂移问题,从而提高显示装置的显示效果。
具体地,针对图4所示的设置有两组驱动单元的像素电路,本发明提供的像素电路的驱动方法具体如图6所示,包括:
101、在N帧的第一时间段,第一扫描信号Vscan1为高电平,第二扫描信号Vscan2为低电平,第一驱动电路的开关晶体管T3接通,数据线信号线Vdata的高电平写入到节点a,所述节点a为第一驱动电路中驱动晶体管T4的控制极,使得第一驱动电路的存储电容C1充电并且第一驱动电路的驱动晶体管T4接通,发光元件OLED开始发光,此时第二驱动电路的开关晶体管T5关断,耦合单元中的第一薄膜晶体管T1接通,使得第二驱动电路中驱动晶体管T6的控制极与低电平信号线Vss相连,节点b为低电平且第二驱动电路的驱动晶体管T6处于关断状态,所述节点b为第二驱动电路中驱动晶体管T6的控制极。
102、在N帧的第二时间段,第一扫描信号Vscan1和第二扫描信号Vscan2均为低电平,因此第一、第二驱动电路中的开关晶体管T3、T5均关断,由于第一驱动电路中存储电容C1的电荷保持作用,节点a仍然维持为高电平,耦合单元中的第一薄膜晶体管T1继续接通,节点b仍然为低电平,第二驱动电路的驱动晶体管T6仍处于关断状态,发光元件OLED保持发光状态;
103、在N+1帧的第一时间段,第一扫描信号Vscan1为低电平,第二扫描信号Vscan2为高电平,第一驱动电路的开关晶体管T3关断,第二驱动电路 的开关晶体管T5接通,数据线信号线Vdata的高电平写入到节点b,使得第二驱动电路的存储电容C2充电并且第二驱动电路的驱动晶体管T6接通,发光元件OLED开始发光,此时,耦合单元中的第一薄膜晶体管T1关断,第二薄膜晶体管T2接通,使得第一驱动电路中驱动晶体管T4的控制极与低电平信号线相连,节点a变为低电平且第一驱动电路的驱动晶体管T4处于关断状态;
104、在N+1帧的第二时间段,第一扫描信号Vscan1和第二扫描信号Vscan2均为低电平,因此第一、第二驱动单元的开关晶体管T3、T5均关断,由于第二驱动单元中存储电容C2的电荷保持作用,节点b仍然维持为高电平,耦合单元中的第二薄膜晶体管T2继续接通,节点a仍然为低电平,第一驱动单元的驱动晶体管T4仍处于关断状态,发光元件OLED保持发光状态,其中,N为非零自然数。
本发明提供的像素电路的驱动方法,适用于设置有至少两组驱动单元的像素电路,工作时使各组驱动电路轮流工作驱动发光元件,其中处于不工作状态的驱动电路的驱动晶体管处于阈值电压恢复状态,因而该种电路设计能够有效改善驱动晶体管因长时间在接通状态下工作导致的阈值电压漂移问题,从而提高显示装置的显示效果。
本发明实施例所述的技术特征,在不冲突的情况下,可任意相互组合使用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (9)

  1. 一种像素电路,包括:
    发光元件;
    至少两组驱动单元,用于驱动所述发光元件;
    耦合单元,用于交替地接通所述至少两组驱动单元以驱动所述发光元件,使得一组驱动单元驱动所述发光元件发光时,其余组的驱动单元处于阈值电压恢复状态。
  2. 根据权利要求1所述的像素电路,其中所述驱动单元至少包括:用于控制数据信号输入的开关晶体管,用于储存数据信号的存储电容,以及用于驱动所述发光元件的驱动晶体管。
  3. 根据权利要求2所述的像素电路,其特征在于,所述驱动单元为两组,分别为第一驱动单元和第二驱动单元;
    对于所述第一驱动单元,其开关晶体管的控制极连接到第一扫描信号线,其开关晶体管的第一极连接到数据信号线,其开关晶体管的第二极与其驱动晶体管的控制极相连,其驱动晶体管的第一极与所述发光元件的第二极相连,其驱动晶体管的第二极与低电平信号线相连,其存储电容的两端分别连接在其驱动晶体管的控制极与第二极之间,发光元件的第一极与工作电压信号线相连;
    对于所述第二驱动单元,其开关晶体管的控制极连接到第二扫描信号线,其开关晶体管的第一极连接到数据信号线,其开关晶体管的第二极与其驱动晶体管的控制极相连,其驱动晶体管的第一极与所述发光元件的第二极相连,其驱动晶体管的第二极与低电平信号线相连,其存储电容的两端分别连接在其驱动晶体管的控制极与第二极之间。
  4. 根据权利要求1或2所述的像素电路,其中所述耦合单元包括:
    第一薄膜晶体管,其控制极连接到所述第一驱动单元中驱动晶体管的控制极,其第二极与低电平信号线相连,其第一极连接到所述第二驱动单元中驱动晶体管的控制极,
    第二薄膜晶体管,其控制极连接到所述第二驱动单元中驱动晶体管的控制极,其第二极与低电平信号线相连,其第一极连接到所述第一驱动单元中驱动 晶体管的控制极。
  5. 根据权利要求4所述的像素电路,其中
    所述驱动晶体管、所述开关晶体管、所述第一薄膜晶体管和所述第二薄膜晶体管均为N型薄膜晶体管、均为耗尽型薄膜晶体管或者均为增强型薄膜晶体管。
  6. 根据权利要求1所述的像素电路,其中所述发光元件为有机发光二极管。
  7. 一种显示装置,包括根据权利要求1-6任一项所述的像素电路。
  8. 一种像素电路的驱动方法,包括:
    交替地接通至少两组驱动单元以驱动所述像素电路的发光元件,使得一组驱动单元驱动所述发光元件发光时,其余组的驱动单元处于阈值电压恢复状态。
  9. 根据权利要求8所述的驱动方法,其中交替地接通所述至少两组驱动单元以驱动所述发光元件包括:
    在N帧的第一时间段,第一扫描信号为高电平,第二扫描信号为低电平,第一驱动单元的开关晶体管接通,数据线信号线的高电平写入到节点a,所述节点a为第一驱动单元中驱动晶体管的控制极,使得第一驱动单元的存储电容充电并且第一驱动单元的驱动晶体管接通,发光元件开始发光,此时第二驱动单元的开关晶体管关断,耦合单元中的第一薄膜晶体管接通,使得第二驱动单元中驱动晶体管的控制极与低电平信号线相连,节点b为低电平且第二驱动单元的驱动晶体管处于关断状态,所述节点b为第二驱动单元中驱动晶体管的控制极,
    在N帧的第二时间段,第一扫描信号和第二扫描信号均为低电平,因此第一、第二驱动单元中的开关晶体管均关断,由于第一驱动电路中电容的电荷保持作用,节点a仍然维持为高电平,耦合单元中的第一薄膜晶体管继续接通,节点b仍然为低电平,第二驱动单元的驱动晶体管仍处于关断状态,发光元件保持发光状态;
    在N+1帧的第一时间段,第一扫描信号为低电平,第二扫描信号为高电平,第一驱动单元的开关晶体管关断,第二驱动单元的开关晶体管接通,数据 线信号线的高电平写入到节点b,使得第二驱动单元的存储电容充电并且第二驱动单元的驱动晶体管接通,发光元件开始发光,此时,耦合单元中的第一薄膜晶体管关断,第二薄膜晶体管接通,使得第一驱动单元中驱动晶体管的控制极与低电平信号线相连,节点a变为低电平且第一单元电路的驱动晶体管处于关断状态,
    在N+1帧的第二时间段,第一扫描信号和第二扫描信号均为低电平,因此第一、第二驱动单元的开关晶体管均关断,由于第二驱动单元中存储电容的电荷保持作用,节点b仍然维持为高电平,耦合单元中的第二薄膜晶体管继续接通,节点a仍然为低电平,第一驱动单元的驱动晶体管仍处于关断状态,发光元件保持发光状态,其中N为非零自然数。
PCT/CN2014/085833 2014-06-11 2014-09-03 像素电路、显示装置和像素电路的驱动方法 WO2015188471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410261475.6A CN104021763B (zh) 2014-06-11 2014-06-11 像素电路、显示装置和像素电路的驱动方法
CN201410261475.6 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015188471A1 true WO2015188471A1 (zh) 2015-12-17

Family

ID=51438489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085833 WO2015188471A1 (zh) 2014-06-11 2014-09-03 像素电路、显示装置和像素电路的驱动方法

Country Status (2)

Country Link
CN (1) CN104021763B (zh)
WO (1) WO2015188471A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365814A (zh) * 2020-11-20 2021-02-12 深圳Tcl新技术有限公司 显示装置、显示控制方法及计算机可读存储介质
CN113257196A (zh) * 2021-05-14 2021-08-13 Tcl华星光电技术有限公司 背光驱动电路及其控制方法、显示面板、电子装置
US11328663B2 (en) 2017-10-30 2022-05-10 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Pixel driving circuit, driving method thereof, and display device
CN115831979A (zh) * 2022-12-21 2023-03-21 惠科股份有限公司 阵列基板、制造方法、像素驱动电路及显示面板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732929A (zh) * 2015-04-16 2015-06-24 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN105139805B (zh) 2015-10-19 2017-09-22 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置
CN105761676B (zh) * 2016-05-11 2017-12-05 京东方科技集团股份有限公司 像素电路、驱动方法、阵列基板、显示面板及显示装置
CN106097959A (zh) * 2016-06-02 2016-11-09 京东方科技集团股份有限公司 像素单元及其驱动方法、像素驱动电路和显示装置
CN107818759B (zh) * 2016-09-14 2023-09-19 合肥鑫晟光电科技有限公司 像素驱动电路及像素驱动方法、阵列基板以及显示装置
CN111354298A (zh) * 2018-12-05 2020-06-30 昆山工研院新型平板显示技术中心有限公司 一种像素电路、显示装置和驱动方法
CN109830212A (zh) * 2019-03-15 2019-05-31 深圳市华星光电半导体显示技术有限公司 一种oled显示面板
CN110189691B (zh) * 2019-05-14 2021-03-16 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
CN110853592A (zh) * 2019-11-14 2020-02-28 深圳市华星光电半导体显示技术有限公司 显示面板的驱动电路及驱动方法
CN113870767B (zh) * 2020-06-29 2023-02-07 京东方科技集团股份有限公司 像素电路、显示基板、显示面板和显示装置
CN114944134B (zh) * 2022-05-12 2023-06-30 惠科股份有限公司 像素驱动电路、方法以及显示面板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1474371A (zh) * 2002-08-07 2004-02-11 友达光电股份有限公司 有机发光二极管的像素单元
CN1553421A (zh) * 2003-05-29 2004-12-08 友达光电股份有限公司 主动式有机电激发光显示单元
CN1700287A (zh) * 2004-05-19 2005-11-23 三星电子株式会社 发光装置的驱动装置和方法,带驱动装置的显示板和装置
CN1720567A (zh) * 2002-12-04 2006-01-11 皇家飞利浦电子股份有限公司 具有多个驱动晶体管的有源矩阵像素单元及该像素的驱动方法
CN1742308A (zh) * 2003-01-24 2006-03-01 皇家飞利浦电子股份有限公司 有源矩阵电致发光显示装置
CN1797525A (zh) * 2004-12-31 2006-07-05 三星电子株式会社 显示装置及其驱动方法
CN101174381A (zh) * 2006-10-31 2008-05-07 Lg.菲利浦Lcd株式会社 有机发光二极管显示器及其驱动方法
CN101937647A (zh) * 2010-09-02 2011-01-05 上海交通大学 互补驱动式像素电路
CN203870952U (zh) * 2014-06-11 2014-10-08 合肥鑫晟光电科技有限公司 像素电路和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177709A (ja) * 2001-12-13 2003-06-27 Seiko Epson Corp 発光素子用の画素回路
TWI254269B (en) * 2004-01-16 2006-05-01 Wintek Corp Active display driving circuit
TWM254269U (en) * 2004-03-15 2005-01-01 Yau-Chin Jang Flow limit device for water purifier
EP1857998A1 (en) * 2006-05-19 2007-11-21 TPO Displays Corp. System for displaying image and driving display element method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1474371A (zh) * 2002-08-07 2004-02-11 友达光电股份有限公司 有机发光二极管的像素单元
CN1720567A (zh) * 2002-12-04 2006-01-11 皇家飞利浦电子股份有限公司 具有多个驱动晶体管的有源矩阵像素单元及该像素的驱动方法
CN1742308A (zh) * 2003-01-24 2006-03-01 皇家飞利浦电子股份有限公司 有源矩阵电致发光显示装置
CN1553421A (zh) * 2003-05-29 2004-12-08 友达光电股份有限公司 主动式有机电激发光显示单元
CN1700287A (zh) * 2004-05-19 2005-11-23 三星电子株式会社 发光装置的驱动装置和方法,带驱动装置的显示板和装置
CN1797525A (zh) * 2004-12-31 2006-07-05 三星电子株式会社 显示装置及其驱动方法
CN101174381A (zh) * 2006-10-31 2008-05-07 Lg.菲利浦Lcd株式会社 有机发光二极管显示器及其驱动方法
CN101937647A (zh) * 2010-09-02 2011-01-05 上海交通大学 互补驱动式像素电路
CN203870952U (zh) * 2014-06-11 2014-10-08 合肥鑫晟光电科技有限公司 像素电路和显示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328663B2 (en) 2017-10-30 2022-05-10 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Pixel driving circuit, driving method thereof, and display device
CN112365814A (zh) * 2020-11-20 2021-02-12 深圳Tcl新技术有限公司 显示装置、显示控制方法及计算机可读存储介质
CN113257196A (zh) * 2021-05-14 2021-08-13 Tcl华星光电技术有限公司 背光驱动电路及其控制方法、显示面板、电子装置
CN115831979A (zh) * 2022-12-21 2023-03-21 惠科股份有限公司 阵列基板、制造方法、像素驱动电路及显示面板
CN115831979B (zh) * 2022-12-21 2023-09-08 惠科股份有限公司 阵列基板、制造方法、像素驱动电路及显示面板

Also Published As

Publication number Publication date
CN104021763A (zh) 2014-09-03
CN104021763B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2015188471A1 (zh) 像素电路、显示装置和像素电路的驱动方法
JP6453926B2 (ja) 有機発光表示装置及びその駆動方法
WO2020233491A1 (zh) 像素电路及其驱动方法、阵列基板及显示装置
WO2023005621A1 (zh) 像素电路及其驱动方法、显示面板
WO2016011711A1 (zh) 像素电路、像素电路的驱动方法和显示装置
US10032415B2 (en) Pixel circuit and driving method thereof, display device
JP4915195B2 (ja) 表示装置
WO2016011714A1 (zh) 像素电路、像素电路的驱动方法和显示装置
WO2016173124A1 (zh) 像素电路、其驱动方法及相关装置
US9691330B2 (en) Organic light emitting diode display device and method driving the same
US9311849B2 (en) Inverter, AMOLED compensation circuit and display panel
US9634070B2 (en) Organic light emitting display device
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
US20140132642A1 (en) Pixel circuit, display device and driving method of pixel circuit
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2019134459A1 (zh) 像素电路及其驱动方法、显示装置
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
KR20130040475A (ko) 발광표시장치
WO2019095494A1 (zh) 一种像素驱动电路及液晶显示装置
WO2018223694A1 (zh) 有机发光显示面板的补偿方法及相关装置
WO2019174228A1 (zh) 像素电路及其驱动方法、显示面板
WO2014127555A1 (zh) 像素单元驱动电路、驱动方法、像素单元及显示装置
WO2018214533A1 (zh) 显示装置以及像素电路及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14894493

Country of ref document: EP

Kind code of ref document: A1