WO2016039445A1 - 積層チューブ - Google Patents

積層チューブ Download PDF

Info

Publication number
WO2016039445A1
WO2016039445A1 PCT/JP2015/075856 JP2015075856W WO2016039445A1 WO 2016039445 A1 WO2016039445 A1 WO 2016039445A1 JP 2015075856 W JP2015075856 W JP 2015075856W WO 2016039445 A1 WO2016039445 A1 WO 2016039445A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
acid
layer
mass
semi
Prior art date
Application number
PCT/JP2015/075856
Other languages
English (en)
French (fr)
Inventor
孝治 中村
武尊 安部
広昭 藤井
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to BR112017003730-0A priority Critical patent/BR112017003730B1/pt
Priority to ES15839705T priority patent/ES2717574T3/es
Priority to EP18207222.3A priority patent/EP3461631A1/en
Priority to MX2017003248A priority patent/MX2017003248A/es
Priority to EP15839705.9A priority patent/EP3192650B1/en
Priority to PL15839705T priority patent/PL3192650T3/pl
Priority to US15/507,611 priority patent/US10663092B2/en
Priority to KR1020177009384A priority patent/KR102339259B1/ko
Priority to JP2016547512A priority patent/JP6575524B2/ja
Priority to CN201580049013.0A priority patent/CN107073867B/zh
Publication of WO2016039445A1 publication Critical patent/WO2016039445A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/045Hoses, i.e. flexible pipes made of rubber or flexible plastics with four or more layers without reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/01Arrangement of fuel conduits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0017Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor related to fuel pipes or their connections, e.g. joints or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the present invention relates to a laminated tube.
  • oxygen-containing gasoline blended with alcohols with low boiling points such as methanol and ethanol, or ethers such as ethyl-t-butyl ether (ETBE) from the viewpoint of saving gasoline consumption and improving performance. Etc. are transferred.
  • strict exhaust gas regulations including prevention of leakage into the atmosphere due to diffusion of volatile hydrocarbons and the like through piping tube partition walls are being implemented.
  • a single-layer tube using a polyamide-based resin, particularly polyamide 11 or polyamide 12 that is excellent in strength, toughness, chemical resistance, flexibility, etc. is used as described above.
  • the permeation-preventing property with respect to a chemical solution is not sufficient, and in particular, an improvement with respect to the permeation-preventing property of alcohol-containing gasoline is required.
  • a resin having good chemical solution permeation prevention properties for example, saponified ethylene / vinyl acetate copolymer (EVOH), polymetaxylylene adipamide (polyamide MXD6), polybutylene terephthalate (PBT), Polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / tetrafluoroethylene / hexafluoropropylene copolymer Polymer (EFEP), ethylene / chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene / hexafluoropropylene copolymer (TFE / HFP, FEP), tetrafluoroethylene / hexafluoro Lopylene
  • EVOH saponified
  • saponified ethylene / vinyl acetate copolymer is very excellent in chemical solution permeation prevention property, particularly permeation prevention property for gasoline.
  • a fuel composed of an outermost layer made of polyamide 12, an adhesive layer made of modified polyolefin, an outer layer made of polyamide 6, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), and an innermost layer made of polyamide 6 Piping has been proposed (see, for example, JP-A-3-177683).
  • polyamide 6 is used as the innermost layer in the piping, the resistance to sour gasoline produced by oxidation of gasoline (deterioration fuel resistance) and the resistance to calcium chloride (chemical resistance) are poor.
  • a laminated composite composed of an adhesive layer made of seed, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), and an innermost layer made of polyamide 6 or polyamide 12 has been proposed (for example, JP 2003) No. 535717 and JP 2003-021276).
  • an outermost layer made of polyamide 12 an adhesive layer made of a mixture of polyamide 6, polyamide 12 and polyamine / polyamide copolymer, an intermediate layer made of saponified ethylene / vinyl acetate copolymer (EVOH), polyamide 6 or polyamide
  • EVOH saponified ethylene / vinyl acetate copolymer
  • This technique is good for a polyamide copolymer having a specific composition ratio or a mixture of polyamide 6 and polyamide 12 and a compatibilizer as an adhesive layer interposing both polyamide 12 and saponified ethylene / vinyl acetate copolymer.
  • polyamide 6 when polyamide 6 is used as the innermost layer, no solution has been made to the problem of inferior degradation fuel resistance, zinc chloride resistance, calcium chloride resistance and the like.
  • polyamide 12 when polyamide 12 is used in the innermost layer of the fuel pipe, low molecular weight components such as monomers and oligomers, additives, plasticizers, etc. are eluted into the alcohol-containing gasoline by contact with fuel such as alcohol-containing gasoline. In the case of precipitation. Therefore, there is a concern about blockage in fuel piping such as automobile piping tubes, filters, nozzles and the like.
  • the laminated tube includes a polyamide 6/12 copolymer, a polyamide 12/6 copolymer, and a polyamide between an aliphatic polyamide layer and an ethylene / vinyl acetate copolymer saponified product (EVOH).
  • EVOH ethylene / vinyl acetate copolymer saponified product
  • these laminated tubes are generally processed into tubes having a desired shape in a state where bending stress is applied due to restrictions on layout and absorption of displacement at the time of collision.
  • the tube is heated in the range from the glass transition temperature of the constituent material to the melting point or less, but after heat treatment, if it does not have sufficient interlayer adhesion, When the innermost layer is peeled off and the piping is blocked, the outermost layer is peeled off, resulting in a problem that the tube does not have the original performance such as pressure resistance and yield strength. Therefore, there is room for improvement in interlayer adhesion after heat treatment (durability of interlayer adhesion).
  • the laminated tube having the saponified ethylene / vinyl acetate copolymer has excellent permeation resistance for gasoline containing low concentration alcohol, but is insufficient in permeation resistance for gasoline containing high concentration alcohol. Improvement is desired.
  • US 2010-0035116 discloses that a fluorine resin is used for the inner layer, a saponified ethylene / vinyl acetate copolymer is used for the outer layer, and polyterephthalamide (PPA) is used for the outer layer.
  • PPA polyterephthalamide
  • the object of the present invention is to solve the above-mentioned problems, and to provide a laminated tube excellent in chemical solution permeation prevention, interlayer adhesion and durability, low temperature impact resistance, deterioration fuel resistance, and monomer and oligomer elution resistance. It is to provide.
  • a layer containing an aliphatic polyamide (polyamide 11, 12, etc.), a polyamide 6 composition or a layer containing a polyamide 6/66/12 composition.
  • a laminated tube having a layer containing a saponified ethylene / vinyl acetate copolymer and a semi-aromatic polyamide composition having a specific structure has a chemical liquid permeation-preventing property, interlayer adhesion and durability, and low-temperature resistance. It has been found that it is excellent in various properties such as impact resistance, resistance to deterioration fuel, and elution resistance of monomers and oligomers.
  • one embodiment of the present invention is a laminated tube comprising at least four layers, including (a) layer, (b) layer, (c) layer, and (d) layer,
  • the layer (a) contains an aliphatic polyamide (A)
  • the layer (b) includes a polyamide 6 composition (B1) and / or a polyamide 6/66/12 composition (B2)
  • the layer (c) includes a saponified ethylene / vinyl acetate copolymer (C)
  • the layer (d) includes a semi-aromatic polyamide composition (D1) or a semi-aromatic polyamide composition (D2)
  • the aliphatic polyamide (A) does not include polycaproamide (polyamide 6) and poly (caproamide / hexamethylene adipamide / dodecanamide) (polyamide 6/66/12)
  • the polyamide 6 composition (B1) is a polycaproamide (polyamide 6) 50% by mass to 98% by mass, a plasticizer (B3) 1%
  • the semi-aromatic polyamide composition (D1) includes a semi-aromatic polyamide (d1), and the semi-aromatic polyamide (d1) is an aliphatic diamine having 9 to 13 carbon atoms with respect to all diamine units.
  • Dicarboxylic acid containing 50 mol% or more of aliphatic dicarboxylic acid unit having 8 to 13 carbon atoms based on diamine unit and all dicarboxylic acid units A laminated tube having a place.
  • Aliphatic polyamide (A) is polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyhexamethylene adipamide (polyamide 66), polyhexamethylene decanamide (polyamide 610), polyhexa At least one single weight selected from the group consisting of methylene dodecamide (polyamide 612), polydecane methylene decanamide (polyamide 1010), polydecane methylene dodecane (polyamide 1012), and polydodecamethylene dodecane (polyamide 1212).
  • a laminated tube which is a copolymer using a combination and / or several kinds of raw material monomers forming these.
  • the mass ratio of the total units of caproamide units and hexamethylene adipamide units to dodecanamide units is caproamide units, hexamethylene.
  • the laminated tube which is 81:19 mass% or more and 95: 5 mass% or less with respect to a total of 100 mass% of an adipamide unit and a dodecanamide unit.
  • a laminated tube further comprising a (e) layer, wherein the (e) layer includes a fluorine-containing polymer (E) in which a functional group having reactivity with an amino group is introduced into a molecular chain.
  • the (a) layer is disposed as the outermost layer, and the (c) layer and the (d) layer are disposed between the (a) layer and the (e) layer.
  • the present invention it is possible to provide a laminated tube excellent in chemical solution permeation prevention, interlayer adhesion and durability, low temperature impact resistance, degradation fuel resistance, and monomer and oligomer elution resistance.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the laminated tube according to this embodiment includes a layer containing an aliphatic polyamide, a layer containing a polyamide 6 composition or a polyamide 6/66/12 composition, a layer containing an ethylene / vinyl acetate copolymer saponified product, and a specific structure.
  • a layer containing a semi-aromatic polyamide composition containing a semi-aromatic polyamide having both the interlayer adhesion and chemical liquid permeation-preventing properties, low temperature impact resistance, deterioration fuel resistance, monomer and oligomer elution resistance Excellent properties such as properties.
  • it is suitable as a fuel tube because alcohol mixed hydrocarbons that permeate and evaporate from the tube partition wall can be suppressed and compliance with strict environmental regulations becomes possible.
  • the laminated tube according to the present embodiment can be used in any environment, has high reliability, and has a very high utility value.
  • the aliphatic polyamide (A) has an amide bond (—CONH—) in the main chain, and is melted using, as raw materials, an aliphatic polyamide structural unit of lactam, aminocarboxylic acid, or aliphatic diamine and aliphatic dicarboxylic acid. It can be obtained by polymerization or copolymerization by a known method such as polymerization, solution polymerization or solid phase polymerization. However, the aliphatic polyamide (A) does not include polycaproamide (polyamide 6) and poly (caproamide / hexamethylene adipamide / dodecanamide) (polyamide 6/66/12).
  • lactam examples include enantolactam, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone and the like.
  • aminocarboxylic acid examples include 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. These can use 1 type (s) or 2 or more types.
  • Aliphatic diamines include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1, 8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15 -Pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 1,19-nonadecanediamine, 1,20-eicosanediamine, 2-methyl-1,5- Pentanediamine, 3-methyl-1,5-pentanediamine, 2-methyl-1,8-octane Amine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hex
  • Aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, Examples include pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and eicosanedioic acid. These can use 1 type (s) or 2 or more types.
  • Examples of the aliphatic polyamide (A) include polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyethylene adipamide (polyamide 26), polytetramethylene succinamide (polyamide 44), and polytetramethylene glutamide.
  • Polyamide 45 polytetramethylene adipamide (polyamide 46), polytetramethylene suberamide (polyamide 48), polytetramethylene azelamide (polyamide 49), polytetramethylene sebamide (polyamide 410), polytetramethylene Dodecamide (polyamide 412), polypentamethylene succinamide (polyamide 54), polypentamethylene glutamide (polyamide 55), polypentamethylene adipamide (polyamide 56), polypentamethylene subera (Polyamide 58), polypentamethylene azelamide (polyamide 59), polypentamethylene sebamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexamethylene succinamide (polyamide 64), polyhexa Methyleneglutamide (polyamide 65), polyhexamethylene adipamide (polyamide 66), polyhexamethylene suberamide (polyamide 68), polyhexamethylene
  • polyundecanamide polyamide 11
  • polydodecanamide polyamide 12
  • Polyhexamethylene adipamide polyamide 66
  • polyhexamethylene decanamide polyamide 610
  • polyhexamethylene dodecamide polyamide 612
  • polydecamethylene decanamide polyamide 1010
  • polydecamethylene dodecamide polyamide 1012
  • at least one homopolymer selected from the group consisting of polydodecamethylene dodecamide (polyamide 1212), and / or a copolymer using several kinds of raw material monomers forming these.
  • the production apparatus of the aliphatic polyamide (A) includes kneading reactions such as a batch reaction kettle, a single tank type or multi tank type continuous reaction apparatus, a tubular continuous reaction apparatus, a uniaxial kneading extruder, a biaxial kneading extruder, etc.
  • a known polyamide production apparatus such as an extruder may be used.
  • As a polymerization method a known method such as melt polymerization, solution polymerization, or solid phase polymerization can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressure operations. These polymerization methods can be used alone or in appropriate combination.
  • the relative viscosity of the aliphatic polyamide (A) measured under the conditions of 96% sulfuric acid, 1% polymer concentration and 25 ° C. in accordance with JIS K-6920 ensures the mechanical properties of the resulting laminated tube. From the viewpoint of securing the desirable formability of the laminated tube by setting the viscosity at the time of melting to an appropriate range, it is preferably 1.5 or more and 5.0 or less, and 2.0 or more and 4.5 or less. Is more preferable.
  • the terminal amino group concentration per 1 g of the polyamide is [A] ( ⁇ eq / g) and the terminal carboxyl group concentration is [B] ( ⁇ eq / g)
  • the interlayer adhesion of the laminated tube And [A]> [B] +5, preferably [A]> [B] +10, and more preferably [A]> [B] +15.
  • terminal-modified aliphatic polyamide is more preferable (hereinafter sometimes referred to as terminal-modified aliphatic polyamide).
  • [A]> 20 is preferable, and 30 ⁇ [A] ⁇ 120 is more preferable.
  • the terminal-modified aliphatic polyamide is produced by polymerizing or copolymerizing the polyamide raw material in the presence of amines by a known method such as melt polymerization, solution polymerization or solid phase polymerization. Alternatively, it is produced by melt-kneading in the presence of amines after polymerization.
  • amines can be added at any stage during polymerization or at any stage after melt kneading after polymerization. However, when the interlayer adhesion of the laminated tube is taken into consideration, the amines are added at the stage during polymerization. It is preferable. Examples of the amines include monoamines, diamines, triamines, and polyamines.
  • carboxylic acids such as monocarboxylic acids, dicarboxylic acids, and tricarboxylic acids may be added as necessary as long as they do not deviate from the range of the above-mentioned end group concentration conditions. These amines and carboxylic acids may be added simultaneously or separately. Moreover, 1 type (s) or 2 or more types can be used for the amines and carboxylic acids illustrated below.
  • the monoamine to be added include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine , Tetradecylamine, pentadecylamine, hexadecylamine, octadecylamine, octadecyleneamine, eicosylamine, docosylamine and other aliphatic monoamines; cyclohexylamine, methylcyclohexylamine and other alicyclic monoamines; benzylamine, ⁇ - Aromatic monoamines such as phenylmethylamine; N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N, N
  • diamine to be added examples include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, and 1,7-heptanediamine.
  • 1,8-octanediamine, 1,9-nonanediamine 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15-pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine 2-methyl-1,8-octanediamine, 2,2,4-trimethyl-1,6-hexane Aliphatic diamines such as amine, 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl-1,9-non
  • triamine to be added examples include 1,2,3-triaminopropane, 1,2,3-triamino-2-methylpropane, 1,2,4-triaminobutane, 1,2,3,4- Tetraminobutane, 1,3,5-triaminocyclohexane, 1,2,4-triaminocyclohexane, 1,2,3-triaminocyclohexane, 1,2,4,5-tetraminocyclohexane, 1,3,5- Triaminobenzene, 1,2,4-triaminobenzene, 1,2,3-triaminobenzene, 1,2,4,5-tetraminobenzene, 1,2,4-triaminonaphthalene, 2,5,7 -Triaminonaphthalene, 2,4,6-triaminopyridine, 1,2,7,8-tetraminonaphthalene, and the like include 1,4,5,8-tetraminonaphthalene. These can use 1 type (s) or 2
  • the polyamine to be added may be a compound having a plurality of primary amino groups (—NH 2 ) and / or secondary amino groups (—NH—).
  • —NH 2 primary amino groups
  • —NH— secondary amino groups
  • the amino group with active hydrogen is the reaction point of the polyamine.
  • polyalkyleneimine examples include one or two alkyleneimines having 2 to 8 carbon atoms such as ethyleneimine, propyleneimine, 1,2-butyleneimine, 2,3-butyleneimine, 1,1-dimethylethyleneimine, etc. Examples include homopolymers and copolymers obtained by polymerizing more than one species by a conventional method. Among these, polyethyleneimine is more preferable.
  • Polyalkyleneimine is polymerized from alkyleneimine as a raw material, branched polyalkyleneimine obtained by ring-opening polymerization of alkyleneimine, secondary polyamineimine containing secondary amine and tertiary amine, or alkyloxazoline as a raw material.
  • a polyalkyleneimine is usually derived from the reactivity of an active hydrogen atom on a nitrogen atom contained therein, and in addition to a tertiary amino group, a primary amino group having an active hydrogen atom or a secondary amino group (imino Group).
  • the number of nitrogen atoms in the polyalkyleneimine is not particularly limited, but is preferably 4 or more and 3,000, more preferably 8 or more and 1,500 or less, and even more preferably 11 or more and 500 or less. .
  • the number average molecular weight of the polyalkyleneimine is preferably 100 or more and 20,000 or less, more preferably 200 or more and 10,000 or less, and further preferably 500 or more and 8,000 or less.
  • carboxylic acids to be added acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, capric acid, pelargonic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, myristic acid, Aliphatic monocarboxylic acids such as palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, behenic acid, erucic acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid, methylcyclohexanecarboxylic acid; benzoic acid, toluic acid , Aromatic monocarboxylic acids such as ethylbenzoic acid and phenylacetic acid; malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid,
  • terminal-modified aliphatic polyamide it is preferable to add a diamine and / or a polyamine during polymerization in order to satisfy the condition of the terminal group concentration among the above-exemplified amines.
  • Alicyclic diamine, and at least one selected from the group consisting of polyalkyleneimines is more preferable.
  • the terminal-modified aliphatic polyamide may be a mixture of two or more kinds of polyamides having different terminal group concentrations as long as the terminal group concentration is satisfied.
  • the terminal amino group concentration and the terminal carboxyl group concentration of the polyamide mixture are determined by the terminal amino group concentration, the terminal carboxyl group concentration, and the blending ratio of the polyamide constituting the mixture.
  • the content of the plasticizer may be 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the aliphatic polyamide (A) from the viewpoint of sufficiently ensuring the flexibility and low temperature impact resistance of the laminated tube.
  • it is 2 parts by mass or more and 20 parts by mass or less.
  • an impact modifier In order to improve the low temperature impact resistance of the aliphatic polyamide (A), it is preferable to add an impact modifier, and in particular, the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2) described later. It is more preferable to add an olefin polymer having a flexural modulus measured according to ISO 178 of 500 MPa or less. If the flexural modulus exceeds this value, the impact improvement effect may be insufficient.
  • the content of the impact modifier is 1 part by mass or more and 35 parts by mass or less with respect to 100 parts by mass of the aliphatic polyamide (A) from the viewpoint of sufficiently ensuring the mechanical strength and low temperature impact resistance of the laminated tube. It is preferably 3 parts by mass or more and 25 parts by mass or less.
  • the aliphatic polyamide (A) may be a mixture of the above homopolymers, a mixture of the above copolymers, a mixture of a homopolymer and a copolymer, or other polyamide resin or other heat. It may be a mixture with a plastic resin.
  • the content of the aliphatic polyamide (A) in the mixture is preferably 60% by mass or more, and more preferably 80% by mass or more.
  • polyamide resins include polymetaxylylene adipamide (polyamide MXD6), polymetaxylylene terephthalamide (polyamide MXDT), polymetaxylylene isophthalamide (polyamide MXDI), polymetaxylylene hexahydroterephthalamide ( Polyamide MXDT (H)), polymetaxylylene naphthalamide (polyamide MXDN), polyparaxylylene adipamide (polyamide PXD6), polyparaxylylene terephthalamide (polyamide PXDT), polyparaxylylene isophthalamide (polyamide) PXDI), polyparaxylylene hexahydroterephthalamide (polyamide PXDT (H)), polyparaxylylene naphthalamide (polyamide PXDN), polyparaphenylene terephthalamide (PPTA), poly Laphenylene isophthalamide (PPIA), polymetaphenylene terephthalamide (PMTA),
  • thermoplastic resins to be mixed include high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and ultra high molecular weight polyethylene (UHMWPE).
  • an antioxidant for the aliphatic polyamide (A), an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, an inorganic filler, an antistatic agent, a flame retardant, a crystallization accelerator, if necessary.
  • a colorant or the like may be added.
  • the (b) layer of the laminated tube includes a polyamide 6 composition (B1) and / or a polyamide 6/66/12 composition (B2).
  • Polyamide 6 composition (B1), Polyamide 6/66/12 composition (B2) Polyamide 6 composition (B1) has a flexural elasticity measured according to polycaproamide (polyamide 6) of 50% by mass to 98% by mass, plasticizer (B3) of 1% by mass to 20% by mass, and ISO 178.
  • the olefin polymer (B4) having a rate of 500 MPa or less is contained in an amount of 1% by mass to 30% by mass (hereinafter sometimes referred to as polyamide 6 composition (B1)).
  • the polycaproamide (polyamide 6) is a polyamide having a caproamide unit represented by the following formula (—CO— (CH 2 ) 6 —NH—) n having an amide bond (—CONH—) in the main chain ( Hereinafter, it may be referred to as polyamide 6.)
  • Polyamide 6/66/12 composition (B2) is composed of poly (caproamide / hexamethylene adipamide / dodecanamide) (polyamide 6/66/12) and polyhexamethylene sebacamide (polyamide 610), polyhexamethylene Dodecamide (Polyamide 612), Polynonamethylene decanamide (Polyamide 910), Polynonamethylene dodecamide (Polyamide 912), Polydecanamethylene decanamide (Polyamide 1010), Polydecanamethylene dodecamide (Polyamide 1012), and Polydodeca 50% by mass to 98% by mass of a polyamide mixture containing at least one polyamide selected from the group consisting of methylene dodecamide (polyamide 1212), 1% by mass to 20% by mass of a plasticizer (B3), and conforming to ISO 178 Measured song Elastic modulus contains 30 wt% or less or less of an olefin polymer (B4) or 1 wt% 500 MPa (hereinafter sometimes
  • Poly (caproamide / hexamethylene adipamide / dodecanamide) (polyamide 6/66/12) has an amide bond (—CONH—) in the main chain: (—CO— (CH 2 ) 6 —NH -) Caproamide unit represented by n and the following formula: (-NH- (CH 2 ) 6 -NH-CO- (CH 2 ) 4 -CO-) Hexamethylene adipamide unit represented by n and the following formula: ( —CO— (CH 2 ) 11 —NH—)
  • a polyamide copolymer having a dodecanamide unit represented by n (hereinafter sometimes referred to as polyamide 6/66/12).
  • Polyamide 6/66/12 can be obtained by copolymerizing 6-aminocaproic acid and / or caprolactam, hexamethylenediamine and adipic acid salt, and 12-aminododecanoic acid and / or dodecanlactam.
  • the mass ratio of the total unit of caproamide unit and hexamethylene adipamide unit to dodecanamide unit is determined from the viewpoint of sufficiently ensuring the interlayer adhesion of the laminated tube and its durability. , Preferably from 81: 19% by mass to 95: 5% by mass, and from 83: 17% by mass to 92: 8% by mass, based on a total of 100% by mass of hexamethylene adipamide units and dodecanamide units. The following is more preferable.
  • the mass ratio of caproamide unit to hexamethylene adipamide unit ensures sufficient heat resistance of the laminated tube, and during coextrusion with ethylene / vinyl acetate copolymer saponified product (C) From the viewpoint of molding stability, it is preferably 80: 20% by mass or more and 95: 5% by mass or less, and 82: 18% by mass or more, with respect to 100% by mass in total of caproamide units and hexamethylene adipamide units. It is more preferable that it is 93: 7 mass% or less.
  • Polyamide 6/66/12 composition (B2) is composed of polyamide 6/66/12, polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polynonamethylene decanamide (polyamide 910). , Polynonamethylene dodecamide (polyamide 912), polydecane methylene decanamide (polyamide 1010), polydecane methylene dodecane (polyamide 1012), and polydodecane methylene dodecamide (polyamide 1212).
  • a polyamide mixture containing the polyamide hereinafter sometimes referred to as a polyamide mixture).
  • Polyhexamethylene sebamide (Polyamide 610), Polyhexamethylene dodecane (Polyamide 612), Polynonamethylene decanamide (Polyamide 910), Polynonamethylene dodecamide (Polyamide 912), Polydecamethylene decamide (Polyamide 1010) Polydecamethylene dodecamide (polyamide 1012) and polydocamethylene dodecamide (polyamide 1212) are long-chain aliphatic polyamides (hereinafter sometimes referred to as long-chain aliphatic polyamides), and among these, laminated From the viewpoint of obtaining sufficient tube interlayer adhesion and durability, polyhexamethylene sebamide (polyamide 610) and polyhexamethylene dodecamide (polyamide 612) are preferable.
  • the mixing ratio of both polyamide 6/66/12 and long-chain aliphatic polyamide is sufficient to obtain a laminated tube with excellent mechanical properties, chemical resistance, and flexibility, and interlayer adhesion and durability.
  • the content of polyamide 6/66/12 is 50% by mass or more and 90% by mass or less with respect to 100% by mass in total of the polyamide mixture of polyamide 6/66/12 and long-chain aliphatic polyamide. It is preferably 55% by mass or more and 85% by mass or less, more preferably 60% by mass or more and 80% by mass or less, and the content of the long-chain aliphatic polyamide is 10% by mass or more and 50% by mass. % Or less, more preferably 15% by mass or more and 45% by mass or less, and further preferably 20% by mass or more and 40% by mass or less.
  • Examples of the production apparatus for polyamide 6, polyamide 6/66/12, and long-chain aliphatic polyamide include known polyamide production apparatuses described in the explanation of aliphatic polyamide (A).
  • As a manufacturing method of polyamide 6, polyamide 6/66/12, and long chain aliphatic polyamide the well-known method described by description of aliphatic polyamide (A) is mentioned.
  • the relative viscosity of polyamide 6, polyamide 6/66/12 and long chain aliphatic polyamide measured under the conditions of 96% sulfuric acid, polymer concentration 1%, 25 ° C. in accordance with JIS K-6920 is From the viewpoint of ensuring the mechanical properties of the resulting laminated tube and ensuring the desirable formability of the laminated tube by setting the viscosity at the time of melting to an appropriate range, it is preferably 1.5 or more and 5.0 or less. More preferably, it is 0.0 or more and 4.5 or less.
  • plasticizer (B3) in the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2) examples include benzenesulfonic acid alkylamides, toluenesulfonic acid alkylamides, and hydroxybenzoic acid alkyl esters. Is mentioned.
  • Benzenesulfonic acid alkylamides include benzenesulfonic acid propylamide, benzenesulfonic acid butyramide, benzenesulfonic acid 2-ethylhexylamide, and the like.
  • Toluenesulfonic acid alkylamides include N-ethyl-o-toluenesulfonic acid butyramide, N-ethyl-p-toluenesulfonic acid butyramide, N-ethyl-o-toluenesulfonic acid 2-ethylhexylamide, N-ethyl-p.
  • hydroxybenzoic acid alkyl esters include ethyl hexyl o-hydroxybenzoate, ethyl hexyl p-hydroxybenzoate, hexyl decyl o-hydroxybenzoate, hexyl decyl p-hydroxybenzoate, ethyl decyl o-hydroxybenzoate, p-hydroxybenzoate Ethyl decyl, octyl octyl o-hydroxybenzoate, octyl octyl p-hydroxybenzoate, decyldodecyl o-hydroxybenzoate, decyldodecyl p-hydroxybenzoate, methyl o-hydroxybenzoate, methyl p-hydroxybenzoate, o -Butyl hydroxybenzoate, butyl
  • benzenesulfonic acid alkylamides such as benzenesulfonic acid butyramide and benzenesulfonic acid 2-ethylhexylamide, N-ethyl-p-toluenesulfonic acid butyramide, N-ethyl-p-toluenesulfonic acid 2-ethylhexylamide and the like
  • hydroxybenzoic acid alkyl esters such as toluenesulfonic acid alkylamides, p-hydroxybenzoic acid ethylhexyl, p-hydroxybenzoic acid hexyldecyl, p-hydroxybenzoic acid ethyldecyl, and the like. More preferred are ethylhexyl and hexyldecyl p-hydroxybenzoate.
  • Olefin polymer (B4) having a flexural modulus of 500 MPa or less as measured in accordance with ISO 178 in polyamide 6 composition (B1) or polyamide 6/66/12 composition (B2) (hereinafter referred to as olefin polymer (B4 ) Is added to improve low temperature impact resistance of polyamide 6, polyamide 6/66/12, and long chain aliphatic polyamides. If the flexural modulus measured according to ISO 178 of the olefin polymer (B4) exceeds this value, the impact improving effect may be insufficient.
  • Examples of the olefin polymer (B4) include (ethylene and / or propylene) / ⁇ -olefin copolymer, (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester). ) Type copolymer, ionomer polymer, aromatic vinyl compound / conjugated diene compound type block copolymer, and these may be used alone or in combination of two or more.
  • olefins examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicocene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4- Methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ester -1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-e
  • the (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer is composed of ethylene and / or propylene and ⁇ , ⁇ -unsaturated carboxylic acid and / or This is a polymer obtained by copolymerizing an unsaturated carboxylic acid ester monomer.
  • the ⁇ , ⁇ -unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid.
  • Examples of the monomer include methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, and decyl ester of these unsaturated carboxylic acids. These can use 1 type (s) or 2 or more types.
  • the ionomer polymer is obtained by ionizing at least part of the olefin and the carboxyl group of the ⁇ , ⁇ -unsaturated carboxylic acid copolymer by neutralization of metal ions.
  • Ethylene is preferably used as the olefin, and acrylic acid and methacrylic acid are preferably used as the ⁇ , ⁇ -unsaturated carboxylic acid.
  • the olefin is not limited to those exemplified here.
  • the body may be copolymerized.
  • Metal ions include alkali metals and alkaline earth metals such as Li, Na, K, Mg, Ca, Sr, Ba, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc. Is mentioned. These can use 1 type (s) or 2 or more types.
  • the aromatic vinyl compound / conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene compound polymer block, and the aromatic vinyl compound polymer.
  • a block copolymer having at least one block and at least one conjugated diene compound-based polymer block is used.
  • the unsaturated bond in the conjugated diene compound-based polymer block may be hydrogenated.
  • the aromatic vinyl compound polymer block is a polymer block mainly composed of units derived from an aromatic vinyl compound.
  • aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 1,5-dimethylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propyl.
  • Styrene, 4-cyclohexyl styrene, 4-dodecyl styrene, 2-ethyl-4-benzyl styrene, 4- (phenylbutyl) styrene and the like can be mentioned, and one or more of these can be used.
  • the aromatic vinyl compound-based polymer block may optionally have a unit composed of a small amount of another unsaturated monomer.
  • Conjugated diene compound-based polymer blocks are 1,3-butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3 -A polymer block formed from one or more conjugated diene compounds such as hexadiene, and a hydrogenated aromatic vinyl compound / conjugated diene compound block copolymer, the conjugated diene compound polymer Part or all of the unsaturated bond portions in the block are saturated bonds by hydrogenation.
  • the molecular structure of the aromatic vinyl compound / conjugated diene compound block copolymer and the hydrogenated product thereof may be linear, branched, radial, or any combination thereof.
  • an aromatic vinyl compound / conjugated diene compound block copolymer and / or a hydrogenated product thereof one aromatic vinyl compound polymer block and one conjugated diene compound polymer block are linear.
  • the three polymer blocks are linearly bonded in the order of diblock copolymer, aromatic vinyl compound polymer block, conjugated diene compound polymer block, and aromatic vinyl compound polymer block.
  • One or more of these triblock copolymers and hydrogenated products thereof are preferably used.
  • the acid ester) copolymer, ionomer polymer, and aromatic vinyl compound / conjugated diene compound block copolymer a polymer modified with a carboxylic acid and / or a derivative thereof is preferably used.
  • polyamide 6, polyamide 6/66/12, long-chain aliphatic polyamide or a functional group having an affinity for the aliphatic polyamide (A) is included in the molecule; Become.
  • Examples of functional groups having affinity for polyamide 6, polyamide 6/66/12, long-chain aliphatic polyamide and aliphatic polyamide (A) include carboxyl groups, acid anhydride groups, carboxylic acid ester groups, and carboxylic acids Examples thereof include metal salts, carboxylic acid imide groups, carboxylic acid amide groups, and epoxy groups.
  • Examples of compounds containing these functional groups include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4-cyclohexene-1,2-dicarboxylic acid Endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic acid and metal salts of these carboxylic acids, monomethyl maleate, monomethyl itaconate, methyl acrylate, ethyl acrylate, butyl acrylate 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, dimethyl maleate, dimethyl itaconate, maleic anhydride, itaconic anhydride, citracone anhydride Acid, endobicyclo- 2.2.1]
  • the content of polyamide 6 in the polyamide 6 composition (B1) is 50% by mass to 98% by mass, preferably 60% by mass to 95% by mass, and 70% by mass to 92% by mass. More preferably.
  • the content of the polyamide 6 is less than the above value, the mechanical properties of the obtained laminated tube may be inferior.
  • the content exceeds the above value the interlayer adhesion and the durability of the obtained laminated tube are poor. May be inferior.
  • the content of the polyamide mixture in the polyamide 6/66/12 composition (B2) is 50% by mass to 98% by mass, preferably 60% by mass to 95% by mass, and more preferably 70% by mass to 92%. It is more preferable that the amount is not more than mass%. If the content of the polyamide mixture is less than the above value, the mechanical properties of the resulting laminated tube may be inferior. On the other hand, if it exceeds the above value, the interlayer adhesion of the obtained laminated tube and its durability may be poor. May be inferior.
  • the content of the plasticizer (B3) in the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2) is 1% by mass to 20% by mass, and 2% by mass to 15% by mass. It is preferable that it is 3 mass% or more and 10 mass% or less.
  • the content of the plasticizer (B3) is less than the above value, the flexibility of the obtained laminated tube may be inferior, whereas when it exceeds the above value, the low temperature impact resistance of the obtained laminated tube is inferior. Sometimes.
  • the content of the olefin polymer (B4) in the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2) is 1% by mass to 30% by mass, and 3% by mass to 25% by mass.
  • the content is preferably 5% by mass or more and more preferably 20% by mass or less.
  • the resulting laminated tube may be inferior in low-temperature impact resistance and interlayer adhesion and durability thereof, whereas when exceeding the above value, The resulting laminated tube may have inferior mechanical properties.
  • polyamide 6 composition (B1) or the polyamide 6/66/12 composition (B2) there are no particular restrictions on the method for producing the polyamide 6 composition (B1) or the polyamide 6/66/12 composition (B2), and various additives that have been conventionally known are used as necessary. can do.
  • polyamide 6, or polyamide 6/66/12, long chain aliphatic polyamide and olefin polymer (B4) as necessary, other pellets are added to each other using a tumbler or mixer.
  • the mixture is uniformly dry blended so as to have a mixing ratio and supplied to the melt kneader, while the plasticizer (B3) is injected from the middle of the cylinder of the melt kneader with a metering pump, and is manufactured by a melt kneading method or the like. be able to.
  • the melt kneading can be performed using a kneader such as a single screw extruder, a twin screw extruder, a knea
  • the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2) may contain other polyamide-based resins or other thermoplastic resins.
  • examples of other polyamide resins or other thermoplastic resins include the same resins as those of the aliphatic polyamide (A).
  • the content of the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2) in the mixture is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • an antioxidant for the polyamide 6 composition (B1) and the polyamide 6/66/12 composition (B2), an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, and an inorganic filler are added as necessary. Materials, antistatic agents, flame retardants, crystallization accelerators, colorants, lubricants, and the like may be added.
  • the saponified ethylene / vinyl acetate copolymer (C) is obtained by saponifying a copolymer comprising ethylene and vinyl acetate by a known method using an alkali catalyst or the like (hereinafter referred to as EVOH (C)). May be.
  • the ethylene content of EVOH (C) is preferably 15 mol% or more and 60 mol% or less from the viewpoint of sufficiently ensuring melt moldability, flexibility, impact resistance, and chemical liquid permeation prevention properties, It is more preferably 20 mol% or more and 55 mol% or less, and further preferably 25 mol% or more and 45 mol% or less.
  • EVOH (C) consists of a mixture of two or more types of EVOH having different ethylene contents, the value calculated from the respective ethylene contents and the mixing mass ratio is taken as the ethylene content.
  • the saponification degree of the vinyl ester component of EVOH (C) is preferably 90 mol% or more, more preferably 95 mol% or more, and 98% from the viewpoint of obtaining good chemical solution permeation prevention properties. It is more preferably at least mol, and particularly preferably at least 99 mol%.
  • EVOH (C) consists of a mixture of two or more types of EVOH having different saponification degrees
  • the value calculated from each saponification degree and the mixing mass ratio is defined as the saponification degree.
  • the ethylene content and the saponification degree of EVOH can be obtained by a nuclear magnetic resonance (NMR) method.
  • monomers can be copolymerized as long as the excellent properties of the obtained laminated tube are not impaired.
  • Other monomers include vinyl formate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, Vinyl esters such as vinyl palmitate, vinyl stearate, isopropenyl acetate, 1-butenyl acetate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl cyclohexanecarboxylate, vinyl benzoate, vinyl cinnamate, propylene, 1- ⁇ -olefins such as butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-dodecene, acrylic acid, methacrylic acid, crotonic acid, phthalic acid, (anhydrous) maleic acid, (anhydrous) ) Uns
  • EVOH (C) can contain various additives as required.
  • additives may include antioxidants, plasticizers, heat stabilizers, UV absorbers, antistatic agents, lubricants, colorants, fillers, or other thermoplastic resins.
  • An additive can be contained in the range which does not impair the outstanding characteristics of the laminated tube obtained.
  • Unsaturated fatty acid amides bis fatty acid amides such as ethylene bis-stearic acid amide, fatty acid metal salts such as calcium stearate, magnesium stearate, zinc stearate, aluminum stearate, wax, liquid paraffin, low molecular weight polyolefin Lubricants such as acetic acid, organic acids such as acetic acid, propionic acid and stearic acid, inorganic acid compounds such as boric acid compounds and phosphoric acid compounds, stabilizers such as metal salts of hydrotalcite, reduced iron powders, potassium sulfite , Oxygen absorbers such as ascorbic acid, hydroquinone, gallic acid, colorants such as carbon black, phthalocyanine, quinacridone, indoline, azo pigments, bengara, glass fiber, asbestos, ballastite, mica, sericite, talc, silica, Examples include fillers such as kaolin, calcium silicate, and montmorillonite.
  • EVOH (C) contains a boron compound.
  • a boron compound include boric acids, boric acid esters, borates, and borohydrides.
  • the boric acid include orthoboric acid, metaboric acid, and tetraboric acid.
  • the boric acid ester include triethyl borate and trimethyl borate. Examples thereof include salts, alkaline earth metal salts, and borax. These can use 1 type (s) or 2 or more types. Among these, orthoboric acid is preferable.
  • the content of the boron compound in EVOH (C) is 0.002 mass in terms of boron element with respect to 100 mass parts of EVOH (C), from the viewpoint of ensuring a sufficient content effect and obtaining a tube having a good appearance.
  • EVOH (C) may contain a phosphoric acid compound.
  • a phosphoric acid compound By containing a phosphoric acid compound, it is possible to achieve both long run properties, color resistance, and interlayer adhesion during melt molding. It does not specifically limit as a phosphoric acid compound, Various acids, such as phosphoric acid and phosphorous acid, its salt, etc. can be used.
  • the phosphate include primary phosphate, secondary phosphate, and tertiary phosphate. These can use 1 type (s) or 2 or more types.
  • the cationic species of phosphate is not particularly limited, but alkali metal salts are preferable. Among these, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate are preferable. preferable.
  • the content of the phosphoric acid compound in EVOH (C) is 0.02 in terms of phosphate radical with respect to 100 parts by mass of EVOH (C) from the viewpoint of sufficiently securing the content and obtaining a tube having a good appearance. It is preferably no greater than part by mass, more preferably no less than 0.0005 parts by mass and no greater than 0.01 parts by mass, and still more preferably no less than 0.001 parts by mass and no greater than 0.007 parts by mass.
  • EVOH (C) contains an alkali and / or alkaline earth metal salt from the viewpoints of melt stability and long run properties.
  • species of the salt of an alkali metal or alkaline-earth metal A carboxylate, a hydroxide, carbonate, hydrogencarbonate etc. are mentioned.
  • the cation species of the alkali metal salt such as lithium salt, sodium salt, potassium salt, etc.
  • the cation species of the alkaline earth metal salt magnesium salt, calcium salt, barium salt, beryllium salt, strontium Examples include salts.
  • the content of the alkali and / or alkaline earth metal salt in the EVOH (C) is sufficient to ensure the content effect, and from the viewpoint of obtaining a tube having a good appearance, the metal is used with respect to 100 parts by mass of the EVOH (C). It is preferably 0.0005 parts by mass or more and 0.2 parts by mass or less in terms of element, more preferably 0.001 parts by mass or more and 0.1 parts by mass or less, and 0.002 parts by mass or more and 0.05 parts by mass or less. More preferably, it is at most parts.
  • EVOH (C) has an antioxidant such as hydrotalcite and hindered phenol as long as the excellent characteristics of the obtained laminated tube are not impaired. It is preferable to add 0.01 part by mass or more and 1 part by mass or less of 1 type or 2 types or more to 100 parts by mass of EVOH (C).
  • the semi-aromatic polyamide composition (D1) includes a semi-aromatic polyamide (d1) (hereinafter sometimes referred to as a semi-aromatic polyamide composition (D1)), and the semi-aromatic polyamide (d1) 50 mol% of terephthalic acid units and / or naphthalenedicarboxylic acid units with respect to diamine units and diamine units containing 50 mol% or more of aliphatic diamine units having 9 to 13 carbon atoms with respect to all dicarboxylic acid units It contains a dicarboxylic acid unit including the above (hereinafter sometimes referred to as semi-aromatic polyamide (d1)).
  • the content of the aliphatic diamine unit having 9 to 13 carbon atoms in the semi-aromatic polyamide (d1) is determined by various physical properties such as heat resistance, chemical resistance, impact resistance, and chemical liquid permeation resistance of the obtained laminated tube. From the viewpoint of sufficiently ensuring the above, it is at least 50 mol%, preferably at least 55 mol%, more preferably at least 60 mol%, based on all diamine units.
  • Examples of the aliphatic diamine unit having 9 to 13 carbon atoms include 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, and 1,13-tridecanediamine. Units derived from.
  • 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1, Units derived from 10-decanediamine are preferred, and units derived from 1,12-dodecanediamine are preferred from the viewpoint of sufficiently ensuring low temperature impact resistance.
  • the molar ratio of 1,9-nonanediamine unit to 2-methyl-1,8-octanediamine unit depends on moldability and resistance. From the standpoint of impact balance, it is preferably 30:70 mol% or more and 98: 2 mol% or less, and more preferably 40:60 mol% or more and 95: 5 mol% or less.
  • the diamine unit in the semi-aromatic polyamide (d1) is a diamine unit other than the aliphatic diamine unit having 9 to 13 carbon atoms as long as it does not impair the excellent characteristics of the obtained laminated tube. May be included.
  • Examples of other diamine units include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, Units derived from aliphatic diamines such as 1,8-octanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine; 1,3-cyclohexanediamine, 1,4-cyclohexane Diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclo
  • the content of terephthalic acid units and / or naphthalenedicarboxylic acid units in the semi-aromatic polyamide (d1) ensures sufficient physical properties such as heat resistance, chemical resistance and chemical penetration prevention of the resulting laminated tube. In view of the above, it is 50 mol% or more, preferably 55 mol% or more, and more preferably 60 mol% or more with respect to all dicarboxylic acid units.
  • naphthalenedicarboxylic acid unit examples include units derived from 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like. These can use 1 type (s) or 2 or more types. Of the naphthalenedicarboxylic acid units, units derived from 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid are preferred in view of economy and availability.
  • dicarboxylic acid unit in the semi-aromatic polyamide (d1) is within a range that does not impair the excellent properties of the obtained laminated tube
  • other dicarboxylic acid units other than the terephthalic acid unit and / or the naphthalene dicarboxylic acid unit may be used. May be included.
  • examples of other dicarboxylic acid units include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 2,2-diethylsuccinic acid, and suberin.
  • Acid azelaic acid, 2,2,4-trimethyladipic acid, 2,4,4-trimethyladipic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanediate Units derived from aliphatic dicarboxylic acids such as acid, octadecanedioic acid and eicosanedioic acid; alicyclic such as 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Units derived from dicarboxylic acids; phthalic acid, isophthalic acid, 1,3-phenylenedioxydiacetic acid, , 4-phenylenedioxydiacetic acid, 4,4′-oxydi
  • units derived from aromatic dicarboxylic acids are preferred.
  • the content of these other dicarboxylic acid units is 50 mol% or less, preferably 45 mol% or less, more preferably 40 mol% or less, based on all dicarboxylic acid units.
  • polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used as long as melt molding is possible.
  • the semi-aromatic polyamide (d1) may contain other units other than the dicarboxylic acid unit and the diamine unit as long as the excellent properties of the obtained laminated tube are not impaired.
  • other units include units derived from lactams such as caprolactam, enantolactam, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone; 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11 -Units derived from aminocarboxylic acids of aliphatic aminocarboxylic acids such as aminoundecanoic acid and 12-aminododecanoic acid; and aromatic aminocarboxylic acids such as p-aminomethylbenzoic acid. These can use 1 type (s) or 2 or more types.
  • the content of other units is preferably 45 mol% or less, more preferably 40 mol% or less, still more preferably 35 mol%
  • a semi-aromatic polyamide (d1) production apparatus a batch-type reaction kettle, a single-tank or multi-tank continuous reaction apparatus, a tubular continuous reaction apparatus, a single-screw kneading extruder, a twin-screw kneading extruder, etc.
  • a known polyamide production apparatus such as a kneading reaction extruder may be used.
  • a polymerization method a known method such as melt polymerization, solution polymerization, or solid phase polymerization can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressure operations. These polymerization methods can be used alone or in appropriate combination.
  • phosphoric acid, phosphorous acid, hypophosphorous acid, a salt or ester thereof, or the like can be added as a catalyst.
  • phosphoric acid, phosphorous acid, hypophosphorous acid salts or esters include phosphoric acid, phosphorous acid, or hypophosphorous acid and potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin Metal salts such as tungsten, germanium, titanium, antimony, phosphoric acid, phosphorous acid, or ammonium salt of hypophosphorous acid, phosphoric acid, phosphorous acid, or hypophosphorous acid ethyl ester, isopropyl ester, butyl ester Hexyl ester, isodecyl ester, decyl ester, stearyl ester, phenyl ester and the like. These can use 1 type (s) or 2 or more types.
  • the semi-aromatic polyamide composition (D2) includes a semi-aromatic polyamide (d2) (hereinafter sometimes referred to as a semi-aromatic polyamide composition (D2)), and the semi-aromatic polyamide (d2) Aliphatic dicarboxylic acid having 8 to 13 carbon atoms with respect to the diamine unit, the diamine unit containing 50 mol% or more of xylylenediamine unit and / or bis (aminomethyl) naphthalene unit, and the total dicarboxylic acid unit. It contains a dicarboxylic acid unit containing 50 mol% or more of units (hereinafter sometimes referred to as semi-aromatic polyamide (d2)).
  • the content of the xylylenediamine unit and / or bis (aminomethyl) naphthalene unit in the semi-aromatic polyamide (d2) is the heat resistance, chemical resistance, impact resistance, chemical solution permeation prevention property, etc. of the obtained laminated tube. From the viewpoint of sufficiently ensuring various physical properties, it is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, based on all diamine units.
  • Examples of the xylylenediamine unit include units derived from o-xylylenediamine, m-xylylenediamine, and p-xylylenediamine. These can use 1 type (s) or 2 or more types. Among the xylylenediamine units, units derived from m-xylylenediamine and p-xylylenediamine are preferable.
  • the bis (aminomethyl) naphthalene unit 1,4-bis (aminomethyl) naphthalene, 1,5-bis (aminomethyl) naphthalene, 2,6-bis (aminomethyl) naphthalene, 2,7-bis (amino) And units derived from methyl) naphthalene. These can use 1 type (s) or 2 or more types. Among the bis (aminomethyl) naphthalene units, units derived from 1,5-bis (aminomethyl) naphthalene and 2,6-bis (aminomethyl) naphthalene are preferable.
  • the diamine unit in the semi-aromatic polyamide (d2) is a diamine other than the xylylenediamine unit and / or the bis (aminomethyl) naphthalene unit as long as the excellent properties of the obtained laminated tube are not impaired. Units may be included.
  • Examples of other diamine units include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, , 8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1, 15-pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 1,19-nonadecanediamine, 1,20-eicosanediamine, 2-methyl-1,5 -Pentanediamine, 3-methyl-1,5-pentanediamine, 2-methyl-1,8-octane Derived from aliphatic diamines such as amines, 2,2,4-trimethyl-1,6-hexan
  • the content of the aliphatic dicarboxylic acid unit having 8 to 13 carbon atoms in the semi-aromatic polyamide (d2) has various physical properties such as heat resistance, chemical resistance, and chemical liquid permeation prevention properties of the obtained laminated tube. From the viewpoint of ensuring sufficiently, it is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, based on all dicarboxylic acid units.
  • Examples of the aliphatic dicarboxylic acid unit having 8 to 13 carbon atoms include units derived from suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and the like.
  • branched aliphatic dicarboxylic acids such as 2,2-diethylsuccinic acid, 2,2,4-trimethyladipic acid, 2,4,4-trimethyladipic acid, and 2-butylsuberic acid You may contain the unit induced
  • units derived from azelaic acid and sebacic acid are preferable from the viewpoint of the balance between coextrusion moldability and chemical liquid permeation prevention property, and low temperature impact resistance is achieved. From the viewpoint of ensuring sufficiently, units derived from dodecanedioic acid are preferred.
  • the dicarboxylic acid unit in the semi-aromatic polyamide (d2) is a dicarboxylic acid unit other than the aliphatic dicarboxylic acid unit having 8 to 13 carbon atoms, as long as the excellent properties of the obtained laminated tube are not impaired. It may contain an acid unit.
  • dicarboxylic acid units include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, tetradecanedioic acid, pentadecanedioic acid, hexadecane Units derived from aliphatic dicarboxylic acids such as diacid, octadecanedioic acid and eicosane diacid; alicyclic rings such as 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Units derived from the formula dicarboxylic acid; terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,
  • the content of these other dicarboxylic acid units is 50 mol% or less, preferably 40 mol% or less, more preferably 30 mol% or less, based on all dicarboxylic acid units.
  • polycarboxylic acids such as trimellitic acid, trimesic acid and pyromellitic acid can be used as long as melt molding is possible.
  • the semi-aromatic polyamide (d2) may contain other units other than the dicarboxylic acid unit and the diamine unit as long as the excellent properties of the obtained laminated tube are not impaired.
  • other units include units derived from lactams such as caprolactam, enantolactam, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone; 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11 -Units derived from aminocarboxylic acids of aliphatic aminocarboxylic acids such as aminoundecanoic acid and 12-aminododecanoic acid; and aromatic aminocarboxylic acids such as p-aminomethylbenzoic acid. These can use 1 type (s) or 2 or more types.
  • the content of other units is preferably 30 mol% or less, more preferably 10 mol% or less, based on the total dicarbox
  • Semi-aromatic polyamide (d2) production equipment includes kneading in a batch reaction kettle, a single tank type or multi tank type continuous reaction apparatus, a tubular continuous reaction apparatus, a uniaxial kneading extruder, a biaxial kneading extruder, etc.
  • a known polyamide production apparatus such as a reaction extruder may be used.
  • As a method for producing the semi-aromatic polyamide (d2) there are known methods such as melt polymerization, solution polymerization, and solid-phase polymerization, and these methods are used to repeat normal pressure, reduced pressure, and pressurization operations to make the semi-aromatic polyamide. Polyamide (d2) can be produced.
  • melt polymerization method For example, a nylon salt composed of xylylenediamine and / or bis (aminomethyl) naphthalene and an aliphatic dicarboxylic acid having 8 to 13 carbon atoms is pressurized, heated in the presence of water, added water and condensation. It is produced by a method of polymerizing in a molten state while removing water.
  • xylylenediamine and / or bis (aminomethyl) naphthalene is continuously added to the aliphatic dicarboxylic acid having 8 to 13 carbon atoms
  • Polymerization proceeds while the temperature of the reaction system is raised so that the temperature of the reaction is higher than the melting point of the generated oligoamide and polyamide.
  • the semi-aromatic polyamide (d2) may be subjected to solid phase polymerization after being produced by a melt polymerization method.
  • a phosphorous compound can be added to the semi-aromatic polyamide (d2) as a catalyst, in order to improve processing stability during melt molding or to prevent coloring.
  • Phosphorus compounds include alkaline earth metal salts of hypophosphorous acid, alkali metal salts of phosphorous acid, alkaline earth metal salts of phosphorous acid, alkali metal salts of phosphoric acid, alkaline earth metal salts of phosphoric acid, Examples include alkali metal salts of pyrophosphoric acid, alkaline earth metal salts of pyrophosphoric acid, alkali metal salts of metaphosphoric acid, and alkaline earth metal salts of metaphosphoric acid.
  • calcium hypophosphite, magnesium hypophosphite, calcium phosphite, calcium hydrogen phosphite, and calcium dihydrogen phosphate are preferable, and calcium hypophosphite is more preferable.
  • These phosphorus compounds may be hydrates.
  • the content of the phosphorus compound ensures a catalytic effect and a coloration preventing effect at the time of polymerization, and is in terms of phosphorus atom concentration with respect to 100 parts by mass of the semi-aromatic polyamide (d2) from the viewpoint of suppressing gel generation. It is preferably 0.030 parts by mass or more and 0.30 parts by mass or less, more preferably 0.050 parts by mass or more and 0.20 parts by mass or less, and 0.070 parts by mass or more and 0.15 parts by mass or less. More preferably it is.
  • the addition method of these phosphorus compounds is a method of adding to a nylon salt aqueous solution, a diamine or dicarboxylic acid which is a raw material of the semi-aromatic polyamide (d2), a method of adding to a dicarboxylic acid in a molten state, and adding during melt polymerization. Any method may be used as long as it can be uniformly dispersed in the semi-aromatic polyamide (d2), but the method is not limited to these.
  • An alkali metal compound can be added to the semiaromatic polyamide (d2) in combination with the phosphorus compound.
  • a sufficient amount of phosphorus compound needs to be present, but in some cases there is a risk of causing gelation of the polyamide.
  • the alkali metal compound include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal acetates, and alkaline earth metal acetates, and alkali metal hydroxides and alkali metal acetates are preferable.
  • alkali metal compound examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lithium acetate
  • examples thereof include sodium acetate, potassium acetate, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, strontium acetate, and barium acetate. These can use 1 type (s) or 2 or more types.
  • sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, sodium acetate, and potassium acetate are preferable from the economical viewpoint, and sodium hydroxide, sodium acetate, and potassium acetate are preferable.
  • the value obtained by dividing the number of moles of the compound by the number of moles of the phosphorus compound converted to phosphorus atoms is the acceleration and suppression of the amidation reaction. From the viewpoint of balance, it is preferably 0.30 or more and 1.0 or less, more preferably 0.40 or more and 0.95 or less, and further preferably 0.50 or more and 0.90 or less.
  • the methods for adding these alkali metal compounds are: a method of adding to a nylon salt aqueous solution, a diamine or dicarboxylic acid that is a raw material of the semi-aromatic polyamide (d2), a method of adding to a dicarboxylic acid in a molten state, and an addition during melt polymerization Any method may be used as long as it can be uniformly dispersed in the semi-aromatic polyamide (d2), but is not limited thereto.
  • the relative viscosity of the semi-aromatic polyamide (d1) and the semi-aromatic polyamide (d2) measured under the conditions of 96% sulfuric acid, 1% polymer concentration and 25 ° C. in accordance with JIS K-6920 is the laminate obtained. From the viewpoint of ensuring the mechanical properties of the tube and ensuring the desirable formability of the laminated tube by setting the viscosity at the time of melting to an appropriate range, it is preferably 1.5 or more and 4.0 or less, and 1.8 or more It is more preferably 3.5 or less, and further preferably 2.0 or more and 3.0 or less.
  • aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine; alicyclic such as cyclohexylamine, dicyclohexylamine Monoamines; aromatic monoamines such as aniline, toluidine, diphenylamine, naphthylamine; 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,8-octanediamine, 2-methyl-1,5
  • An aliphatic diamine such as pentanediamine; an alicyclic diamine such as cyclohexanediamine, bis (aminomethyl) cyclohexane, 5-amino-1,3,3-trimethylcyclohexanemethylamine; Aromatic diamines such as polydiamine
  • These can use 1 type (s) or 2 or more types.
  • the amount of these molecular weight regulators used varies depending on the reactivity of the molecular weight regulator and the polymerization conditions, but is appropriately determined so that the relative viscosity of the polyamide to be finally obtained falls within the above range.
  • the molecular chain ends of the semi-aromatic polyamide (d1) and the semi-aromatic polyamide (d2) are sealed with an end-capping agent, and at least 10% of the end groups are sealed. It is more preferable that it is stopped, and it is still more preferable that 20% or more of the end groups are sealed.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but from the viewpoint of reactivity, stability of the capped end, etc.
  • An acid or a monoamine is preferable, and a monocarboxylic acid is more preferable from the viewpoint of easy handling.
  • acid anhydrides such as phthalic anhydride, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can be used.
  • the monocarboxylic acid used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
  • a carboxylic acid etc. are mentioned. Among these, from the viewpoint of reactivity, stability of the sealing end, price, etc., acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid Benzoic acid is preferred.
  • the monoamine used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group, and examples thereof include the aliphatic monoamines, alicyclic monoamines, and aromatic monoamines.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are preferable from the viewpoints of reactivity, boiling point, sealing end stability, price, and the like.
  • the amount of the terminal blocking agent used can be appropriately selected in consideration of the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the terminal blocking agent used. From the viewpoint of adjusting the degree of polymerization, it is preferably 0.1 mol% or more and 15 mol% or less with respect to the total number of moles of the dicarboxylic acid and diamine which are raw material components.
  • the semi-aromatic polyamide composition (D1) and the semi-aromatic polyamide composition (D2) include other polyamide-based resins or other thermoplastic resins together with the semi-aromatic polyamide (d1) and the semi-aromatic polyamide (d2). You may contain. Examples of other polyamide resins or other thermoplastic resins include the same resins as those of the aliphatic polyamide (A). Further, it may be a mixture with the aliphatic polyamide (A). The content of the semi-aromatic polyamide (d1) and the semi-aromatic polyamide (d2) in the mixture is preferably 60% by mass or more.
  • an antioxidant for the semi-aromatic polyamide composition (D1) and the semi-aromatic polyamide composition (D2), an antioxidant, a heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, and an inorganic filler are added as necessary. Materials, antistatic agents, flame retardants, crystallization accelerators, plasticizers, colorants, lubricants, impact modifiers, and the like may be added.
  • an impact modifier and particularly the polyamide 6 composition (B1) or the polyamide 6/66. / 12 It is more preferable to add a rubbery polymer having a flexural modulus of 500 MPa or less as measured in accordance with ISO 178 described in the composition (B2).
  • the (e) layer of the laminated tube contains a fluorine-containing polymer (E) in which a functional group having reactivity with an amino group is introduced into a molecular chain.
  • TFE tetrafluoroethylene
  • VDF vinylidene fluoride
  • VF vinyl fluoride
  • CTFE chlorotrifluoroethylene
  • CF 2 ⁇ CFOR f1 where R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms
  • R f2 represents a perfluoroalkylene group which may contain an etheric oxygen atom having 1 to 10 carbon atoms
  • CF 2 CF (CF 2 )
  • p OCF CF 2 (where , p is 1 or 2.)
  • CH 2 CX 1 (CF 2) n X 2 (wherein, X 1 and X 2 are each other Independently represent a hydrogen atom or a fluorine
  • n in the compound represented by the formula (1) ensures the effect of modifying the fluorine-containing polymer (for example, suppressing the occurrence of cracks in the molded product or molded product). It is an integer of 2 or more and 10 or less.
  • n in the formula is more preferably 2 or more and 4 or less.
  • the fluorine-containing polymer (E) may further contain a polymer unit based on a non-fluorine-containing monomer in addition to the fluorine-containing monomer.
  • Non-fluorine-containing monomers include olefins having 2 to 4 carbon atoms such as ethylene, propylene, isobutene, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl chloroacetate, vinyl lactate, vinyl butyrate, vinyl pivalate, benzoic acid Vinyl ester, vinyl crotonate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, methyl crotonate, etc., methyl vinyl ether (MVE), ethyl vinyl ether (EVE), Examples thereof include vinyl ethers such as butyl vinyl ether (BVE), isobutyl vinyl ether (IBVE), cyclohexyl vinyl ether (CHVE), and
  • CTFE units chlorotrifluoroethylene units
  • TFE units tetrafluoroethylene units
  • VDF unit Vinylidene fluoride homopolymer (polyvinylidene fluoride (PVDF)) (E1-1), A copolymer comprising VDF units and TFE units, wherein the content of VDF units is 30 mol% or more and 99 mol% or less with respect to the whole monomer excluding the functional group-containing monomers described later, and TFE units
  • the content of VDF units is 15 mol% or more and 84 mol% or less, and the content of TFE units is based on the whole monomer excluding the functional group-containing monomers described later. It is preferable that 15 mol% or more and 84 mol% or less and the content of the HFP unit is 0 mol% or more and 30 mol% or less.
  • a copolymer (E2) comprising at least a tetrafluoroethylene unit (TFE unit) and an ethylene unit (E unit) (hereinafter sometimes referred to as a TFE copolymer (E2)), for example, a functional group described below Examples include a polymer having a TFE unit content of 20 mol% or more based on the entire monomer excluding the group-containing monomer, and further, the entire monomer excluding the functional group-containing monomer described later.
  • the content of TFE units is 20 mol% or more and 80 mol% or less
  • the content of E units is 20 mol% or more and 80 mol% or less
  • the content of units derived from monomers copolymerizable therewith examples thereof include a copolymer having an amount of 0 mol% to 60 mol%.
  • X 1 and X 2 independently represent a hydrogen atom or a fluorine atom, and n is 2 or more and 10 or less
  • X 1 and X 2 independently represent a hydrogen atom or a fluorine atom, and n is 2 or more and 10 or less
  • It is a copolymer composed of fluoroolefin units derived from the fluoroolefin represented by the formula (1), and the content of TFE units is based on the whole monomer excluding the functional group-containing monomers described later.
  • TFE unit tetrafluoroethylene unit
  • HFP unit hexafluoropropylene unit
  • CF 2 CFOR f1 (where R f1 represents an etheric oxygen atom having 1 to 10 carbon atoms)
  • E3 a copolymer composed of PAVE units derived from PAVE represented by PAVE represented by:
  • PAVE represented by:
  • It is a copolymer composed of TFE units and HFP units, and the content of TFE units is preferably 70 mol% or more and 95 mol% or less with respect to the whole monomer excluding the functional group-containing monomer described later
  • CF 2 CF
  • CF 2 CFOR f1 (wherein R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms).
  • a copolymer (E3-2) in which the content of the seed or two or more kinds of PAVE units is 5 mol% or more and 30 mol% or less, TFE units and HFP units, and the above general formula CF 2 CFOR f1 (wherein R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms).
  • a copolymer consisting of one or more PAVE units derived from PAVE, wherein the content of TFE units is 70 mol% or more with respect to the whole monomer excluding the functional group-containing monomers described later 95 mol% or less, represented by HFP units and the above general formula CF 2 CFOR f1 (wherein R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms). And a copolymer (E3-3) in which the total content of one or more PAVE units derived from PAVE is 5 mol% or more and 30 mol% or less.
  • the copolymer consisting of at least chlorotrifluoroethylene units has CTFE units [—CFCl—CF 2 —] and is composed of ethylene units (E units) and / or fluorine-containing monomer units.
  • Chlorotrifluoroethylene copolymer (E4) (hereinafter sometimes referred to as CTFE copolymer (E4)).
  • the CTFE copolymer (E4) is not particularly limited, and examples thereof include a CTFE / PAVE copolymer, a CTFE / VDF copolymer, a CTFE / HFP copolymer, a CTFE / E copolymer, and a CTFE / PAVE / E copolymer. Examples thereof include a polymer, a CTFE / VDF / E copolymer, and a CTFE / HFP / E copolymer.
  • the CTFE unit content in the CTFE copolymer (E4) is preferably 15 mol% or more and 70 mol% or less, based on the whole monomer excluding the functional group-containing monomer described later, and is 18 mol%. More preferably, it is 65 mol% or less.
  • the content of the E unit and / or the fluorine-containing monomer unit is preferably 30 mol% or more and 85 mol% or less, and more preferably 35 mol% or more and 82 mol% or less.
  • the copolymer (E5) comprising at least a chlorotrifluoroethylene unit (CTFE unit) and a tetrafluoroethylene unit (TFE unit) has a CTFE unit [—CFCl—CF 2 —] and a TFE unit [—CF 2 —CF 2. -], And a chlorotrifluoroethylene copolymer composed of monomer units copolymerizable with CTFE and TFE (hereinafter sometimes referred to as CTFE / TFE copolymer (E5)).
  • CTFE unit chlorotrifluoroethylene unit
  • TFE unit tetrafluoroethylene unit
  • Fluorinated monomers ethylene, propylene, isobutene and other olefins having 2 to 4 carbon atoms, vinyl acetate, methyl (meth) acrylate, (meth Vinyl esters such as ethyl acrylate, methyl vinyl ether (MVE), ethyl vinyl ether (EVE), non-fluorine-containing monomers of vinyl ether and butyl vinyl ether (BVE), and the like.
  • MVE methyl vinyl ether
  • EVE ethyl vinyl ether
  • BVE butyl vinyl ether
  • R f1 represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 10 carbon atoms.
  • the CTFE / TFE copolymer (E5) is not particularly limited, and examples thereof include a CTFE / TFE copolymer, a CTFE / TFE / HFP copolymer, a CTFE / TFE / VDF copolymer, and a CTFE / TFE / PAVE copolymer.
  • CTFE / TFE / PFE copolymer, CTFE / TFE / HFP / PAVE copolymer, and CTFE / TFE / VDF / PAVE copolymer are examples thereof.
  • the total content of CTFE units and TFE units in the CTFE / TFE copolymer (E5) is from the viewpoint of ensuring good moldability, environmental stress crack resistance, chemical penetration prevention, heat resistance, and mechanical properties. It is preferable that it is 90.0 mol% or more and 99.9 mol% or less with respect to the whole monomer except the functional group containing monomer of a postscript, The monomer unit copolymerizable with the said CTFE and TFE is preferable.
  • the content is preferably 0.10 mol% or more and 10.0 mol% or less.
  • the content of the CTFE unit in the CTFE / TFE copolymer (E5) is the total amount of the CTFE unit and the TFE unit from the viewpoint of ensuring good moldability, environmental stress crack resistance, and chemical penetration prevention. It is preferably 15 mol% or more and 80 mol% or less, more preferably 17 mol% or more and 70 mol% or less, and further preferably 19 mol% or more and 65 mol% or less with respect to 100 mol%. .
  • the content of the PAVE unit is the entire monomer excluding the functional group-containing monomer described later. On the other hand, it is preferably 0.5 mol% or more and 7 mol% or less, more preferably 1 mol% or more and 5 mol% or less.
  • the total content of the HFP unit and the PAVE unit is the functional group-containing monomer described later. It is preferably 0.5 mol% or more and 7 mol% or less, and more preferably 1 mol% or more and 5 mol% or less with respect to the whole monomer excluding.
  • the TFE copolymer (E3), the CTFE copolymer (E4), and the CTFE / TFE copolymer (E5) are excellent in chemical liquid permeation prevention properties, particularly barrier properties against alcohol-containing gasoline.
  • For the alcohol-containing gasoline permeability coefficient put the sheet obtained from the resin to be measured into a permeability coefficient measuring cup filled with isooctane / toluene / ethanol mixed solvent in which isooctane, toluene, and ethanol are mixed at a volume ratio of 45:45:10. , A value calculated from a change in mass measured at 60 ° C.
  • the alcohol-containing gasoline permeability coefficient of the TFE copolymer (E3), CTFE copolymer (E4) and CTFE / TFE copolymer (E5) is 1.5 g ⁇ mm / (m 2 ⁇ day) or less. preferably, 0.010g ⁇ mm / (m 2 ⁇ day) or more 1.0 g ⁇ mm / more preferably (m 2 ⁇ day) or less, 0.020g ⁇ mm / (m 2 ⁇ day) or more 0 More preferably, it is 80 g ⁇ mm / (m 2 ⁇ day) or less.
  • the fluorine-containing polymer (E) can be obtained by (co) polymerizing monomers constituting the polymer by a conventional polymerization method.
  • a method by radical polymerization is mainly used. That is, the means for initiating polymerization is not limited as long as it proceeds radically, but for example, it is initiated by organic or inorganic radical polymerization initiator, heat, light or ionizing radiation.
  • the polymerization method using the radical polymerization initiator generally used is used.
  • Polymerization methods include bulk polymerization, solution polymerization using organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols, hydrocarbons, aqueous media, and appropriate organic solvents as required.
  • Known methods such as suspension polymerization, emulsion polymerization using an aqueous medium and an emulsifier can be employed.
  • polymerization can be implemented as a batch type or a continuous operation using a 1 tank thru
  • the decomposition temperature with a half-life of 10 hours is preferably 0 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • Chain transfer agents include alcohols such as methanol and ethanol, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, and 1,2-dichloro- Chlorofluorohydrocarbons such as 1,1,2,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, 1,1,2-trichloro-1,2,2-trifluoroethane; pentane, hexane And hydrocarbons such as cyclohexane; chlorohydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride. These can use 1 type (s) or 2 or more types.
  • Polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. In order to avoid a decrease in heat resistance due to ethylene-ethylene chain formation in the polymer, a low temperature is generally preferred.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount, vapor pressure, polymerization temperature and the like of the solvent used, but is preferably 0.1 MPa or more and 10 MPa or less, and is 0.5 MPa or more and 3 MPa or less. It is more preferable.
  • the polymerization time is preferably 1 hour or more and 30 hours or less.
  • the molecular weight of the fluorine-containing polymer (E) is not particularly limited, but is preferably a polymer that is solid at room temperature and can itself be used as a thermoplastic resin, an elastomer, or the like.
  • the molecular weight is controlled by the concentration of the monomer used for the polymerization, the concentration of the polymerization initiator, the concentration of the chain transfer agent, and the temperature.
  • the fluorine-containing polymer (E) is mixed with the aliphatic polyamide (A), polyamide 6 composition (B1), polyamide 6/66/12 composition (B2), EVOH (C), semi-aromatic polyamide composition ( In the case of co-extrusion with D1) or semi-aromatic polyamide composition (D2), etc., in order to ensure sufficient melt fluidity in the kneading temperature and molding temperature range without significant deterioration of these, The melt flow rate at a temperature 50 ° C.
  • higher than the melting point of the coalescence (E) and a 5 kg load is preferably 0.5 g / 10 min or more and 200 g / 10 min or less, preferably 1 g / 10 min or more and 100 g / 10 min or less. More preferably.
  • the melting point and glass transition point of the polymer can be adjusted by selecting the type and composition ratio of the fluorinated monomer and other monomers.
  • the melting point of the fluorine-containing polymer (E) is appropriately selected depending on the purpose, application, and method of use.
  • the melting point of the fluorine-containing polymer (E) is preferably 150 ° C. or higher and 280 ° C. or lower.
  • the melting point means that the sample is heated to a temperature higher than the expected melting point using a differential scanning calorimeter, and then the sample is cooled at a rate of 10 ° C. per minute and cooled to 30 ° C.
  • the melting point is defined as the temperature of the peak value of the melting curve measured by leaving the sample as it is for about 1 minute and then increasing the temperature at a rate of 10 ° C. per minute.
  • the fluorine-containing polymer (E) has a functional group having reactivity with an amino group in the molecular structure, and the functional group is a molecular end or a side chain of the fluorine-containing polymer (E) or It may be contained in any of the main chains. Moreover, the functional group may be used alone or in combination of two or more kinds in the fluorine-containing polymer (E).
  • the type and content of the functional group are appropriately determined depending on the type, shape, application, required interlayer adhesion, adhesion method, functional group introduction method, etc. of the other material laminated on the fluorine-containing polymer (E).
  • the functional group having reactivity with the amino group is selected from the group consisting of a carboxyl group, an acid anhydride group or carboxylate, a sulfo or sulfonate, an epoxy group, a cyano group, a carbonate group, and a haloformyl group.
  • a carboxyl group an acid anhydride group or carboxylate, a sulfo or sulfonate, an epoxy group, a cyano group, a carbonate group, and a haloformyl group.
  • a method for introducing a functional group having reactivity into the fluorine-containing polymer (E) (i) when the fluorine-containing polymer (E) is polymerized, a copolymerizable monomer having a functional group is copolymerized.
  • a method of polymerization (ii) a method of introducing a functional group into the molecular terminal of the fluorine-containing polymer (E) at the time of polymerization by a polymerization initiator, a chain transfer agent, etc., and (iii) grafting a functional group having reactivity.
  • grafting a compound (graft compound) having a functional group capable of forming on a fluorine-containing polymer (i) when the fluorine-containing polymer (E) is polymerized, a copolymerizable monomer having a functional group is copolymerized.
  • the fluorine-containing polymer (E) produced from the above (i) and (ii) is preferable.
  • JP-A-7-18035, JP-A-7-259592, JP-A-7-25594, JP-A-7-173230, JP-A-7-173446, JP-A-7- See the production methods described in JP-A-173447 and JP-T-10-503236.
  • (I) In the method of copolymerizing a copolymerizable monomer having a functional group (hereinafter sometimes abbreviated as a functional group-containing monomer) during the production of the fluorine-containing polymer (E), Polymerized monomer comprising at least one functional group-containing monomer selected from the group consisting of carboxyl group, acid anhydride group or carboxylate, hydroxyl group, sulfo or sulfonate, epoxy group, and cyano group And use.
  • the functional group-containing monomer include a functional group-containing non-fluorine monomer and a functional group-containing fluorine-containing monomer.
  • Functional group-containing non-fluorine monomers include acrylic acid, halogenated acrylic acid (excluding fluorine), methacrylic acid, halogenated methacrylic acid (excluding fluorine), maleic acid, halogenated maleic acid (excluding , Fluorine), fumaric acid, halogenated fumaric acid (excluding fluorine), itaconic acid, citraconic acid, crotonic acid, endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic acid Unsaturated carboxylic acids such as acids and derivatives thereof; maleic anhydride, itaconic anhydride, succinic anhydride, citraconic anhydride, endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic acid Carboxyl group-containing monomers such as anhydrides; Epoxy group-containing monomers such as glycidyl acrylate, glycidyl methacrylate, and glycidyl ether And
  • the functional group-containing non-fluorine monomer is determined in consideration of copolymerization reactivity with the fluorine-containing monomer to be used. By selecting an appropriate functional group-containing non-fluorine monomer, the polymerization proceeds well, and it can be easily introduced into the main chain of the functional group-containing non-fluorine monomer, resulting in less unreacted monomer. There is an advantage that impurities can be reduced.
  • R 7 is An alkylene group having 1 to 40 carbon atoms, a fluorinated oxyalkylene group having 1 to 40 carbon atoms, a fluorinated alkylene group having 1 to 40 carbon atoms having an ether bond, or a carbon atom having an ether bond Number 1 or more And 40 or less fluorine-containing oxyalkylene groups, and n is 0 or 1.).
  • Examples of the group derived from a carboxyl group as Y in the general formula include, for example, a general formula —C ( ⁇ O) Q 1 (wherein Q 1 represents —OR 8 , —NH 2 , F, Cl, Br, or I).
  • R 8 represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 22 carbon atoms.
  • Examples of the sulfonic acid-derived group represented by Y in the above general formula include a general formula —SO 2 Q 2 (wherein Q 2 represents —OR 9 , —NH 2 , F, Cl, Br or I, and R 9 Represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 22 carbon atoms).
  • Y is preferably —COOH, —SO 3 H, —SO 3 Na, —SO 2 F, or —CN.
  • the functional group-containing fluorine-containing monomer for example, in the case of a functional group having a carbonyl group, perfluoroacrylic acid fluoride, 1-fluoroacrylic acid fluoride, acrylic acid fluoride, 1-trifluoromethacrylic acid fluoride, perfluoro Examples include butenoic acid. These can use 1 type (s) or 2 or more types.
  • the content of the functional group-containing monomer in the fluorine-containing polymer (E) ensures sufficient interlayer adhesion, and ensures sufficient heat resistance without causing a decrease in interlayer adhesion depending on the use environment conditions. From the viewpoint of preventing occurrence of poor adhesion, coloring, foaming, use at high temperatures, peeling, coloring, foaming, elution, etc. due to decomposition during processing at high temperatures, % To 20 mol%, more preferably 0.05 mol% to 10 mol%, and still more preferably 0.1 mol% to 5 mol%.
  • the addition method of the functional group-containing monomer is not particularly limited, and may be added all at once at the start of polymerization or continuously during the polymerization. The addition method is appropriately selected depending on the decomposition reactivity of the polymerization initiator and the polymerization temperature. During the polymerization, the amount consumed is continuously or intermittently as the functional group-containing monomer is consumed in the polymerization. It is preferable to supply in the polymerization tank and maintain the concentration of the functional group-containing monomer in this range. Moreover, as long as the said content is satisfy
  • a functional group is introduced into the molecular end of a fluorine-containing polymer with a polymerization initiator or the like, the functional group is introduced into one or both ends of the molecular chain of the fluorine-containing polymer.
  • the functional group introduced at the terminal is preferably a carbonate group or a haloformyl group.
  • the carbonate group introduced as the terminal group of the fluorine-containing polymer (E) is generally a group having a —OC ( ⁇ O) O— bond, specifically, —OC ( ⁇ O) O—R. 10 groups
  • R 10 is a hydrogen atom, an organic group (for example, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms having an ether bond, etc.), or an I, II, or VII group element. . ] —OC ( ⁇ O) OCH 3 , —OC ( ⁇ O) OC 3 H 7 , —OC ( ⁇ O) OC 8 H 17 , —OC ( ⁇ O) OCH 2 CH 2 OCH 2 CH 3 etc. may be mentioned.
  • the haloformyl group is specifically —COZ [Z is a halogen element. ], And includes -COF, -COCl and the like. These can use 1 type (s) or 2 or more types.
  • a carbonate group at the molecular terminal of the polymer various methods using a polymerization initiator or a chain transfer agent can be employed. Can be preferably employed from the viewpoint of performance such as economy, heat resistance and chemical resistance. According to this method, a carbonyl group derived from peroxide, for example, a carbonate group derived from peroxycarbonate, an ester group derived from peroxyester, or a polymer such as a haloformyl group obtained by converting these functional groups It can be introduced at the end.
  • these polymerization initiators it is more preferable to use peroxycarbonate because the polymerization temperature can be lowered and no side reaction is involved in the initiation reaction.
  • Various methods can be used to introduce a haloformyl group at the molecular end of the polymer.
  • the carbonate group of the above-mentioned fluorine-containing polymer having a carbonate group at the end is heated to cause thermal decomposition (decarboxylation). Can be obtained.
  • Peroxycarbonates include diisopropyl peroxycarbonate, di-n-propyl peroxycarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxymethacryloyloxyethyl carbonate, bis (4-t-butylcyclohexyl) peroxy Examples thereof include dicarbonate and di-2-ethylhexyl peroxydicarbonate. These can use 1 type (s) or 2 or more types.
  • the amount of peroxycarbonate used varies depending on the type of polymer (composition, etc.), the molecular weight, the polymerization conditions, and the type of initiator used, but the polymerization rate is properly controlled to ensure a sufficient polymerization rate. From a viewpoint, it is preferable that it is 0.05 to 20 mass parts with respect to 100 mass parts of all the polymers obtained by superposition
  • the carbonate group content at the molecular end of the polymer can be controlled by adjusting the polymerization conditions.
  • the addition method of a polymerization initiator is not specifically limited, You may add collectively at the time of a polymerization start, and may add continuously during superposition
  • the number of terminal functional groups with respect to 10 6 main chain carbon atoms in the fluorine-containing polymer (E) ensures sufficient interlayer adhesion, and does not cause deterioration of interlayer adhesion depending on the use environment conditions.
  • the number is 200 or more and 2,000 or less, and more preferably 300 or more and 1,000 or less. Further, as long as the number of functional groups is satisfied, it may be a mixture of a fluorine-containing polymer into which a functional group has been introduced and a fluorine-containing polymer into which no functional group has been introduced.
  • the fluorine-containing polymer (E) is a fluorine-containing polymer into which a functional group having reactivity with an amino group is introduced.
  • the fluorine-containing polymer (E) into which a functional group is introduced is itself a heat-resistant, water-resistant, low-friction, chemical-resistant, weather-resistant, antifouling property peculiar to the fluorine-containing polymer. It is possible to maintain excellent characteristics such as chemical solution permeation prevention, which is advantageous in terms of productivity and cost.
  • special functions such as surface treatment can be applied to various materials that have insufficient or impossible interlayer adhesion in laminated tubes by containing functional groups reactive to amino groups in the molecular chain. It is possible to impart excellent interlayer adhesion with other substrates directly without performing any treatment or coating with an adhesive resin.
  • Fluorine-containing polymer (E) can be added with various fillers such as inorganic powder, glass fiber, carbon fiber, metal oxide, or carbon as long as the performance is not impaired depending on the purpose and application.
  • a pigment, an ultraviolet absorber, and other optional additives can be mixed.
  • resins such as other fluororesins and thermoplastic resins, synthetic rubber, etc. can also be added, improving mechanical properties, improving weather resistance, imparting design properties, preventing static electricity, improving moldability Etc. are possible.
  • the first embodiment of the laminated tube comprises (a) a layer comprising an aliphatic polyamide (A), a polyamide 6 composition (B1), and / or a polyamide 6/66/12 composition (B2) (b) layer, It is composed of at least four layers having (c) layer containing EVOH (C) and (d) layer containing semi-aromatic polyamide composition (D1) or semi-aromatic polyamide composition (D2).
  • the laminated tube of the first aspect it is essential to include a (c) layer containing EVOH (C), a semi-aromatic polyamide composition (D1), or a (d) layer containing a semi-aromatic polyamide composition (D2). Therefore, the chemical permeation prevention property of the laminated tube, particularly the hydrocarbon permeation prevention property is improved.
  • the (a) layer containing the aliphatic polyamide (A) is disposed in the outermost layer of the laminated tube.
  • the (c) layer containing EVOH (C) contains the (a) layer containing the aliphatic polyamide (A) and the semi-aromatic polyamide composition (D1) or the semi-aromatic polyamide composition (D2) ( d) Located between the layers.
  • a laminated tube having excellent resistance to deterioration fuel can be obtained, and Elution of low molecular weight components such as monomers and oligomers due to contact with alcohol gasoline can be suppressed. That is, a laminated tube in which the (a) layer is disposed as the outermost layer and the (c) layer is disposed between the (a) and (d) layers is preferable.
  • the polyamide 6 composition (B1) and / or the polyamide 6/66/12 composition (B2) are included on at least one side adjacent to the (c) layer containing EVOH (C).
  • B) A layer is disposed.
  • the (b) layer containing the polyamide 6 composition (B1) and / or the polyamide 6/66/12 composition (B2) is disposed on at least one side adjacent to the (c) layer containing EVOH (C).
  • the conductive layer containing the semi-aromatic polyamide composition (D1) containing the conductive filler or the semi-aromatic polyamide composition (D2) is disposed in the innermost layer of the laminated tube.
  • the internal friction of the fuel circulating in the piping or the friction with the tube wall is excellent.
  • a layer containing a semi-aromatic polyamide having no conductivity is disposed on the outside of the conductive layer, so that both low temperature impact resistance and conductivity can be achieved. This is also advantageous.
  • Examples of the particulate filler include carbon black and graphite.
  • Examples of the flaky filler include aluminum flakes, nickel flakes, and nickel-coated mica.
  • Examples of the fibrous filler include carbon fibers, carbon-coated ceramic fibers, carbon whiskers, carbon nanotubes, aluminum fibers, copper fibers, brass fibers, and stainless steel fibers. These can use 1 type (s) or 2 or more types. Among these, carbon nanotubes and carbon black are preferable.
  • the aspect ratio (referring to the ratio of length / outer diameter) of the carbon nanotubes is preferably 5 or more, more preferably 100 or more, and further preferably 500 or more. By satisfying the aspect ratio, it is easy to form a conductive network, and excellent conductivity can be exhibited by addition of a small amount.
  • Carbon black includes all carbon blacks that are commonly used to impart conductivity.
  • Preferred carbon blacks include acetylene black obtained by incomplete combustion of acetylene gas, and furnace-type incompleteness using crude oil as a raw material. Examples include, but are not limited to, furnace black such as ketjen black produced by combustion, oil black, naphthalene black, thermal black, lamp black, channel black, roll black, and disk black. Among these, acetylene black and furnace black are more preferable.
  • Carbon black is produced in various carbon powders having different characteristics such as particle diameter, surface area, DBP oil absorption, ash content and the like. Although there is no restriction
  • the surface area (BET method) is preferably 10 m 2 / g or more, more preferably 30 m 2 / g or more, and 50 m 2 / g or more.
  • the DBP (dibutyl phthalate) oil absorption is preferably 50 ml / 100 g or more, more preferably 100 ml / 100 g, and even more preferably 150 ml / 100 g or more.
  • an ash content is 0.5 mass% or less, and it is more preferable that it is 0.3 mass% or less.
  • the DBP oil absorption referred to here is a value measured by a method defined in ASTM D-2414.
  • the volatile content of carbon black is preferably less than 1% by mass.
  • These conductive fillers may be subjected to surface treatment with a surface treatment agent such as titanate, aluminum or silane. It is also possible to use a granulated product to improve melt kneading workability.
  • the content of the conductive filler varies depending on the type of conductive filler used, it cannot be specified unconditionally, but from the viewpoint of balance with conductivity, fluidity, mechanical strength, etc., the semi-aromatic polyamide (d1) and Generally, it is preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the semi-aromatic polyamide (d2).
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if the target conductivity level is obtained.
  • the thickness of each layer is not particularly limited and can be adjusted according to the type of polymer constituting each layer, the total number of layers in the laminated tube, the use, etc., but the thickness of each layer is It is determined in consideration of the properties of the laminated tube, such as chemical penetration prevention, low temperature impact resistance, and flexibility.
  • the thicknesses of the (a) layer, (b) layer, (c) layer, and (d) layer are each preferably 3% or more and 90% or less with respect to the thickness of the entire laminated tube.
  • the thicknesses of the (c) layer and (d) layer should be 5% or more and 50% or less, respectively, with respect to the total thickness of the laminated tube. Preferably, it is 7% or more and 30% or less.
  • the total number of layers in the laminated tube of the first aspect is the (a) layer containing the aliphatic polyamide (A), the polyamide 6 composition (B1), and / or the polyamide 6/66/12 composition (B2). At least 4 having (b) layer containing, (c) layer containing EVOH (C), and (d) layer containing semi-aromatic polyamide composition (D1) or semi-aromatic polyamide composition (D2)
  • the layer is not particularly limited as long as it is a layer.
  • the laminated tube of the first aspect is a laminated tube that gives further functions or is economically advantageous in addition to the four layers (a), (b), (c), and (d). In order to obtain, it may have one layer or two or more layers containing other thermoplastic resins.
  • the number of layers of the laminated tube of the first aspect is 4 or more, but it is preferably 8 or less, more preferably 5 or more and 7 or less, judging from the mechanism of the tube production apparatus.
  • the second embodiment of the laminated tube comprises (a) a layer comprising aliphatic polyamide (A), a polyamide 6 composition (B1), and / or a polyamide 6/66/12 composition (B2) (b) layer, (C) layer containing EVOH (C), (d) layer containing semi-aromatic polyamide composition (D1) or semi-aromatic polyamide composition (D2), and fluorine-containing polymer (E) ( e) It is composed of at least 5 layers with layers.
  • the laminated tube of the second embodiment it is essential to include a (c) layer containing EVOH (C), a semi-aromatic polyamide composition (D1), or a (d) layer containing a semi-aromatic polyamide composition (D2). Therefore, the chemical permeation prevention property of the laminated tube, particularly the hydrocarbon permeation prevention property is improved. Moreover, it is also essential to include the (e) layer containing a fluorine-containing polymer (E), and the alcohol permeation preventive property of a laminated tube becomes favorable. (E) By including a layer, it is excellent in the permeation
  • the (a) layer containing the aliphatic polyamide (A) is disposed in the outermost layer of the laminated tube.
  • the (a) layer containing the aliphatic polyamide (A) in the outermost layer, it becomes possible to obtain a laminated tube excellent in chemical resistance and flexibility.
  • the (c) layer containing EVOH (C) and the (d) layer containing the semi-aromatic polyamide composition (D1) or the semi-aromatic polyamide composition (D2) contain the aliphatic polyamide (A). It arrange
  • a laminated tube having excellent resistance to deterioration fuel can be obtained, and a low molecular weight such as a monomer or oligomer by contact with alcohol-containing gasoline. It becomes possible to suppress elution of components. That is, a laminated tube in which the (a) layer is disposed as the outermost layer, and the (c) layer and the (d) layer are disposed between the (a) layer and the (e) layer is preferable.
  • the polyamide 6 composition (B1) and / or the polyamide 6/66/12 composition (B2) are included on at least one side adjacent to the (c) layer containing EVOH (C).
  • B) A layer is disposed.
  • the (b) layer containing the polyamide 6 composition (B1) and / or the polyamide 6/66/12 composition (B2) is disposed on at least one side adjacent to the (c) layer containing EVOH (C).
  • EVOH (C), semi-aromatic polyamide composition (D1), semi-aromatic polyamide composition (D2), and fluorine-containing polymer (E ) Sufficient molding stability can be secured in a wide molding temperature range. That is, a laminated tube in which the (b) layer is disposed on at least one side adjacent to the (c) layer is more preferable.
  • the conductive layer containing the fluorine-containing polymer composition containing the conductive filler when used as a fuel piping tube, it prevents the spark generated by the internal friction of the fuel circulating in the piping or the friction with the tube wall from igniting the fuel. It becomes possible. In that case, it is possible to achieve both low temperature impact resistance and conductivity by arranging a layer containing a fluorine-containing polymer having no conductivity outside the conductive layer, and It is also economically advantageous.
  • the fluorine-containing polymer referred to here includes a fluorine-containing polymer (E) having a functional group in the molecular chain, and also refers to a fluorine-containing polymer having no functional group described later.
  • the content of the conductive filler varies depending on the type of the conductive filler used, it cannot be defined unconditionally, but from the viewpoint of balance with conductivity, fluidity, mechanical strength, etc., 100 parts by mass of the fluorinated polymer On the other hand, it is generally preferably 3 parts by mass or more and 30 parts by mass or less.
  • the conductive filler preferably has a surface resistivity of the melt-extruded product of 10 8 ⁇ / square or less, more preferably 10 6 ⁇ / square or less. preferable.
  • the addition of the conductive filler tends to cause deterioration of strength and fluidity. Therefore, it is desirable that the content of the conductive filler is as small as possible if the target conductivity level is obtained.
  • the thickness of the (c) layer, (d) layer, and (e) layer is 5% or more and 50% or less, respectively, with respect to the total thickness of the laminated tube. It is more preferable that it is 7% or more and 30% or less.
  • the total number of layers in the laminated tube of the second embodiment is the (a) layer containing the aliphatic polyamide (A), the polyamide 6 composition (B1), and / or the polyamide 6/66/12 composition (B2).
  • (c) layer containing semi-aromatic polyamide composition (D1), (d) layer containing semi-aromatic polyamide composition (D2), and fluorine-containing heavy There is no particular limitation as long as it has at least five layers having the (e) layer containing the combined (E).
  • the laminated tube according to the second aspect provides a further function in addition to the five layers (a), (b), (c), (d), and (e), or economically.
  • one or two or more layers containing other thermoplastic resins may be included.
  • the number of layers of the laminated tube of the second embodiment is 5 or more, but it is preferably 8 or less, more preferably 6 or more and 7 or less, judging from the mechanism of the tube manufacturing apparatus.
  • thermoplastic resins in the laminated tubes of the first and second embodiments include polymetaxylylene adipamide other than aliphatic polyamide (A), semi-aromatic polyamide (d1) and semi-aromatic polyamide (d2) (Polyamide MXD6), polymetaxylylene terephthalamide (polyamide MXDT), polymetaxylylene isophthalamide (polyamide MXDI), polymetaxylylene hexahydroterephthalamide (polyamide MXDT (H)), polymetaxylylene naphthalamide (polyamide) MXDN), polyparaxylylene adipamide (polyamide PXD6), polyparaxylylene terephthalamide (polyamide PXDT), polyparaxylylene isophthalamide (polyamide PXDI), polyparaxylylene hexahydroterephthalamide (polyamid) PXDT (H)), polyparaxylylene naphthalamide (polyamide
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • FEP Tetrafluoroethylene / hexafluoropropylene copolymer
  • EEP Tetrafluoroethylene / hexafluoropropylene copolymer
  • EEP Tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • EEP ethylene / tetrafluoroethylene / Hexafluoropropylene copolymer
  • EEP vinylidene fluoride / tetrafluoroethylene copolymer
  • vinylidene fluoride / tetrafluoroethylene copolymer vinylidene fluoride / hexaflu
  • the functional tube does not contain the (e) layer.
  • the layer containing the fluorine-based polymer By disposing the layer containing the fluorine-based polymer on the inside, it is possible to achieve both low temperature impact resistance, chemical solution permeation resistance, and environmental stress crack resistance, and it is also economically advantageous.
  • the fluorine-containing polymer (E) in which a functional group having reactivity with an amino group is introduced into the molecular chain is not included other than the layer (e).
  • high density polyethylene HDPE
  • medium density polyethylene MDPE
  • low density polyethylene LDPE
  • linear low density polyethylene LLDPE
  • ultra high molecular weight polyethylene UHMWPE
  • polypropylene PP
  • polybutene PB
  • Polymethylpentene TPX
  • EPR ethylene / propylene copolymer
  • EBR ethylene / butene copolymer
  • EAA ethylene / vinyl acetate copolymer
  • EAA acrylic acid copolymer
  • Polyolefins such as ethylene / methacrylic acid copolymer (EMAA), ethylene / methyl acrylate copolymer (EMA), ethylene / methyl methacrylate copolymer (EMMA), ethylene / ethyl acrylate copolymer (EEA) Resin, polystyrene (PS), syndiotactic plastic Styrene (SPS), methyl methacrylate / styrene
  • polyacrylonitrile PAN
  • polymethacrylonitrile polymethacrylonitrile
  • acrylonitrile / styrene copolymer AS
  • methacrylonitrile / styrene copolymer acrylonitrile / butadiene / styrene copolymer
  • ABS acrylonitrile / butadiene copolymer
  • Polynitrile resins such as (NBR), polymethacrylate resins such as polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA), and polyvinyl chloride such as polyvinyl acetate (PVAc)
  • Polyester resins polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), polyvinyl chloride / vinylidene chloride copolymers, polyvinyl chloride resins such as vinylidene chloride / methyl acrylate copolymers, cellulose acetate,
  • Polycarbonate resins such as polycarbonate (PC), thermoplastic polyimide (TPI), polyetherimide, polyesterimide, polyamideimide (PAI), polyesteramideimide, and other polyimide resins, thermoplastic polyurethane resins, Polyamide elastomer, polyurethane elastomer, polyester elastomer and the like can be mentioned.
  • the laminated tube of the first embodiment from the viewpoint of the melt stability of EVOH (C), among the thermoplastic resins exemplified above, a polyester resin, a polyamide resin, and a polythioether resin having a melting point of 290 ° C. or lower. It is preferable to use a polyolefin-based resin and a fluorine-based polymer.
  • a polyester resin having a melting point of 290 ° C. or less, a polyamide resin, and a polythioether resin It is preferable to use a polyolefin-based resin and a fluorine-based polymer that does not contain a functional group.
  • any substrate other than thermoplastic resin such as paper, metal-based material, non-stretched, uniaxially or biaxially stretched plastic film or sheet, woven fabric, non-woven fabric, metal cotton, wood, etc.
  • Metallic materials include metals, metal compounds such as aluminum, iron, copper, nickel, gold, silver, titanium, molybdenum, magnesium, manganese, lead, tin, chromium, beryllium, tungsten, cobalt, and two or more of these. Alloy steels such as stainless steel, aluminum alloys, copper alloys such as brass and bronze, and alloys such as nickel alloys.
  • a laminated tube manufacturing method using an extruder corresponding to the number of layers or the number of materials, a melt extrusion, a method of simultaneously laminating inside or outside a die (coextrusion molding method), or a single layer tube or There is a method (coating method) in which a laminated tube produced by the above method is produced in advance, and an adhesive is used on the outside in order to integrate the resins and laminate them.
  • the laminated tube is preferably manufactured by a co-extrusion method in which various materials are co-extruded in a molten state and both are heat-fused (melt-bonded) to produce a tube having a laminated structure in one step. That is, the laminated tube manufacturing method preferably includes co-extrusion molding.
  • the obtained laminated tube has a complicated shape, or when subjected to heat bending after molding to form a molded product, in order to remove the residual distortion of the molded product, after forming the above laminated tube, It is also possible to obtain a desired molded article by heat treatment at a temperature lower than the lowest melting point of the resin constituting the tube at a temperature of 0.01 hours to 10 hours.
  • the laminated tube may have a corrugated region.
  • the waveform region is a region formed in a waveform shape, a bellows shape, an accordion shape, a corrugated shape, or the like.
  • the corrugated region is not limited to having the entire length of the laminated tube, but may be partially provided in an appropriate region on the way.
  • the corrugated region can be easily formed by first forming a straight tube and then molding it to obtain a predetermined corrugated shape or the like. By having such a corrugated region, it has shock absorption and attachment is easy. Furthermore, for example, it is possible to make L-shaped, U-shaped or the like by adding necessary parts such as connectors or bending the connector.
  • All or part of the outer periphery of the laminated tube formed in this way is made of natural rubber (NR), butadiene rubber (BR), isoprene rubber (IR) in consideration of stone shaving, abrasion with other parts, and flame resistance.
  • Butyl rubber (IIR) chloroprene rubber (CR), carboxylated butadiene rubber (XBR), carboxylated chloroprene rubber (XCR), epichlorohydrin rubber (ECO), acrylonitrile butadiene rubber (NBR), hydrogenated acrylonitrile butadiene rubber (HNBR) , Carboxylated acrylonitrile butadiene rubber (XNBR), mixture of NBR and polyvinyl chloride, acrylonitrile isoprene rubber (NIR), chlorinated polyethylene rubber (CM), chlorosulfonated polyethylene rubber (CSM), ethylene propylene rubber (EPR) Ethylene propylene diene rubber (EPDM), ethylene vinyl acetate rubber (
  • the protective member may be a sponge-like porous body by a known method.
  • a porous body By using a porous body, a protective part that is lightweight and excellent in heat insulation can be formed. Moreover, material cost can also be reduced. Alternatively, the strength may be improved by adding glass fiber or the like.
  • the shape of a protection member is not specifically limited, Usually, it is a block-shaped member which has a recessed part which receives a cylindrical member or a laminated tube. In the case of a cylindrical member, the laminated tube can be inserted later into a previously produced cylindrical member, or the cylindrical member can be coated and extruded onto the laminated tube to adhere both together.
  • the adhesive is applied to the inner surface of the protective member or the concave surface as necessary, and the laminated tube is inserted or fitted into this, and the two are brought into close contact with each other, thereby integrating the laminated tube and the protective member.
  • Forming a structure It can also be reinforced with metal or the like.
  • the outer diameter of the laminated tube considers the flow rate of chemicals (for example, fuel such as alcohol-containing gasoline), and the thickness is such that the permeability of chemicals does not increase, and the normal tube breaking pressure can be maintained. And although it is designed by the thickness which can maintain the softness
  • the outer diameter is preferably 4 mm to 300 mm
  • the inner diameter is preferably 3 mm to 250 mm
  • the laminated tube of this embodiment includes machine parts such as automobile parts, internal combustion engine applications, power tool housings, industrial materials, industrial materials, electrical / electronic parts, medical care, food, household / office supplies, building material-related parts, It can be used for various purposes such as furniture parts.
  • the laminated tube is suitable as a chemical solution transporting tube because it has excellent chemical solution permeation prevention properties.
  • the chemical solution include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; alcohols such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, diethylene glycol, phenol, cresol, polyethylene glycol, and polypropylene glycol Phenol solvent; ether solvents such as dimethyl ether, dipropyl ether, methyl-t-butyl ether, ethyl-t-butyl ether, dioxane, tetrahydrofuran; chloroform, methylene chloride, trichloroethylene, ethylene dichloride, perchlorethylene, monochloroethane, dichloroethane, Halogen solvents such as tetrachloroethane, perchlorethane, chlorobenzen
  • the laminated tube is suitable as a tube for conveying the above chemical solution.
  • a feed tube, a return tube, an evaporation tube, a fuel filler tube, an ORVR tube, a reserve tube, a vent tube or other fuel tube an oil tube, petroleum Drilling tube, brake tube, window washer fluid tube, engine coolant (LLC) tube, reservoir tank tube, urea solution transfer tube, cooler tube for cooling water, refrigerant, etc., air conditioner refrigerant tube, heater tube, load heating tube , Floor heating tubes, infrastructure supply tubes, fire extinguishers and fire extinguishing equipment tubes, medical cooling equipment tubes, inks, paint spray tubes, and other chemical solution tubes.
  • it is suitable as a fuel tube. That is, the present invention includes the use of the laminated tube as a fuel tube.
  • the properties of the polyamide resin were measured by the following method. [Relative viscosity] According to JIS K-6920, measurement was performed in 96% sulfuric acid under the conditions of a polymer concentration of 1% and a temperature of 25 ° C.
  • Terminal amino group concentration Put a predetermined amount of polyamide sample in a conical flask with stopcock, add 40 mL of a pre-adjusted solvent phenol / methanol (volume ratio 9/1), dissolve with stirring with a magnetic stirrer, and use thymol blue as an indicator Then, titration with 0.05N hydrochloric acid was performed to determine the terminal amino group concentration.
  • Terminal carboxyl group concentration A predetermined amount of polyamide sample is placed in a three-neck pear-shaped flask, 40 mL of benzyl alcohol is added, and then immersed in an oil bath set at 180 ° C. under a nitrogen stream. The mixture was stirred and dissolved by a stirring motor attached to the upper portion, and titrated with 0.05N sodium hydroxide solution using phenolphthalein as an indicator to determine the terminal carboxyl group concentration.
  • the characteristics of the fluorine-containing polymer were measured by the following method. [Composition of fluorinated polymer] It was measured by melt NMR analysis, fluorine content analysis, and infrared absorption spectrum.
  • [Number of carbonate groups with respect to 10 6 main chain carbon atoms in the fluorine-containing polymer] 500 AW / ⁇ df
  • 170 from the model compound.
  • d Film density [g / cm 3 ]
  • f Film thickness [mm]
  • each physical property of the laminated tube was measured by the following method. [Low temperature impact resistance] The impact test was performed at ⁇ 40 ° C. by the method described in VW TL 52435 6.5.
  • the mass of the collected material was divided by the number of treatment days and the inner surface area of the tube to calculate the monomer and oligomer elution amounts (g / m 2 ⁇ day). After the treatment, the color tone of the alcohol-containing gasoline extracted from the tube was also visually observed.
  • pellets of polyamide 12 composition comprising 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter, this polyamide 12 composition is referred to as (A-1)).
  • polyamide 12 composition (A-2) In the manufacture of polyamide 12 composition (A-1), a polyamide 12 composition (A-) was used except that no plasticizer was used and the amount of impact modifier added was changed. In the same manner as in the production of 1), 0.8 parts by mass of antioxidant and 0.2 parts by mass of phosphorus-based processing stabilizer with respect to a total of 100 parts by mass of polyamide 12 of 85% by mass and impact modifier 15% by mass. Part of polyamide 12 composition pellets were obtained (hereinafter, this polyamide 12 composition is referred to as (A-2)).
  • polyamide 610 having a relative viscosity of 3.05, a terminal amino group concentration of 50 ⁇ eq / g, and a terminal carboxyl group concentration of 14 ⁇ eq / g (hereinafter, this polyamide 610 was converted to (a-3) or (b- 3).)
  • polyamide 610 composition (A-4) In the production of polyamide 12 composition (A-1), polyamide 12 (a-1) was changed to polyamide 610 (a-3) and the cylinder temperature was changed from 260 ° C to 270 ° C. In the same manner as in the production of the polyamide 12 composition (A-1) except that the amount of polyamide 610 is 80% by mass, the impact modifier 10% by mass, and the plasticizer 10% by mass with respect to 100 parts by mass in total. Thus, a pellet of a polyamide 610 composition comprising 0.8 part by weight of an antioxidant and 0.2 part by weight of a phosphorus processing stabilizer was obtained (hereinafter, this polyamide 610 composition is referred to as (A-4)).
  • polyamide 612 (a-4) or (b-4) In the production of polyamide 610 (a-3), 17.6 kg of a 50 mass% aqueous solution of an equimolar salt of 1,6-hexanediamine and sebacic acid was Polyamide 610 (a-3 ) To obtain a polyamide 612 having a relative viscosity of 2.78, a terminal amino group concentration of 51 ⁇ eq / g, and a terminal carboxyl group concentration of 14 ⁇ eq / g (hereinafter, this polyamide 612 is converted to (a-4) (Referred to as (b-4)).
  • polyamide 612 composition (A-5) In the production of polyamide 12 composition (A-1), polyamide 12 (a-1) was changed to polyamide 612 (a-4), and the cylinder temperature was changed from 260 ° C to 270 ° C. In the same manner as in the production of the polyamide 12 composition (A-1) except that the amount of polyamide 612 is 80% by mass, the impact modifier 10% by mass, and the plasticizer 10% by mass with respect to a total of 100 parts by mass. A pellet of a polyamide 612 composition comprising 0.8 part by weight of an antioxidant and 0.2 part by weight of a phosphorus processing stabilizer was obtained (hereinafter, this polyamide 612 composition is referred to as (A-5)).
  • polyamide 6 composition (B1-1) In the manufacture of polyamide 12 composition (A-1), polyamide 12 (a-1) was converted to polyamide 6 (b-1) (manufactured by Ube Industries, UBE NYLON 1030B). The relative viscosity was changed to 3.89), and the cylinder temperature was changed from 260 ° C. to 270 ° C., in the same manner as in the preparation of the polyamide 12 composition (A-1). Polyamide 6 composition pellets comprising 0.8 parts by weight of antioxidant and 0.2 parts by weight of phosphorus processing stabilizer were obtained with respect to 100 parts by weight in total of 10 parts by weight of material and 10 parts by weight of plasticizer ( Hereinafter, this polyamide 6 composition is referred to as (B1-1)).
  • polyamide 6/66/12 composition (B2-1)
  • polyamide 12 (a-1) was replaced with polyamide 6/66/12 (b-2) and polyamide 610. Except for the change to (b-3), polyamide 6/66/12 50% by mass, polyamide 610 30% by mass, impact modifier 15% by mass in the same manner as in the production of the polyamide 12 composition (A-1) %, And 5 parts by mass of plasticizer for 100 parts by mass in total, pellets of polyamide 6/66/12 composition comprising 0.8 parts by mass of antioxidant and 0.2 parts by mass of phosphorus processing stabilizer were obtained. (Hereinafter, this polyamide 6/66/12 composition is referred to as (B2-1)).
  • polyamide 6/66/12 composition (B2-2) In the manufacture of polyamide 6/66/12 composition (B2-1), polyamide 610 (b-3) was changed to polyamide 612 (b-4). Except for the polyamide 6/66/12 composition (B2-1) except that polyamide 6/66/12 50% by mass, polyamide 612 30% by mass, impact modifier 15% by mass, plasticizer Polyamide 6/66/12 composition pellets comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus-based processing stabilizer were obtained with respect to a total of 100 parts by weight of 5% by weight (hereinafter referred to as “this”). The polyamide 6/66/12 composition is referred to as (B2-2)).
  • polyamide 6/12 composition (B2-5) In the production of polyamide 6/66/12 composition (B2-1), polyamide 6/66/12 (b-2) was converted to polyamide 6/12 (b-5). ), Except that polyamide 610 (b-3) is not used, in the same manner as the production of the polyamide 6/66/12 composition (B2-1).
  • a pellet of polyamide 6/12 composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer is obtained with respect to a total of 100 parts by mass of 15% by mass of a material and 5% by mass of a plasticizer. (Hereinafter, this polyamide 6/12 composition is referred to as (B2-5)).
  • a semi-aromatic polyamide (d1-1) was coated with maleic anhydride-modified ethylene / propylene copolymer (manufactured by JSR Corporation, JSR T7761P) as an impact modifier.
  • Triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] (BASF Japan, IRGANOX 245) as an inhibitor, and Tris (2,4 as a phosphorus processing stabilizer) -Di-t-butylphenyl) phosphite (manufactured by BASF Japan, IRGAFOS 168) is mixed in advance and supplied to a twin-screw melt kneader (manufactured by Nippon Steel, Ltd., model: TEX44). After melt-kneading at 300 ° C.
  • this semi-aromatic polyamide composition is referred to as (D1-1)).
  • pellets of a semi-aromatic polyamide composition comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter, this semi-aromatic polyamide composition was referred to as (D1-2). ).
  • pellets of a semi-aromatic polyamide composition comprising 0.8 parts by mass of an antioxidant and 0.2 parts by mass of a phosphorus processing stabilizer were obtained (hereinafter, this semi-aromatic polyamide composition was referred to as (D1-3 ).)
  • semi-aromatic polyamide composition (D1-6) In the production of semi-aromatic polyamide composition (D1-1), semi-aromatic polyamide (d1-1) was changed to (d1-6) and the cylinder temperature was changed to 300 In the same manner as the production of the semi-aromatic polyamide composition (D1-1) except that the temperature was changed from 310 ° C. to 310 ° C., a total of 100 parts by mass of 90% by mass of the semi-aromatic polyamide and 10% by mass of the impact modifier was used.
  • pellets of a semi-aromatic polyamide composition comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter, this semi-aromatic polyamide composition was referred to as (D1-6). ).
  • semi-aromatic polyamide (d1-7) The production of semi-aromatic polyamide (d1-1) was the same as that for production of semi-aromatic polyamide (d1-1) except that the solid phase polymerization time was changed from 8 hours to 4 hours.
  • a semi-aromatic polyamide (polyamide 9T / M8T 50/50 mol%) having a melting point of 265 ° C. and a relative viscosity of 2.16 was obtained in the same manner as in the production (hereinafter, this semi-aromatic polyamide (d1-7 ).)
  • pellets of a semi-aromatic polyamide composition comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter, this semi-aromatic polyamide composition was referred to as (D2-2). ).
  • pellets of a semi-aromatic polyamide composition comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter, this semi-aromatic polyamide composition was referred to as (D2-4 ).)
  • pellets of a semi-aromatic polyamide composition comprising 0.8 parts by weight of an antioxidant and 0.2 parts by weight of a phosphorus processing stabilizer were obtained (hereinafter, this semi-aromatic polyamide composition was referred to as (D2-6). ).
  • IAH itac
  • a monomer mixed gas of TFE / E: 60/40 (molar ratio) was continuously charged so that the pressure was constant during the polymerization.
  • (perfluoroethyl) ethylene corresponding to 2.0 mol% and IAH corresponding to 0.5 mol% were continuously charged with respect to the total number of moles of TFE and E charged during the polymerization. . 5.5 hours after the start of the polymerization, when the monomer mixed gas of 8.0 kg and IAH of 63 g were charged, the temperature inside the polymerization tank was lowered to room temperature and purged to normal pressure. The obtained slurry-like fluorine-containing polymer was put into a 200 L granulation tank charged with 75.0 kg of water, and then heated to 105 ° C.
  • the obtained granulated product was dried at 150 ° C. for 5 hours to obtain 8.3 kg of a fluorine-containing polymer.
  • This granulated product was melted at 280 ° C. and a residence time of 2 minutes using an extruder to obtain a fluorine-containing polymer pellet (hereinafter, this fluorine-containing polymer is referred to as (E-1)). ).
  • conductive fluorine-containing polymer 100 parts by mass of fluorine-containing polymer (E-1) and 13 parts by mass of carbon black (manufactured by Electrochemical Co., Ltd.) are mixed in advance and biaxially melted. Supplied to a kneading machine (Toshiba Machine Co., Ltd., model: TEM-48S), melt-kneaded at a cylinder temperature of 240 ° C to 300 ° C, extruded the molten resin into a strand, then introduced it into a water tank and discharged The strand was cooled with water, the strand was cut with a pelletizer, and dried for 10 hours with a drier at 120 ° C. to remove moisture to obtain a conductive fluorine-containing polymer pellet (hereinafter referred to as this conductive fluorine-containing polymer).
  • the polymer is referred to as (E-2)).
  • TFE tetrafluoroethylene
  • NASH 5-norbornene-2,3-dicarboxylic acid anhydride
  • 1,3-dichloro-1 0.3 mass% 1,3-dichloro-1 in an amount corresponding to 0.1 mol% with respect to the number of moles of TFE charged during the polymerization 1,2,2,3-pentafluoropropane solution was continuously charged.
  • the polymerization tank internal temperature was lowered to room temperature and purged to normal pressure.
  • the obtained slurry-like fluorine-containing polymer was put into a 200 L granulation tank charged with 75.0 kg of water, and then heated to 105 ° C. while stirring and granulated while distilling and removing the solvent.
  • the obtained granulated product was dried at 150 ° C. for 5 hours to obtain 7.5 kg of a fluoropolymer granulated product.
  • This granulated product was melted at 300 ° C. with a residence time of 2 minutes using an extruder to obtain pellets of a fluorine-containing polymer (hereinafter, this fluorine-containing polymer is referred to as (E-5)). ).
  • the composition of the fluoropolymer is 24.4 / 73.1 / 2.5 in terms of the molar ratio of polymerized units based on CTFE / polymerized units based on TFE / polymerized units based on PPVE.
  • the number of carbonate end groups derived from the initiator was 170.
  • the melting point was 241 ° C. This granulated product was melted at 290 ° C. and a residence time of 2 minutes using an extruder to obtain pellets of a fluorine-containing polymer (hereinafter, this fluorine-containing polymer is referred to as (E-8)). ).
  • Example 1 Polyamide 12 composition (A-1), polyamide 6 composition (B1-1), polyamide 6/66/12 composition (B2-1), EVOH (C-1), and semi-aromatic polyamide composition shown above Using the product (D1-1), in a Plabor (Plastic Engineering Laboratory Co., Ltd.) 5-layer tube molding machine, (A-1) is an extrusion temperature of 250 ° C., (B1-1) is an extrusion temperature of 260 (B2-1) is extruded at 260 ° C, (C-1) is extruded at 220 ° C, (D1-1) is melted at 300 ° C, and the discharged molten resin is joined by an adapter. And formed into a laminated tubular body.
  • Example 2 In Example 1, except that the polyamide 6 composition (B1-1) was changed to a polyamide 6/66/12 composition (B2-1), the same procedure as in Example 1 was carried out from (A-1).
  • A) Layer (outermost layer), (B2-1) (b) Layer (outer layer, inner layer 1), (C-1) (c) Layer (intermediate layer), (D1-1) (D) layer (innermost layer), the layer structure is (a) / (b) / (c) / (b) / (d) 0.35 / 0.15 / 0.10 / 0.
  • a laminated tube having an inner diameter of 6 mm and an outer diameter of 8 mm at 25 / 0.15 mm was obtained.
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Example 3 Using the polyamide 12 composition (A-2), polyamide 6 composition (B1-1), EVOH (C-1), and semi-aromatic polyamide composition (D1-1) shown above, (A-1) Extrusion temperature 250 ° C., (B1-1) Extrusion temperature 260 ° C., (C-1) Extrusion temperature 220 ° C. D1-1) was melted separately at an extrusion temperature of 300 ° C., and the discharged molten resin was joined by an adapter to form a laminated tubular body.
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Example 4 Example 1 was the same as Example 1 except that the polyamide 12 composition (A-1) was changed to the polyamide 610 composition (A-4) and the extrusion temperature of (A-4) was changed to 260 ° C.
  • the laminated tube of the layer structure shown in Table 1 was obtained.
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Example 5 Example 1 was the same as Example 1 except that the polyamide 12 composition (A-1) was changed to the polyamide 612 composition (A-5) and the extrusion temperature of (A-5) was changed to 260 ° C.
  • the laminated tube of the layer structure shown in Table 1 was obtained.
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Example 6 In Example 1, except that the polyamide 6/66/12 composition (B2-1) was changed to (B2-2), a laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 1. Obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 7 In Example 1, the same method as in Example 1 was used except that the semiaromatic polyamide composition (D1-1) was changed to (D1-2) and the extrusion temperature of (D1-2) was changed to 330 ° C. Thus, a laminated tube having a layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 8 In Example 1, the same method as in Example 1 was used except that the semiaromatic polyamide composition (D1-1) was changed to (D1-3) and the extrusion temperature of (D1-3) was changed to 310 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 9 In Example 2, the semi-aromatic polyamide composition (D1-1) was changed to (D1-4) and the extrusion temperature of (D1-4) was changed to 340 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 10 In Example 2, the same procedure as in Example 2 was followed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-5) and the extrusion temperature of (D1-5) was changed to 290 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 11 In Example 2, the semi-aromatic polyamide composition (D1-1) was changed to (D1-6) and the extrusion temperature of (D1-6) was changed to 310 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 12 In Example 1, except that the semiaromatic polyamide composition (D1-1) was changed to the conductive semiaromatic polyamide composition (D1-7) and the extrusion temperature of (D1-7) was changed to 310 ° C.
  • a laminated tube having the layer structure shown in Table 1 was obtained in the same manner as in Example 1.
  • the physical property measurement results of the laminated tube are shown in Table 1. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 13 In Example 2, the semiaromatic polyamide composition (D1-1) was changed to (D2-1) and the extrusion temperature of (D2-1) was changed to 320 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 14 In Example 2, the semi-aromatic polyamide composition (D1-1) was changed to (D2-2) and the extrusion temperature of (D2-2) was changed to 310 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 15 In Example 2, the same procedure as in Example 2 was followed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-3) and the extrusion temperature of (D2-3) was changed to 240 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 16 In Example 2, the semi-aromatic polyamide composition (D1-1) was changed to (D2-4) and the extrusion temperature of (D2-4) was changed to 230 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 17 In Example 2, the same procedure as in Example 2 was followed, except that the semi-aromatic polyamide composition (D1-1) was changed to (D2-5) and the extrusion temperature of (D2-5) was changed to 260 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 18 In Example 2, the same procedure as in Example 2 was followed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-6) and the extrusion temperature of (D2-6) was changed to 310 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 19 Polyamide 12 composition (A-1), polyamide 6 composition (B1-1), polyamide 6/66/12 composition (B2-1), EVOH (C-1), semi-aromatic polyamide composition shown above Using (D1-1) and the conductive semi-aromatic polyamide composition (D1-7), a 6-layer tube molding machine (Plastic Engineering Laboratory Co., Ltd.) (A-1) Extrusion temperature 250 ° C, (B1-1) extrusion temperature 260 ° C, (B2-1) extrusion temperature 260 ° C, (C-1) extrusion temperature 220 ° C, (D1-1) extrusion temperature 300 ° C, ( D1-7) was melted separately at an extrusion temperature of 310 ° C., and the discharged molten resin was joined by an adapter to form a laminated tubular body.
  • a laminated tube having an inner diameter of 6 mm and an outer diameter of 8 mm at 15 / 0.10 / 0.25 / 0.10 / 0.10 mm was obtained.
  • the physical property measurement results of the laminated tube are shown in Table 1. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Comparative Example 1 A laminated tube having the layer structure shown in Table 1 was obtained in the same manner as in Example 1 except that EVOH (C-1) and the semi-aromatic polyamide composition (D1-1) were not used in Example 1. It was. The physical property measurement results of the laminated tube are shown in Table 1.
  • Comparative Example 2 A laminated tube having the layer structure shown in Table 1 was obtained in the same manner as in Example 1 except that the semi-aromatic polyamide composition (D1-1) was not used in Example 1. The physical property measurement results of the laminated tube are shown in Table 1.
  • Comparative Example 3 A laminated tube having the layer structure shown in Table 1 was obtained in the same manner as in Example 3 except that the semi-aromatic polyamide composition (D1-1) was not used in Example 3. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 1 is the same as Example 1 except that the polyamide 12 composition (A-1), the polyamide 6 composition (B1-1), and the polyamide 6/66/12 composition (B2-1) are not used.
  • the laminated tube of the layer structure shown in Table 1 was obtained.
  • the physical property measurement results of the laminated tube are shown in Table 1.
  • Comparative Example 5 The layer constitution shown in Table 1 was the same as in Example 1 except that the polyamide 6 composition (B1-1) and the polyamide 6/66/12 composition (B2-1) were not used. A laminated tube was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 2 except that the polyamide 6/66/12 composition (B2-1) was changed to (B2-3), a laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 2. Obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 7 In Example 2, except that the polyamide 6/66/12 composition (B2-1) was changed to (B2-4), a laminated tube having the layer structure shown in Table 1 was prepared in the same manner as in Example 2. Obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Table 1 shows the same procedure as in Example 2, except that the polyamide 6/66/12 composition (B2-1) was changed to the polyamide 6/12 composition (B2-5) in Example 2. A laminated tube having a layer structure was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 9 In Example 1, the same procedure as in Example 1 was followed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-8) and the extrusion temperature of (D1-8) was changed to 330 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 10 Comparative Example 10 In Example 1, the semi-aromatic polyamide composition (D1-1) was changed to (D2-7) and the extrusion temperature of (D2-7) was changed to 280 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 3 the semi-aromatic polyamide composition (D1-1) was changed to (D2-7) and the extrusion temperature of (D2-7) was changed to 280 ° C. Thus, a laminated tube having the layer structure shown in Table 1 was obtained. The physical property measurement results of the laminated tube are shown in Table 1.
  • Example 13 In Example 1, except that the semiaromatic polyamide composition (D1-1) was changed to the polyamide 12 composition (A-2) and the extrusion temperature of (A-2) was changed to 250 ° C. A laminated tube having the layer configuration shown in Table 1 was obtained in the same manner. The physical property measurement results of the laminated tube are shown in Table 1.
  • Comparative Example 14 In Example 1, except that the semi-aromatic polyamide composition (D1-1) was changed to the conductive polyamide 12 composition (A-3) and the extrusion temperature of (A-3) was changed to 270 ° C. 1 was used to obtain a laminated tube having the layer structure shown in Table 1. The physical property measurement results of the laminated tube are shown in Table 1. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • the laminated tube of Comparative Example 1 having no layer containing the saponified ethylene / vinyl acetate copolymer or semi-aromatic polyamide composition defined in the present invention is resistant to deterioration.
  • the laminated tube of Comparative Example 2 which is inferior in fuel property and chemical liquid permeation prevention property, does not have a layer containing the semi-aromatic polyamide composition defined in the present invention, and has a layer containing polyamide 6 as the innermost layer is
  • the laminated tube of Comparative Example 3 which is inferior in deteriorated fuel properties, does not have a layer containing a semi-aromatic polyamide composition as defined in the present invention, and has a layer containing a polyamide 6 composition as the innermost layer, It was inferior in deterioration fuel property and interlayer adhesion.
  • the laminated tube of Comparative Example 4 which does not have a layer containing an aliphatic polyamide as defined in the present invention, a polyamide 6 composition or a layer containing a polyamide 6/66/12 composition has low temperature impact resistance and deteriorated fuel resistance. In addition, the interlayer adhesion after heat treatment was poor.
  • the laminated tube of Comparative Example 5 which does not have a layer containing the polyamide 6 composition or the polyamide 6/66/12 composition defined in the present invention was inferior in interlayer adhesion.
  • the laminated tubes of Comparative Examples 9 and 10 having a layer containing a semi-aromatic polyamide composition other than those specified in the present invention were inferior in low-temperature impact resistance and deterioration fuel resistance.
  • the laminated tubes of Comparative Examples 11 and 12 having a layer containing a semi-aromatic polyamide composition other than those specified in the present invention were inferior in low-temperature impact resistance, deterioration fuel resistance, and interlayer adhesion.
  • the laminated tubes of Comparative Examples 13 and 14 that do not have a layer containing the semi-aromatic polyamide composition defined in the present invention and have a layer containing the polyamide 12 composition as the innermost layer are resistant to the dissolution of monomers and oligomers. It was inferior to.
  • the laminated tubes of Examples 1 to 19 defined in the present invention have low temperature impact resistance, deteriorated fuel resistance, chemical permeation preventive property, interlayer adhesion and durability, monomer and oligomer elution resistance, etc. It is clear that these properties are good.
  • Example 21 Polyamide 12 composition (A-1), polyamide 6 composition (B1-1), polyamide 6/66/12 composition (B2-1), EVOH (C-1), semi-aromatic polyamide composition shown above Using (D1-1) and the fluorine-containing polymer (E-1), a 6-layer tube molding machine (manufactured by Plastics Engineering Laboratory Co., Ltd.) using (A-1) with an extrusion temperature of 250 (B1-1) extrusion temperature 260 ° C, (B2-1) extrusion temperature 260 ° C, (C-1) extrusion temperature 220 ° C, (D1-1) extrusion temperature 300 ° C, (E-1 ) Were melted separately at an extrusion temperature of 300 ° C., and the discharged molten resin was joined by an adapter to form a laminated tubular body.
  • a 6-layer tube molding machine manufactured by Plastics Engineering Laboratory Co., Ltd.
  • Example 22 In Example 21, except that the polyamide 6 composition (B1-1) was changed to a polyamide 6/66/12 composition (B2-1), the same procedure as in Example 21 was repeated from (A-1).
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 23 In Example 21, the same method as in Example 21 except that the polyamide 12 composition (A-1) is changed to (A-2) and the polyamide 6/66/12 composition (B2-1) is not used.
  • Example 23 was the same as Example 23 except that the polyamide 12 composition (A-2) was changed to the polyamide 610 composition (A-4) and the extrusion temperature of (A-4) was changed to 260 ° C.
  • the laminated tube of the layer structure shown in Table 2 was obtained.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 23 was the same as Example 23 except that the polyamide 12 composition (A-2) was changed to the polyamide 612 composition (A-5) and the extrusion temperature of (A-5) was changed to 260 ° C.
  • the laminated tube of the layer structure shown in Table 2 was obtained.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 26 In Example 21, except that the polyamide 6/66/12 composition (B2-1) was changed to (B2-2), a laminated tube having the layer structure shown in Table 2 was prepared in the same manner as in Example 21. Obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 27 In Example 21, the same procedure as in Example 21 was followed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-2) and the extrusion temperature of (D1-2) was changed to 330 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 28 In Example 21, the same procedure as in Example 21 was followed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-3) and the extrusion temperature of (D1-3) was changed to 310 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 29 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-4) and the extrusion temperature of (D1-4) was changed to 340 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 30 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-5) and the extrusion temperature of (D1-5) was changed to 290 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 31 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D1-6) and the extrusion temperature of (D1-6) was changed to 310 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 32 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-1) and the extrusion temperature of (D2-1) was changed to 320 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 33 In Example 22, the same method as in Example 22 was used, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-2) and the extrusion temperature of (D2-2) was changed to 310 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 34 In Example 22, the same procedure as in Example 22 was performed, except that the semi-aromatic polyamide composition (D1-1) was changed to (D2-3) and the extrusion temperature of (D2-3) was changed to 240 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 35 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-4) and the extrusion temperature of (D2-4) was changed to 230 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 36 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-5) and the extrusion temperature of (D2-5) was changed to 260 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 37 In Example 22, the same procedure as in Example 22 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-6) and the extrusion temperature of (D2-6) was changed to 310 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 21 is the same as Example 21 except that the fluorine-containing polymer (E-1) was changed to the conductive fluorine-containing polymer (E-2) and the extrusion temperature of (E-2) was changed to 310 ° C.
  • a laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in No. 21. Table 2 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 39 In Example 21, except that the fluorine-containing polymer (E-1) was changed to (E-5) and the extrusion temperature of (E-5) was changed to 310 ° C., the same method as in Example 21 was used. The laminated tube of the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 21 is the same as Example 21 except that the fluorine-containing polymer (E-1) was changed to the conductive fluorine-containing polymer (E-6) and the extrusion temperature of (E-6) was changed to 320 ° C.
  • a laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in No. 21. Table 2 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 41 In Example 21, except that the fluorine-containing polymer (E-1) was changed to (E-8) and the extrusion temperature of (E-8) was changed to 290 ° C., the same method as in Example 21 was used.
  • the laminated tube of the layer structure shown in Table 2 was obtained.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 42 The layer structure shown in Table 2 was obtained in the same manner as in Example 21, except that the fluorine-containing polymer (E-1) was changed to the conductive fluorine-containing polymer (E-9) in Example 21. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 21 Comparative Example 21 In Example 21, except that EVOH (C-1), semi-aromatic polyamide composition (D1-1) and fluorine-containing polymer (E-1) were not used, the same method as in Example 21, A laminated tube having the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Comparative Example 22 A laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in Example 23 except that the semi-aromatic polyamide composition (D1-1) was not used in Example 23.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 23 a laminated tube having the layer structure shown in Table 2 was prepared in the same manner as in Example 23 except that the polyamide 12 composition (A-2) and the polyamide 6 composition (B1-1) were not used. Obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Comparative Example 24 In Example 21, the layer structure shown in Table 2 was prepared in the same manner as in Example 21 except that the polyamide 6 composition (B1-1) and the polyamide 6/66/12 composition (B2-1) were not used. A laminated tube was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 25 In Example 22, except that the polyamide 6/66/12 composition (B2-1) was changed to (B2-3), a laminated tube having the layer structure shown in Table 2 was prepared in the same manner as in Example 22. Obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 22 Comparative Example 26 In Example 22, except that the polyamide 6/66/12 composition (B2-1) was changed to (B2-4), a laminated tube having the layer structure shown in Table 2 was prepared in the same manner as in Example 22. Obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Table 2 shows the same procedure as in Example 22 except that the polyamide 6/66/12 composition (B2-1) was changed to the polyamide 6/12 composition (B2-5) in Example 22. A laminated tube having a layer structure was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 23 the semi-aromatic polyamide composition (D1-1) was changed to (D1-8) and the extrusion temperature of (D1-8) was changed to 330 ° C.
  • a laminated tube having a layer structure shown in Table 2 was obtained.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 23 the same procedure as in Example 23 was performed, except that the semiaromatic polyamide composition (D1-1) was changed to (D2-7) and the extrusion temperature of (D2-7) was changed to 280 ° C. Thus, a laminated tube having a layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Comparative Example 30 A laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in Example 21, except that the fluorine-containing polymer (E-1) was changed to (E-3) in Example 21.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 21 is the same as Example 21 except that the fluorine-containing polymer (E-1) was changed to the conductive fluorine-containing polymer (E-4) and the extrusion temperature of (E-4) was changed to 310 ° C.
  • a laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in No. 21. Table 2 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • Example 21 Comparative Example 32 In Example 21, except that the fluorine-containing polymer (E-1) was changed to (E-7) and the extrusion temperature of (E-7) was changed to 310 ° C., the same method as in Example 21 was used. The laminated tube of the layer structure shown in Table 2 was obtained. Table 2 shows the physical property measurement results of the laminated tube.
  • Comparative Example 33 A laminated tube having the layer structure shown in Table 2 was obtained in the same manner as in Example 21, except that the fluorine-containing polymer (E-1) was changed to (E-10) in Example 21.
  • Table 2 shows the physical property measurement results of the laminated tube.
  • Example 21 is the same as Example 21 except that the fluorine-containing polymer (E-1) is changed to the polyamide 12 composition (A-2) and the extrusion temperature of (A-2) is changed to 250 ° C.
  • the laminated tube of the layer structure shown in Table 2 was obtained by this method. Table 2 shows the physical property measurement results of the laminated tube.
  • Example 21 is the same as Example 21 except that the fluorine-containing polymer (E-2) was changed to the conductive polyamide 12 composition (A-3) and the extrusion temperature of (A-3) was changed to 270 ° C.
  • E-2 fluorine-containing polymer
  • A-3 conductive polyamide 12 composition
  • A-3 extrusion temperature of (A-3) was changed to 270 ° C.
  • Table 2 shows the physical property measurement results of the laminated tube. Further, when the conductivity of the laminated tube was measured in accordance with SAE J-2260, it was 10 6 ⁇ / square or less, and it was confirmed that the static electricity removal performance was excellent.
  • the present invention does not have a layer containing a saponified ethylene / vinyl acetate copolymer, a layer containing a semi-aromatic polyamide composition, and a layer containing a fluorinated polymer.
  • the laminated tube of Comparative Example 21 is inferior in anti-degradation fuel resistance and permeation-preventing property against high-concentration alcohol-containing gasoline, and does not have a layer containing the semi-aromatic polyamide composition defined in the present invention.
  • the laminated tube of Comparative Example 23 which does not have a layer containing an aliphatic polyamide as defined in the present invention, a polyamide 6 composition or a layer containing a polyamide 6/66/12 composition, has a low temperature impact resistance and a deteriorated fuel resistance. , And interlayer adhesion was inferior.
  • the laminated tube of Comparative Example 24 which did not have a layer containing the polyamide 6 composition or the polyamide 6/66/12 composition defined in the present invention was inferior in interlayer adhesion.
  • the laminated tubes of Comparative Examples 28 and 29 having a layer containing a semi-aromatic polyamide composition other than those specified in the present invention were inferior in interlayer adhesion.
  • the laminated tubes of Comparative Examples 30 to 33 having a layer containing a fluorine-containing polymer other than those specified in the present invention were inferior in interlayer adhesion.
  • the laminated tube of Comparative Examples 34 and 35 which does not have a layer containing a fluorine-containing polymer as defined in the present invention and has a layer containing a polyamide 12 composition as the innermost layer, prevents permeation to high-concentration alcohol-containing gasoline. And the elution resistance of monomers and oligomers was poor.
  • the laminated tubes of Examples 21 to 42 defined in the present invention have low-temperature impact resistance, deteriorated fuel resistance, chemical liquid permeation prevention properties, particularly permeation prevention properties for high-concentration alcohol-containing gasoline, interlayer adhesion properties and the like. It is clear that various properties such as durability, elution resistance of monomers and oligomers are good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

 脂肪族ポリアミド(ポリアミド11、12等)を含む層、ポリアミド6組成物やポリアミド6/66/12組成物を含む層、エチレン/酢酸ビニル共重合体ケン化物を含む層、及び特定の構造を有する半芳香族ポリアミドを含む半芳香族ポリアミド組成物を含む層を有する積層チューブと、更に、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体を有する積層チューブが提供される。

Description

積層チューブ
 本発明は、積層チューブに関する。
 自動車配管用チューブにおいては、古くは道路の凍結防止剤による発錆の問題や、地球温暖化防止、省エネルギー化の要請を受けて、その主要素材は、金属から、防錆性に優れ軽量な樹脂への代替が進みつつある。通常、配管用チューブとして使用される樹脂は、ポリアミド系樹脂、飽和ポリエステル系樹脂、ポリオレフィン系樹脂、熱可塑性ポリウレタン系樹脂等が挙げられるが、これらを使用した単層チューブの場合、耐熱性、耐薬品性等が不十分なことから、適用可能な範囲が限定されていた。
 また、自動車配管用チューブでは、ガソリンの消費節約、高性能化の観点から、メタノール、エタノール等の沸点の低いアルコール類、あるいはエチル-t-ブチルエーテル(ETBE)等のエーテル類をブレンドした含酸素ガソリン等が移送される。更に、環境汚染防止の観点から、配管用チューブ隔壁を通じての揮発性炭化水素等の拡散による大気中への漏洩防止を含めた厳しい排ガス規制が実施されている。かかる厳しい規制に対して、従来から使用されている、ポリアミド系樹脂、特に、強度、靭性、耐薬品性、柔軟性等に優れるポリアミド11又はポリアミド12を単独で使用した単層チューブは、前記の薬液に対する透過防止性は十分でなく、特に含アルコールガソリン透過防止性に対する改良が求められている。
 この問題を解決する方法として、薬液透過防止性の良好な樹脂、例えば、エチレン/酢酸ビニル共重合体ケン化物(EVOH)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリフェニレンスルフィド(PPS)、ポリフッ化ビニリデン(PVDF)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(EFEP)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(TFE/HFP,FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体(TFE/HFP/VDF,THV)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体(TFE/HFP/VDF/PAVE)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(TFE/PAVE,PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体(TFE/HFP/PAVE)、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CTFE/PAVE/TFE,CPT)が配置された積層チューブが提案されてきた(例えば、米国特許第5554425号明細書等参照)。
 これらの中でも、エチレン/酢酸ビニル共重合体ケン化物(EVOH)は、薬液透過防止性、特にガソリンに対する透過防止性に非常に優れている。例えば、ポリアミド12よりなる最外層、変性ポリオレフィンよりなる接着層、ポリアミド6よりなる外層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド6よりなる最内層から構成された燃料配管が提案されている(例えば、特開平3-177683号公報参照)。しかしながら、該配管において、最内層としてポリアミド6を用いた場合、ガソリンが酸化されて生成するサワーガソリンに対する耐性(耐劣化燃料性)や塩化カルシウムに対する耐性(耐薬品性)が劣る。また、ポリアミド12よりなる最外層、ポリアミド6/12共重合体、ポリアミド12/6共重合体、ポリアミド612、ポリアミド610、ポリアミド12とポリアミド6と相溶化剤の混合物からなる群より選ばれる少なくとも1種よりなる接着層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド6又はポリアミド12よりなる最内層から構成された積層複合体が提案されている(例えば、特表2003-535717号公報、特開2003-021276号公報参照)。同様に、ポリアミド12よりなる最外層、ポリアミド6とポリアミド12とポリアミン/ポリアミド共重合体の混合物よりなる接着層、エチレン/酢酸ビニル共重合体ケン化物(EVOH)よりなる中間層、ポリアミド6又はポリアミド12よりなる最内層から構成された積層複合体が提案されている(例えば、特開2002-210904号公報参照)。該技術は、ポリアミド12とエチレン/酢酸ビニル共重合体ケン化物との両者を介在する接着層として、特定組成比のポリアミド共重合体や、ポリアミド6とポリアミド12と相溶化剤からなる混合物が良好な層間接着強度を有するものとして提案されている。
 更に、内層にフッ素系樹脂、これに対して外側にエチレン/酢酸ビニル共重合体ケン化物、及び外層にポリテレフタラミド(PPA)が配置された積層チューブが提案されている(例えば、米国特許2010-0035116号明細書参照)。
米国特許第5554425号明細書 特開平3-177683号公報 特表2003-535717号公報 特開2003-021276号公報 特開2002-210904号公報 米国特許2010-0035116号明細書
 しかしながら、最内層としてポリアミド6を用いた場合、耐劣化燃料性、耐塩化亜鉛性、耐塩化カルシウム性等に劣るという課題に対する解決はなされていない。更に、ポリアミド12を燃料配管の最内層に使用した場合、含アルコールガソリン等の燃料との接触によりモノマーやオリゴマー等の低分子量成分や添加剤、可塑剤等が含アルコールガソリン中へ溶出され、常温においては析出する。よって、自動車配管用チューブ、フィルター、ノズル等燃料配管内での閉塞が懸念される。
 また、前記積層チューブは、脂肪族ポリアミドからなる層とエチレン/酢酸ビニル共重合体ケン化物(EVOH)からなる層の間に、ポリアミド6/12共重合体、ポリアミド12/6共重合体、ポリアミド612、ポリアミド610、ポリアミド12とポリアミド6と相溶化剤の混合物等よりなる接着層からなり、初期の層間接着性は十分である。一方、これら積層チューブはレイアウト上の制約や衝突時の変位吸収等のため、一般に曲げ応力を加えた状態で所望の形状を有するチューブへと加工を施される。その際、熱加工を容易にするため、構成材料のガラス転移温度以上から融点以下の範囲にてチューブを加熱するが、熱処理後、十分な層間接着性を有してないと、継手挿入時、最内層が剥離し、配管の閉塞を引き起こす場合や、最外層が剥離し、耐圧性、降伏強度等のチューブとしての本来の性能を有しなくなるといった問題が発生する。そのため、熱処理後の層間接着性(層間接着性の耐久性)については改善の余地を残すところである。
 更に、エチレン/酢酸ビニル共重合体ケン化物(EVOH)を有する積層チューブは、低濃度アルコール含有ガソリンに対する透過防止性は優れるものの、高濃度アルコール含有ガソリンに対する透過防止性は不十分であるため、さらなる改良が望まれる。これらを解決するため手段として、米国特許2010-0035116号明細書には、内層にフッ素系樹脂、これに対して外側にエチレン/酢酸ビニル共重合体ケン化物、及び外層にポリテレフタラミド(PPA)が配置された積層チューブが提案されている。しかしながら、同文献において、層間接着性や低温耐衝撃性といったチューブ基本性能に関して、具体的な技術データの開示や技術的示唆は無い。
 本発明の目的は、前記問題点を解決し、薬液透過防止性、層間接着性及びその耐久性、低温耐衝撃性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れた積層チューブを提供することにある。
 本発明者らは、前記問題点を解決するために、鋭意検討した結果、脂肪族ポリアミド(ポリアミド11、12等)を含む層、ポリアミド6組成物やポリアミド6/66/12組成物を含む層、エチレン/酢酸ビニル共重合体ケン化物を含む層、及び特定の構造を有する半芳香族ポリアミド組成物を含む層を有する積層チューブが、薬液透過防止性、層間接着性及びその耐久性、低温耐衝撃性、耐劣化燃料性、モノマー、オリゴマーの耐溶出性等の諸特性に優れることを見出した。
 即ち、本発明の一実施形態は、(a)層、(b)層、(c)層、及び(d)層を有する、少なくとも4層からなる積層チューブであって、
 前記(a)層は、脂肪族ポリアミド(A)を含み、
 前記(b)層は、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含み、
 前記(c)層は、エチレン/酢酸ビニル共重合体ケン化物(C)を含み、
 前記(d)層は、半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含み、
 前記脂肪族ポリアミド(A)は、ポリカプロアミド(ポリアミド6)及びポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)(ポリアミド6/66/12)を含まず、
 前記ポリアミド6組成物(B1)は、ポリカプロアミド(ポリアミド6)50質量%以上98質量%以下、可塑剤(B3)1質量%以上20質量%以下、及びISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)1質量%以上30質量%以下を含有し、
 前記ポリアミド6/66/12組成物(B2)は、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンデカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種のポリアミドとポリアミド6/66/12を含むポリアミド混合物50質量%以上98質量%以下、可塑剤(B3)1質量%以上20質量%以下、及びISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)1質量%以上30質量%以下を含有し、
 前記半芳香族ポリアミド組成物(D1)は、半芳香族ポリアミド(d1)を含み、前記半芳香族ポリアミド(d1)は、全ジアミン単位に対して、炭素原子数9以上13以下の脂肪族ジアミン単位を50モル%以上含むジアミン単位と、全ジカルボン酸単位に対して、テレフタル酸単位及び/又ナフタレンジカルボン酸単位を50モル%以上含むジカルボン酸単位を有し、前記半芳香族組成物(D2)は、半芳香族ポリアミド(d2)を含み、前記半芳香族ポリアミド(d2)は、全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含むジアミン単位と、全ジカルボン酸単位に対して、炭素原子数8以上13以下の脂肪族ジカルボン酸単位を50モル%以上含むジカルボン酸単位を有する積層チューブである。
 積層チューブの好ましい態様を以下に示す。好ましい態様は複数組み合わせることができる。
[1]脂肪族ポリアミド(A)が、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンデカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種の単独重合体、及び/又はこれらを形成する原料単量体を数種用いた共重合体である積層チューブ。
[2]ポリアミド6/66/12組成物(B2)中のポリアミド6/66/12において、カプロアミド単位とヘキサメチレンアジパミド単位の合計単位とドデカンアミド単位の質量比は、カプロアミド単位、ヘキサメチレンアジパミド単位、及びドデカンアミド単位の合計100質量%に対して、81:19質量%以上95:5質量%以下である積層チューブ。
[3]エチレン/酢酸ビニル共重合体ケン化物(C)のエチレン含有量が15モル%以上60モル%以下、ケン化度が90モル%以上である積層チューブ。
[4](a)層が最外層に配置され、(c)層が、(a)層と(d)層の間に配置される積層チューブ。
[5](c)層と隣接する少なくとも一方の側に、(b)層が配置される積層チューブ。
[6]積層チューブにおける最内層に、導電性フィラーを含有させた半芳香族ポリアミド組成物(D)を含む導電層が配置される積層チューブ。
[7](e)層を更に有し、前記(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む積層チューブ。
[8](a)層が最外層に配置され、(c)層、及び(d)層が、(a)層と(e)層の間に配置される積層チューブ。
[9]積層チューブにおける最内層に、導電性フィラーを含有させた含フッ素系重合体組成物を含む導電層が配置される積層チューブ。
[10]共押出成形法により製造される積層チューブ。
[11]燃料チューブとして使用される積層チューブ。
 本発明によれば、薬液透過防止性、層間接着性及びその耐久性、低温耐衝撃性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れた積層チューブを提供することができる。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本実施形態に係る積層チューブは、脂肪族ポリアミドを含む層、ポリアミド6組成物やポリアミド6/66/12組成物を含む層、エチレン/酢酸ビニル共重合体ケン化物を含む層、及び特定の構造を有する半芳香族ポリアミドを含む半芳香族ポリアミド組成物を含む層を有することにより、層間接着性と薬液透過防止性を両立し、低温耐衝撃性、耐劣化燃料性、モノマー、オリゴマーの耐溶出性等の諸特性に優れる。特にチューブ隔壁から透過して蒸散するアルコール混合炭化水素を抑制し、厳しい環境規制への適合が可能となるため、燃料チューブとして好適である。更に、長時間燃料に接触・浸漬した後や熱処理後等において、層間接着力の低下が少なく、層間接着性の耐久性に優れる。よって、本実施形態に係る積層チューブは、あらゆる環境下においても使用可能であり、かつ信頼性が高く、その利用価値は極めて大きい。
1.(a)層
 積層チューブの(a)層は、脂肪族ポリアミド(A)を含む。
[脂肪族ポリアミド(A)]
 脂肪族ポリアミド(A)は、主鎖中にアミド結合(-CONH-)を有し、脂肪族ポリアミド構造単位であるラクタム、アミノカルボン酸、又は脂肪族ジアミンと脂肪族ジカルボン酸を原料として、溶融重合、溶液重合や固相重合等の公知の方法で重合、又は共重合することにより得られる。但し、脂肪族ポリアミド(A)は、ポリカプロアミド(ポリアミド6)及びポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)(ポリアミド6/66/12)を含まない。
 ラクタムとしては、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等が挙げられる。アミノカルボン酸としては、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。これらは1種又は2種以上を用いることができる。
 脂肪族ジアミンとしては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、1,19-ノナデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等が挙げられる。これらは1種又は2種以上を用いることができる。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等が挙げられる。これらは1種又は2種以上を用いることができる。
 脂肪族ポリアミド(A)としては、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンスクシナミド(ポリアミド44)、ポリテトラメチレングルタミド(ポリアミド45)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリテトラメチレンスベラミド(ポリアミド48)、ポリテトラメチレンアゼラミド(ポリアミド49)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンスクシナミド(ポリアミド54)、ポリペンタメチレングルタミド(ポリアミド55)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリペンタメチレンスベラミド(ポリアミド58)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンスクシナミド(ポリアミド64)、ポリヘキサメチレングルタミド(ポリアミド65)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンスベラミド(ポリアミド68)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリヘキサメチレンテトラデカミド(ポリアミド614)、ポリヘキサメチレンヘキサデカミド(ポリアミド616)、ポリヘキサメチレンオクタデカミド(ポリアミド618)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンスベラミド(ポリアミド98)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンスベラミド(ポリアミド108)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンスベラミド(ポリアミド128)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)等の単独重合体やこれらを形成する原料単量体を数種用いた共重合体等が挙げられる。
 これらの中でも、得られる積層チューブの機械的特性、耐熱性等の諸物性を十分に確保し、経済性、入手の容易さの観点から、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンデカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種の単独重合体、及び/又はこれらを形成する原料単量体を数種用いた共重合体が好ましい。
 脂肪族ポリアミド(A)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
 また、JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定した脂肪族ポリアミド(A)の相対粘度は、得られる積層チューブの機械的性質を確保することと、溶融時の粘度を適正範囲にして積層チューブの望ましい成形性を確保する観点から、1.5以上5.0以下であることが好ましく、2.0以上4.5以下であることがより好ましい。
 脂肪族ポリアミド(A)は、該ポリアミド1gあたりの末端アミノ基濃度を[A](μeq/g)、末端カルボキシル基濃度を[B](μeq/g)とした時、積層チューブの層間接着性、及びその耐久性を十分に確保する観点から、[A]>[B]+5を満たすことが好ましく、[A]>[B]+10であることがより好ましく、[A]>[B]+15であることが更に好ましい(以下、末端変性脂肪族ポリアミドと称する場合がある。)。更に、ポリアミドの溶融安定性やゲル状物発生抑制の観点から、[A]>20であることが好ましく、30<[A]<120であることがより好ましい。
 なお、末端アミノ基濃度[A](μeq/g)は、該ポリアミドをフェノール/メタノール混合溶液に溶解し、0.05Nの塩酸で滴定して測定することができる。末端カルボキシル基濃度[B](μeq/g)は、該ポリアミドをベンジルアルコールに溶解し、0.05Nの水酸化ナトリウム溶液で滴定して測定することができる。
 末端変性脂肪族ポリアミドは、前記ポリアミド原料を、アミン類の存在下に、溶融重合、溶液重合や固相重合等の公知の方法で重合、又は共重合することにより製造される。あるいは、重合後、アミン類の存在下に、溶融混練することにより製造される。このように、アミン類は、重合時の任意の段階、あるいは、重合後、溶融混練時の任意の段階において添加できるが、積層チューブの層間接着性を考慮した場合、重合時の段階で添加することが好ましい。
 上記アミン類としてはモノアミン、ジアミン、トリアミン、ポリアミンが挙げられる。また、アミン類の他に、上記の末端基濃度条件の範囲を外れない限り、必要に応じて、モノカルボン酸、ジカルボン酸、トリカルボン酸等のカルボン酸類を添加してもよい。これら、アミン類、カルボン酸類は、同時に添加しても、別々に添加してもよい。また、下記例示のアミン類、カルボン酸類は、1種又は2種以上を用いることができる。
 添加するモノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オクタデシレンアミン、エイコシルアミン、ドコシルアミン等の脂肪族モノアミン;シクロヘキシルアミン、メチルシクロヘキシルアミン等の脂環式モノアミン;ベンジルアミン、β-フエニルメチルアミン等の芳香族モノアミン;N,N-ジメチルアミン、N,N-ジエチルアミン、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジヘキシルアミン、N,N-ジオクチルアミン等の対称第二アミン;N-メチル-N-エチルアミン、N-メチル-N-ブチルアミン、N-メチル-N-ドデシルアミン、N-メチル-N-オクタデシルアミン、N-エチル-N-ヘキサデシルアミン、N-エチル-N-オクタデシルアミン、N-プロピル-N-ヘキサデシルアミン、N-プロピル-N-ベンジルアミン等の混成第二アミンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するジアミンの具体例としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン;m-キシリレンジアミン、p-キシリレンジアミン等の芳香族ジアミンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するトリアミンの具体例としては、1,2,3-トリアミノプロパン、1,2,3-トリアミノ-2-メチルプロパン、1,2,4-トリアミノブタン、1,2,3,4-テトラミノブタン、1,3,5-トリアミノシクロヘキサン、1,2,4-トリアミノシクロヘキサン、1,2,3-トリアミノシクロヘキサン、1,2,4,5-テトラミノシクロヘキサン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、1,2,3-トリアミノベンゼン、1,2,4,5-テトラミノベンゼン、1,2,4-トリアミノナフタレン、2,5,7-トリアミノナフタレン、2,4,6-トリアミノピリジン、1,2,7,8-テトラミノナフタレン等、1,4,5,8-テトラミノナフタレンが挙げられる。これらは1種又は2種以上を用いることができる。
 添加するポリアミンは、一級アミノ基(-NH)及び/又は二級アミノ基(-NH-)を複数有する化合物であればよく、例えば、ポリアルキレンイミン、ポリアルキレンポリアミン、ポリビニルアミン、ポリアリルアミン等が挙げられる。活性水素を備えたアミノ基は、ポリアミンの反応点である。
 ポリアルキレンイミンは、エチレンイミンやプロピレンイミン等のアルキレンイミンをイオン重合させる方法、或いは、アルキルオキサゾリンを重合させた後、該重合体を部分加水分解又は完全加水分解させる方法等で製造される。ポリアルキレンポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミン、或いは、エチレンジアミンと多官能化合物との反応物等が挙げられる。ポリビニルアミンは、例えば、N-ビニルホルムアミドを重合させてポリ(N-ビニルホルムアミド)とした後、該重合体を塩酸等の酸で部分加水分解又は完全加水分解することにより得られる。ポリアリルアミンは、一般に、アリルアミンモノマーの塩酸塩を重合させた後、塩酸を除去することにより得られる。これらは1種又は2種以上を用いることができる。これらの中でも、ポリアルキレンイミンが好ましい。
 ポリアルキレンイミンとしては、エチレンイミン、プロピレンイミン、1,2-ブチレンイミン、2,3-ブチレンイミン、1,1-ジメチルエチレンイミン等の炭素原子数2以上8以下のアルキレンイミンの1種又は2種以上を常法により重合して得られる単独重合体や共重合体が挙げられる。これらの中でも、ポリエチレンイミンがより好ましい。ポリアルキレンイミンは、アルキレンイミンを原料として、これを開環重合させて得られる1級アミン、2級アミン、及び3級アミンを含む分岐型ポリアルキレンイミン、あるいはアルキルオキサゾリンを原料とし、これを重合させて得られる1級アミンと2級アミンのみを含む直鎖型ポリアルキレンイミン、三次元状に架橋された構造のいずれであってもよい。更に、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、トリプロピレンテトラミン、ジヘキサメチレントリアミン、アミノプロピルエチレンジアミン、ビスアミノプロピルエチレンジアミン等を含むものであってもよい。ポリアルキレンイミンは、通常、含まれる窒素原子上の活性水素原子の反応性に由来して、第3級アミノ基の他、活性水素原子をもつ第1級アミノ基や第2級アミノ基(イミノ基)を有する。
 ポリアルキレンイミン中の窒素原子数は、特に制限はないが、4以上3,000であることが好ましく、8以上1,500以下であることがより好ましく、11以上500以下であることが更に好ましい。また、ポリアルキレンイミンの数平均分子量は、100以上20,000以下であることが好ましく、200以上10,000以下であることがより好ましく、500以上8,000以下であることが更に好ましい。
 一方、添加するカルボン酸類としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ペラルゴン酸、ウンデカン酸、ラウリル酸、トリデカン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸、エルカ酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸、メチルシクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイン酸、エチル安息香酸、フェニル酢酸等の芳香族モノカルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ヘキサデカン二酸、ヘキサデセン二酸、オクタデカン二酸、オクタデセン二酸、エイコサン二酸、エイコセン二酸、ドコサン二酸、ジグリコール酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸等の脂肪族ジカルボン酸;1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、m-キシリレンジカルボン酸、p-キシリレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,2,4-ブタントリカルボン酸、1,3,5-ペンタントリカルボン酸、1,2,6-ヘキサントリカルボン酸、1,3,6-ヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸、トリメシン酸等のトリカルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。
 添加されるアミン類の使用量は、製造しようとする末端変性脂肪族ポリアミドの末端アミノ基濃度、末端カルボキシル基濃度、及び相対粘度を考慮して、公知の方法により適宜決められる。通常、ポリアミド原料1モルに対して(繰り返し単位を構成する単量体又は単量体ユニット1モル)、アミン類の添加量は、十分な反応性を得ることと、所望の粘度を有するポリアミドの製造を容易とする観点から、0.5meq/モル以上20meq/モル以下であることが好ましく、1meq/モル以上10meq/モル以下であることがより好ましい(アミノ基の当量(eq)は、カルボキシル基と1:1で反応してアミド基を形成するアミノ基の量を1当量とする。)。
 末端変性脂肪族ポリアミドにおいては、上記例示のアミン類のうち、末端基濃度の条件を満たすために、ジアミン及び/又はポリアミンを重合時に添加することが好ましく、ゲル発生抑制という観点から、脂肪族ジアミン、脂環式ジアミン、及びポリアルキレンイミンからなる群より選ばれる少なくとも1種であることがより好ましい。
 また、末端変性脂肪族ポリアミドは、上記末端基濃度を満たす限りにおいては、末端基濃度の異なる2種類以上のポリアミドの混合物でも構わない。この場合、ポリアミド混合物の末端アミノ基濃度、末端カルボキシル基濃度は、混合物を構成するポリアミドの末端アミノ基濃度、末端カルボキシル基濃度、及びその配合割合により決まる。
 脂肪族ポリアミド(A)の柔軟性を改良するために、後記のポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中に記載する可塑剤を添加することが好ましい。
 可塑剤の含有量は、積層チューブの柔軟性や低温耐衝撃性を十分に確保する観点から、脂肪族ポリアミド(A)100質量部に対して、1質量部以上30質量部以下であることが好ましく、2質量部以上20質量部以下であることがより好ましい。
 また、脂肪族ポリアミド(A)の低温耐衝撃性を改良するために、衝撃改良材を添加することが好ましく、特に後記のポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中に記載する、ISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体を添加することがより好ましい。曲げ弾性率がこの値を超えると、衝撃改良効果が不十分となる場合がある。
 衝撃改良材の含有量は、積層チューブの機械的強度や低温耐衝撃性を十分に確保する観点から、脂肪族ポリアミド(A)100質量部に対して、1質量部以上35質量部以下であることが好ましく、3質量部以上25質量部以下であることがより好ましい。
 脂肪族ポリアミド(A)は、前記の単独重合体の混合物、前記の共重合体の混合物、単独重合体と共重合体の混合物であってもよいし、あるいは他のポリアミド系樹脂又はその他の熱可塑性樹脂との混合物であってもよい。混合物中の脂肪族ポリアミド(A)の含有量は60質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 他のポリアミド系樹脂としては、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンヘキサヒドロテレフタラミド(ポリアミドMXDT(H))、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリパラキシリレンテレフタラミド(ポリアミドPXDT)、ポリパラキシリレンイソフタラミド(ポリアミドPXDI)、ポリパラキシリレンヘキサヒドロテレフタラミド(ポリアミドPXDT(H))、ポリパラキシリレンナフタラミド(ポリアミドPXDN)、ポリパラフェニレンテレフタラミド(PPTA)、ポリパラフェニレンイソフタラミド(PPIA)、ポリメタフェニレンテレフタラミド(PMTA)、ポリメタフェニレンイソフタラミド(PMIA)、ポリ(2,6-ナフタレンジメチレンアジパミド)(ポリアミド2,6-BAN6)、ポリ(2,6-ナフタレンジメチレンテレフタラミド)(ポリアミド2,6-BANT)、ポリ(2,6-ナフタレンジメチレンイソフタラミド)(ポリアミド2,6-BANI)、ポリ(2,6-ナフタレンジメチレンヘキサヒドロテレフタラミド)(ポリアミド2,6-BANT(H))、ポリ(2,6-ナフタレンジメチレンナフタラミド)(ポリアミド2,6-BANN)、ポリ(1,3-シクロヘキサンジメチレンアジパミド)(ポリアミド1,3-BAC6)、ポリ(1,3-シクロヘキサンジメチレンスベラミド(ポリアミド1,3-BAC8)、ポリ(1,3-シクロヘキサンジメチレンアゼラミド)(ポリアミド1,3-BAC9)、ポリ(1,3-シクロヘキサンジメチレンセバカミド)(ポリアミド1,3-BAC10)、ポリ(1,3-シクロヘキサンジメチレンドデカミド)(ポリアミド1,3-BAC12)、ポリ(1,3-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,3-BACT)、ポリ(1,3-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,3-BACI)、ポリ(1,3-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,3-BACT(H))、ポリ(1,3-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,3-BACN)、ポリ(1,4-シクロヘキサンジメチレンアジパミド)(ポリアミド1,4-BAC6)、ポリ(1,4-シクロヘキサンジメチレンスベラミド)(ポリアミド1,4-BAC8)、ポリ(1,4-シクロヘキサンジメチレンアゼラミド)(ポリアミド1,4-BAC9)、ポリ(1,4-シクロヘキサンジメチレンセバカミド)(ポリアミド1,4-BAC10)、ポリ(1,4-シクロヘキサンジメチレンドデカミド)(ポリアミド1,4-BAC12)、ポリ(1,4-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,4-BACT)、ポリ(1,4-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,4-BACI)、ポリ(1,4-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,4-BACT(H))、ポリ(1,4-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,4-BACN)、ポリ(4,4’-メチレンビスシクロヘキシレンアジパミド)(ポリアミドPACM6)、ポリ(4,4’-メチレンビスシクロヘキシレンスベラミド)(ポリアミドPACM8)、ポリ(4,4’-メチレンビスシクロヘキシレンアゼラミド)(ポリアミドPACM9)、ポリ(4,4’-メチレンビスシクロヘキシレンセバカミド)(ポリアミドPACM10)、ポリ(4,4’-メチレンビスシクロヘキシレンドデカミド)(ポリアミドPACM12)、ポリ(4,4’-メチレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACM14)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACM16)、ポリ(4,4’-メチレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACM18)、ポリ(4,4’-メチレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACMT)、ポリ(4,4’-メチレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACMI)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACMT(H))、ポリ(4,4’-メチレンビスシクロヘキシレンナフタラミド)(ポリアミドPACMN)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アジパミド)(ポリアミドMACM6)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)スベラミド)(ポリアミドMACM8)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アゼラミド)(ポリアミドMACM9)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)セバカミド)(ポリアミドMACM10)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ドデカミド)(ポリアミドMACM12)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テトラデカミド)(ポリアミドMACM14)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサデカミド)(ポリアミドMACM16)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)オクタデカミド)(ポリアミドMACM18)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テレフタラミド)(ポリアミドMACMT)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)イソフタラミド)(ポリアミドMACMI)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサヒドロテレフタラミド)(ポリアミドMACMT(H))、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ナフタラミド)(ポリアミドMACMN)、ポリ(4,4’-プロピレンビスシクロヘキシレンアジパミド)(ポリアミドPACP6)、ポリ(4,4’-プロピレンビスシクロヘキシレンスベラミド)(ポリアミドPACP8)、ポリ(4,4’-プロピレンビスシクロヘキシレンアゼラミド)(ポリアミドPACP9)、ポリ(4,4’-プロピレンビスシクロヘキシレンセバカミド)(ポリアミドPACP10)、ポリ(4,4’-プロピレンビスシクロヘキシレンドデカミド)(ポリアミドPACP12)、ポリ(4,4’-プロピレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACP14)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACP16)、ポリ(4,4’-プロピレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACP18)、ポリ(4,4’-プロピレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACPT)、ポリ(4,4’-プロピレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACPI)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACPT(H))、ポリ(4,4’-プロピレンビスシクロヘキシレンナフタラミド)(ポリアミドPACPN)、ポリイソホロンアジパミド(ポリアミドIPD6)、ポリイソホロンスベラミド(ポリアミドIPD8)、ポリイソホロンアゼラミド(ポリアミドIPD9)、ポリイソホロンセバカミド(ポリアミドIPD10)、ポリイソホロンドデカミド(ポリアミドIPD12)、ポリイソホロンテレフタラミド(ポリアミドIPDT)、ポリイソホロンイソフタラミド(ポリアミドIPDI)、ポリイソホロンヘキサヒドロテレフタラミド(ポリアミドIPDT(H))、ポリイソホロンナフタラミド(ポリアミドIPDN)、ポリテトラメチレンテレフタラミド(ポリアミド4T)、ポリテトラメチレンイソフタラミド(ポリアミド4I)、ポリテトラメチレンヘキサヒドロテレフタラミド(ポリアミド4T(H))、ポリテトラメチレンナフタラミド(ポリアミド4N)、ポリペンタメチレンテレフタラミド(ポリアミド5T)、ポリペンタメチレンイソフタラミド(ポリアミド5I)、ポリペンタメチレンヘキサヒドロテレフタラミド(ポリアミド5T(H))、ポリペンタメチレンナフタラミド(ポリアミド5N)、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリヘキサメチレンヘキサヒドロテレフタラミド(ポリアミド6T(H))、ポリヘキサメチレンナフタラミド(ポリアミド6N)、ポリ(2-メチルペンタメチレンテレフタラミド)(ポリアミドM5T)、ポリ(2-メチルペンタメチレンイソフタラミド)(ポリアミドM5I)、ポリ(2-メチルペンタメチレンヘキサヒドロテレフタラミド)(ポリアミドM5T(H))、ポリ(2-メチルペンタメチレンナフタラミド(ポリアミドM5N)、ポリノナメチレンヘキサヒドロテレフタラミド(ポリアミド9T(H))、ポリ(2-メチルオクタメチレンヘキサヒドロテレフタラミド)(ポリアミドM8T(H))、ポリトリメチルヘキサメチレンイソフタラミド(ポリアミドTMHI)、ポリトリメチルヘキサメチレンヘキサヒドロテレフタラミド(ポリアミドTMHT(H))、ポリデカメチレンイソフタラミド(ポリアミド10I)、ポリデカメチレンヘキサヒドロテレフタラミド(ポリアミド10T(H))、ポリウンデカメチレンイソフタラミド(ポリアミド11I)、ポリウンデカメチレンヘキサヒドロテレフタラミド(ポリアミド11T(H))、ポリドデカメチレンイソフタラミド(ポリアミド12I)、ポリドデカメチレンヘキサヒドロテレフタラミド(ポリアミド12T(H))やこれらポリアミドの原料単量体を数種用いた共重合体等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、混合するその他の熱可塑性樹脂としては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、ポリブテン(PB)、ポリメチルペンテン(TPX)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸共重合体(EAA)、エチレン/メタクリル酸共重合体(EMAA)、エチレン/アクリル酸メチル共重合体(EMA)、エチレン/メタクリル酸メチル共重合体(EMMA)、エチレン/アクリル酸エチル共重合体(EEA)等のポリオレフィン系樹脂、ポリスチレン(PS)、シンジオタクチックポリスチレン(SPS)、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)、スチレン/ブタジエン共重合体(SBR)、スチレン/イソプレン共重合体(SIR)、スチレン/イソプレン/ブタジエン共重合体(SIBR)、スチレン/ブタジエン/スチレン共重合体(SBS)、スチレン/イソプレン/スチレン共重合体(SIS)、スチレン/エチレン/ブチレン/スチレン共重合体(SEBS)、スチレン/エチレン/プロピレン/スチレン共重合体(SEPS)等のポリスチレン系樹脂、カルボキシル基及びその塩、酸無水物基、エポキシ基等の官能基が含有された上記ポリオレフィン系樹脂やポリスチレン系樹脂、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、ポリ(エチレンテレフタレート/エチレンイソフタレート)共重合体(PET/PEI)、ポリトリメチレンテレフタレート(PTT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂、ポリアセタール(POM)、ポリフェニレンエーテル(PPO)等のポリエーテル系樹脂、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)、ポリフェニルサルホン(PPSU)等のポリサルホン系樹脂、ポリフェニレンスルフィド(PPS)、ポリチオエーテルサルホン(PTES)等のポリチオエーテル系樹脂、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルエーテルケトン(PEEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトンケトン(PEKKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)等のポリケトン系樹脂、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、アクリロニトリル/ブタジエン共重合体(NBR)等のポリニトリル系樹脂、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/アクリル酸メチル共重合体等のポリビニル系樹脂、酢酸セルロース、酪酸セルロース等のセルロース系樹脂、ポリカーボネート(PC)等のポリカーボネート系樹脂、熱可塑性ポリイミド(TPI)、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド(PAI)、ポリエステルアミドイミド等のポリイミド系樹脂、熱可塑性ポリウレタン系樹脂、ポリアミドエラストマー、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられ、場合により、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリテトラフルオロエチレン(PTFE)、ポリクロルフルオロエチレン(PCTFE)、テトラフルオロエチレン/エチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体(THV)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CPT)等のフッ素系樹脂が挙げられる。これらは1種又は2種以上を用いることができる。
 更に、脂肪族ポリアミド(A)には、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、光安定化剤、滑剤、無機充填材、帯電防止剤、難燃剤、結晶化促進剤、着色剤等を添加してもよい。
2.(b)層
 積層チューブの(b)層は、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む。
[ポリアミド6組成物(B1),ポリアミド6/66/12組成物(B2)]
 ポリアミド6組成物(B1)は、ポリカプロアミド(ポリアミド6)50質量%以上98質量%以下、可塑剤(B3)1質量%以上20質量%以下、及びISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)1質量%以上30質量%以下を含有する(以下、ポリアミド6組成物(B1)と称する場合がある。)。
 ポリカプロアミド(ポリアミド6)は、主鎖中にアミド結合(-CONH-)を有する次式:(-CO-(CH-NH-)で示されるカプロアミド単位を有するポリアミドである(以下、ポリアミド6と称する場合がある。)。
 ポリアミド6/66/12組成物(B2)は、ポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)(ポリアミド6/66/12)、及びポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンデカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種のポリアミドを含むポリアミド混合物50質量%以上98質量%以下、可塑剤(B3)1質量%以上20質量%以下、及びISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)1質量%以上30質量%以下を含有する(以下、ポリアミド6/66/12組成物(B2)と称する場合がある。)。
 ポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)(ポリアミド6/66/12)は、主鎖中にアミド結合(-CONH-)を有する次式:(-CO-(CH-NH-)で示されるカプロアミド単位と次式:(-NH-(CH-NH-CO-(CH-CO-)で示されるヘキサメチレンアジパミド単位と次式:(-CO-(CH11-NH-)で示されるドデカンアミド単位を有するポリアミド共重合体である(以下、ポリアミド6/66/12と称する場合がある。)。ポリアミド6/66/12は、6-アミノカプロン酸及び/又はカプロラクタムとヘキサメチレンジアミンとアジピン酸の塩、及び12-アミノドデカン酸及び/又はドデカンラクタムを共重合させて得ることができる。
 ポリアミド6/66/12において、カプロアミド単位とヘキサメチレンアジパミド単位の合計単位とドデカンアミド単位の質量比は、積層チューブの層間接着性、及びその耐久性を十分に確保する観点から、カプロアミド単位、ヘキサメチレンアジパミド単位、及びドデカンアミド単位の合計100質量%に対して、81:19質量%以上95:5質量%以下であることが好ましく、83:17質量%以上92:8質量%以下であることがより好ましい。
 ポリアミド6/66/12において、カプロアミド単位とヘキサメチレンアジパミド単位の質量比は、積層チューブの耐熱性を十分に確保し、エチレン/酢酸ビニル共重合体ケン化物(C)との共押出時の成形安定性の観点から、カプロアミド単位及びヘキサメチレンアジパミド単位の合計100質量%に対して、80:20質量%以上95:5質量%以下であることが好ましく、82:18質量%以上93:7質量%以下であることがより好ましい。
 ポリアミド6/66/12組成物(B2)は、ポリアミド6/66/12とポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンデカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種のポリアミドを含むポリアミド混合物を含有する(以下、ポリアミド混合物と称する場合がある。)。
 ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンデカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)は長鎖脂肪族ポリアミドであり(以下、長鎖脂肪族ポリアミドと称する場合がある。)、これらの中でも、積層チューブの層間接着性、及びその耐久性を十分に得る観点から、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)であることが好ましい。
 ポリアミド6/66/12と長鎖脂肪族ポリアミドの両者の混合割合は、機械的特性、耐薬品性、及び柔軟性に優れた積層チューブを得ることと、層間接着性、及びその耐久性を十分に得る観点から、ポリアミド6/66/12と長鎖脂肪族ポリアミドのポリアミド混合物の合計100質量%に対して、ポリアミド6/66/12の含有量は、50質量%以上90質量%以下であることが好ましく、55質量%以上85質量%以下であることがより好ましく、60質量%以上80質量%以下であることが更に好ましく、長鎖脂肪族ポリアミドの含有量は、10質量%以上50質量%以下であることが好ましく、15質量%以上45質量%以下であることがより好ましく、20質量%以上40質量%以下であることが更に好ましい。
 ポリアミド6、ポリアミド6/66/12、及び長鎖脂肪族ポリアミドの製造装置としては、脂肪族ポリアミド(A)の説明で記載した公知のポリアミド製造装置が挙げられる。ポリアミド6、ポリアミド6/66/12、及び長鎖脂肪族ポリアミドの製造方法としては、脂肪族ポリアミド(A)の説明で記載した公知の方法が挙げられる。
 また、JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定したポリアミド6、ポリアミド6/66/12、及び長鎖脂肪族ポリアミドの相対粘度は、得られる積層チューブの機械的性質を確保することと、溶融時の粘度を適正範囲にして積層チューブの望ましい成形性を確保する観点から、1.5以上5.0以下であることが好ましく、2.0以上4.5以下であることがより好ましい。
 ポリアミド6、ポリアミド6/66/12、及び長鎖脂肪族ポリアミドは、該ポリアミド1gあたりの末端アミノ基濃度を[A](μeq/g)、末端カルボキシル基濃度を[B](μeq/g)とした時、積層チューブの層間接着性、及びその耐久性を十分に確保する観点から、[A]>[B]+5を満たすことが好ましく、[A]>[B]+10であることがより好ましく、[A]>[B]+15であることが更に好ましい(以下、末端変性ポリアミドと称する場合がある。)。更に、ポリアミドの溶融安定性やゲル状物発生抑制の観点から、[A]>20であることが好ましく、30<[A]<120であることがより好ましい。
 末端変性ポリアミドは、前記ポリアミド原料を、アミン類の存在下に、溶融重合、溶液重合や固相重合等の公知の方法で重合、又は共重合することにより製造される。あるいは、重合後、アミン類の存在下に、溶融混練することにより製造される。このように、アミン類は、重合時の任意の段階、あるいは、重合後、溶融混練時の任意の段階において添加できるが、積層チューブの層間接着性を考慮した場合、重合時の段階で添加することが好ましい。上記アミン類としてはモノアミン、ジアミン、トリアミン、ポリアミンが挙げられる。また、アミン類の他に、上記の末端基濃度条件の範囲を外れない限り、必要に応じて、モノカルボン酸、ジカルボン酸、トリカルボン酸等のカルボン酸類を添加してもよい。これら、アミン類、カルボン酸類は、同時に添加しても、別々に添加してもよい。また、これら、アミン類、カルボン酸類としては、前記脂肪族ポリアミド(A)の説明で記載したものが挙げられ、これらは1種又は2種以上を用いることができる。
 ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中の可塑剤(B3)としては、ベンゼンスルホン酸アルキルアミド類、トルエンスルホン酸アルキルアミド類、ヒドロキシ安息香酸アルキルエステル類等が挙げられる。
 ベンゼンスルホン酸アルキルアミド類としては、ベンゼンスルホン酸プロピルアミド、ベンゼンスルホン酸ブチルアミド、ベンゼンスルホン酸2-エチルヘキシルアミド等が挙げられる。トルエンスルホン酸アルキルアミド類としては、N-エチル-o-トルエンスルホン酸ブチルアミド、N-エチル-p-トルエンスルホン酸ブチルアミド、N-エチル-o-トルエンスルホン酸2-エチルヘキシルアミド、N-エチル-p-トルエンスルホン酸2-エチルヘキシルアミド等が挙げられる。ヒドロキシ安息香酸アルキルエステル類としては、o-ヒドロキシ安息香酸エチルヘキシル、p-ヒドロキシ安息香酸エチルヘキシル、o-ヒドロキシ安息香酸ヘキシルデシル、p-ヒドロキシ安息香酸ヘキシルデシル、o-ヒドロキシ安息香酸エチルデシル、p-ヒドロキシ安息香酸エチルデシル、o-ヒドロキシ安息香酸オクチルオクチル、p-ヒドロキシ安息香酸オクチルオクチル、o-ヒドロキシ安息香酸デシルドデシル、p-ヒドロキシ安息香酸デシルドデシル、o-ヒドロキシ安息香酸メチル、p-ヒドロキシ安息香酸メチル、o-ヒドロキシ安息香酸ブチル、p-ヒドロキシ安息香酸ブチル、o-ヒドロキシ安息香酸ヘキシル、p-ヒドロキシ安息香酸ヘキシル、o-ヒドロキシ安息香酸n-オクチル、p-ヒドロキシ安息香酸n-オクチル、o-ヒドロキシ安息香酸デシル、p-ヒドロキシ安息香酸デシル、o-ヒドロキシ安息香酸ドデシル、p-ヒドロキシ安息香酸ドデシル等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、ベンゼンスルホン酸ブチルアミド、ベンゼンスルホン酸2-エチルヘキシルアミド等のベンゼンスルホン酸アルキルアミド類、N-エチル-p-トルエンスルホン酸ブチルアミド、N-エチル-p-トルエンスルホン酸2-エチルヘキシルアミド等のトルエンスルホン酸アルキルアミド類、p-ヒドロキシ安息香酸エチルヘキシル、p-ヒドロキシ安息香酸ヘキシルデシル、p-ヒドロキシ安息香酸エチルデシル等のヒドロキシ安息香酸アルキルエステル類が好ましく、ベンゼンスルホン酸ブチルアミド、p-ヒドロキシ安息香酸エチルヘキシル、p-ヒドロキシ安息香酸ヘキシルデシルがより好ましい。
 ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中のISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)(以下、オレフィン重合体(B4)と称する場合がある。)は、ポリアミド6、ポリアミド6/66/12、及び長鎖脂肪族ポリアミドの低温耐衝撃性を改良するため添加する。オレフィン重合体(B4)のISO 178に準拠して測定した曲げ弾性率がこの値を超えると、衝撃改良効果が不十分となる場合がある。
 オレフィン重合体(B4)としては、(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマー重合体、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体が挙げられ、これらは1種又は2種以上を用いることができる。
 前記(エチレン及び/又はプロピレン)/α-オレフィン系共重合体は、エチレン及び/又はプロピレンと炭素原子数3以上のα-オレフィンを共重合した重合体であり、炭素原子数3以上のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等が挙げられる。これらは1種又は2種以上を用いることができる。また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン等の非共役ジエンのポリエンを共重合してもよい。これらは1種又は2種以上を用いることができる。
 前記(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル単量体を共重合した重合体であり、α,β-不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸が挙げられ、α,β-不飽和カルボン酸エステル単量体としては、これら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。これらは1種又は2種以上を用いることができる。
 前記アイオノマー重合体は、オレフィンとα,β-不飽和カルボン酸共重合体のカルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。オレフィンとしてはエチレンが好ましく用いられ、α,β-不飽和カルボン酸としてはアクリル酸、メタクリル酸が好ましく用いられるが、ここに例示したものに限定されるものではなく、不飽和カルボン酸エステル単量体が共重合されていても構わない。また、金属イオンはLi、Na、K、Mg、Ca、Sr、Ba等のアルカリ金属及びアルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cd等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、前記芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体は、芳香族ビニル化合物系重合体ブロックと共役ジエン化合物系重合体ブロックからなるブロック共重合体であり、芳香族ビニル化合物系重合体ブロックを少なくとも1個と、共役ジエン化合物系重合体ブロックを少なくとも1個有するブロック共重合体が用いられる。また、上記のブロック共重合体では、共役ジエン化合物系重合体ブロックにおける不飽和結合が水素添加されていてもよい。
 芳香族ビニル化合物系重合体ブロックは、芳香族ビニル化合物に由来する単位から主としてなる重合体ブロックである。その場合の芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、1,5-ジメチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン等が挙げられ、これらは1種又は2種以上を用いることができる。また、芳香族ビニル化合物系重合体ブロックは、場合により少量の他の不飽和単量体からなる単位を有していてもよい。
 共役ジエン化合物系重合体ブロックは、1,3-ブタジエン、クロロプレン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン系化合物の1種又は2種以上から形成された重合体ブロックであり、水素添加した芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体では、その共役ジエン化合物系重合体ブロックにおける不飽和結合部分の一部又は全部が水素添加により飽和結合になっている。
 芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及びその水素添加物の分子構造は、直鎖状、分岐状、放射状、又はそれら任意の組み合わせのいずれであってもよい。これらの中でも、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及び/又はその水素添加物として、1個の芳香族ビニル化合物重合体ブロックと1個の共役ジエン化合物系重合体ブロックが直鎖状に結合したジブロック共重合体、芳香族ビニル化合物系重合体ブロック-共役ジエン化合物系重合体ブロック-芳香族ビニル化合物系重合体ブロックの順に3つの重合体ブロックが直鎖状に結合しているトリブロック共重合体、及びそれらの水素添加物の1種又は2種以上が好ましく用いられ、未水添又は水添スチレン/ブタジエンブロック共重合体、未水添又は水添スチレン/イソプレンブロック共重合体、未水添又は水添スチレン/ブタジエン/スチレンブロック共重合体、未水添又は水添スチレン/イソプレン/スチレンブロック共重合体、未水添又は水添スチレン/(エチレン/ブタジエン)/スチレンブロック共重合体、未水添又は水添スチレン/(イソプレン/ブタジエン)/スチレンブロック共重合体等が挙げられる。
 また、オレフィン重合体(B4)として用いられる(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマー重合体、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体は、カルボン酸及び/又はその誘導体で変性された重合体が好ましく使用される。このような成分により変性することにより、ポリアミド6、ポリアミド6/66/12、長鎖脂肪族ポリアミドや前記脂肪族ポリアミド(A)に対して親和性を有する官能基をその分子中に含むこととなる。
 ポリアミド6、ポリアミド6/66/12、長鎖脂肪族ポリアミドや前記脂肪族ポリアミド(A)に対して親和性を有する官能基としては、カルボキシル基、酸無水物基、カルボン酸エステル基、カルボン酸金属塩、カルボン酸イミド基、カルボン酸アミド基、エポキシ基等が挙げられる。これらの官能基を含む化合物の例として、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸、及びこれらカルボン酸の金属塩、マレイン酸モノメチル、イタコン酸モノメチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸2-エチルヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物、マレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリルアミド、メタクリルアミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等が挙げられる。これらは1種又は2種以上を用いることができる。
 ポリアミド6組成物(B1)中のポリアミド6の含有量は、50質量%以上98質量%以下であり、60質量%以上95質量%以下であることが好ましく、70質量%以上92質量%以下であることがより好ましい。ポリアミド6の含有量が前記の値未満であると、得られる積層チューブの機械的特性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの層間接着性及びその耐久性が劣ることがある。
 ポリアミド6/66/12組成物(B2)中のポリアミド混合物の含有量は、50質量%以上98質量%以下であり、60質量%以上95質量%以下であることが好ましく、70質量%以上92質量%以下であることがより好ましい。ポリアミド混合物の含有量が前記の値未満であると、得られる積層チューブの機械的特性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの層間接着性及びその耐久性が劣ることがある。
 ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中の可塑剤(B3)の含有量は、1質量%以上20質量%以下であり、2質量%以上15質量%以下であることが好ましく、3質量%以上10質量%以下であることがより好ましい。可塑剤(B3)の含有量が前記の値未満であると、得られる積層チューブの柔軟性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの低温耐衝撃性が劣ることがある。
 ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中のオレフィン重合体(B4)の含有量は、1質量%以上30質量%以下であり、3質量%以上25質量%以下であることが好ましく、5質量%以上20質量%以下であることがより好ましい。オレフィン重合体(B4)の含有量が前記の値未満であると、得られる積層チューブの低温耐衝撃性や層間接着性及びその耐久性が劣ることがあり、一方、前記の値を超えると、得られる積層チューブの機械的特性が劣ることがある。
 ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)の製造方法は特に制限がなく、必要に応じて各種添加剤を配合し、従来から知られている各種の方法を採用することができる。例えば、ポリアミド6、又はポリアミド6/66/12及び長鎖脂肪族ポリアミドとオレフィン重合体(B4)を必要に応じて添加される他の成分と共に、タンブラーやミキサーを用いて、ペレット同士を前記の混合割合になるように均一にドライブレンドし、溶融混練機に供給する一方、該溶融混練機のシリンダの途中から、可塑剤(B3)を定量ポンプにより注入し、溶融混練する方法等により製造することができる。溶融混練は、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー等の混練機を使用して行うことができる。
 ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)は、他のポリアミド系樹脂又はその他の熱可塑性樹脂を含有していてもよい。他のポリアミド系樹脂又はその他の熱可塑性樹脂としては、前記脂肪族ポリアミド(A)の場合と同様の樹脂が挙げられる。混合物中のポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)の含有量は60質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 更に、ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)には、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、光安定化剤、滑剤、無機質充填材、帯電防止剤、難燃剤、結晶化促進剤、着色剤、潤滑剤等を添加してもよい。
3.(c)層
 積層チューブの(c)層は、エチレン/酢酸ビニル共重合体ケン化物(C)を含む。
[エチレン/酢酸ビニル共重合体ケン化物(C)]
 エチレン/酢酸ビニル共重合体ケン化物(C)は、エチレンと酢酸ビニルからなる共重合体を、アルカリ触媒等を用いて公知の方法により、ケン化して得られる(以下、EVOH(C)と称する場合がある。)。
 更に、EVOH(C)のエチレン含有量は、溶融成形性、柔軟性、耐衝撃性、及び薬液透過防止性を十分に確保する観点から、15モル%以上60モル%以下であることが好ましく、20モル%以上55モル%以下であることがより好ましく、25モル%以上45モル%以下であることが更に好ましい。ここで、EVOH(C)がエチレン含有量の異なる2種類以上のEVOHの混合物からなる場合には、それぞれのエチレン含有量と混合質量比から算出される値をエチレン含有量とする。
 また、EVOH(C)のビニルエステル成分のケン化度は、良好な薬液透過防止性を得る観点から、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、98%モル以上であることが更に好ましく、99モル%以上であることが特に好ましい。ここで、EVOH(C)がケン化度の異なる2種類以上のEVOHの混合物からなる場合には、それぞれのケン化度と混合質量比から算出される値をケン化度とする。なお、EVOHのエチレン含有量及びケン化度は、核磁気共鳴(NMR)法により求めることができる。
 EVOH(C)のメルトフローレート(MFR)(210℃、2,160g荷重下)は、溶融時の粘度を適正範囲にして望ましい成形性を確保し、溶融張力を過度に低下させず、成形時にドローダウン等の問題の発生を防止する観点から、0.1g/10分以上100g/10分以下であることが好ましく、0.3g/10分以上50g/10分以下であることがより好ましく、0.5g/10分以上20g/10分以下であることが更に好ましい。
 また、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、他の単量体を共重合することも可能である。他の単量体としては、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、酢酸イソプロペニル、酢酸1-ブテニル、ピバル酸ビニル、2-エチルヘキサン酸ビニル、シクロヘキサンカルボン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ドデセン等のα-オレフィン類、アクリル酸、メタクリル酸、クロトン酸、フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩、又は炭素原子数1以上18以下のモノ又はジアルキルエステル類;アクリルアミド、炭素原子数1以上18以下のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸又はその塩、アクリルアミドプロピルジメチルアミン又はその酸塩又はその4級塩等のアクリルアミド類;メタクリルアミド、炭素原子数1以上18以下のN-アルキルメタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸又はその塩、メタクリルアミドプロピルジメチルアミン又はその酸塩又はその4級塩等のメタクリルアミド類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニルアミド類;アクリルニトリル、メタクリルニトリル等のシアン化ビニル類;炭素原子数1以上18以下のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル類;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトシキシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシランγ-メタクリルオキシプロピルメトキシシラン等のビニルシラン類;酢酸アリル、塩化アリル、アリルアルコール、ジメチルアリルアルコール、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸、ビニルエチレンカーボネート等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、EVOH(C)には必要に応じて各種の添加剤を含有することもできる。このような添加剤の例としては、酸化防止剤、可塑剤、熱安定剤、紫外線吸収剤、帯電防止剤、滑剤、着色剤、フィラー、あるいは他の熱可塑性樹脂を挙げることができ、これらの添加剤は、得られる積層チューブの優れた諸特性を損なわない範囲内で含有することができる。具体的には、2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、n-オクタデシル-β-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナミド)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)ベンゼン、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]、ベンゼンエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(2,4-ジ-t-ブチルフェニル)、ジ(2,4-ジ-t-ブチルフェニル)-ペンタエリストール-ジホスファイト等の酸化防止剤、エチレン-2-シアノ-3,3’-ジフェニルアクリレート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン等の紫外線吸収剤、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、リン酸エステル等の可塑剤、ペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、エチレングリコール、グリセリン、ヘキサンジオール等の脂肪族多価アルコール類等の帯電防止剤、ステアリン酸アミド等の飽和脂肪酸アミド、オレイン酸アミド等の不飽和脂肪酸アミド、エチレンビスステアリン酸アミド等のビス脂肪酸アミド、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム等の脂肪酸金属塩、ワックス、流動パラフィン、低分子量ポリオレフィン等の滑剤、酢酸、プロピオン酸、ステアリン酸等の有機酸、ホウ酸化合物、リン酸化合物等の無機酸系化合物、ハイドロタルサイト類の金属塩等の安定剤、還元鉄粉類、亜硫酸カリウム、アスコルビン酸、ハイドロキノン、没食子酸等の酸素吸収剤、カーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等の着色剤、グラスファイバー、アスベスト、バラストナイト、マイカ、セリサイト、タルク、シリカ、カオリン、ケイ酸カルシウム、モンモリロナイト等の充填剤等が挙げられる。
 更に、EVOH(C)にはホウ素化合物を含有することが好ましい。ホウ素化合物を含有することにより、溶融安定性が改善され、均質な肉厚を有する積層チューブを得る観点から有効である。ホウ素化合物としては、ホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類等が挙げられる。ホウ酸類としては、オルトホウ酸、メタホウ酸、四ホウ酸等が挙げられ、ホウ酸エステルとしては、ホウ酸トリエチル、ホウ酸トリメチル等が挙げられ、ホウ酸塩としては上記の各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、オルトホウ酸が好ましい。
 EVOH(C)におけるホウ素化合物の含有量は、その含有効果を十分に確保し、外観が良好なチューブを得る観点から、EVOH(C)100質量部に対して、ホウ素元素換算で0.002質量部以上0.5質量部以下であることが好ましく、0.005質量部以上0.2質量部以下であることがより好ましい。
 EVOH(C)には、リン酸化合物を含有してもよい。リン酸化合物を含有することにより、溶融成形時のロングラン性、耐着色性、及び層間接着性の両立が図れる。リン酸化合物としては、特に限定されず、リン酸、亜リン酸等の各種の酸やその塩等を用いることができる。リン酸塩としては、第一リン酸塩、第二リン酸塩、第三リン酸塩が挙げられる。これらは1種又は2種以上を用いることができる。リン酸塩のカチオン種も特に限定されるものではないが、アルカリ金属塩が好ましく、これらの中でも、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウムが好ましい。
 EVOH(C)におけるリン酸化合物の含有量は、その含有効果を十分に確保し、外観が良好なチューブを得る観点から、EVOH(C)100質量部に対して、リン酸根換算で0.02質量部以下であることが好ましく、0.0005質量部以上0.01質量部以下であることがより好ましく、0.001質量部以上0.007質量部以下であることが更に好ましい。
 また、EVOH(C)に対し、アルカリ及び/又はアルカリ土類金属塩を含有させることも、溶融安定性やロングラン性の観点から好ましい。アルカリ金属もしくはアルカリ土類金属の塩のアニオン種としての限定はなく、カルボン酸塩、水酸化物、炭酸塩、炭酸水素塩等が挙げられる。アルカリ金属塩のカチオン種に限定はなく、リチウム塩、ナトリウム塩、カリウム塩等が挙げられ、アルカリ土類金属塩のカチオン種に限定はなく、マグネシウム塩、カルシウム塩、バリウム塩、ベリリウム塩、ストロンチウム塩等が挙げられる。具体的には、酢酸ナトリウム、酢酸リチウム、酢酸カリウム、パルミチン酸カルシウム、パルミチン酸マグネシウム、ミリスチン酸カルシウム、ミリスチン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、オレイン酸カルシウム、オレイン酸マグネシウム、リノール酸カルシウム、リノール酸マグネシウム、リノレン酸カルシウム、リノレン酸マグネシウム、リン酸ナトリウム、リン酸リチウム等が挙げられる。これらは1種又は2種以上を用いることができる。
 EVOH(C)におけるアルカリ及び/又はアルカリ土類金属塩の含有量は、その含有効果を十分に確保し、外観が良好なチューブを得る観点から、EVOH(C)100質量部に対して、金属元素換算で0.0005質量部以上0.2質量部以下であることが好ましく、0.001質量部以上0.1質量部以下であることがより好ましく、0.002質量部以上0.05質量部以下であることが更に好ましい。
 更に、EVOH(C)には、溶融安定性等を改善するために、得られる積層チューブの優れた諸特性を損なわない範囲内で、ハイドロタルサイト類化、ヒンダードフェノール系等の酸化防止剤の1種又は2種以上を、EVOH(C)100質量部に対して、0.01質量部以上1質量部以下を添加することが好ましい。
4.(d)層
 積層チューブの(d)層は、半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む。
[半芳香族ポリアミド組成物(D1),半芳香族ポリアミド組成物(D2)]
 半芳香族ポリアミド組成物(D1)は、半芳香族ポリアミド(d1)を含み(以下、半芳香族ポリアミド組成物(D1)と称する場合がある。)、半芳香族ポリアミド(d1)は、全ジアミン単位に対して、炭素原子数9以上13以下の脂肪族ジアミン単位を50モル%以上含むジアミン単位と、全ジカルボン酸単位に対して、テレフタル酸単位及び/又ナフタレンジカルボン酸単位を50モル%以上含むジカルボン酸単位を含有する(以下、半芳香族ポリアミド(d1)と称する場合がある。)。
 半芳香族ポリアミド(d1)中の炭素原子数9以上13以下の脂肪族ジアミン単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、耐衝撃性、薬液透過防止性等の諸物性を十分に確保する観点から、全ジアミン単位に対して、50モル%以上であり、55モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 炭素原子数9以上13以下の脂肪族ジアミン単位としては、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン等から誘導される単位が挙げられる。炭素原子数が上記を満たす限り、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2,4-ジエチル-1,6-ヘキサンジアミン、2,2-ジメチル-ヘプタンジアミン、2,3-ジメチル-ヘプタンジアミン、2,4-ジメチル-ヘプタンジアミン、2,5-ジメチル-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、3-メチル-1,8-オクタンジアミン、4-メチル-1,8-オクタンジアミン、1,3-ジメチル-1,8-オクタンジアミン、1,4-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、3,3-ジメチル-1,8-オクタンジアミン、3,4-ジメチル-1,8-オクタンジアミン、4,4-ジメチル-1,8-オクタンジアミン、4,5-ジメチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン、2-ブチル-1,8-オクタンジアミン、3-ブチル-1,8-オクタンジアミン等の分岐鎖状脂肪族ジアミンから誘導される単位を含有していても構わない。これらは1種又は2種以上を用いることができる。
 上記炭素原子数9以上13以下の脂肪族ジアミン単位の中でも、共押出成形性と薬液透過防止性のバランスの観点から、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミンから誘導される単位が好ましく、低温耐衝撃性を十分に確保する観点から、1,12-ドデカンジアミンから誘導される単位が好ましい。更に、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンを併用する場合、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位のモル比は、成形性と耐衝撃性のバランスの観点から、30:70モル%以上98:2モル%以下であることが好ましく、40:60モル%以上95:5モル%以下であることがより好ましい。
 半芳香族ポリアミド(d1)中のジアミン単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、炭素原子数9以上13以下の脂肪族ジアミン単位以外の他のジアミン単位を含んでいてもよい。他のジアミン単位としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-へプタンジアミン、1,8-オクタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン等の脂肪族ジアミンから誘導される単位;1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミンから誘導される単位;m-フェニレンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)ナフタレン、1,5-ビス(アミノメチル)ナフタレン、2,6-ビス(アミノメチル)ナフタレン、2,7-ビス(アミノメチル)ナフタレン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンから誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これら他のジアミン単位の含有量は、全ジアミン単位に対して、50モル%以下であり、45モル%以下であることが好ましく、40モル%以下であることがより好ましい。
 また、半芳香族ポリアミド(d1)中のテレフタル酸単位及び/又はナフタレンジカルボン酸単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、薬液透過防止性等の諸物性を十分に確保する観点から、全ジカルボン酸単位に対して、50モル%以上であり、55モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 ナフタレンジカルボン酸単位としては、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸等から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。上記ナフタレンジカルボン酸単位の中でも、経済性、入手の容易さを考慮して、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸から誘導される単位が好ましい。
 半芳香族ポリアミド(d1)中のジカルボン酸単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、テレフタル酸単位及び/又はナフタレンジカルボン酸単位以外の他のジカルボン酸単位を含んでいてもよい。他のジカルボン酸単位としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、2,2-ジエチルコハク酸、スベリン酸、アゼライン酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等の脂肪族ジカルボン酸から誘導される単位;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸から誘導される単位;フタル酸、イソフタル酸、1,3-フェニレンジオキシジ酢酸、1,4-フェニレンジオキシジ酢酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルエタン-4,4’-ジカルボン酸、ジフェニルプロパン-4,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-トリフェニルジカルボン酸等の芳香族ジカルボン酸から誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これらの中でも、芳香族ジカルボン酸から誘導される単位が好ましい。これら他のジカルボン酸単位の含有量は、全ジカルボン酸単位に対して、50モル%以下であり、45モル%以下であることが好ましく、40モル%以下であることがより好ましい。更に、トリメリット酸、トリメシン酸、ピロメリット酸等の多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
 半芳香族ポリアミド(d1)には、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、ジカルボン酸単位及びジアミン単位以外のその他の単位を含んでいてもよい。その他の単位としては、カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等のラクタムから誘導される単位;6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の脂肪族アミノカルボン酸;p-アミノメチル安息香酸等の芳香族アミノカルボン酸のアミノカルボン酸から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。その他の単位の含有量は、全ジカルボン酸単位に基づいて、45モル%以下であることが好ましく、40モル%以下であることがより好ましく、35モル%以下であることが更に好ましい。
 更に、半芳香族ポリアミド(d1)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
 半芳香族ポリアミド(d1)を製造する際、触媒として、リン酸、亜リン酸、次亜リン酸、それらの塩又はエステル等を添加することができる。リン酸、亜リン酸、次亜リン酸の塩又はエステルとしては、例えば、リン酸、亜リン酸、又は次亜リン酸とカリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属塩、リン酸、亜リン酸、又は次亜リン酸のアンモニウム塩、リン酸、亜リン酸、又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、へキシルエステル、イソデシルエステル、デシルエステル、ステアリルエステル、フェニルエステル等が挙げられる。これらは1種又は2種以上を用いることができる。
 半芳香族ポリアミド組成物(D2)は、半芳香族ポリアミド(d2)を含み(以下、半芳香族ポリアミド組成物(D2)と称する場合がある。)、半芳香族ポリアミド(d2)は、全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含むジアミン単位と、全ジカルボン酸単位に対して、炭素原子数8以上13以下の脂肪族ジカルボン酸単位を50モル%以上含むジカルボン酸単位を含有する(以下、半芳香族ポリアミド(d2)と称する場合がある。)。
 半芳香族ポリアミド(d2)中のキシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、耐衝撃性、薬液透過防止性等の諸物性を十分に確保する観点から、全ジアミン単位に対して、50モル%以上であり、60モル%以上であることが好ましく、70モル%以上であることがより好ましい。
 キシリレンジアミン単位としては、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミンから誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。前記キシリレンジアミン単位の中でも、m-キシリレンジアミン、p-キシリレンジアミンから誘導される単位が好ましい。
 ビス(アミノメチル)ナフタレン単位としては、1,4-ビス(アミノメチル)ナフタレン、1,5-ビス(アミノメチル)ナフタレン、2,6-ビス(アミノメチル)ナフタレン、2,7-ビス(アミノメチル)ナフタレン等から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。前記ビス(アミノメチル)ナフタレン単位の中でも、1,5-ビス(アミノメチル)ナフタレン、2,6-ビス(アミノメチル)ナフタレンから誘導される単位が好ましい。
 半芳香族ポリアミド(d2)中のジアミン単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位以外の他のジアミン単位を含んでいてもよい。他のジアミン単位としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、1,19-ノナデカンジアミン、1,20-エイコサンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミンから誘導される単位;1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、2,5-ビス(アミノメチル)ノルボルナン、2,6-ビス(アミノメチル)ノルボルナン、3,8-ビス(アミノメチル)トリシクロデカン、4,9-ビス(アミノメチル)トリシクロデカン等の脂環式ジアミンから誘導される単位;m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンから誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これらの中でも、芳香族ジアミンから誘導される単位が好ましい。これら他のジアミン単位の含有量は、全ジアミン単位に対して、50モル%以下であり、40モル%以下であることが好ましく、30モル%以下であることがより好ましい。
 また、半芳香族ポリアミド(d2)中の炭素原子数8以上13以下の脂肪族ジカルボン酸単位の含有量は、得られる積層チューブの耐熱性、耐薬品性、薬液透過防止性等の諸物性を十分に確保する観点から、全ジカルボン酸単位に対して、50モル%以上であり、60モル%以上であることが好ましく、70モル%以上であることがより好ましい。
 炭素原子数8以上13以下の脂肪族ジカルボン酸単位としては、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸等から誘導される単位が挙げられる。炭素原子数が上記を満たす限り、2,2-ジエチルコハク酸、2,2,4-トリメチルアジピン酸、2,4,4-トリメチルアジピン酸、2-ブチルスベリン酸等の分岐鎖状脂肪族ジカルボン酸から誘導される単位を含有していても構わない。これらは1種又は2種以上を用いることができる。
 前記炭素原子数8以上13以下の脂肪族ジカルボン酸単位の中でも、共押出成形性と薬液透過防止性のバランスの観点から、アゼライン酸、セバシン酸から誘導される単位が好ましく、低温耐衝撃性を十分に確保する観点から、ドデカン二酸から誘導される単位が好ましい。
 半芳香族ポリアミド(d2)中のジカルボン酸単位は、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、炭素原子数8以上13以下の脂肪族ジカルボン酸単位以外の他のジカルボン酸単位を含んでいてもよい。他のジカルボン酸単位としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸等の脂肪族ジカルボン酸から誘導される単位;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸から誘導される単位;テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,3-フェニレンジオキシジ酢酸、1,4-フェニレンジオキシジ酢酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルエタン-4,4’-ジカルボン酸、ジフェニルプロパン-4,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-トリフェニルジカルボン酸等の芳香族ジカルボン酸から誘導される単位が挙げられ、これらは1種又は2種以上を用いることができる。これら他のジカルボン酸単位の含有量は、全ジカルボン酸単位に対して、50モル%以下であり、40モル%以下であることが好ましく、30モル%以下であることがより好ましい。更に、トリメリット酸、トリメシン酸、ピロメリット酸等の多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
 半芳香族ポリアミド(d2)には、得られる積層チューブの優れた諸特性を損なわない範囲内であれば、ジカルボン酸単位及びジアミン単位以外のその他の単位を含んでいてもよい。その他の単位としては、カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等のラクタムから誘導される単位;6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の脂肪族アミノカルボン酸;p-アミノメチル安息香酸等の芳香族アミノカルボン酸のアミノカルボン酸から誘導される単位が挙げられる。これらは1種又は2種以上を用いることができる。その他の単位の含有量は、全ジカルボン酸単位に基づいて、30モル%以下であることが好ましく、10モル%以下であることがより好ましい。
 半芳香族ポリアミド(d2)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。半芳香族ポリアミド(d2)の製造方法としては、溶融重合、溶液重合や固相重合等の公知の方法があり、これらの方法を用い、常圧、減圧、加圧操作を繰り返して半芳香族ポリアミド(d2)を製造することができる。これらの製造方法は単独で、あるいは適宜、組合せて用いることができ、これらの中でも、溶融重合法が好ましい。例えば、キシリレンジアミン及び/又はビス(アミノメチル)ナフタレンと炭素原子数8以上13以下の脂肪族ジカルボン酸からなるナイロン塩を水の存在下で、加圧、昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法により製造される。また、キシリレンジアミン及び/又はビス(アミノメチル)ナフタレンを溶融状態の炭素原子数8以上13以下の脂肪族ジカルボン酸に直接加えて、常圧下で重縮合する方法によっても製造される。この場合、反応系を均一な液状状態に保つために、キシリレンジアミン及び/又はビス(アミノメチル)ナフタレンを炭素原子数8以上13以下の脂肪族ジカルボン酸に連続的に加え、その間、反応系の温度が生成するオリゴアミド及びポリアミドの融点以上になるように反応系を昇温しつつ、重合が進められる。また、半芳香族ポリアミド(d2)は、溶融重合法により製造された後に、固相重合を行ってもよい。
 半芳香族ポリアミド(d2)には、触媒として、あるいは溶融成形時の加工安定性を高めるためや着色を防止するためにリン化合物を添加することができる。リン化合物としては、次亜リン酸のアルカリ土類金属塩、亜リン酸のアルカリ金属塩、亜リン酸のアルカリ土類金属塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩、ピロリン酸のアルカリ金属塩、ピロリン酸のアルカリ土類金属塩、メタリン酸のアルカリ金属塩、及びメタリン酸のアルカリ土類金属塩が挙げられる。
 具体的には、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸ナトリウム、亜リン酸水素ナトリウム、亜リン酸カリウム、亜リン酸水素カリウム、亜リン酸リチウム、亜リン酸水素リチウム、亜リン酸マグネシウム、亜リン酸水素マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸マグネシウム、リン酸水素二マグネシウム、リン酸二水素マグネシウム、リン酸カルシウム、リン酸水素二カルシウム、リン酸二水素カルシウム、リン酸リチウム、リン酸水素二リチウム、リン酸二水素リチウム、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸リチウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸マグネシウム、メタリン酸カルシウム、メタリン酸リチウム等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウム、リン酸二水素カルシウムが好ましく、次亜リン酸カルシウムがより好ましい。なお、これらのリン化合物は水和物であってもよい。
 リン化合物の含有量は、重合時の触媒効果や着色防止効果を十分に確保し、ゲルの発生を抑制する観点から、半芳香族ポリアミド(d2)100質量部に対して、リン原子濃度換算で0.030質量部以上0.30質量部以下であることが好ましく、0.050質量部以上0.20質量部以下であることがより好ましく、0.070質量部以上0.15質量部以下であることが更に好ましい。
 これらのリン化合物の添加方法は、半芳香族ポリアミド(d2)の原料であるナイロン塩水溶液、ジアミンもしくはジカルボン酸に添加する方法、溶融状態にあるジカルボン酸に添加する方法、溶融重合中に添加する方法等が挙げられるが、半芳香族ポリアミド(d2)中に均一に分散させることが可能であれば、いかなる方法でもよく、これらに限定されるものではない。
 半芳香族ポリアミド(d2)には、リン化合物と併用して、アルカリ金属化合物を添加することができる。重縮合中のポリアミドの着色を防止するためにはリン化合物を十分な量存在させる必要があるが、場合によってはポリアミドのゲル化を招く恐れがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。アルカリ金属化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酢酸塩、及びアルカリ土類金属酢酸塩が挙げられ、アルカリ金属水酸化物やアルカリ金属酢酸塩が好ましい。
 アルカリ金属化合物としては、具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、経済性の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、酢酸ナトリウム、酢酸カリウムが好ましく、水酸化ナトリウム、酢酸ナトリウム、酢酸カリウムが好ましい。
 半芳香族ポリアミド(d2)の重縮合系内にアルカリ金属化合物を添加する場合、該化合物のモル数を前記リン化合物のリン原子換算モル数で除した値は、アミド化反応の促進と抑制のバランスの観点から、0.30以上1.0以下であることが好ましく、0.40以上0.95以下であることがより好ましく、0.50以上0.90以下であることが更に好ましい。
 これらのアルカリ金属化合物の添加方法は、半芳香族ポリアミド(d2)の原料であるナイロン塩水溶液、ジアミンもしくはジカルボン酸に添加する方法、溶融状態にあるジカルボン酸に添加する方法、溶融重合中に添加する方法等が挙げられるが、半芳香族ポリアミド(d2)中に均一に分散させることが可能であればいかなる方法でもよく、これらに限定されるものではない。
 JIS K-6920に準拠して、96%硫酸、ポリマー濃度1%、25℃の条件下にて測定した半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)の相対粘度は、得られる積層チューブの機械的性質を確保することと、溶融時の粘度を適正範囲にして積層チューブの望ましい成形性を確保する観点から、1.5以上4.0以下であることが好ましく、1.8以上3.5以下であることがより好ましく、2.0以上3.0以下であることが更に好ましい。
 なお、半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)の末端基の種類及びその濃度や分子量分布に特別の制約は無い。分子量調節や成形加工時の溶融安定化のため、モノアミン、ジアミン、ポリアミン、モノカルボン酸、ジカルボン酸のうちの1種あるいは2種以上を適宜組合せて添加することができる。例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、2-メチル-1,5-ペンタンジアミン等の脂肪族ジアミン;シクロヘキサンジアミン、ビス(アミノメチル)シクロヘキサン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン等の脂環式ジアミン;m-フェニレンジアミン、p-フェニレンジアミン等の芳香族ジアミン;ポリアルキレンイミン、ポリアルキレンポリアミン、ポリビニルアミン、ポリアリルアミン等のポリアミンや酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;アジピン酸、ピメリン酸等の脂肪族ジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、イソフタル酸等の芳香族ジカルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。これら分子量調節剤の使用量は分子量調節剤の反応性や重合条件により異なるが、最終的に得ようとするポリアミドの相対粘度が前記の範囲になるように適宜決められる。
 溶融安定性を考慮すると、半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)の分子鎖の末端が末端封止剤により封止されていることが好ましく、末端基の10%以上が封止されていることがより好ましく、末端基の20%以上が封止されていることが更に好ましい。末端封止剤としては、ポリアミド末端のアミノ基又はカルボキシル基と反応性を有する単官能性の化合物であれば特に制限はないが、反応性、封止末端の安定性等の観点から、モノカルボン酸又はモノアミンが好ましく、取扱いの容易さ等の観点から、モノカルボン酸がより好ましい。その他、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等も使用できる。
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はないが、前記の脂肪族モノカルボン酸、脂環式モノカルボン酸、芳香族モノカルボン酸等が挙げられる。これらの中でも、反応性、封止末端の安定性、価格等の観点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が好ましい。末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものであれば特に制限はないが、前記の脂肪族モノアミン、脂環式モノアミン、芳香族モノアミン等が挙げられる。これらの中でも、反応性、沸点、封止末端の安定性、価格等の観点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンが好ましい。
 末端封止剤の使用量は、用いる末端封止剤の反応性、沸点、反応装置、反応条件等を考慮して、適宜選択することができる。重合度の調整の観点から、原料成分であるジカルボン酸とジアミンの総モル数に対して0.1モル%以上15モル%以下であることが好ましい。
 半芳香族ポリアミド組成物(D1)や半芳香族ポリアミド組成物(D2)は、半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)とともに、他のポリアミド系樹脂又はその他の熱可塑性樹脂を含有していてもよい。他のポリアミド系樹脂又はその他の熱可塑性樹脂としては、前記脂肪族ポリアミド(A)の場合と同様の樹脂が挙げられる。更に、脂肪族ポリアミド(A)との混合物であっても構わない。混合物中の半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)の含有量は60質量%以上であることが好ましい。
 更に、半芳香族ポリアミド組成物(D1)や半芳香族ポリアミド組成物(D2)には、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、光安定化剤、滑剤、無機質充填材、帯電防止剤、難燃剤、結晶化促進剤、可塑剤、着色剤、潤滑剤、衝撃改良材等を添加してもよい。半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)の低温耐衝撃性を改良するために、衝撃改良材を添加することが好ましく、特に前記ポリアミド6組成物(B1)やポリアミド6/66/12組成物(B2)中に記載した、ISO 178に準拠して測定した曲げ弾性率が500MPa以下のゴム状重合体を添加することがより好ましい。
5.(e)層
 積層チューブの(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む。
[アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)]
 含フッ素系重合体(E)は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体である(以下、含フッ素系重合体(E)と称する場合がある。)。
 含フッ素系重合体(E)は、少なくとも1種の含フッ素単量体から誘導される繰り返し単位を有する重合体(単独重合体又は共重合体)である。熱溶融加工可能な含フッ素系重合体であれば特に限定されるものではない。
 ここで含フッ素単量体としては、テトラフルオロエチレン(TFE)、トリフルオロエチレン、フッ化ビニリデン(VDF)、フッ化ビニル(VF)、クロロトリフルオロエチレン(CTFE)、トリクロロフルオロエチレン、ヘキサフルオロプロピレン(HFP)、CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)、CF=CF-OCH-Rf2(ここで、Rf2は、炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキレン基を表す。)、CF=CF(CFOCF=CF(ここで、pは1又は2である。)、CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)等が挙げられる。これらは1種又は2種以上を用いることができる。
 上記一般式CF=CFORf1の具体例としては、CF=CFOCF(パーフルオロ(メチルビニルエーテル):PMVE)、CF=CFOCFCF(パーフルオロ(エチルビニルエーテル):PEVE)、CF=CFOCFCFCF(パーフルオロ(プロピルビニルエーテル):PPVE)、CF=CFOCFCFCFCF(パーフルオロ(ブチルビニルエーテル):PBVE)やCF=CFO(CFF(パーフルオロ(オクチルビニルエーテル):POVE)等のパーフルオロ(アルキルビニルエーテル)(以下、PAVEと称する場合がある。)が挙げられる。これらの中でも、CF=CFOCF、CF=CFOCFCFCFが好ましい。
 また、上記一般式CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)で表される化合物中のnは、含フッ素系重合体の改質(例えば、共重合体の成形時や成形品のクラック発生の抑制)効果に確保し、十分な重合反応性を得る観点から、2以上10以下の整数である。具体的には、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。これらは1種又は2種以上を用いることができる。
 これらの中でも、含フッ素系重合体(E)の薬液透過防止性と耐環境応力亀裂性のバランスの観点から、CH=CH(CFF又はCH=CF(CFHで表される化合物が好ましく、式中のnは2以上4以下であることがより好ましい。
 含フッ素系重合体(E)は、上記含フッ素単量体に加えて、更に非フッ素含有単量体に基づく重合単位を含有してもよい。非フッ素含有単量体としては、エチレン、プロピレン、イソブテン等の炭素原子数2以上4以下のオレフィン、塩化ビニル、塩化ビニリデン、酢酸ビニル、クロロ酢酸ビニル、乳酸ビニル、酪酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、クロトン酸メチル等のビニルエステル、メチルビニルエーテル(MVE)、エチルビニルエーテル(EVE)、ブチルビニルエーテル(BVE)、イソブチルビニルエーテル(IBVE)、シクロへキシルビニルエーテル(CHVE)、グリシジルビニルエーテル等のビニルエーテル等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、エチレン、プロピレン、酢酸ビニルが好ましく、エチレンがより好ましい。
 含フッ素系重合体(E)の中でも、耐熱性、耐薬品性、及び薬液透過防止性の観点から、少なくとも、フッ化ビニリデン単位(VDF単位)からなる共重合体(E1)、少なくとも、テトラフルオロエチレン単位(TFE単位)及びエチレン単位(E単位)からなる共重合体(E2)、少なくとも、テトラフルオロエチレン単位(TFE単位)及びヘキサフルオロプロピレン単位(HFP単位)及び/又は上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位からなる共重合体(E3)、少なくとも、クロロトリフルオロエチレン単位(CTFE単位)からなる共重合体(E4)、少なくとも、クロロトリフルオロエチレン単位(CTFE単位)及びテトラフルオロエチレン単位(TFE単位)からなる共重合体(E5)であることが好ましい。
 少なくとも、フッ化ビニリデン単位(VDF単位)からなる共重合体(E1)(以下、VDF共重合体(E1)と称する場合がある。)としては、例えば、
 フッ化ビニリデン単独重合体(ポリフッ化ビニリデン(PVDF))(E1-1)、
 VDF単位とTFE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量が30モル%以上99モル%以下、及びTFE単位の含有量が1モル%以上70モル%以下である共重合体(E1-2)、
 VDF単位とTFE単位、及びトリクロロフルオロエチレン単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量が10モル%以上90モル%以下、TFE単位の含有量が0モル%以上90モル%以下、及びトリクロロフルオロエチレン単位の含有量が0モル%以上30モル%以下である共重合体(E1-3)、
 VDF単位とTFE単位、及びHFP単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量が10モル%以上90モル%以下、TFE単位の含有量が0モル%以上90モル%以下、及びHFP単位の含有量が0モル%以上30モル%以下である共重合体(E1-4)等が挙げられる。
 上記共重合体(E1-4)において、後記の官能基含有単量体を除く単量体全体に対して、VDF単位の含有量は15モル%以上84モル%以下、TFE単位の含有量は15モル%以上84モル%以下、及びHFP単位の含有量は0モル%以上30モル%以下であることが好ましい。
 少なくとも、テトラフルオロエチレン単位(TFE単位)及びエチレン単位(E単位)からなる共重合体(E2)としては(以下、TFE共重合体(E2)と称する場合がある。)、例えば、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が20モル%以上である重合体が挙げられ、更には、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が20モル%以上80モル%以下、E単位の含有量が20モル%以上80モル%以下、及びこれらと共重合可能な単量体に由来する単位の含有量が0モル%以上60モル%以下である共重合体等が挙げられる。
 上記共重合可能な単量体としては、ヘキサフルオロプロピレン(HFP)、上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)、上記一般式CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)等が挙げられる。これらは1種又は2種以上を用いることができる。
 TFE共重合体(E2)としては、例えば、
 TFE単位とE単位、及び上記一般式CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)で表されるフルオロオレフィンに由来するフルオロオレフィン単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が30モル%以上70モル%以下、E単位の含有量が20モル%以上55モル%以下、及び上記一般式CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)で表されるフルオロオレフィンに由来するフルオロオレフィン単位の含有量が0モル%以上10モル%以下である共重合体(E2-1)、
 TFE単位とE単位とHFP単位、及びこれらと共重合可能な単量体に由来する単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が30モル%以上70モル%以下、E単位の含有量が20モル%以上55モル%以下、HFP単位の含有量が1モル%以上30モル%以下、及びこれらと共重合可能な単量体に由来する単位の含有量が0モル%以上10モル%以下である共重合体(E2-2)、
 TFE単位とE単位、及び上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が30モル%以上70モル%以下、E単位の含有量が20モル%以上55モル%以下、及び上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位の含有量が0モル%以上10モル%以下である共重合体(E2-3)等が挙げられる。
 少なくとも、テトラフルオロエチレン単位(TFE単位)とヘキサフルオロプロピレン単位(HFP単位)及び/又は上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位からなる共重合体(E3)(以下、TFE共重合体(E3)と称する場合がある。)としては、例えば、
 TFE単位及びHFP単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が70モル%以上95モル%以下であり、好ましくは85モル%以上93モル%以下であり、HFP単位の含有量が5モル%以上30モル%以下であり、好ましくは7モル%以上15モル%以下である共重合体(E3-1)、
 TFE単位及び上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が70モル%以上95モル%以下、及び上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位の含有量が5モル%以上30モル%以下である共重合体(E3-2)、
 TFE単位とHFP単位、及び上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位からなる共重合体であって、後記の官能基含有単量体を除く単量体全体に対して、TFE単位の含有量が70モル%以上95モル%以下、HFP単位と上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEに由来する1種又は2種以上のPAVE単位の合計含有量が5モル%以上30モル%以下である共重合体(E3-3)等が挙げられる。
 少なくとも、クロロトリフルオロエチレン単位(CTFE単位)からなる共重合体とは、CTFE単位[-CFCl-CF-]を有し、エチレン単位(E単位)及び/又は含フッ素単量体単位から構成されるクロロトリフルオロエチレン共重合体(E4)である(以下、CTFE共重合体(E4)と称する場合がある。)。
 上記CTFE共重合体(E4)における含フッ素単量体としては、CTFE以外のものであれば特に限定されないが、フッ化ビニリデン(VDF)、ヘキサフルオロプロピレン(HFP)、上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVE、上記一般式CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)で表されるフルオロオレフィン等が挙げられる。これらは1種又は2種以上を用いることができる。
 CTFE共重合体(E4)としては特に限定されず、例えば、CTFE/PAVE共重合体、CTFE/VDF共重合体、CTFE/HFP共重合体、CTFE/E共重合体、CTFE/PAVE/E共重合体、CTFE/VDF/E共重合体、CTFE/HFP/E共重合体等が挙げられる。
 CTFE共重合体(E4)におけるCTFE単位の含有量は、後記の官能基含有単量体を除く単量体全体に対して、15モル%以上70モル%以下であることが好ましく、18モル%以上65モル%以下であることがより好ましい。一方、E単位及び/又は含フッ素単量体単位の含有量は、30モル%以上85モル%以下であることが好ましく、35モル%以上82モル%以下であることがより好ましい。
 少なくとも、クロロトリフルオロエチレン単位(CTFE単位)及びテトラフルオロエチレン単位(TFE単位)からなる共重合体(E5)は、CTFE単位[-CFCl-CF-]及びTFE単位[-CF-CF-]、並びにCTFE及びTFEと共重合可能な単量体単位から構成されるクロロトリフルオロエチレン共重合体である(以下、CTFE/TFE共重合体(E5)と称する場合がある。)。
 上記CTFE/TFE共重合体(E5)における共重合可能な単量体としては、CTFE及びTFE以外のものであれば特に限定されないが、フッ化ビニリデン(VDF)、ヘキサフルオロプロピレン(HFP)、上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVE、上記一般式CH=CX(CF(ここで、X及びXは互いに独立に水素原子又はフッ素原子を表し、nは2以上10以下の整数である。)で表されるフルオロオレフィン等の含フッ素単量体やエチレン、プロピレン、イソブテン等の炭素原子数2以上4以下のオレフィン、酢酸ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等のビニルエステル、メチルビニルエーテル(MVE)、エチルビニルエーテル(EVE)、ブチルビニルエーテル(BVE)等のビニルエーテル等の非フッ素含有単量体が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、上記一般式CF=CFORf1(ここで、Rf1は炭素原子数1以上10以下のエーテル性酸素原子を含んでもよいパーフルオロアルキル基を表す。)で表されるPAVEであることが好ましく、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)がより好ましく、耐熱性の観点からPPVEが更に好ましい。
 CTFE/TFE共重合体(E5)としては特に限定されず、例えば、CTFE/TFE共重合体、CTFE/TFE/HFP共重合体、CTFE/TFE/VDF共重合体、CTFE/TFE/PAVE共重合体、CTFE/TFE/E共重合体、CTFE/TFE/HFP/PAVE共重合体、CTFE/TFE/VDF/PAVE共重合体等が挙げられ、これらの中でも、CTFE/TFE/PAVE共重合体、CTFE/TFE/HFP/PAVE共重合体が好ましい。
 CTFE/TFE共重合体(E5)中におけるCTFE単位及びTFE単位の合計含有量は、良好な成形性、耐環境応力亀裂性、薬液透過防止性、耐熱性、及び機械特性を確保する観点から、後記の官能基含有単量体を除く単量体全体に対して、90.0モル%以上99.9モル%以下であることが好ましく、上記CTFE及びTFEと共重合可能な単量体単位の含有量は、0.10モル%以上10.0モル%以下であることが好ましい。
 CTFE/TFE共重合体(E5)中のおけるCTFE単位の含有量は、良好な成形性、耐環境応力亀裂性、及び薬液透過防止性を確保する観点から、上記CTFE単位とTFE単位の合計量100モル%に対して、15モル%以上80モル%以下であることが好ましく、17モル%以上70モル%以下であることがより好ましく、19モル%以上65モル%以下であることが更に好ましい。
 CTFE/TFE共重合体(E5)において、上記CTFE及びTFEと共重合可能な単量体がPAVEである場合、PAVE単位の含有量は、後記の官能基含有単量体を除く単量体全体に対して、0.5モル%以上7モル%以下であることが好ましく、1モル%以上5モル%以下であることがより好ましい。
 CTFE/TFE共重合体(E5)において、上記CTFE及びTFEと共重合可能な単量体がHFPとPAVEである場合、HFP単位とPAVE単位の合計含有量は、後記の官能基含有単量体を除く単量体全体に対して、0.5モル%以上7モル%以下であることが好ましく、1モル%以上5モル%以下であることがより好ましい。
 TFE共重合体(E3)、CTFE共重合体(E4)、CTFE/TFE共重合体(E5)は、薬液透過防止性、特に含アルコールガソリンに対するバリア性に卓越して優れる。含アルコールガソリン透過係数は、イソオクタン、トルエン、及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒を投入した透過係数測定用カップに測定対象樹脂から得たシートを入れ、60℃において測定した質量変化から算出される値である。TFE共重合体(E3)、CTFE共重合体(E4)やCTFE/TFE共重合体(E5)の上記含アルコールガソリン透過係数は、1.5g・mm/(m・day)以下であることが好ましく、0.010g・mm/(m・day)以上1.0g・mm/(m・day)以下であることがより好ましく、0.020g・mm/(m・day)以上0.80g・mm/(m・day)以下であることが更に好ましい。
 含フッ素系重合体(E)は、重合体を構成する単量体を従来からの重合方法で(共)重合することによって得ることができる。その中でも主としてラジカル重合による方法が用いられる。即ち、重合を開始するには、ラジカル的に進行するものであれば手段は何ら制限されないが、例えば、有機、無機ラジカル重合開始剤、熱、光あるいは電離放射線等によって開始される。
 含フッ素系重合体(E)の製造方法は特に制限はなく、一般に用いられているラジカル重合開始剤を用いる重合方法が用いられる。重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体及び必要に応じて適当な有機溶剤を使用する懸濁重合、水性媒体及び乳化剤を使用する乳化重合等、公知の方法を採用できる。
 また、重合は、一槽ないし多槽式の攪拌型重合装置、管型重合装置を使用して、回分式又は連続式操作として実施することができる。
 ラジカル重合開始剤としては、半減期が10時間である分解温度が0℃以上100℃以下であることが好ましく、20℃以上90℃以下であることがより好ましい。具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビスイソ酪酸ジメチル、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]、4,4’-アゾビス(4-シアノペンテン酸)等のアゾ化合物;過酸化水素、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等のハイドロパーオキサイド;ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド;アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等の非フッ素系ジアシルパーオキサイド;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート;t-ブチルパーオキシピバレート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシアセテート等のパーオキシエステル;(Z(CFCOO)(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1以上10以下の整数である。)で表される化合物等の含フッ素ジアシルパーオキサイド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、含フッ素系重合体(E)の製造に際しては、分子量調整のために、通常の連鎖移動剤を使用することも好ましい。連鎖移動剤としては、メタノール、エタノール等のアルコール、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン、1,2-ジクロロ-1,1,2,2-テトラフルオロエタン、1,1-ジクロロ-1-フルオロエタン、1,1,2-トリクロロ-1,2,2-トリフルオロエタン等のクロロフルオロハイドロカーボン;ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボン;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のクロロハイドロカーボンが挙げられる。これらは1種又は2種以上を用いることができる。
 重合条件については特に限定されず、重合温度は、0℃以上100℃以下であることが好ましく、20℃以上90℃以下であることがより好ましい。重合体中のエチレン-エチレン連鎖生成による耐熱性の低下を避けるためには、一般に低温が好ましい。重合圧力は、用いる溶媒の種類、量、蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、0.1MPa以上10MPa以下であることが好ましく、0.5MPa以上3MPa以下であることがより好ましい。重合時間は1時間以上30時間以下であることが好ましい。
 また、含フッ素系重合体(E)の分子量は特に限定されないが、室温で固体の重合体であり、それ自体、熱可塑性樹脂、エラストマー等として使用できるものが好ましい。また、分子量は、重合に用いる単量体の濃度、重合開始剤の濃度、連鎖移動剤の濃度、温度によって制御される。
 含フッ素系重合体(E)を、前記脂肪族ポリアミド(A)、ポリアミド6組成物(B1)、ポリアミド6/66/12組成物(B2)、EVOH(C)、半芳香族ポリアミド組成物(D1)や半芳香族ポリアミド組成物(D2)等と共押出する場合、これらの著しい劣化を伴わない混練温度及び成形温度範囲で、充分な溶融流動性を確保するためには、含フッ素系重合体(E)の融点より50℃高い温度、及び5kg荷重におけるメルトフローレートは、0.5g/10分以上200g/10分以下であることが好ましく、1g/10分以上100g/10分以下であることがより好ましい。
 また、含フッ素系重合体(E)は、含フッ素単量体及びその他の単量体の種類、組成比等を選ぶ事によって、重合体の融点、ガラス転移点を調節することができる。
 含フッ素系重合体(E)の融点は、目的、用途、使用方法により適宜選択されるが、前記脂肪族ポリアミド(A)、ポリアミド6組成物(B1)、ポリアミド6/66/12組成物(B2)、EVOH(C)、半芳香族ポリアミド組成物(D1)や半芳香族ポリアミド組成物(D2)等と共押出する場合、当該樹脂の成形温度に近いことが好ましい。そのため、前記含フッ素単量体、その他の単量体と後記の官能基含有単量体の割合を適宜調節し、含フッ素系重合体(E)の融点を最適化することが好ましい。特に、EVOH(C)との共押出時の熱溶融安定性、連続成形性、含フッ素系重合体(E)の耐熱性、耐薬品性、及び薬液透過防止性を十分に確保する観点から、該含フッ素系重合体(E)の融点は、150℃以上280℃以下であることが好ましい。
 ここで、融点とは、示差走査熱量測定装置を用いて、試料を予想される融点以上の温度に加熱し、次に、この試料を1分間あたり10℃の速度で降温し、30℃まで冷却、そのまま約1分間放置したのち1分間あたり10℃の速度で昇温することにより測定される融解曲線のピーク値の温度を融点と定義するものとする。
 含フッ素系重合体(E)は、アミノ基に対して反応性を有する官能基を分子構造内に有しており、官能基は、含フッ素系重合体(E)の分子末端又は側鎖又は主鎖のいずれに含有されていても構わない。また、官能基は、含フッ素系重合体(E)中に単独、又は2種類以上のものが併用されていてもよい。その官能基の種類、含有量は、含フッ素系重合体(E)に積層される相手材の種類、形状、用途、要求される層間接着性、接着方法、官能基導入方法等により適宜決定される。
 アミノ基に対して反応性を有する官能基としては、カルボキシル基、酸無水物基もしくはカルボン酸塩、スルホ基もしくはスルホン酸塩、エポキシ基、シアノ基、カーボネート基、及びハロホルミル基から群より選ばれる少なくとも1種が挙げられる。これらの中でも、カルボキシル基、酸無水物基もしくはカルボン酸塩、エポキシ基、カーボネート基、及びハロホルミル基からなる群より選ばれる少なくとも1種が好ましい。
 含フッ素系重合体(E)に反応性を有する官能基を導入する方法としては、(i)含フッ素系重合体(E)の重合時、官能基を有する共重合可能な単量体を共重合する方法、(ii)重合開始剤、連鎖移動剤等により、重合時に含フッ素系重合体(E)の分子末端に官能基を導入する方法、(iii)反応性を有する官能基をグラフト化が可能な官能基とを有する化合物(グラフト化合物)を含フッ素系重合体にグラフトさせる方法等が挙げられる。これらの導入方法は単独で、あるいは適宜、組合せて用いることができる。積層チューブにおける層間接着性を考慮した場合、上記(i)、(ii)から製造される含フッ素系重合体(E)が好ましい。(iii)については、特開平7-18035号公報、特開平7-25952号公報、特開平7-25954号公報、特開平7-173230号公報、特開平7-173446号公報、特開平7-173447号公報、特表平10-503236号公報による製造法を参照されたい。以下、(i)含フッ素系重合体の重合時、官能基を有する共重合可能な単量体を共重合する方法、(ii)重合開始剤等により含フッ素系重合体の分子末端に官能基を導入する方法について説明する。
 (i)含フッ素系重合体(E)の製造時、官能基を有する共重合可能な単量体(以下、官能基含有単量体と略記する場合がある。)を共重合する方法において、カルボキシル基、酸無水物基もしくはカルボン酸塩、ヒドロキシル基、スルホ基もしくはスルホン酸塩、エポキシ基、及びシアノ基からなる群より選ばれる少なくとも1種以上の官能基含有単量体を重合単量体して用いる。官能基含有単量体としては、官能基含有非フッ素単量体、官能基含有含フッ素単量体等が挙げられる。
 官能基含有非フッ素単量体としては、アクリル酸、ハロゲン化アクリル酸(但し、フッ素は除く)、メタクリル酸、ハロゲン化メタクリル酸(但し、フッ素は除く)、マレイン酸、ハロゲン化マレイン酸(但し、フッ素は除く)、フマル酸、ハロゲン化フマル酸(但し、フッ素は除く)、イタコン酸、シトラコン酸、クロトン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等の不飽和カルボン酸やそのエステル等誘導体;無水マレイン酸、無水イタコン酸、無水コハク酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等のカルボキシル基含有単量体;グリシジルアクリレート、グリシジルメタクリレート、グリシジルエーテル等のエポキシ基含有単量体等が挙げられる。これらは1種又は2種以上を用いることができる。官能基含有非フッ素単量体は使用する含フッ素単量体との共重合反応性を考慮して決定される。適当な官能基含有非フッ素単量体を選択することにより、重合が良好に進行し、官能基含有非フッ素単量体の主鎖中に均一に導入しやすく、結果として未反応モノマーが少なくなり、不純物を減らすことができるという利点がある。
 官能基含有含フッ素単量体としては、一般式CX=CX-(R-Y(ここで、Yは、-COOM(Mは、水素原子又はアルカリ金属を表す。)、カルボキシル基由来基、-SOM(Mは、水素原子又はアルカリ金属を表す。)、スルホン酸由来基、エポキシ基、及び-CNからなる群より選択される官能基を表し、X及びXは、同一又は異なって、水素原子若しくはフッ素原子を表し(但し、X及びXが同一に水素原子の場合、n=1であり、Rにフッ素原子を含む。)、Rは、炭素原子数1以上40以下のアルキレン基、炭素原子数1以上40以下の含フッ素オキシアルキレン基、エーテル結合を有する炭素原子数1以上40以下の含フッ素アルキレン基、又は、エーテル結合を有する炭素原子数1以上40以下の含フッ素オキシアルキレン基を表し、nは0又は1である。)で表される不飽和化合物等が挙げられる。
 上記一般式におけるYであるカルボキシル基由来基としては、例えば、一般式-C(=O)Q(式中、Qは、-OR、-NH、F、Cl、Br又はIを表し、Rは、炭素原子数1以上20以下のアルキル基又は炭素原子数6以上22以下のアリール基を表す。)で表される基等が挙げられる。
 上記一般式におけるYであるスルホン酸由来基としては、例えば、一般式-SO(式中Qは、-OR、-NH、F、Cl、Br又はIを表し、Rは、炭素原子数1以上20以下のアルキル基又は炭素原子数6以上22以下のアリール基を表す。)で表される基等が挙げられる。
 前記Yは、-COOH、-SOH、-SONa、-SOF又は-CNが好ましい。
 官能基含有含フッ素単量体としては、例えば、カルボニル基を有する官能基である場合、パーフルオロアクリル酸フルオライド、1-フルオロアクリル酸フルオライド、アクリル酸フルオライド、1-トリフルオロメタクリル酸フルオライド、パーフルオロブテン酸等が挙げられる。これらは1種又は2種以上を用いることができる。
 含フッ素系重合体(E)中の官能基含有単量体の含有量は、十分な層間接着性を確保し、使用環境条件により、層間接着性の低下を招かず、耐熱性を十分に確保し、高温での加工時、接着不良や着色や発泡、高温での使用時、分解による剥離や着色・発泡、溶出等の発生を防止する観点から、全重合単位に対して、0.05モル%以上20モル%以下であることが好ましく、0.05モル%以上10モル%以下であることがより好ましく、0.1モル%以上5モル%以下であることが更に好ましい。官能基含有単量体の含有量が前記範囲にあると、製造時の重合速度が低下せず、かつ含フッ素系重合体(E)は積層される相手材との接着性に優れたものとなる。官能基含有単量体の添加法は特に限定されず、重合開始時に一括添加してもよいし、重合中に連続添加してもよい。添加方法は、重合開始剤の分解反応性と重合温度により適宜選択されるが、重合中に、官能基含有単量体が重合で消費されるに従って、消費された量を連続的又は断続的に重合槽内に供給し、当該官能基含有単量体の濃度をこの範囲に維持することが好ましい。
 また、上記含有量を満たす限りにおいて、官能基が導入された含フッ素系重合体と、官能基が導入されていない含フッ素系重合体の混合物であって構わない。
 (ii)重合開始剤等により含フッ素系重合体の分子末端に官能基を導入する方法において、官能基は、含フッ素系重合体の分子鎖の片末端又は両末端に導入される。末端に導入される官能基としては、カーボネート基、ハロホルミル基が好ましい。
 含フッ素系重合体(E)の末端基として導入されるカーボネート基は、一般に-OC(=O)O-の結合を有する基であり、具体的には、-OC(=O)O-R10基[R10は水素原子、有機基(例えば、炭素原子数1以上20以下アルキル基、エーテル結合を有する炭素原子数2以上20以下アルキル基等)、又はI、II、VII族元素である。]の構造のもので、-OC(=O)OCH、-OC(=O)OC、-OC(=O)OC17、-OC(=O)OCHCHOCHCH等が挙げられる。ハロホルミル基は、具体的には-COZ[Zはハロゲン元素である。]の構造のもので、-COF、-COCl等が挙げられる。これらは1種又は2種以上を用いることができる。
 また、重合体の分子末端にカーボネート基を導入するためには、重合開始剤や連鎖移動剤を使用した種々の方法を採用できるが、パーオキサイド、特にパーオキシカーボネートやパーオキシエステルを重合開始剤として用いる方法が、経済性や耐熱性、耐薬品性等の性能の観点から好ましく採用できる。この方法によれば、パーオキサイドに由来するカルボニル基、例えば、パーオキシカーボネートに由来するカーボネート基、パーオキシエステルに由来するエステル基、又は、これらの官能基を変換してなるハロホルミル基等重合体末端に導入することができる。これらの重合開始剤のうち、パーオキシカーボネートを用いることが、重合温度を低くすることができ、開始反応に副反応を伴わないことからより好ましい。
 重合体の分子末端にハロホルミル基を導入するためには、種々の方法を採用できるが、例えば、前述のカーボネート基を末端に有する含フッ素系重合体のカーボネート基を加熱させ熱分解(脱炭酸)させることにより得ることができる。
 パーオキシカーボネートとしては、ジイソプロピルパーオキシカーボネート、ジ-n-プロピルパーオキシカーボネート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシメタクリロイロキシエチルカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート等が挙げられる。これらは1種又は2種以上を用いることができる。
 パーオキシカーボネートの使用量は、目的とする重合体の種類(組成等)、分子量、重合条件、使用する開始剤の種類によって異なるが、重合速度を適正に制御し、十分な重合速度を確保する観点から、重合によって得られる全重合体100質量部に対して、0.05質量部以上20質量部以下であることが好ましく、0.1質量部以上10質量部以下であることがより好ましい。重合体の分子末端のカーボネート基含有量は、重合条件を調整することによって制御できる。重合開始剤の添加法は特に限定されず、重合開始時に一括添加してもよいし、重合中に連続添加してもよい。添加方法は、重合開始剤の分解反応性と重合温度により適宜選択される。
 含フッ素系重合体(E)中の主鎖炭素原子数10個に対する末端官能基数は、十分な層間接着性を確保し、使用環境条件により、層間接着性の低下を招かず、耐熱性を十分に確保し、高温での加工時、接着不良や着色や発泡、高温での使用時、分解による剥離や着色・発泡、溶出等の発生を防止する観点から、150個以上3,000個以下であることが好ましく、200個以上2,000個以下であることがより好ましく、300個以上1,000個以下であることが更に好ましい。また、上記官能基数を満たす限りにおいて、官能基が導入された含フッ素系重合体と、官能基が導入されていない含フッ素系重合体の混合物であって構わない。
 以上のように含フッ素系重合体(E)は、アミノ基に対して反応性を有する官能基が導入された含フッ素系重合体である。上述の通り、官能基が導入された含フッ素系重合体(E)は、それ自体、含フッ素系重合体特有の耐熱性、耐水性、低摩擦性、耐薬品性、耐候性、防汚性、薬液透過防止性等の優れた特性を維持することが可能であり、生産性やコストの面で有利である。
 更に、アミノ基に対して反応性を有する官能基が分子鎖中に含有されることにより、積層チューブにおいて、層間接着性が不充分又は不可能であった種々の材料に対し、表面処理等特別な処理や接着性樹脂の被覆等を行なわず、直接、他の基材との優れた層間接着性を付与することができる。
 含フッ素系重合体(E)は、目的や用途に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素繊維、金属酸化物、あるいはカーボン等の種々の充填剤を添加できる。また、充填剤以外に、顔料、紫外線吸収剤、その他任意の添加剤を混合できる。添加剤以外にまた他のフッ素系樹脂や熱可塑性樹脂等の樹脂、合成ゴム等を添加することもでき、機械特性の改善、耐候性の改善、意匠性の付与、静電防止、成形性改善等が可能となる。
[積層チューブ]
 積層チューブの第一態様は、脂肪族ポリアミド(A)を含む(a)層、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層、EVOH(C)を含む(c)層、及び半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層を有する、少なくとも4層から構成される。
 第一態様の積層チューブにおいて、EVOH(C)を含む(c)層や半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層を含むことは必須であり、積層チューブの薬液透過防止性、特に炭化水素透過防止性が良好となる。
 好ましい実施態様としては、脂肪族ポリアミド(A)を含む(a)層は、積層チューブの最外層に配置される。脂肪族ポリアミド(A)を含む(a)層が最外層に配置されることにより、耐薬品性や柔軟性に優れた積層チューブを得ることが可能となる。また、EVOH(C)を含む(c)層が、脂肪族ポリアミド(A)を含む(a)層と半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層の間に配置される。半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層が最内層に配置されることにより、耐劣化燃料性に優れる積層チューブが得られるとともに、含アルコールガソリンとの接触によるモノマーやオリゴマー等低分子量成分の溶出を抑制することが可能となる。即ち、(a)層が最外層に配置され、(c)層が、(a)層と(d)層の間に配置される積層チューブが好ましい。
 より好ましい実施態様としては、EVOH(C)を含む(c)層と隣接する少なくとも一方の側に、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層が配置される。EVOH(C)を含む(c)層と隣接する少なくとも一方の側に、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層が配置されることにより、優れた層間接着性を得ることが可能となり、EVOH(C)や半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)と共押出する場合、幅広い成形温度範囲にて、充分な成形安定性を確保することが可能となる。即ち、(c)層と隣接する少なくとも一方の側に、(b)層が配置される積層チューブがより好ましい。
 また、第一態様の積層チューブにおいて、導電性フィラーを含有させた半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む導電層が、積層チューブの最内層に配置されると、薬液透過防止性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しない半芳香族ポリアミドを含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。
 導電性とは、例えば、ガソリンのような引火性の流体が樹脂のような絶縁体に連続的に接触した場合、静電気が蓄積して引火する可能性があるが、この静電気が蓄積しない程度の電気特性を有することを言う。これにより、燃料等の流体の搬送時に発生する静電気による爆発防止が可能となる。
 導電性フィラーは、樹脂に導電性能を付与するために添加されるすべての充填材が包含され、粒状、フレーク状、及び繊維状フィラー等が挙げられる。
 粒状フィラーとしては、カーボンブラック、グラファイト等が挙げられる。フレーク状フィラーとしては、アルミフレーク、ニッケルフレーク、ニッケルコートマイカ等が挙げられる。また、繊維状フィラーとしては、炭素繊維、炭素被覆セラミック繊維、カーボンウィスカー、カーボンナノチューブ、アルミ繊維、銅繊維、黄銅繊維、ステンレス繊維等の金属繊維等が挙げられる。これらは1種又は2種以上を用いることができる。これらの中でも、カーボンナノチューブ、カーボンブラックが好ましい。
 カーボンナノチューブは、中空炭素フィブリルと称されるものであり、該フィブリルは、規則的に配列した炭素原子の本質的に連続的な多数層からなる外側領域と、内部中空領域とを有し、各層と中空領域とが該フィブリルの円柱軸の周囲に実質的に同心に配置されている本質的に円柱状のフィブリルである。更に、上記外側領域の規則的に配列した炭素原子が黒鉛状であり、上記中空領域の直径が2nm以上20nm以下であることが好ましい。カーボンナノチューブの外径は、樹脂中への十分な分散性や、得られる樹脂成形体の良好な導電性を付与する観点から、3.5nm以上70nm以下であることが好ましく、4nm以上60nm以下であることがより好ましい。カーボンナノチューブのアスペクト比(長さ/外径の比をいう)は、5以上であることが好ましく、100以上であることがより好ましく、500以上であることが更に好ましい。該アスペクト比を満たすことにより、導電性ネットワークを形成しやすく、少量添加で優れた導電性を発現することができる。
 カーボンブラックは、導電性付与に一般的に使用されているカーボンブラックがすべて包含され、好ましいカーボンブラックとしては、アセチレンガスを不完全燃焼して得られるアセチレンブラックや、原油を原料にファーネス式不完全燃焼によって製造されるケッチェンブラック等のファーネスブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラック等が挙げられるが、これらに限定されるものではない。これらの中でも、アセチレンブラック、ファーネスブラックがより好ましい。
 また、カーボンブラックは、その粒子径、表面積、DBP吸油量、灰分等の特性の異なる種々のカーボン粉末が製造されている。該カーボンブラックの特性に制限は無いが、良好な鎖状構造を有し、凝集密度の大きいものが好ましい。カーボンブラックの多量配合は耐衝撃性の観点から好ましくなく、より少量で優れた電気伝導度を得る観点から、平均粒径は500nm以下であることが好ましく、5nm以上100nm以下であることがより好ましく、10nm以上70nm以下であることが更に好ましく、また、表面積(BET法)は10m/g以上であることが好ましく、30m/g以上であることがより好ましく、50m/g以上であることが更に好ましく、更に、DBP(ジブチルフタレート)吸油量は50ml/100g以上であることが好ましく、100ml/100gであることがより好ましく、150ml/100g以上であることが更に好ましい。また、灰分は0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。ここでいうDBP吸油量は、ASTM D-2414に定められた方法で測定した値である。また、カーボンブラックの揮発分含量は1質量%未満であることが好ましい。
 これら、導電性フィラーはチタネート系、アルミ系、シラン系等の表面処理剤で表面処理を施されていてもよい。また溶融混練作業性を向上させるために造粒されたものを用いることも可能である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)100質量部に対して、一般に3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、上記導電性フィラーの添加は強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、上記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第一態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液透過防止性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層、(b)層、(c)層、(d)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液透過防止性のバランスを考慮して、(c)層、(d)層の厚みは、積層チューブ全体の厚みに対して、それぞれ5%以上50%以下であることがより好ましく、7%以上30%以下であることが更に好ましい。
 また、第一態様の積層チューブにおける全体の層数は、脂肪族ポリアミド(A)を含む(a)層、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層、EVOH(C)を含む(c)層、及び半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層を有する、少なくとも4層である限り、特に限定されない。更に、第一態様の積層チューブは、(a)層、(b)層、(c)層、(d)層の4層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第一態様の積層チューブの層数は4層以上であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、5層以上7層以下であることがより好ましい。
 積層チューブの第二態様は、脂肪族ポリアミド(A)を含む(a)層、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層、EVOH(C)を含む(c)層、半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層、及び含フッ素系重合体(E)を含む(e)層を有する、少なくとも5層から構成される。
 第二態様の積層チューブにおいて、EVOH(C)を含む(c)層や半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層を含むことは必須であり、積層チューブの薬液透過防止性、特に炭化水素透過防止性が良好となる。また、含フッ素系重合体(E)を含む(e)層を含むことも必須であり、積層チューブのアルコール透過防止性が良好となる。(e)層を含むことで、特に高濃度アルコール含有ガソリンに対する透過防止性に優れる。
 好ましい実施態様としては、脂肪族ポリアミド(A)を含む(a)層は、積層チューブの最外層に配置される。脂肪族ポリアミド(A)を含む(a)層が最外層に配置されることにより、耐薬品性や柔軟性に優れた積層チューブを得ることが可能となる。また、EVOH(C)を含む(c)層、及び半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層が、脂肪族ポリアミド(A)を含む(a)層と含フッ素系重合体(E)を含む(e)層の間に配置される。含フッ素系重合体(E)を含む(e)層が最内層に配置されることにより、耐劣化燃料性に優れる積層チューブが得られるとともに、含アルコールガソリンとの接触によるモノマーやオリゴマー等低分子量成分の溶出を抑制することが可能となる。即ち、(a)層が最外層に配置され、(c)層、及び(d)層が、(a)層と(e)層の間に配置される積層チューブが好ましい。
 より好ましい実施態様としては、EVOH(C)を含む(c)層と隣接する少なくとも一方の側に、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層が配置される。EVOH(C)を含む(c)層と隣接する少なくとも一方の側に、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層が配置されることにより、優れた層間接着性を得ることが可能となり、EVOH(C)、半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)、及び含フッ素系重合体(E)と共押出する場合、幅広い成形温度範囲にて、充分な成形安定性を確保することが可能となる。即ち、(c)層と隣接する少なくとも一方の側に、(b)層が配置される積層チューブがより好ましい。
 また、第二態様の積層チューブにおいて、導電性フィラーを含有させた含フッ素系重合体組成物を含む導電層が、積層チューブの最内層に配置されると、薬液透過防止性、耐劣化燃料性、及びモノマー、オリゴマーの耐溶出性に優れるとともに、燃料配管チューブとして使用された場合、配管内を循環する燃料の内部摩擦あるいは管壁との摩擦によって発生したスパークが燃料に引火することを防止することが可能となる。その際、導電性を有しない含フッ素系重合体を含む層が、前記導電層に対して外側に配置されることにより、低温耐衝撃性と導電性を両立することが可能であり、また、経済的にも有利である。更に、ここでいう、含フッ素系重合体は、分子鎖中に官能基を有する含フッ素系重合体(E)も包含し、後記の官能基を有さない含フッ素系重合体も指す。
 導電性及び導電性フィラーの詳細は第一態様の積層チューブと同様である。
 導電性フィラーの含有量は、用いる導電性フィラーの種類により異なるため、一概に規定はできないが、導電性、流動性、機械的強度等とのバランスの観点から、含フッ素系重合体100質量部に対して、一般に3質量部以上30質量部以下であることが好ましい。
 また、かかる導電性フィラーは、十分な帯電防止性能を得る観点から、溶融押出物の表面固有抵抗値が10Ω/square以下であることが好ましく、10Ω/square以下であることがより好ましい。但し、上記導電性フィラーの添加は強度、流動性の悪化を招きやすい。そのため、目標とする導電レベルが得られれば、上記導電性フィラーの含有量はできるだけ少ない方が望ましい。
 第二態様の積層チューブでは、各層の厚みは特に制限されず、各層を構成する重合体の種類、積層チューブにおける全体の層数、用途等に応じて調節し得るが、それぞれの層の厚みは、積層チューブの薬液透過防止性、低温耐衝撃性、柔軟性等の特性を考慮して決定される。一般には、(a)層、(b)層、(c)層、(d)層、(e)層の厚みは、積層チューブ全体の厚みに対して、それぞれ3%以上90%以下であることが好ましい。低温耐衝撃性と薬液透過防止性のバランスを考慮して、(c)層、(d)層、(e)層の厚みは、積層チューブ全体の厚みに対して、それぞれ5%以上50%以下であることがより好ましく、7%以上30%以下であることが更に好ましい。
 また、第二態様の積層チューブにおける全体の層数は、脂肪族ポリアミド(A)を含む(a)層、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含む(b)層、EVOH(C)を含む(c)層、半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含む(d)層、及び含フッ素系重合体(E)を含む(e)層を有する、少なくとも5層である限り、特に限定されない。更に、第二態様の積層チューブは、(a)層、(b)層、(c)層、(d)層、(e)層の5層以外に、更なる機能を付与、あるいは経済的に有利な積層チューブを得るために、他の熱可塑性樹脂を含む層を1層又は2層以上を有していてもよい。第二態様の積層チューブの層数は5層以上であるが、チューブ製造装置の機構から判断して8層以下であることが好ましく、6層以上7層以下であることがより好ましい。
 第一態様及び第二態様の積層チューブにおける他の熱可塑性樹脂としては、脂肪族ポリアミド(A)、半芳香族ポリアミド(d1)や半芳香族ポリアミド(d2)以外の、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンヘキサヒドロテレフタラミド(ポリアミドMXDT(H))、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリパラキシリレンアジパミド(ポリアミドPXD6)、ポリパラキシリレンテレフタラミド(ポリアミドPXDT)、ポリパラキシリレンイソフタラミド(ポリアミドPXDI)、ポリパラキシリレンヘキサヒドロテレフタラミド(ポリアミドPXDT(H))、ポリパラキシリレンナフタラミド(ポリアミドPXDN)、ポリパラフェニレンテレフタラミド(PPTA)、ポリパラフェニレンイソフタラミド(PPIA)、ポリメタフェニレンテレフタラミド(PMTA)、ポリメタフェニレンイソフタラミド(PMIA)、ポリ(2,6-ナフタレンジメチレンアジパミド)(ポリアミド2,6-BAN6)、ポリ(2,6-ナフタレンジメチレンテレフタラミド)(ポリアミド2,6-BANT)、ポリ(2,6-ナフタレンジメチレンイソフタラミド)(ポリアミド2,6-BANI)、ポリ(2,6-ナフタレンジメチレンヘキサヒドロテレフタラミド)(ポリアミド2,6-BANT(H))、ポリ(2,6-ナフタレンジメチレンナフタラミド)(ポリアミド2,6-BANN)、ポリ(1,3-シクロヘキサンジメチレンアジパミド)(ポリアミド1,3-BAC6)、ポリ(1,3-シクロヘキサンジメチレンスベラミド(ポリアミド1,3-BAC8)、ポリ(1,3-シクロヘキサンジメチレンアゼラミド)(ポリアミド1,3-BAC9)、ポリ(1,3-シクロヘキサンジメチレンセバカミド)(ポリアミド1,3-BAC10)、ポリ(1,3-シクロヘキサンジメチレンドデカミド)(ポリアミド1,3-BAC12)、ポリ(1,3-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,3-BACT)、ポリ(1,3-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,3-BACI)、ポリ(1,3-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,3-BACT(H))、ポリ(1,3-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,3-BACN)、ポリ(1,4-シクロヘキサンジメチレンアジパミド)(ポリアミド1,4-BAC6)、ポリ(1,4-シクロヘキサンジメチレンスベラミド)(ポリアミド1,4-BAC8)、ポリ(1,4-シクロヘキサンジメチレンアゼラミド)(ポリアミド1,4-BAC9)、ポリ(1,4-シクロヘキサンジメチレンセバカミド)(ポリアミド1,4-BAD10)、ポリ(1,4-シクロヘキサンジメチレンドデカミド)(ポリアミド1,4-BAD12)、ポリ(1,4-シクロヘキサンジメチレンテレフタラミド)(ポリアミド1,4-BACT)、ポリ(1,4-シクロヘキサンジメチレンイソフタラミド)(ポリアミド1,4-BACI)、ポリ(1,4-シクロヘキサンジメチレンヘキサヒドロテレフタラミド)(ポリアミド1,4-BACT(H))、ポリ(1,4-シクロヘキサンジメチレンナフタラミド)(ポリアミド1,4-BACN)、ポリ(4,4’-メチレンビスシクロヘキシレンアジパミド)(ポリアミドPACM6)、ポリ(4,4’-メチレンビスシクロヘキシレンスベラミド)(ポリアミドPACM8)、ポリ(4,4’-メチレンビスシクロヘキシレンアゼラミド)(ポリアミドPACM9)、ポリ(4,4’-メチレンビスシクロヘキシレンセバカミド)(ポリアミドPACM10)、ポリ(4,4’-メチレンビスシクロヘキシレンドデカミド)(ポリアミドPACM12)、ポリ(4,4’-メチレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACM14)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACM16)、ポリ(4,4’-メチレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACM18)、ポリ(4,4’-メチレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACMT)、ポリ(4,4’-メチレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACMI)、ポリ(4,4’-メチレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACMT(H))、ポリ(4,4’-メチレンビスシクロヘキシレンナフタラミド)(ポリアミドPACMN)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アジパミド)(ポリアミドMACM6)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)スベラミド)(ポリアミドMACM8)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)アゼラミド)(ポリアミドMACM9)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)セバカミド)(ポリアミドMACM10)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ドデカミド)(ポリアミドMACM12)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テトラデカミド)(ポリアミドMACM14)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサデカミド)(ポリアミドMACM16)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)オクタデカミド)(ポリアミドMACM18)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)テレフタラミド)(ポリアミドMACMT)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)イソフタラミド)(ポリアミドMACMI)、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ヘキサヒドロテレフタラミド)(ポリアミドMACMT(H))、ポリ(4,4’-メチレンビス(2-メチル-シクロヘキシレン)ナフタラミド)(ポリアミドMACMN)、ポリ(4,4’-プロピレンビスシクロヘキシレンアジパミド)(ポリアミドPACP6)、ポリ(4,4’-プロピレンビスシクロヘキシレンスベラミド)(ポリアミドPACP8)、ポリ(4,4’-プロピレンビスシクロヘキシレンアゼラミド)(ポリアミドPACP9)、ポリ(4,4’-プロピレンビスシクロヘキシレンセバカミド)(ポリアミドPACP10)、ポリ(4,4’-プロピレンビスシクロヘキシレンドデカミド)(ポリアミドPACP12)、ポリ(4,4’-プロピレンビスシクロヘキシレンテトラデカミド)(ポリアミドPACP14)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサデカミド)(ポリアミドPACP16)、ポリ(4,4’-プロピレンビスシクロヘキシレンオクタデカミド)(ポリアミドPACP18)、ポリ(4,4’-プロピレンビスシクロヘキシレンテレフタラミド)(ポリアミドPACPT)、ポリ(4,4’-プロピレンビスシクロヘキシレンイソフタラミド)(ポリアミドPACPI)、ポリ(4,4’-プロピレンビスシクロヘキシレンヘキサヒドロテレフタラミド)(ポリアミドPACPT(H))、ポリ(4,4’-プロピレンビスシクロヘキシレンナフタラミド)(ポリアミドPACPN)、ポリイソホロンアジパミド(ポリアミドIPD6)、ポリイソホロンスベラミド(ポリアミドIPD8)、ポリイソホロンアゼラミド(ポリアミドIPD9)、ポリイソホロンセバカミド(ポリアミドIPD10)、ポリイソホロンドデカミド(ポリアミドIPD12)、ポリイソホロンテレフタラミド(ポリアミドIPDT)、ポリイソホロンイソフタラミド(ポリアミドIPDI)、ポリイソホロンヘキサヒドロテレフタラミド(ポリアミドIPDT(H))、ポリイソホロンナフタラミド(ポリアミドIPDN)、ポリテトラメチレンテレフタラミド(ポリアミド4T)、ポリテトラメチレンイソフタラミド(ポリアミド4I)、ポリテトラメチレンヘキサヒドロテレフタラミド(ポリアミド4T(H))、ポリテトラメチレンナフタラミド(ポリアミド4N)、ポリペンタメチレンテレフタラミド(ポリアミド5T)、ポリペンタメチレンイソフタラミド(ポリアミド5I)、ポリペンタメチレンヘキサヒドロテレフタラミド(ポリアミド5T(H))、ポリペンタメチレンナフタラミド(ポリアミド5N)、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリヘキサメチレンヘキサヒドロテレフタラミド(ポリアミド6T(H))、ポリヘキサメチレンナフタラミド(ポリアミド6N)、ポリ(2-メチルペンタメチレンテレフタラミド)(ポリアミドM5T)、ポリ(2-メチルペンタメチレンイソフタラミド)(ポリアミドM5I)、ポリ(2-メチルペンタメチレンヘキサヒドロテレフタラミド)(ポリアミドM5T(H))、ポリ(2-メチルペンタメチレンナフタラミド(ポリアミドM5N)、ポリノナメチレンヘキサヒドロテレフタラミド(ポリアミド9T(H))、ポリ(2-メチルオクタメチレンヘキサヒドロテレフタラミド)(ポリアミドM8T(H))、ポリトリメチルヘキサメチレンイソフタラミド(ポリアミドTMHI)、ポリトリメチルヘキサメチレンヘキサヒドロテレフタラミド(ポリアミドTMHT(H))、ポリデカメチレンイソフタラミド(ポリアミド10I)、ポリデカメチレンヘキサヒドロテレフタラミド(ポリアミド10T(H))、ポリウンデカメチレンイソフタラミド(ポリアミド11I)、ポリウンデカメチレンヘキサヒドロテレフタラミド(ポリアミド11T(H))、ポリドデカメチレンイソフタラミド(ポリアミド12I)、ポリドデカメチレンヘキサヒドロテレフタラミド(ポリアミド12T(H))やこれらポリアミドの原料単量体及び/又は前記脂肪族ポリアミド(A)の原料単量体を数種用いた共重合体等のポリアミド系樹脂が挙げられる。
 また、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(EFEP)、フッ化ビニリデン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体(THV)、フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、クロロトリフルオロエチレン/テトラフルオロエチレン共重合体、フッ化ビニリデン/クロロトリフルオロエチレン共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン共重合体、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体(CPT)、クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン/テトラフルオロエチレン/フッ化ビニリデン/パーフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体等のアミノ基に対して反応性を有する官能基を含有しない含フッ素系重合体が挙げられる。
 積層チューブが、前記アミノ基に対して反応性を有する官能基を含有する含フッ素系重合体(E)を含む(e)層を有する場合、(e)層に対して、官能基を含有しないフッ素系重合体を含む層が内側に配置されることにより、低温耐衝撃性、薬液透過防止性、及び耐環境応力亀裂性を両立することが可能であり、また、経済的にも有利である。なお、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)は(e)層以外には含まれない。
 更に、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、ポリブテン(PB)、ポリメチルペンテン(TPX)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸共重合体(EAA)、エチレン/メタクリル酸共重合体(EMAA)、エチレン/アクリル酸メチル共重合体(EMA)、エチレン/メタクリル酸メチル共重合体(EMMA)、エチレン/アクリル酸エチル共重合体(EEA)等のポリオレフィン系樹脂、ポリスチレン(PS)、シンジオタクチックポリスチレン(SPS)、メタクリル酸メチル/スチレン共重合体(MS)、メタクリル酸メチル/スチレン/ブタジエン共重合体(MBS)、スチレン/ブタジエン共重合体(SBR)、スチレン/イソプレン共重合体(SIR)、スチレン/イソプレン/ブタジエン共重合体(SIBR)、スチレン/ブタジエン/スチレン共重合体(SBS)、スチレン/イソプレン/スチレン共重合体(SIS)、スチレン/エチレン/ブチレン/スチレン共重合体(SEBS)、スチレン/エチレン/プロピレン/スチレン共重合体(SEPS)等のポリスチレン系樹脂、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等のカルボキシル基、及びその金属塩(Na、Zn、K、Ca、Mg)、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等の酸無水物基、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等のエポキシ基等の官能基が含有された上記ポリオレフィン系樹脂やポリスチレン系樹脂、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、ポリ(エチレンテレフタレート/エチレンイソフタレート)共重合体(PET/PEI)、ポリトリメチレンテレフタレート(PTT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリアリレート(PAR)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂、ポリアセタール(POM)、ポリフェニレンエーテル(PPO)等のポリエーテル系樹脂、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)、ポリフェニルサルホン(PPSU)等のポリサルホン系樹脂、ポリフェニレンスルフィド(PPS)、ポリチオエーテルサルホン(PTES)等のポリチオエーテル系樹脂、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルエーテルケトン(PEEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトンケトン(PEKKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)等のポリケトン系樹脂、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、アクリロニトリル/ブタジエン共重合体(NBR)等のポリニトリル系樹脂、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂、ポリ酢酸ビニル(PVAc)等のポリビニルエステル系樹脂、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/アクリル酸メチル共重合体等のポリ塩化ビニル系樹脂、酢酸セルロース、酪酸セルロース等のセルロース系樹脂、ポリカーボネート(PC)等のポリカーボネート系樹脂、熱可塑性ポリイミド(TPI)、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド(PAI)、ポリエステルアミドイミド等のポリイミド系樹脂、熱可塑性ポリウレタン系樹脂、ポリアミドエラストマー、ポリウレタンエラストマー、ポリエステルエラストマー等が挙げられる。
 尚、第一態様の積層チューブにおいては、EVOH(C)の溶融安定性の観点から、上記例示の熱可塑性樹脂のうち、融点が290℃以下のポリエステル系樹脂、ポリアミド系樹脂、ポリチオエーテル系樹脂、ポリオレフィン系樹脂、及びフッ素系重合体を使用することが好ましい。
 また、第二態様の積層チューブにおいては、EVOH(C)の溶融安定性の観点から、上記例示の熱可塑性樹脂のうち、融点が290℃以下のポリエステル系樹脂、ポリアミド系樹脂、ポリチオエーテル系樹脂、ポリオレフィン系樹脂、及び官能基を含有しないフッ素系重合体を使用することが好ましい。
 また、熱可塑性樹脂以外の任意の基材、例えば、紙、金属系材料、無延伸、一軸又は二軸延伸プラスチックフィルム又はシート、織布、不織布、金属綿、木材等を積層することも可能である。金属系材料としては、アルミニウム、鉄、銅、ニッケル、金、銀、チタン、モリブデン、マグネシウム、マンガン、鉛、錫、クロム、ベリリウム、タングステン、コバルト等の金属や金属化合物、及びこれら2種類以上からなるステンレス鋼等の合金鋼、アルミニウム合金、黄銅、青銅等の銅合金、ニッケル合金等の合金類等が挙げられる。
 積層チューブ製造法としては、層の数もしくは材料の数に対応する押出機を用いて、溶融押出し、ダイ内あるいは外において同時に積層する方法(共押出成形法)、あるいは、一旦、単層チューブあるいは、上記の方法により製造された積層チューブを予め製造しておき、外側に順次、必要に応じては接着剤を使用し、樹脂を一体化せしめ積層する方法(コーティング法)が挙げられる。積層チューブは、各種材料を溶融状態で共押出し、両者を熱融着(溶融接着)して一段階で積層構造のチューブを製造する共押出成形法により製造されることが好ましい。すなわち、積層チューブの製造方法は、共押出成形することを含むことが好ましい。
 また、得られる積層チューブが複雑な形状である場合や、成形後に加熱曲げ加工を施して成形品とする場合は、成形品の残留歪みを除去するために、上記の積層チューブを形成した後、前記チューブを構成する樹脂の融点のうち最も低い融点未満の温度で、0.01時間以上10時間以下熱処理して目的の成形品を得る事も可能である。
 積層チューブにおいては、波形領域を有するものであってもよい。波形領域とは、波形形状、蛇腹形状、アコーディオン形状、又はコルゲート形状等に形成した領域である。波形領域は、積層チューブ全長にわたり有するものだけではなく、途中の適宜の領域に部分的に有するものであってもよい。波形領域は、まず直管状のチューブを成形した後に、引き続いてモールド成形し、所定の波形形状等とすることにより容易に形成することができる。かかる波形領域を有することにより、衝撃吸収性を有し、取り付け性が容易となる。更に、例えば、コネクタ等の必要な部品を付加したり、曲げ加工したりすることによりL字、U字の形状等にすることが可能である。
 このように成形した積層チューブの外周の全部又は一部には、石ハネ、他部品との摩耗、及び耐炎性を考慮して、天然ゴム(NR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、クロロプレンゴム(CR)、カルボキシル化ブタジエンゴム(XBR)、カルボキシル化クロロプレンゴム(XCR)、エピクロルヒドリンゴム(ECO)、アクリロニトリルブタジエンゴム(NBR)、水素化アクリロニトリルブタジエンゴム(HNBR)、カルボキシル化アクリロニトリルブタジエンゴム(XNBR)、NBRとポリ塩化ビニルの混合物、アクリロニトリルイソプレンゴム(NIR)、塩素化ポリエチレンゴム(CM)、クロロスルホン化ポリエチレンゴム(CSM)、エチレンプロピレンゴム(EPR)、エチレンプロピレンジエンゴム(EPDM)、エチレン酢酸ビニルゴム(EVM)、NBRとEPDMの混合物ゴム、アクリルゴム(ACM)、エチレンアクリルゴム(AEM)、アクリレートブタジエンゴム(ABR)、スチレンブタジエンゴム(SBR)、カルボキシル化スチレンブタジエンゴム(XSBR)、スチレンイソプレンゴム(SIR)、スチレンイソプレンブタジエンゴム(SIBR)、ウレタンゴム、シリコーンゴム(MQ,VMQ)、フッ素ゴム(FKM,FFKM)、フルオロシリコーンゴム(FVMQ)、塩化ビニル系、オレフィン系、エステル系、ウレタン系、アミド系等の熱可塑性エラストマー等から構成するソリッド又はスポンジ状の保護部材(プロテクタ)を配設することができる。保護部材は既知の手法によりスポンジ状の多孔体としてもよい。多孔体とすることにより、軽量で断熱性に優れた保護部を形成できる。また、材料コストも低減できる。あるいは、ガラス繊維等を添加してその強度を改善してもよい。保護部材の形状は特に限定されないが、通常は、筒状部材又は積層チューブを受け入れる凹部を有するブロック状部材である。筒状部材の場合は、予め作製した筒状部材に積層チューブを後で挿入したり、あるいは積層チューブの上に筒状部材を被覆押出しして両者を密着して作ることができる。両者を接着させるには、保護部材内面あるいは前記凹面に必要に応じ接着剤を塗布し、これに積層チューブを挿入又は嵌着し、両者を密着することにより、積層チューブと保護部材の一体化された構造体を形成する。また、金属等で補強することも可能である。
 積層チューブの外径は、薬液(例えば含アルコールガソリン等の燃料)等の流量を考慮し、肉厚は薬液の透過性が増大せず、また、通常のチューブの破壊圧力を維持できる厚みで、かつ、チューブの組み付け作業容易性及び使用時の耐振動性が良好な程度の柔軟性を維持することができる厚みに設計されるが、限定されるものではない。外径は4mm以上300mm以下、内径は3mm以上250mm以下、肉厚は0.5mm以上25mm以下であることが好ましい。
 本実施形態の積層チューブは、自動車部品、内燃機関用途、電動工具ハウジング類等の機械部品を始め、工業材料、産業資材、電気・電子部品、医療、食品、家庭・事務用品、建材関係部品、家具用部品等各種用途に使用することが可能である。
 また、積層チューブは、薬液透過防止性に優れるため、薬液搬送チューブとして好適である。薬液としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール;フェノール溶媒;ジメチルエーテル、ジプロピルエーテル、メチル-t-ブチルエーテル、エチル-t-ブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル溶媒;クロロホルム、塩化メチレン、トリクロロエチレン、二塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼン等のハロゲン溶媒;セトン、メチルエチルケトン、ジエチルケトン、アセトフェノン等のケトン溶媒;ガソリン、灯油、ディーゼルガソリン、含アルコールガソリン、エチル-t-ブチルエーテルブレンド含酸素ガソリン、含アミンガソリン、サワーガソリン、ひまし油ベースブレーキ液、グリコールエーテル系ブレーキ液、ホウ酸エステル系ブレーキ液、極寒地用ブレーキ液、シリコーン油系ブレーキ液、鉱油系ブレーキ液、パワーステアリングオイル、含硫化水素オイル、ウインドウオッシャー液、エンジン冷却液、尿素溶液、医薬剤、インク、塗料等が挙げられる。積層チューブは、上記薬液を搬送するチューブとして好適であり、具体的には、フィードチューブ、リターンチューブ、エバポチューブ、フューエルフィラーチューブ、ORVRチューブ、リザーブチューブ、ベントチューブ等の燃料チューブ、オイルチューブ、石油掘削チューブ、ブレーキチューブ、ウインドウオッシャー液用チューブ、エンジン冷却液(LLC)チューブ、リザーバータンクチューブ、尿素溶液搬送チューブ、冷却水、冷媒等用クーラーチューブ、エアコン冷媒用チューブ、ヒーターチューブ、ロードヒーティングチューブ、床暖房チューブ、インフラ供給用チューブ、消火器及び消火設備用チューブ、医療用冷却機材用チューブ、インク、塗料散布チューブ、その他薬液チューブが挙げられる。特に、燃料チューブとして好適である。すなわち、本発明は前記積層チューブの燃料チューブとしての使用を包含する。
 以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、実施例及び比較例における分析及び物性の測定方法、及び実施例及び比較例に用いた材料を示す。
 ポリアミド系樹脂の特性は、以下の方法で測定した。
[相対粘度]
 JIS K-6920に準じて、96%の硫酸中、ポリマー濃度1%、温度25℃の条件下で測定した。
[末端アミノ基濃度]
 活栓付三角フラスコに所定量のポリアミド試料を入れ、あらかじめ調整しておいた溶媒フェノール/メタノール(体積比9/1)の40mLを加えた後、マグネットスターラで攪拌溶解し、指示薬にチモールブルーを用いて0.05Nの塩酸で滴定を行い、末端アミノ基濃度を求めた。
[末端カルボキシル基濃度]
 三つ口ナシ型フラスコに所定量のポリアミド試料を入れ、ベンジルアルコール40mLを加えた後、窒素気流下、180℃に設定したオイルバスに浸漬する。上部に取り付けた攪拌モータにより攪拌溶解し、指示薬にフェノールフタレインを用いて0.05Nの水酸化ナトリウム溶液で滴定を行い、末端カルボキシル基濃度を求めた。
 また、含フッ素系重合体の特性は、以下の方法で測定した。
[含フッ素系重合体の組成]
 溶融NMR分析、フッ素含有量分析、赤外吸収スペクトルにより測定した。
[含フッ素系重合体中の末端カーボネート基数]
 含フッ素系重合体中の末端カーボネート基数は、赤外吸収スペクトル分析により、カーボネート基(-OC(=O)O-)のカルボニル基が帰属するピークが1817cm-1の吸収波長に現われ、吸収ピークの吸光度を測定し、次式によって含フッ素系重合体中の主鎖炭素原子数10個に対するカーボネート基の個数を算出した。
[含フッ素系重合体中の主鎖炭素原子数10個に対するカーボネート基の個数]=500AW/εdf
A:カーボネート基(-OC(=O)O-)のピークの吸光度
ε:カーボネート基(-OC(=O)O-)のモル吸光度係数[cm-1・mol-1]。モデル化合物よりε=170とした。
W:モノマー組成から計算される組成平均分子量
d:フィルムの密度[g/cm
f:フィルムの厚み[mm]
 また、積層チューブの各物性は、以下の方法で測定した。
[低温耐衝撃性]
 VW TL 52435 6.5に記載の方法で、-40℃にて衝撃試験を実施した。
[耐劣化燃料性]
 SAE J-2260 7.8に記載の方法で、耐劣化燃料テストを実施した。テスト後のチューブをSAE J-2260 7.5に記載の方法で、-40℃にて衝撃試験を実施し、試験本数10本に対して、破断本数が0本の場合、耐劣化燃料性に優れていると判断した。
[薬液(含アルコールガソリン(CE10))透過防止性]
 200mmにカットしたチューブの片端を密栓し、内部にFuelC(イソオクタン/トルエン=50/50体積比)とエタノールを90/10体積比に混合した含アルコールガソリン(CE10)を入れ、残りの端部も密栓した。その後、全体の質量を測定し、次いで試験チューブを60℃のオーブンに入れ、一日毎に質量変化を測定した。一日当たりの質量変化を、チューブ内表面積で除して含アルコールガソリン透過量(CE10)(g/m・day)を算出した。
[薬液(含アルコールガソリン(CE85))透過防止性]
 200mmにカットしたチューブの片端を密栓し、内部にFuelC(イソオクタン/トルエン=50/50体積比)とエタノールを15/85体積比に混合した含アルコールガソリン(CE85)を入れ、残りの端部も密栓した。その後、全体の質量を測定し、次いで試験チューブを60℃のオーブンに入れ、一日毎に質量変化を測定した。一日当たりの質量変化を、チューブ内表面積で除して含アルコールガソリン透過量(CE85)(g/m・day)を算出した。
[層間接着性]
 200mmにカットしたチューブを更に縦方向に半分にカットし、テストピースを作成した。万能材料試験機(オリエンテック社製、テンシロンUTM III-200)を用い、50mm/minの引張速度にて180°剥離試験を実施した。S-Sカーブの極大点から剥離強度を読み取り、層間接着性を評価した。
[熱処理後の層間接着性]
 200mmにカットしたチューブを160℃のオーブンに入れ、12分処理した。取り出したチューブの層間接着性を前記の方法に従い評価した。熱処理後の剥離強度が20N/cm以上の場合、層間接着性の耐久性に優れていると判断した。
[モノマー、オリゴマーの耐溶出性]
 0.5mにカットしたチューブの片端を密栓し、内部にFuelC(イソオクタン/トルエン=50/50体積比)とエタノールを90/10体積比に混合した含アルコールガソリン(CE10)を入れ、残りの端部も密栓した。その後、試験チューブを60℃のオーブンに入れ、48時間処理した。処理終了後、取り出したチューブ内の含アルコールガソリンを0℃にて24時間冷却した後、孔径0.45μmのフィルター(材質:ポリエーテルスルフォン)にて濾過し、捕集物の質量を測定した。捕集物の質量を処理日数及びチューブの内表面積で除してモノマー、オリゴマー溶出量(g/m・day)を算出した。尚、処理終了後、チューブ内から抜き出した含アルコールガソリンの色調についても目視にて観察した。
[実施例及び比較例で用いた材料]
ポリアミド12組成物(A-1)の製造
 ポリアミド12(a-1)(宇部興産(株)製、UBESTA 3030UX1、相対粘度2.21)に、衝撃改良材として無水マレイン酸変性エチレン/プロピレン共重合体(JSR(株)製、JSR T7761P;ISO 178に準拠して測定した曲げ弾性率:5MPa)、酸化防止剤としてトリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、IRGANOX245)、及びリン系加工安定剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)をあらかじめ混合し、二軸溶融混練機((株)日本製鋼所製、型式:TEX44)に供給する一方、該二軸溶融混練機のシリンダの途中から、可塑剤としてベンゼンスルホン酸ブチルアミドを定量ポンプにより注入し、シリンダ温度180℃から260℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、冷却、カット、真空乾燥して、ポリアミド12 85質量%、衝撃改良材10質量%、可塑剤5質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-1)という。)。
ポリアミド12組成物(A-2)の製造
 ポリアミド12組成物(A-1)の製造において、可塑剤を使用せず、衝撃改良材の添加量を変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12 85質量%、衝撃改良材15質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド12組成物のペレットを得た(以下、このポリアミド12組成物を(A-2)という。)。
導電性ポリアミド12組成物(A-3)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(a-1)をポリアミド12(a-2)(宇部興産(株)製、UBESTA 3020U、相対粘度1.86)に変え、導電性フィラーとしてカーボンブラック(キャボット社製、バルカンXD-72)を用い、可塑剤を使用せず、シリンダ温度を260℃から270℃に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド12 60質量%、衝撃改良材20質量%、導電性フィラー20質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性ポリアミド12組成物のペレットを得た(以下、この導電性ポリアミド12組成物を(A-3)という。)。
ポリアミド610(a-3)又は(b-3)の製造
 内容積70リットルの攪拌機付き耐圧力反応容器に、1,6-ヘキサンジアミンとセバシン酸の等モル塩の50質量%水溶液17.6kg、1,6-ヘキサンジアミン40.0gを仕込み、重合槽内を窒素置換した後、220℃まで加熱し、この温度で反応系内が均一な状態になるように攪拌した。次いで、重合槽内温度を270℃まで昇温させ、槽内圧力を1.7MPaに調圧しながら、2時間攪拌下に重合した。その後、約2時間かけて常圧に放圧し、次いで、53kPaまで減圧し、減圧下において4時間重合を行なった。次いで、窒素をオートクレーブ内に導入し、常圧に復圧後、反応容器の下部ノズルからストランドとして抜き出し、カッティングしてペレットを得た。このペレットを減圧乾燥し、相対粘度3.05、末端アミノ基濃度50μeq/g、末端カルボキシル基濃度14μeq/gのポリアミド610を得た(以下、このポリアミド610を(a-3)又は(b-3)という。)。
ポリアミド610組成物(A-4)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(a-1)をポリアミド610(a-3)に変え、シリンダ温度を260℃から270℃に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド610 80質量%、衝撃改良材10質量%、可塑剤10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド610組成物のペレットを得た(以下、このポリアミド610組成物を(A-4)という。)。
ポリアミド612(a-4)又は(b-4)の製造
 ポリアミド610(a-3)の製造において、1,6-ヘキサンジアミンとセバシン酸の等モル塩の50質量%水溶液17.6kgを1,6-ヘキサンジアミンとドデカン二酸の等モル塩の50質量%水溶液19.2kg、1,6-ヘキサンジアミンの添加量を40.0gから43.5gに変更した以外は、ポリアミド610(a-3)の製造と同様の方法にて、相対粘度2.78、末端アミノ基濃度51μeq/g、末端カルボキシル基濃度14μeq/gのポリアミド612を得た(以下、このポリアミド612を(a-4)又は(b-4)という。)。
ポリアミド612組成物(A-5)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(a-1)をポリアミド612(a-4)に変え、シリンダ温度を260℃から270℃に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド612 80質量%、衝撃改良材10質量%、可塑剤10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド612組成物のペレットを得た(以下、このポリアミド612組成物を(A-5)という。)。
ポリアミド6組成物(B1-1)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(a-1)をポリアミド6(b-1)(宇部興産(株)製、UBE NYLON 1030B、相対粘度3.89)に変え、シリンダ温度を260℃から270℃に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド6 80質量%、衝撃改良材10質量%、可塑剤10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6組成物のペレットを得た(以下、このポリアミド6組成物を(B1-1)という。)。
ポリアミド6/66/12(b-2)の製造
 内容積70リットルの攪拌機付き耐圧力反応容器に、カプロラクタム16.2kg、1,6-ヘキサンジアミンとセバシン酸の等モル塩の50質量%水溶液5.0kg、及び12-アミノドデカン酸2.5kgを入れ、100℃に加熱し、この温度で反応系内が均一な状態になるように攪拌した。引き続き、更に温度を260℃まで昇温させ、2.5MPaの圧力下で1時間攪拌した。その後、放圧して水分を反応容器から揮散させながら常圧下、260℃で2時間重合反応を行い、更に260℃、53kPaの減圧下で7時間重合反応させた。反応終了後、反応容器の下部ノズルからストランド状に取り出した反応物を水槽に導入して冷却し、カッティングして、ペレットを得た。このペレットを熱水中に浸漬し、未反応モノマーを抽出して除去した後、減圧乾燥し、相対粘度4.01のポリアミド6/66/12(カプロアミド単位/ヘキサメチレンアジパミド単位/ドデカンアミド単位=78/11/11質量%)を得た(以下、このポリアミド6/66/12を(b-2)という。)。
ポリアミド6/66/12組成物(B2-1)の製造
 ポリアミド12組成物(A-1)の製造において、ポリアミド12(a-1)をポリアミド6/66/12(b-2)とポリアミド610(b-3)に変更した以外は、ポリアミド12組成物(A-1)の製造と同様の方法にて、ポリアミド6/66/12 50質量%、ポリアミド610 30質量%、衝撃改良材15質量%、可塑剤5質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6/66/12組成物のペレットを得た(以下、このポリアミド6/66/12組成物を(B2-1)という。)。
ポリアミド6/66/12組成物(B2-2)の製造
 ポリアミド6/66/12組成物(B2-1)の製造において、ポリアミド610(b-3)をポリアミド612(b-4)に変更した以外は、ポリアミド6/66/12組成物(B2-1)の製造と同様の方法にて、ポリアミド6/66/12 50質量%、ポリアミド612 30質量%、衝撃改良材15質量%、可塑剤5質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6/66/12組成物のペレットを得た(以下、このポリアミド6/66/12組成物を(B2-2)という。)。
ポリアミド6/66/12組成物(B2-3)の製造
 ポリアミド6/66/12組成物(B2-1)の製造において、ポリアミド610(b-3)を使用しない以外は、ポリアミド6/66/12組成物(B2-1)の製造と同様の方法にて、ポリアミド6/66/12 80質量%、衝撃改良材15質量%、可塑剤5質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6/66/12組成物のペレットを得た(以下、このポリアミド6/66/12組成物を(B2-3)という。)。
ポリアミド6/66/12組成物(B2-4)の製造
 ポリアミド6/66/12組成物(B2-1)の製造において、ポリアミド610(b-3)、衝撃改良材、及び可塑剤を使用しない以外は、ポリアミド6/66/12組成物(B2-1)の製造と同様の方法にて、ポリアミド6/66/12 100質量%に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6/66/12組成物のペレットを得た(以下、このポリアミド6/66/12組成物を(B2-4)という。)。
ポリアミド6/12(b-5)の製造
 ポリアミド6/66/12(b-2)の製造において、カプロラクタム16.2kg、1,6-ヘキサンジアミンとセバシン酸の等モル塩の50質量%水溶液5.0kg、及び12-アミノドデカン酸2.5kgをカプロラクタム16.2kg、12-アミノドデカン酸4.4kgに変更し、水2kgを追加した以外は、ポリアミド6/66/12(b-2)の製造と同様の方法にて、相対粘度3.86のポリアミド6/12(カプロアミド単位/ドデカンアミド単位=80/20質量%)を得た(以下、このポリアミド6/12を(b-5)という。)。
ポリアミド6/12組成物(B2-5)の製造
 ポリアミド6/66/12組成物(B2-1)の製造において、ポリアミド6/66/12(b-2)をポリアミド6/12(b-5)に変更し、ポリアミド610(b-3)を使用しない以外は、ポリアミド6/66/12組成物(B2-1)の製造と同様の方法にて、ポリアミド6/12 80質量%、衝撃改良材15質量%、可塑剤5質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなるポリアミド6/12組成物のペレットを得た(以下、このポリアミド6/12組成物を(B2-5)という。)。
EVOH(C-1):日本合成化学(株)製、ソアノールDC3203、エチレン含有量32モル%、ケン化度99モル%以上
半芳香族ポリアミド(d1-1)の製造
 1,9-ノナンジアミン2.374kg(15.0モル)及び2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)、テレフタル酸4.984kg(30.0モル)、安息香酸65.9g(0.54モル)、次亜リン酸ナトリウム一水和物10.2g(原料に対して0.1質量%)、及び蒸留水6.0Lをオートクレーブに入れ、窒素置換した。100℃で30分間攪拌し、2時間かけて内部温度を210℃に昇温した。この時、オートクレーブは2.2MPaまで昇圧した。そのまま1時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2.2MPaに保ちながら反応させた。次に、30分かけて圧力を1.0MPaまで下げ、更に1時間反応させて、プレポリマーを得た。これを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕し、230℃、0.013kPa下にて、8時間固相重合し、融点265℃、相対粘度2.38の半芳香族ポリアミド(ポリアミド9T/M8T=50/50モル%)を得た(以下、この半芳香族ポリアミドを(d1-1)という。)。
半芳香族ポリアミド組成物(D1-1)の製造
 半芳香族ポリアミド(d1-1)に、衝撃改良材として無水マレイン酸変性エチレン/プロピレン共重合体(JSR(株)製、JSR T7761P)、酸化防止剤としてトリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン社製、IRGANOX245)、及びリン系加工安定剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)をあらかじめ混合し、二軸溶融混練機((株)日本製鋼所製、型式:TEX44)に供給し、シリンダ温度240℃から300℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、冷却、カット、真空乾燥して、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-1)という。)。
半芳香族ポリアミド(d1-2)の製造
 半芳香族ポリアミド(d1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)及び2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)を1,9-ノナンジアミン4.036kg(25.5モル)、2-メチル-1,8-オクタンジアミン0.712kg(4.5モル)に変え、固相重合温度を230から250℃に変更した以外は、半芳香族ポリアミド(d1-1)の製造と同様の方法にて、融点305℃、相対粘度2.34の半芳香族ポリアミド(ポリアミド9T/M8T=85/15モル%)を得た(以下、この半芳香族ポリアミドを(d1-2)という。)。
半芳香族ポリアミド組成物(D1-2)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-2)に変え、シリンダ温度を300℃から330℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-2)という。)。
半芳香族ポリアミド(d1-3)の製造
 半芳香族ポリアミド(d1-1)の製造において、テレフタル酸4.984kg(30.0モル)を2,6-ナフタレンジカルボン酸6.486kg(30.0モル)に変更した以外は、半芳香族ポリアミド(d1-1)の製造と同様の方法にて、融点275℃、相対粘度2.37の半芳香族ポリアミド(ポリアミド9N/M8N=50/50モル%)を得た(以下、この半芳香族ポリアミドを(d1-3)という。)。
半芳香族ポリアミド組成物(D1-3)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-3)に変え、シリンダ温度を300℃から310℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-3)という。)。
半芳香族ポリアミド(d1-4)の製造
 半芳香族ポリアミド(d1-1)の製造において、1,9-ノナンジアミン2.374kg(15.0モル)及び2-メチル-1,8-オクタンジアミン2.374kg(15.0モル)を、1,10-デカンジアミン5.169kg(30.0モル)に変え、固相重合温度を230℃から260℃に変更した以外は、半芳香族ポリアミド(d1-1)の製造と同様の方法にて、融点315℃、相対粘度2.33の半芳香族ポリアミド(ポリアミド10T=100モル%)を得た(以下、この半芳香族ポリアミドを(d1-4)という。)。
半芳香族ポリアミド組成物(D1-4)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-4)に変え、シリンダ温度を300℃から340℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-4)という。)。
半芳香族ポリアミド(d1-5)の製造
 半芳香族ポリアミド(d1-4)の製造において、1,10-デカンジアミン5.169kg(30.0モル)、テレフタル酸4.984kg(30.0モル)を、1,10-デカンジアミン3.101kg(18.0モル)、テレフタル酸2.990kg(18.0モル)、及び11-アミノウンデカン酸2.416kg(12.0モル)に変え、固相重合温度を260℃から200℃に変更した以外は、半芳香族ポリアミド(d1-4)の製造と同様の方法にて、融点255℃、相対粘度2.34の半芳香族ポリアミド共重合体(ポリアミド10T/11=60/40モル%)を得た(以下、この半芳香族ポリアミド共重合体を(d1-5)という。)。
半芳香族ポリアミド組成物(D1-5)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-5)に変え、シリンダ温度を300℃から290℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-5)という。)。
半芳香族ポリアミド(d1-6)の製造
 半芳香族ポリアミド(d1-4)の製造において、テレフタル酸4.984kg(30.0モル)を、テレフタル酸3.324kg(20.0モル)、セバシン酸2.020kg(9.99モル)に変え、固相重合温度を260℃から220℃変更した以外は、半芳香族ポリアミド(d1-4)の製造と同様の方法にて、融点279℃、相対粘度2.37の半芳香族ポリアミド共重合体(ポリアミド10T/1010=67/33モル%)を得た(以下、この半芳香族ポリアミド共重合体を(d1-6)という。)。
半芳香族ポリアミド組成物(D1-6)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-6)に変え、シリンダ温度を300℃から310℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-6)という。)。
半芳香族ポリアミド(d1-7)の製造
 半芳香族ポリアミド(d1-1)の製造において、固相重合時間を8時間から4時間に変更した以外は、半芳香族ポリアミド(d1-1)の製造と同様の方法にて、融点265℃、相対粘度2.16の半芳香族ポリアミド(ポリアミド9T/M8T=50/50モル%)を得た(以下、この半芳香族ポリアミドを(d1-7)という。)。
導電性半芳香族ポリアミド組成物(D1-7)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-7)、無水マレイン酸変性エチレン/プロピレン共重合体(JSR(株)製、JSR T7761P)を無水マレイン酸変性エチレン/1-ブテン共重合体(三井化学(株)製、タフマーMH5010)とエチレン/1-ブテン共重合体(三井化学(株)製、タフマーA-0550)に変え、導電性フィラーとしてカーボンナノチューブ(ナノシル社製、NC7000)を用い、シリンダ温度を300℃から320℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド75質量%、衝撃改良材20質量%、導電性フィラー5質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる導電性半芳香族ポリアミド組成物のペレットを得た(以下、この導電性半芳香族ポリアミド組成物を(D1-7)という。)。
半芳香族ポリアミド(d1-8)の製造
 半芳香族ポリアミド(d1-4)の製造において、1,10-デカンジアミン5.169kg(30.0モル)、テレフタル酸4.984kg(30.0モル)を、1,6-ヘキサンジアミン3.718kg(32.0モル)、テレフタル酸3.240kg(19.5モル)、イソフタル酸1.246kg(7.5モル)、及びアジピン酸0.438kg(3.0モル)に変更した以外は、半芳香族ポリアミド(d1-4)の製造と同様の方法にて、融点315℃、相対粘度2.38の半芳香族ポリアミド(ポリアミド6T/6I/66=65/25/10モル%)を得た(以下、この半芳香族ポリアミドを(d1-8)という。)。
半芳香族ポリアミド組成物(D1-8)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d1-8)に変え、シリンダ温度を300℃から340℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D1-8)という。)。
半芳香族ポリアミド(d2-1)の製造
 攪拌機、温度計、トルクメータ、圧力計、ダイアフラムポンプを直結した原料投入口、窒素ガス導入口、放圧口、圧力調整装置、及びポリマー放出口を備えた内容積が40リットルの圧力容器に、セバシン酸6.068kg(30.0モル)、次亜リン酸カルシウム8.50g(0.049モル)、及び酢酸ナトリウム2.19g(0.025モル)を仕込み、圧力容器の内部の純度が99.9999%の窒素ガスで0.3MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰返し、窒素置換を行った後、封圧下、攪拌しながら系内を昇温した。更に少量の窒素気流下で、190℃まで昇温した後、p-キシリレンジアミン4.086kg(30.0モル)を撹拌下で160分を要して滴下した。この間、反応系内圧は0.5MPaに制御し、内温を連続的に295℃まで昇温させた。また、p-キシリレンジアミンの滴下とともに留出する水は分縮器及び冷却器を通して系外に除いた。p-キシリレンジアミン滴下終了後、60分間かけて常圧まで降圧し、この間に、容器内の温度を300℃に保持して10分間反応を継続した。その後、反応系内圧を79kPaまで減圧し、40分間溶融重合反応を継続した。その後、攪拌を止めて系内を窒素で0.2MPaに加圧して重縮合物を圧力容器下部抜出口より紐状に抜き出した。紐状の重縮合物は直ちに冷却し、水冷した紐状の樹脂はペレタイザーによってペレット化し、その後、減圧乾燥を行い、融点281、291℃(融点を2つ有する)、相対粘度2.47の半芳香族ポリアミド(ポリアミドPXD10=100モル%)を得た(以下、この半芳香族ポリアミドを(d2-1)という。)。
半芳香族ポリアミド組成物(D2-1)の製造
 半芳香族ポリアミド組成物(D1-1)の製造において、半芳香族ポリアミド(d1-1)を(d2-1)に変え、シリンダ温度を300℃から320℃に変更した以外は、半芳香族ポリアミド組成物(D1-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-1)という。)。
半芳香族ポリアミド(d2-2)の製造
 半芳香族ポリアミド(d2-1)の製造において、セバシン酸6.068kg(30.0モル)をアゼライン酸5.647kg(30.0モル)に変更した以外は、半芳香族ポリアミド(d2-1)の製造と同様の方法にて、融点270℃、相対粘度2.45の半芳香族ポリアミド(ポリアミドPXD9=100モル%)を得た(以下、この半芳香族ポリアミドを(d2-2)という。)。
半芳香族ポリアミド組成物(D2-2)の製造
 半芳香族ポリアミド組成物(D2-1)の製造において、半芳香族ポリアミド(d2-1)を(d2-2)に変え、シリンダ温度を320℃から310℃に変更した以外は、半芳香族ポリアミド組成物(D2-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-2)という。)。
半芳香族ポリアミド(d2-3)の製造
 半芳香族ポリアミド(d2-1)の製造において、p-キシリレンジアミン4.086kg(30.0モル)をm-キシリレンジアミン4.086kg(30.0モル)に変え、重合温度を300℃から250℃に変更した以外は、半芳香族ポリアミド(d2-1)の製造と同様の方法にて、融点191℃、相対粘度2.46の半芳香族ポリアミド(ポリアミドMXD10=100モル%)を得た(以下、この半芳香族ポリアミドを(d2-3)という。)。
半芳香族ポリアミド組成物(D2-3)の製造
 半芳香族ポリアミド組成物(D2-1)の製造において、半芳香族ポリアミド(d2-1)を(d2-3)に変え、シリンダ温度を320℃から240℃に変更した以外は、半芳香族ポリアミド組成物(D2-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-3)という。)。
半芳香族ポリアミド(d2-4)の製造
 半芳香族ポリアミド(d2-3)の製造において、セバシン酸6.068kg(30.0モル)をドデカン二酸6.488kg(30.0モル)に変え、重合温度を250℃から240℃に変更した以外は、半芳香族ポリアミド(d2-3)の製造と同様の方法にて、融点175℃、相対粘度2.40の半芳香族ポリアミド(ポリアミドMXD12=100モル%)を得た(以下、この半芳香族ポリアミドを(d2-4)という。)。
半芳香族ポリアミド組成物(D2-4)の製造
 半芳香族ポリアミド組成物(D2-1)の製造において、半芳香族ポリアミド(d2-1)を(d2-4)に変え、シリンダ温度を320℃から230℃に変更した以外は、半芳香族ポリアミド組成物(D2-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-4)という。)。
半芳香族ポリアミド(d2-5)の製造
 半芳香族ポリアミド(d2-1)の製造において、p-キシリレンジアミン4.086kg(30.0モル)をm-キシリレンジアミンとp-キシリレンジアミンの7:3の混合ジアミン4.086kg(30.0モル)に変え、重合温度を300℃から260℃に変更した以外は、半芳香族ポリアミド(d2-1)の製造と同様の方法にて、融点215℃、相対粘度2.45の半芳香族ポリアミド(ポリアミドMXD10/PXD10=70/30モル%)を得た(以下、この半芳香族ポリアミドを(d2-5)という。)。
半芳香族ポリアミド組成物(D2-5)の製造
 半芳香族ポリアミド組成物(D2-1)の製造において、半芳香族ポリアミド(d2-1)を(d2-5)に変え、シリンダ温度を320℃から250℃に変更した以外は、半芳香族ポリアミド組成物(D2-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-5)という。)。
半芳香族ポリアミド(d2-6)の製造
 半芳香族ポリアミド(d2-4)の製造において、m-キシリレンジアミン4.086kg(30.0モル)を2,6-ビス(アミノメチル)ナフタレン5.588kg(30.0モル)に変え、重合温度を240℃から300℃に変更した以外は、半芳香族ポリアミド(d2-4)の製造と同様の方法にて、融点272℃、相対粘度2.33の半芳香族ポリアミド(ポリアミド2,6-BAN12=100モル%)を得た(以下、この半芳香族ポリアミドを(d2-6)という。)。
半芳香族ポリアミド組成物(D2-6)の製造
 半芳香族ポリアミド組成物(D2-1)の製造において、半芳香族ポリアミド(d2-1)を(d2-6)に変え、シリンダ温度を320℃から310℃に変更した以外は、半芳香族ポリアミド組成物(D2-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-6)という。)。
半芳香族ポリアミド(d2-7)の製造
 半芳香族ポリアミド(d2-1)の製造において、p-キシリレンジアミン4.086kg(30.0モル)をm-キシリレンジアミン4.086kg(30.0モル)に、セバシン酸6.068kg(30.0モル)をアジピン酸4.384kg(30.0モル)に変え、重合温度を300℃から275℃に変更した以外は、半芳香族ポリアミド(d2-1)の製造と同様の方法にて、融点243℃、相対粘度2.45の半芳香族ポリアミド(ポリアミドMXD6=100モル%)を得た(以下、この半芳香族ポリアミドを(d2-7)という。)。
半芳香族ポリアミド組成物(D2-7)の製造
 半芳香族ポリアミド組成物(D2-1)の製造において、半芳香族ポリアミド(d2-1)を(d2-7)に変え、シリンダ温度を320℃から280℃に変更した以外は、半芳香族ポリアミド組成物(D2-1)の製造と同様の方法にて、半芳香族ポリアミド90質量%、衝撃改良材10質量%の合計100質量部に対して、酸化防止剤0.8質量部、リン系加工安定剤0.2質量部よりなる半芳香族ポリアミド組成物のペレットを得た(以下、この半芳香族ポリアミド組成物を(D2-7)という。)。
含フッ素系重合体(E)
含フッ素系重合体(E-1)の製造
 内容積が100Lの撹拌機付き重合槽を脱気し、1-ヒドロトリデカフルオロヘキサンの92.1kg、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン16.3kg、(パーフルオロエチル)エチレンCH=CH(CFF73g、無水イタコン酸(IAH)10.1gを仕込み、テトラフルオロエチレン(TFE)9.6kg、エチレン(E)0.7kgを圧入し、重合槽内を66℃に昇温し、重合開始剤としてt-ブチルペルオキシピバレート1質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液の433cmを仕込み、重合を開始させた。重合中圧力が一定になるようにTFE/E:60/40(モル比)のモノマー混合ガスを連続的に仕込んだ。また、重合中に仕込むTFEとEの合計モル数に対して2.0モル%に相当する量の(パーフルオロエチル)エチレンと0.5モル%に相当する量のIAHを連続的に仕込んだ。重合開始5.5時間後、モノマー混合ガス8.0kg、IAHの63gを仕込んだ時点で、重合槽内温を室温まで降温し、パージして圧力を常圧とした。得られたスラリ状の含フッ素系重合体を、水75.0kgを仕込んだ200Lの造粒槽に投入し、次いで撹拌しながら105℃まで昇温し溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、8.3kgの含フッ素系重合体が得られた。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/Eに基づく重合単位/CH=CH(CFFに基づく重合単位/IAHに基づく重合単位=58.5/39.0/2.0/0.5(モル%)であり、融点は240℃であった。この造粒物を、押出機を用いて、280℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-1)という。)。
導電性含フッ素系重合体(E-2)の製造
 含フッ素系重合体(E-1)100質量部、及びカーボンブラック(電気化学(株)製)13質量部をあらかじめ混合し、二軸溶融混練機(東芝機械(株)製、型式:TEM-48S)に供給し、シリンダ温度240℃から300℃で溶融混練し、溶融樹脂をストランド状に押出した後、これを水槽に導入し、吐出したストランドを水冷し、ペレタイザーでストランドを切断し、水分除去のために120℃の乾燥機で10時間乾燥し、導電性含フッ素系重合体のペレットを得た(以下、この導電性含フッ素系重合体を(E-2)という。)。
含フッ素系重合体(E-3)の製造
 含フッ素系重合体(E-1)の製造において、無水イタコン酸(IAH)を仕込まない以外は、含フッ素系重合体(E-1)の製造と同様の方法にて、7.6kgの含フッ素系重合体を得た。
当該含フッ素系重合体の組成は、TFEに基づく重合単位/Eに基づく重合単位/CH=CH(CFFに基づく重合単位=58.8/39.2/2.0(モル%)であり、融点は242℃であった。この造粒物を、押出機を用いて、280℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-3)という。)。
導電性含フッ素系重合体(E-4)の製造
 導電性含フッ素系重合体(E-2)の製造において、含フッ素系重合体(E-1)を(E-3)に変更した以外は、導電性含フッ素系重合体(E-2)の製造と同様の方法にて、導電性含フッ素系重合体のペレットを得た(以下、この導電性含フッ素系重合体を(E-4)という。)。
含フッ素系重合体(E-5)の製造
 内容積が100Lの撹拌機付き重合槽を脱気し、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン42.5kg、CF=CFOCFCFCF(パーフルオロ(プロピルビニルエーテル):PPVE)、1,1,2,4,4,5,5,6,6,6-デカフルオロ-3-オキサヘックス-1-エン)2.13kg、ヘキサフルオロプロピレン(HFP)51.0kgを仕込んだ。ついで重合槽内を50℃に昇温し、テトラフルオロエチレン(TFE)の4.25kgを仕込んで圧力を1.0MPa/Gまで昇圧した。重合開始剤溶液として(ペルフルオロブチリル)ペルオキシド0.3質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液の340cmを仕込み、重合を開始させ、以後10分毎に当該重合開始剤溶液の340cmを仕込んだ。重合中、圧力が1.0MPa/Gを保持するようにTFEを連続的に仕込んだ。また、重合中に仕込むTFEのモル数に対して0.1モル%に相当する量の5-ノルボルネン-2,3-ジカルボン酸無水物(NAH)0.3質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液を連続的に仕込んだ。重合開始5時間後、TFE8.5kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに常圧までパージした。得られたスラリ状の含フッ素系重合体を、水75.0kgを仕込んだ200Lの造粒槽に投入し、次いで撹拌しながら105℃まで昇温し溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、7.5kgの含フッ素系重合体の造粒物が得られた。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/PPVEに基づく重合単位/HFPに基づく重合単位/NAHに基づく重合単位=91.2/1.5/7.2/0.1(モル%)であり、融点は262℃であった。この造粒物を、押出機を用いて、300℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-5)という。)。
導電性含フッ素系重合体(E-6)の製造
 導電性含フッ素系重合体(E-2)の製造において、含フッ素系重合体(E-1)を(E-5)、カーボンブラック13質量部を11質量部に変え、シリンダ温度を300℃から320℃に変更した以外は、導電性含フッ素系重合体(E-2)の製造と同様の方法にて、導電性含フッ素系重合体のペレットを得た(以下、この導電性含フッ素系重合体を(E-6)という。)。
含フッ素系重合体(E-7)の製造
 含フッ素系重合体(E-5)の製造において、5-ノルボルネン-2,3-ジカルボン酸無水物(NAH)0.3質量%1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン溶液を仕込まない以外は、含フッ素系重合体(E-5)の製造と同様の方法にて、7.6kgの含フッ素系重合体を得た。
 当該含フッ素系重合体の組成は、TFEに基づく重合単位/PPVEに基づく重合単位/HFPに基づく重合単位=91.5/1.5/7.0(モル%)であり、融点は257℃であった。この造粒物を、押出機を用いて、300℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-7)という。)。
含フッ素系重合体(E-8)の製造
 水174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 51.5kgを仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次いでオクタフルオロシクロブタン40.6kg、クロロトリフルオロエチレン(CTFE)1.6kg、テトラフルオロエチレン(TFE)4.5kg、パーフルオロ(プロピルビニルエーテル)(PPVE)2.8kgを圧入した。連鎖移動剤としてn-プロピルアルコール0.090kgを添加して、温度を35℃に調節し、攪拌を開始した。ここへ重合開始剤としてジ-n-プロピルパーオキシジカーボネート50質量%メタノール溶液を0.44kg添加して重合を開始した。重合中には、所望の共重合体組成と同組成に調製した混合モノマーを、槽内圧力が0.66MPaを維持するように追加仕込みしながら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて30.5kgの粒状粉末の含フッ素系重合体を得た。
 当該フッ素系重合体の組成は、CTFEに基づく重合単位/TFEに基づく重合単位/PPVEに基づく重合単位のモル比で24.4/73.1/2.5であり、フッ素系重合体の重合開始剤に由来するカーボネート末端基の数は170個であった。また、融点は241℃であった。この造粒物を、押出機を用いて、290℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-8)という。)。
導電性含フッ素系重合体(E-9)の製造
 導電性含フッ素系重合体(E-6)の製造において、含フッ素系重合体(E-5)を(E-8)に変更した以外は、導電性含フッ素系重合体(E-6)の製造と同様の方法にて、導電性含フッ素系重合体のペレットを得た(以下、この導電性含フッ素系重合体を(E-9)という。)。
含フッ素系重合体(E-10)の製造
 含フッ素系重合体(E-8)の製造において、ジ-n-プロピルパーオキシジカーボネート50質量%メタノール溶液を仕込まない以外は、含フッ素系重合体(E-8)の製造と同様の方法にて、29.8kgの含フッ素系重合体を得た。
 当該含フッ素系重合体の組成は、CTFEに基づく重合単位/TFEに基づく重合単位/PPVEに基づく重合単位のモル比で24.4/73.1/2.5であり、融点は241℃であった。この造粒物を、押出機を用いて、290℃、滞留時間2分で溶融し、含フッ素系重合体のペレットを得た(以下、この含フッ素系重合体を(E-10)という。)。
実施例1
 上記に示すポリアミド12組成物(A-1)、ポリアミド6組成物(B1-1)、ポリアミド6/66/12組成物(B2-1)、EVOH(C-1)、及び半芳香族ポリアミド組成物(D1-1)を使用して、Plabor(プラスチック工学研究所(株)製)5層チューブ成形機にて、(A-1)を押出温度250℃、(B1-1)を押出温度260℃、(B2-1)を押出温度260℃、(C-1)を押出温度220℃、(D1-1)を押出温度300℃にて別々に溶融させ、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-1)からなる(a)層(最外層)、(B2-1)からなる(b)層(外層)、(C-1)からなる(c)層(中間層)、(B1-1)からなる(b’)層(内層1)、(D1-1)からなる(d)層(最内層)としたとき、層構成が(a)/(b)/(c)/(b’)/(d)=0.35/0.15/0.10/0.25/0.15mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例2
 実施例1において、ポリアミド6組成物(B1-1)をポリアミド6/66/12組成物(B2-1)に変更した以外は、実施例1と同様の方法にて、(A-1)からなる(a)層(最外層)、(B2-1)からなる(b)層(外層、内層1)、(C-1)からなる(c)層(中間層)、(D1-1)からなる(d)層(最内層)としたとき、層構成が(a)/(b)/(c)/(b)/(d)=0.35/0.15/0.10/0.25/0.15mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例3
 上記に示すポリアミド12組成物(A-2)、ポリアミド6組成物(B1-1)、EVOH(C-1)、及び半芳香族ポリアミド組成物(D1-1)を使用して、Plabor(プラスチック工学研究所(株)製)6層チューブ成形機にて、(A-1)を押出温度250℃、(B1-1)を押出温度260℃、(C-1)を押出温度220℃、(D1-1)を押出温度300℃にて別々に溶融させ、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-2)からなる(a)層(最外層)、(D1-1)からなる(d)層(外層、最内層)、(B1-1)からなる(b)層(中間層、内層2)、(C-1)からなる(c)層(内層1)としたとき、層構成が(a)/(d)/(b)/(c)/(b)/(d)=0.30/0.10/0.15/0.10/0.25/0.10mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例4
 実施例1において、ポリアミド12組成物(A-1)をポリアミド610組成物(A-4)に変え、(A-4)の押出温度を260℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例5
 実施例1において、ポリアミド12組成物(A-1)をポリアミド612組成物(A-5)に変え、(A-5)の押出温度を260℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例6
 実施例1において、ポリアミド6/66/12組成物(B2-1)を(B2-2)に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例7
 実施例1において、半芳香族ポリアミド組成物(D1-1)を(D1-2)に変え、(D1-2)の押出温度を330℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例8
 実施例1において、半芳香族ポリアミド組成物(D1-1)を(D1-3)に変え、(D1-3)の押出温度を310℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例9
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D1-4)に変え、(D1-4)の押出温度を340℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例10
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D1-5)に変え、(D1-5)の押出温度を290℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例11
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D1-6)に変え、(D1-6)の押出温度を310℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例12
 実施例1において、半芳香族ポリアミド組成物(D1-1)を導電性半芳香族ポリアミド組成物(D1-7)に変え、(D1-7)の押出温度を310℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
実施例13
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D2-1)に変え、(D2-1)の押出温度を320℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例14
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D2-2)に変え、(D2-2)の押出温度を310℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例15
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D2-3)に変え、(D2-3)の押出温度を240℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例16
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D2-4)に変え、(D2-4)の押出温度を230℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例17
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D2-5)に変え、(D2-5)の押出温度を260℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例18
 実施例2において、半芳香族ポリアミド組成物(D1-1)を(D2-6)に変え、(D2-6)の押出温度を310℃に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
実施例19
 上記に示すポリアミド12組成物(A-1)、ポリアミド6組成物(B1-1)、ポリアミド6/66/12組成物(B2-1)、EVOH(C-1)、半芳香族ポリアミド組成物(D1-1)、及び導電性半芳香族ポリアミド組成物(D1-7)を使用して、Plabor(プラスチック工学研究所(株)製)6層チューブ成形機にて、(A-1)を押出温度250℃、(B1-1)を押出温度260℃、(B2-1)を押出温度260℃、(C-1)を押出温度220℃、(D1-1)を押出温度300℃、(D1-7)を押出温度310℃にて別々に溶融させ、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-1)からなる(a)層(最外層)、(B2-1)からなる(b)層(外層)、(C-1)からなる(c)層(中間層)、(B1-1)からなる(b’)層(内層1)、(D1-1)からなる(d)層(内層2)、(D1-7)からなる(d’)層(最内層)としたとき、層構成が(a)/(b)/(c)/(b’)/(d)/(d’)=0.30/0.15/0.10/0.25/0.10/0.10mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
比較例1
 実施例1において、EVOH(C-1)、半芳香族ポリアミド組成物(D1-1)を使用しない以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例2
 実施例1において、半芳香族ポリアミド組成物(D1-1)を使用しない以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例3
 実施例3において、半芳香族ポリアミド組成物(D1-1)を使用しない以外は、実施例3と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例4
 実施例1において、ポリアミド12組成物(A-1)、ポリアミド6組成物(B1-1)、ポリアミド6/66/12組成物(B2-1)を使用しない以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例5
 実施例1において、ポリアミド6組成物(B1-1)、ポリアミド6/66/12組成物(B2-1)を使用しない以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例6
 実施例2において、ポリアミド6/66/12組成物(B2-1)を(B2-3)に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例7
 実施例2において、ポリアミド6/66/12組成物(B2-1)を(B2-4)に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例8
 実施例2において、ポリアミド6/66/12組成物(B2-1)をポリアミド6/12組成物(B2-5)に変更した以外は、実施例2と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例9
 実施例1において、半芳香族ポリアミド組成物(D1-1)を(D1-8)に変え、(D1-8)の押出温度を330℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例10
 実施例1において、半芳香族ポリアミド組成物(D1-1)を(D2-7)に変え、(D2-7)の押出温度を280℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例11
 実施例3において、半芳香族ポリアミド組成物(D1-1)を(D1-8)に変え、(D1-8)の押出温度を330℃に変更した以外は、実施例3と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例12
 実施例3において、半芳香族ポリアミド組成物(D1-1)を(D2-7)に変え、(D2-7)の押出温度を280℃に変更した以外は、実施例3と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例13
 実施例1において、半芳香族ポリアミド組成物(D1-1)をポリアミド12組成物(A-2)に変え、(A-2)の押出温度を250℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。
比較例14
 実施例1において、半芳香族ポリアミド組成物(D1-1)を導電性ポリアミド12組成物(A-3)に変え、(A-3)の押出温度を270℃に変更した以外は、実施例1と同様の方法にて、表1に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表1に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明に規定のエチレン/酢酸ビニル共重合体ケン化物を含む層や半芳香族ポリアミド組成物を含む層を有していない比較例1の積層チューブは、耐劣化燃料性や薬液透過防止性に劣り、本発明に規定の半芳香族ポリアミド組成物を含む層を有しておらず、最内層としてポリアミド6を含む層を有する比較例2の積層チューブは、耐劣化燃料性に劣っており、本発明に規定の半芳香族ポリアミド組成物を含む層を有しておらず、最内層としてポリアミド6組成物を含む層を有する比較例3の積層チューブは、耐劣化燃料性や層間接着性に劣っていた。本発明に規定の脂肪族ポリアミドを含む層やポリアミド6組成物やポリアミド6/66/12組成物を含む層を有していない比較例4の積層チューブは、低温耐衝撃性、耐劣化燃料性、及び熱処理後の層間接着性に劣っていた。本発明に規定のポリアミド6組成物やポリアミド6/66/12組成物を含む層を有していない比較例5の積層チューブは、層間接着性に劣っていた。本発明に規定以外のポリアミド6/66/12組成物やポリアミド6/12組成物を含む層を有する比較例6から8の積層チューブは、熱処理後の層間接着性に劣っていた。本発明に規定以外の半芳香族ポリアミド組成物を含む層を有する比較例9や10の積層チューブは、低温耐衝撃性や耐劣化燃料性に劣っていた。本発明に規定以外の半芳香族ポリアミド組成物を含む層を有する比較例11や12の積層チューブは、低温耐衝撃性、耐劣化燃料性、及び層間接着性に劣っていた。本発明に規定の半芳香族ポリアミド組成物を含む層を有しておらず、最内層としてポリアミド12組成物を含む層を有する比較例13や14の積層チューブは、モノマー、オリゴマーの耐溶出性に劣っていた。
 一方、本発明に規定されている実施例1から19の積層チューブは、低温耐衝撃性、耐劣化燃料性、薬液透過防止性、層間接着性及びその耐久性、モノマー、オリゴマーの耐溶出性等の諸特性が良好であることは明らかである。
実施例21
 上記に示すポリアミド12組成物(A-1)、ポリアミド6組成物(B1-1)、ポリアミド6/66/12組成物(B2-1)、EVOH(C-1)、半芳香族ポリアミド組成物(D1-1)、及び含フッ素系重合体(E-1)を使用して、Plabor(プラスチック工学研究所(株)製)6層チューブ成形機にて、(A-1)を押出温度250℃、(B1-1)を押出温度260℃、(B2-1)を押出温度260℃、(C-1)を押出温度220℃、(D1-1)を押出温度300℃、(E-1)を押出温度300℃にて別々に溶融させ、吐出された溶融樹脂をアダプタによって合流させ、積層管状体に成形した。引き続き、寸法制御するサイジングダイにより冷却し、引き取りを行い、(A-1)からなる(a)層(最外層)、(B2-1)からなる(b)層(外層)、(C-1)からなる(c)層(中間層)、(B1-1)からなる(b’)層(内層1)、(D1-1)からなる(d)層(内層2)、(E-1)からなる(e)層(最内層)としたとき、層構成が(a)/(b)/(c)/(b’)/(d)/(e)=0.30/0.15/0.10/0.25/0.10/0.10mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例22
 実施例21において、ポリアミド6組成物(B1-1)をポリアミド6/66/12組成物(B2-1)に変更した以外は、実施例21と同様の方法にて、(A-1)からなる(a)層(最外層)、(B2-1)からなる(b)層(外層、内層1)、(C-1)からなる(c)層(中間層)、(D1-1)からなる(d)層(内層2)、(E-1)からなる(e)層(最内層)としたとき、層構成が(a)/(b)/(c)/(b)/(d)/(e)=0.30/0.15/0.10/0.25/0.10/0.10mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例23
 実施例21において、ポリアミド12組成物(A-1)を(A-2)に変更し、ポリアミド6/66/12組成物(B2-1)を使用しない以外は、実施例21と同様の方法にて、(A-1)からなる(a)層(最外層)、(D1-1)からなる(d)層(外層)、(B1-1)からなる(b)層(中間層、内層2)、(C-1)からなる(c)層(内層1)、(E-1)からなる(e)層(最内層)としたとき、層構成が(a)/(d)/(b)/(c)/(b)/(e)=0.30/0.10/0.15/0.10/0.25/0.10mmで内径6mm、外径8mmの積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例24
 実施例23において、ポリアミド12組成物(A-2)をポリアミド610組成物(A-4)に変え、(A-4)の押出温度を260℃に変更した以外は、実施例23と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例25
 実施例23において、ポリアミド12組成物(A-2)をポリアミド612組成物(A-5)に変え、(A-5)の押出温度を260℃に変更した以外は、実施例23と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例26
 実施例21において、ポリアミド6/66/12組成物(B2-1)を(B2-2)に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例27
 実施例21において、半芳香族ポリアミド組成物(D1-1)を(D1-2)に変え、(D1-2)の押出温度を330℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例28
 実施例21において、半芳香族ポリアミド組成物(D1-1)を(D1-3)に変え、(D1-3)の押出温度を310℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例29
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D1-4)に変え、(D1-4)の押出温度を340℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例30
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D1-5)に変え、(D1-5)の押出温度を290℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例31
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D1-6)に変え、(D1-6)の押出温度を310℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例32
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D2-1)に変え、(D2-1)の押出温度を320℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例33
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D2-2)に変え、(D2-2)の押出温度を310℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例34
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D2-3)に変え、(D2-3)の押出温度を240℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例35
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D2-4)に変え、(D2-4)の押出温度を230℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例36
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D2-5)に変え、(D2-5)の押出温度を260℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例37
 実施例22において、半芳香族ポリアミド組成物(D1-1)を(D2-6)に変え、(D2-6)の押出温度を310℃に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例38
 実施例21において、含フッ素系重合体(E-1)を導電性含フッ素系重合体(E-2)に変え、(E-2)の押出温度を310℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
実施例39
 実施例21において、含フッ素系重合体(E-1)を(E-5)に変え、(E-5)の押出温度を310℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例40
 実施例21において、含フッ素系重合体(E-1)を導電性含フッ素系重合体(E-6)に変え、(E-6)の押出温度を320℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
実施例41
 実施例21において、含フッ素系重合体(E-1)を(E-8)に変え、(E-8)の押出温度を290℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
実施例42
 実施例21において、含フッ素系重合体(E-1)を導電性含フッ素系重合体(E-9)に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
比較例21
 実施例21において、EVOH(C-1)、半芳香族ポリアミド組成物(D1-1)、含フッ素系重合体(E-1)を使用しない以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例22
 実施例23において、半芳香族ポリアミド組成物(D1-1)を使用しない以外は、実施例23と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例23
 実施例23において、ポリアミド12組成物(A-2)、ポリアミド6組成物(B1-1)を使用しない以外は、実施例23と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例24
 実施例21において、ポリアミド6組成物(B1-1)、ポリアミド6/66/12組成物(B2-1)を使用しない以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例25
 実施例22において、ポリアミド6/66/12組成物(B2-1)を(B2-3)に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例26
 実施例22において、ポリアミド6/66/12組成物(B2-1)を(B2-4)に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例27
 実施例22において、ポリアミド6/66/12組成物(B2-1)をポリアミド6/12組成物(B2-5)に変更した以外は、実施例22と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例28
 実施例23において、半芳香族ポリアミド組成物(D1-1)を(D1-8)に変え、(D1-8)の押出温度を330℃に変更した以外は、実施例23と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例29
 実施例23において、半芳香族ポリアミド組成物(D1-1)を(D2-7)に変え、(D2-7)の押出温度を280℃に変更した以外は、実施例23と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例30
 実施例21において、含フッ素系重合体(E-1)を(E-3)に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例31
 実施例21において、含フッ素系重合体(E-1)を導電性含フッ素系重合体(E-4)に変え、(E-4)の押出温度を310℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
比較例32
 実施例21において、含フッ素系重合体(E-1)を(E-7)に変え、(E-7)の押出温度を310℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例33
 実施例21において、含フッ素系重合体(E-1)を(E-10)に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例34
 実施例21において、含フッ素系重合体(E-1)をポリアミド12組成物(A-2)に変え、(A-2)の押出温度を250℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。
比較例35
 実施例21において、含フッ素系重合体(E-2)を導電性ポリアミド12組成物(A-3)に変え、(A-3)の押出温度を270℃に変更した以外は、実施例21と同様の方法にて、表2に示す層構成の積層チューブを得た。当該積層チューブの物性測定結果を表2に示す。また、当該積層チューブの導電性をSAE J-2260に準拠して測定したところ、10 Ω/square以下であり、静電気除去性能に優れていることを確認した。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、本発明に規定のエチレン/酢酸ビニル共重合体ケン化物を含む層、半芳香族ポリアミド組成物を含む層、及び含フッ素系重合体を含む層を有していない比較例21の積層チューブは、耐劣化燃料性や高濃度アルコール含有ガソリンに対する透過防止性に劣り、本発明に規定の半芳香族ポリアミド組成物を含む層を有していない比較例22の積層チューブは、層間接着性に劣っていた。本発明に規定の脂肪族ポリアミドを含む層やポリアミド6組成物やポリアミド6/66/12組成物を含む層を有していない比較例23の積層チューブは、低温耐衝撃性、耐劣化燃料性、及び層間接着性に劣っていた。本発明に規定のポリアミド6組成物やポリアミド6/66/12組成物を含む層を有していない比較例24の積層チューブは、層間接着性に劣っていた。本発明に規定以外のポリアミド6/66/12組成物やポリアミド6/12組成物を含む層を有する比較例25から27の積層チューブは、熱処理後の層間接着性に劣っていた。本発明に規定以外の半芳香族ポリアミド組成物を含む層を有する比較例28や29の積層チューブは、層間接着性に劣っていた。本発明に規定以外の含フッ素系重合体を含む層を有する比較例30から33の積層チューブは、層間接着性に劣っていた。本発明に規定の含フッ素系重合体を含む層を有しておらず、最内層としてポリアミド12組成物を含む層を有する比較例34や35の積層チューブは、高濃度アルコール含有ガソリンに対する透過防止性やモノマー、オリゴマーの耐溶出性に劣っていた。
 一方、本発明に規定されている実施例21から42の積層チューブは、低温耐衝撃性、耐劣化燃料性、薬液透過防止性、特に高濃度アルコール含有ガソリンに対する透過防止性、層間接着性及びその耐久性、モノマー、オリゴマーの耐溶出性等の諸特性が良好であることは明らかである。
 日本国特許出願2014-185784号(出願日:2014年9月12日)、日本国特許出願2014-185787号(出願日:2014年9月12日)の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (15)

  1.  (a)層、(b)層、(c)層、及び(d)層を有する、少なくとも4層からなる積層チューブであって、
     前記(a)層は、脂肪族ポリアミド(A)を含み、
     前記(b)層は、ポリアミド6組成物(B1)、及び/又はポリアミド6/66/12組成物(B2)を含み、
     前記(c)層は、エチレン/酢酸ビニル共重合体ケン化物(C)を含み、
     前記(d)層は、半芳香族ポリアミド組成物(D1)、又は半芳香族ポリアミド組成物(D2)を含み、
     前記脂肪族ポリアミド(A)は、ポリカプロアミド(ポリアミド6)及びポリ(カプロアミド/ヘキサメチレンアジパミド/ドデカンアミド)(ポリアミド6/66/12)を含まず、
     前記ポリアミド6組成物(B1)は、ポリカプロアミド(ポリアミド6)50質量%以上98質量%以下、可塑剤(B3)1質量%以上20質量%以下、及びISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)1質量%以上30質量%以下を含有し、
     前記ポリアミド6/66/12組成物(B2)は、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンデカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種のポリアミドとポリアミド6/66/12を含むポリアミド混合物50質量%以上98質量%以下、可塑剤(B3)1質量%以上20質量%以下、及びISO 178に準拠して測定した曲げ弾性率が500MPa以下のオレフィン重合体(B4)1質量%以上30質量%以下を含有し、
     前記半芳香族ポリアミド組成物(D1)は、半芳香族ポリアミド(d1)を含み、前記半芳香族ポリアミド(d1)は、全ジアミン単位に対して、炭素原子数9以上13以下の脂肪族ジアミン単位を50モル%以上含むジアミン単位と、全ジカルボン酸単位に対して、テレフタル酸単位及び/又ナフタレンジカルボン酸単位を50モル%以上含むジカルボン酸単位を有し、
     前記半芳香族ポリアミド組成物(D2)は半芳香族ポリアミド(d2)を含み、前記半芳香族ポリアミド(d2)は、全ジアミン単位に対して、キシリレンジアミン単位及び/又はビス(アミノメチル)ナフタレン単位を50モル%以上含むジアミン単位と、全ジカルボン酸単位に対して、炭素原子数8以上13以下の脂肪族ジカルボン酸単位を50モル%以上含むジカルボン酸単位を有する積層チューブ。
  2.  前記脂肪族ポリアミド(A)が、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンデカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、及びポリドデカメチレンドデカミド(ポリアミド1212)からなる群より選ばれる少なくとも1種の単独重合体、及び/又はこれらを形成する原料単量体を数種用いた共重合体である請求項1に記載の積層チューブ。
  3.  前記ポリアミド6/66/12組成物(B2)中のポリアミド6/66/12において、カプロアミド単位とヘキサメチレンアジパミド単位の合計単位とドデカンアミド単位の質量比は、カプロアミド単位、ヘキサメチレンアジパミド単位、及びドデカンアミド単位の合計100質量%に対して、81:19質量%以上95:5質量%以下である請求項1又は2に記載の積層チューブ。
  4.  前記エチレン/酢酸ビニル共重合体ケン化物(C)のエチレン含有量が15モル%以上60モル%以下、ケン化度が90モル%以上である請求項1から3のいずれかに記載の積層チューブ。
  5.  前記(a)層が最外層に配置され、前記(c)層が、前記(a)層と前記(d)層の間に配置される請求項1から4のいずれかに記載の積層チューブ。
  6.  前記(c)層と隣接する少なくとも一方の側に、前記(b)層が配置される請求項1から5のいずれかに記載の積層チューブ。
  7.  前記積層チューブにおける最内層に、導電性フィラーを含有させた半芳香族ポリアミド組成物(D)を含む導電層が配置される請求項1から6のいずれかに記載の積層チューブ。
  8.  (e)層を更に有し、
     前記(e)層は、アミノ基に対して反応性を有する官能基が分子鎖中に導入された含フッ素系重合体(E)を含む請求項1から6のいずれかに記載の積層チューブ。
  9.  前記(a)層が最外層に配置され、前記(c)層、及び前記(d)層が、前記(a)層と前記(e)層の間に配置される請求項8に記載の積層チューブ。
  10.  前記(c)層と隣接する少なくとも一方の側に、前記(b)層が配置される請求項8又は9に記載の積層チューブ。
  11.  前記積層チューブにおける最内層に、導電性フィラーを含有させた含フッ素系重合体組成物を含む導電層が配置される請求項8から10のいずれかに記載の積層チューブ。
  12.  共押出成形法により製造される請求項1から11のいずれかに記載の積層チューブ。
  13.  燃料チューブとして使用される請求項1から12のいずれかに記載の積層チューブ。
  14.  共押出成形することを含む請求項1から11のいずれかに記載の積層チューブの製造方法。
  15.  請求項1から11のいずれかに記載の積層チューブの燃料チューブとしての使用。
PCT/JP2015/075856 2014-09-12 2015-09-11 積層チューブ WO2016039445A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112017003730-0A BR112017003730B1 (pt) 2014-09-12 2015-09-11 Tubo de múltiplas camadas e tubo de múltiplas camadas compreendendo pelo menos cinco camadas
ES15839705T ES2717574T3 (es) 2014-09-12 2015-09-11 Tubo en capas
EP18207222.3A EP3461631A1 (en) 2014-09-12 2015-09-11 Multilayer tube
MX2017003248A MX2017003248A (es) 2014-09-12 2015-09-11 Tubo multicapa.
EP15839705.9A EP3192650B1 (en) 2014-09-12 2015-09-11 Layered tube
PL15839705T PL3192650T3 (pl) 2014-09-12 2015-09-11 Warstwowa rura
US15/507,611 US10663092B2 (en) 2014-09-12 2015-09-11 Multilayer tube
KR1020177009384A KR102339259B1 (ko) 2014-09-12 2015-09-11 적층 튜브
JP2016547512A JP6575524B2 (ja) 2014-09-12 2015-09-11 積層チューブ
CN201580049013.0A CN107073867B (zh) 2014-09-12 2015-09-11 层叠管

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014185784 2014-09-12
JP2014-185787 2014-09-12
JP2014-185784 2014-09-12
JP2014185787 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016039445A1 true WO2016039445A1 (ja) 2016-03-17

Family

ID=55459188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075856 WO2016039445A1 (ja) 2014-09-12 2015-09-11 積層チューブ

Country Status (10)

Country Link
US (1) US10663092B2 (ja)
EP (2) EP3192650B1 (ja)
JP (1) JP6575524B2 (ja)
KR (1) KR102339259B1 (ja)
CN (1) CN107073867B (ja)
BR (1) BR112017003730B1 (ja)
ES (1) ES2717574T3 (ja)
MX (1) MX2017003248A (ja)
PL (1) PL3192650T3 (ja)
WO (1) WO2016039445A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108215237A (zh) * 2018-02-26 2018-06-29 蒋丰亮 一种用于pe大口径纤维增强管道的材料挤出及压型装置
JP2018521872A (ja) * 2016-01-15 2018-08-09 アルケマ フランス バイオ燃料中への耐溶出性が向上した多層管状構造体および当該多層管状構造体の使用
JP2018197562A (ja) * 2017-05-23 2018-12-13 宇部興産株式会社 積層チューブ
JP2018197561A (ja) * 2017-05-23 2018-12-13 宇部興産株式会社 積層チューブ
KR20200061375A (ko) * 2017-09-29 2020-06-02 우베 고산 가부시키가이샤 적층 튜브
JP2021514416A (ja) * 2018-02-21 2021-06-10 アルケマ フランス タンク内への燃料輸送を意図とした環状管状構造物
JP2021531431A (ja) * 2018-07-09 2021-11-18 ノルマ ジャーマニー ゲーエムベーハー 流体ライン
JP2022009148A (ja) * 2017-05-23 2022-01-14 宇部興産株式会社 積層チューブ
EP3406440B1 (en) * 2017-05-23 2022-11-02 Cooper-Standard Automotive (Deutschland) GmbH Multilayer tube for guiding fuel fluid and method of manufacturing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046827B1 (fr) 2016-01-15 2018-05-25 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
FR3047008B1 (fr) * 2016-01-25 2019-10-25 Arkema France Utilisation d'un copolymere de fluorure de vinylidene pour conferer a un film des proprietes d'adhesion
JP2019533756A (ja) * 2016-11-11 2019-11-21 イーストマン ケミカル カンパニー セルロースエステルとエチレンビニルアセテートの組成物並びにこれらの組成物を用いて製造される物品
CA3073695A1 (en) * 2017-08-25 2019-02-28 Lubrizol Advanced Materials, Inc. Multi-layer, flexible tubular article for fuel line applications
CN111183023B (zh) * 2017-09-29 2022-02-25 宇部兴产株式会社 层叠管
CN107842654A (zh) * 2017-09-30 2018-03-27 镇江皮埃纳米科技有限公司 一种耐高温管
EP3501820B1 (de) * 2017-12-22 2020-04-29 EMS-Patent AG Flexible kunststoffleitung sowie verfahren zu deren herstellung und deren verwendungen
TWI805806B (zh) * 2018-07-18 2023-06-21 日商可樂麗股份有限公司 多層構造體、多層構造體之製造方法及包裝材料
BR112021002707A2 (pt) * 2018-08-24 2021-05-11 Kuraray Co., Ltd composição de poliamida e produto moldado da referida composição de poliamida
JPWO2020137066A1 (ja) * 2018-12-26 2021-11-04 東レ株式会社 複合半透膜
CN109749434A (zh) * 2019-01-04 2019-05-14 天长市雷克斯新能源科技有限公司 一种地暖用全塑复合管的制备方法
US20220268375A1 (en) * 2019-07-25 2022-08-25 Shawcor Ltd. Multi-layer coated steel pipe comprising an adnesive or epoxy layer
BR102019018608A2 (pt) * 2019-09-06 2021-03-16 Sumitomo Riko Company Limited Tubo de múltiplas camadas aplicado em freio a ar
CN114514262A (zh) * 2019-11-11 2022-05-17 株式会社吴羽 聚酰胺的制造方法以及聚酰胺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310365A (ja) * 1999-03-16 2000-11-07 Atofina ガソリン輸送用ポリアミドベースの帯電防止チューブ
JP2002160314A (ja) * 2000-08-02 2002-06-04 Ti Group Automotive Systems (Fuldabruck) Gmbh 車両配管

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4001125C1 (ja) 1989-11-20 1990-12-13 Technoform Caprano + Brunnhofer Kg, 3501 Fuldabrueck, De
JPH085167B2 (ja) 1992-01-06 1996-01-24 パイロット インダストリーズ、インコーポレイテッド フルオロポリマー複合材料製チューブおよびその製造方法
JPH0718035A (ja) 1993-06-30 1995-01-20 Asahi Glass Co Ltd 含フッ素接着性ポリマーおよびそれを用いた積層体
JPH0725954A (ja) 1993-07-09 1995-01-27 Asahi Glass Co Ltd 接着性弗素ゴムおよびそれを用いた積層体
JPH0725952A (ja) 1993-07-09 1995-01-27 Asahi Glass Co Ltd 接着性フッ素ゴムおよびそれを用いた積層体
JPH07173447A (ja) 1993-10-28 1995-07-11 Asahi Glass Co Ltd 接着性含フッ素ポリマーおよびそれを用いた積層体
JP3605861B2 (ja) 1993-10-28 2004-12-22 旭硝子株式会社 接着性テトラフルオロエチレン−エチレン系共重合体の積層体およびその製造方法
JPH07173230A (ja) 1993-10-28 1995-07-11 Asahi Glass Co Ltd 接着性含フッ素ポリマーおよびそれを用いた積層体
US5576106A (en) 1994-07-28 1996-11-19 E. I. Du Pont De Nemours And Company Grafted fluoropolymer powders
FR2791993B1 (fr) * 1999-03-26 2001-06-08 Atochem Elf Sa Compositions thermoplastiques a base de polyamide
JP2001150609A (ja) * 1999-12-01 2001-06-05 Kuraray Co Ltd 多層構造体
US6555243B2 (en) 2000-06-09 2003-04-29 Ems-Chemie Ag Thermoplastic multilayer composites
DE10064333A1 (de) 2000-12-21 2002-06-27 Degussa Mehrschichtverbund mit einer EVOH-Schicht
ES2320201T3 (es) 2001-03-23 2009-05-20 Arkema France Tubo de varias capas de materia plastica para la transferencia de fluidos.
CN1259185C (zh) * 2001-09-06 2006-06-14 Ti集团车辆系统(富尔达布吕克)公司 通过共挤出制成的油料等用的汽车管路
DE60212924T2 (de) * 2001-11-23 2007-03-01 Arkema France Rohr aus vulkanisiertem Elastomer mit Barriereschichten aus Polyamid und aus EVOH
JP2005178076A (ja) * 2003-12-17 2005-07-07 Ube Ind Ltd 積層チュ−ブ
EP1710482B1 (en) 2004-01-27 2013-04-17 Ube Industries, Ltd. Laminated tube
CA2564759C (en) * 2004-04-27 2013-11-12 Ube Industries, Ltd. Multilayer structure
JP4480718B2 (ja) * 2004-04-27 2010-06-16 宇部興産株式会社 高温薬液及び/又はガス搬送用積層ホース
DE102004048776A1 (de) * 2004-10-07 2006-04-13 Degussa Ag Mehrschichtverbund mit EVOH-Schicht und Schutzschicht
FR2879716B1 (fr) * 2004-12-21 2009-03-06 Arkema Sa Tube multicouche a base de polyamide pour le transfert de fluides
US20090148641A1 (en) * 2005-03-31 2009-06-11 Kuraray Co., Ltd. Multilayer Structure
WO2008038310A1 (en) * 2006-09-26 2008-04-03 Dytech-Dynamic Fluid Technologies S.P.A. Multi-layer tube for conducting fuel in a motor vehicle
FR2906861B1 (fr) 2006-10-09 2008-12-05 Nobel Plastiques Soc Par Actio Canalisation multicouche polymere fluore/evoh/ppa pour le transport d'hydrogene et ensemble de production d'electricite par pile a combustible comportant une telle canalisation
FR2909433B1 (fr) * 2006-11-30 2014-01-10 Arkema France Utilisation d'une structure multicouche pour la fabrication de conduites de gaz, notamment de methane.
FR2928102B1 (fr) * 2008-03-03 2012-10-19 Arkema France Structure multicouche comprenant au moins une couche stabilisee
JP4660584B2 (ja) 2008-09-25 2011-03-30 ジヤトコ株式会社 無段変速機及びその変速制御方法
JP2010208331A (ja) * 2010-03-31 2010-09-24 Kuraray Co Ltd 多層構造体及びその製造方法
JP2015104830A (ja) * 2013-11-29 2015-06-08 宇部興産株式会社 積層チューブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310365A (ja) * 1999-03-16 2000-11-07 Atofina ガソリン輸送用ポリアミドベースの帯電防止チューブ
JP2002160314A (ja) * 2000-08-02 2002-06-04 Ti Group Automotive Systems (Fuldabruck) Gmbh 車両配管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3192650A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059238A (ja) * 2016-01-15 2019-04-18 アルケマ フランス バイオ燃料中への耐溶出性が向上した多層管状構造体および当該多層管状構造体の使用
JP2018521872A (ja) * 2016-01-15 2018-08-09 アルケマ フランス バイオ燃料中への耐溶出性が向上した多層管状構造体および当該多層管状構造体の使用
JP7399150B2 (ja) 2016-01-15 2023-12-15 アルケマ フランス バイオ燃料中への耐溶出性が向上した多層管状構造体および当該多層管状構造体の使用
JP2022058361A (ja) * 2016-01-15 2022-04-12 アルケマ フランス バイオ燃料中への耐溶出性が向上した多層管状構造体および当該多層管状構造体の使用
JP2018197561A (ja) * 2017-05-23 2018-12-13 宇部興産株式会社 積層チューブ
JP2022009148A (ja) * 2017-05-23 2022-01-14 宇部興産株式会社 積層チューブ
JP7157395B2 (ja) 2017-05-23 2022-10-20 Ube株式会社 積層チューブ
EP3406440B1 (en) * 2017-05-23 2022-11-02 Cooper-Standard Automotive (Deutschland) GmbH Multilayer tube for guiding fuel fluid and method of manufacturing same
JP2018197562A (ja) * 2017-05-23 2018-12-13 宇部興産株式会社 積層チューブ
KR20200061375A (ko) * 2017-09-29 2020-06-02 우베 고산 가부시키가이샤 적층 튜브
KR102490728B1 (ko) 2017-09-29 2023-01-20 유비이 가부시키가이샤 적층 튜브
JP2021514416A (ja) * 2018-02-21 2021-06-10 アルケマ フランス タンク内への燃料輸送を意図とした環状管状構造物
CN108215237A (zh) * 2018-02-26 2018-06-29 蒋丰亮 一种用于pe大口径纤维增强管道的材料挤出及压型装置
JP2021531431A (ja) * 2018-07-09 2021-11-18 ノルマ ジャーマニー ゲーエムベーハー 流体ライン
JP7150129B2 (ja) 2018-07-09 2022-10-07 ノルマ ジャーマニー ゲーエムベーハー 流体ライン

Also Published As

Publication number Publication date
MX2017003248A (es) 2017-06-29
EP3192650A4 (en) 2018-05-16
CN107073867B (zh) 2019-08-16
US10663092B2 (en) 2020-05-26
US20170261133A1 (en) 2017-09-14
ES2717574T3 (es) 2019-06-21
BR112017003730B1 (pt) 2021-09-14
JPWO2016039445A1 (ja) 2017-06-22
JP6575524B2 (ja) 2019-09-18
EP3192650B1 (en) 2019-01-23
BR112017003730A2 (pt) 2017-12-05
KR20170055508A (ko) 2017-05-19
CN107073867A (zh) 2017-08-18
KR102339259B1 (ko) 2021-12-14
PL3192650T3 (pl) 2019-06-28
EP3461631A1 (en) 2019-04-03
EP3192650A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6575524B2 (ja) 積層チューブ
JP7322983B2 (ja) 積層チューブ
US11254082B2 (en) Multi-layer tube
JP6255823B2 (ja) 積層チューブ
JP6202255B2 (ja) 積層チューブ
JP2015104830A (ja) 積層チューブ
JP2014240139A (ja) 積層チューブ
JP2014240149A (ja) 積層チューブ
JP6455075B2 (ja) 積層チューブ
JP6474952B2 (ja) 積層構造体
JP6299943B2 (ja) 積層チューブ
JP6583648B2 (ja) 積層構造体
JP6255824B2 (ja) 積層チューブ
JP2014240135A (ja) 積層構造体
JP7157395B2 (ja) 積層チューブ
JP6347172B2 (ja) 積層チューブ
JP2017193101A (ja) 積層チューブ
JP2014240138A (ja) 積層チューブ
JP2015054432A (ja) 積層チューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547512

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507611

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017003730

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015839705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015839705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/003248

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009384

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017003730

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170222