WO2016039240A1 - 水分解用光触媒電極 - Google Patents

水分解用光触媒電極 Download PDF

Info

Publication number
WO2016039240A1
WO2016039240A1 PCT/JP2015/074985 JP2015074985W WO2016039240A1 WO 2016039240 A1 WO2016039240 A1 WO 2016039240A1 JP 2015074985 W JP2015074985 W JP 2015074985W WO 2016039240 A1 WO2016039240 A1 WO 2016039240A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalyst
electrode
current collecting
vapor deposition
Prior art date
Application number
PCT/JP2015/074985
Other languages
English (en)
French (fr)
Inventor
知里 片山
一成 堂免
工藤 昭彦
亮 新城
永波 况
真治 山口
紘一郎 植田
Original Assignee
富士フイルム株式会社
人工光合成化学プロセス技術研究組合
国立大学法人東京大学
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 人工光合成化学プロセス技術研究組合, 国立大学法人東京大学, 学校法人東京理科大学 filed Critical 富士フイルム株式会社
Publication of WO2016039240A1 publication Critical patent/WO2016039240A1/ja
Priority to US15/455,983 priority Critical patent/US20170183787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/33
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a photocatalytic electrode for water splitting.
  • Non-Patent Document 1 discloses a method for forming a photocatalytic electrode for water splitting by a particle transfer method. More specifically, in the above particle transfer method, first, a photocatalyst layer containing photocatalyst particles is arranged on a substrate, a current collecting layer is further arranged on the photocatalyst layer, and then the current collecting layer is peeled off. By doing so, a water splitting photocatalyst electrode including a photocatalyst layer and a current collecting layer is formed. In Non-Patent Document 1, the current collection layer is formed by a sputtering method.
  • an object of the present invention is to provide a photocatalytic electrode for water splitting that exhibits high photocurrent density and reduced dark current.
  • the inventors of the present invention have conducted intensive studies on the problems of the prior art and found that the above-described problems can be solved by forming the current collecting layer by vapor deposition. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a photocatalytic electrode for water splitting comprising: a current collecting layer disposed on the photocatalyst layer and formed by vapor deposition.
  • a contact layer containing a semiconductor or a good conductor Between the photocatalytic electrode for water splitting according to (1), wherein the contact layer is formed by a vapor deposition method.
  • the current collecting layer is formed by a vapor deposition method. Although details for obtaining the effects of the present invention are unknown, it is presumed as follows. First, in the prior art, the current collecting layer was formed on the photocatalyst layer mainly by a sputtering method, but in this method, the photocatalyst material in the photocatalyst layer is damaged by plasma during sputtering, and The current collecting layer itself is also damaged by the plasma and the resistance increases, and various characteristics are considered to have deteriorated.
  • the present inventors adopted a vapor deposition method as a method for forming the current collecting layer, so that damage to the photocatalyst material and the current collecting layer itself during the current collecting layer formation is suppressed, and as a result, the photocurrent density is reduced. It is estimated that the increase and the reduction of dark current were realized. Furthermore, when tin is used as the material for the current collecting layer, a surface oxide film is difficult to form compared to titanium, so the oxide film between the photocatalyst layer becomes thinner, resulting in an increase in photocurrent density and dark current. It is estimated that the reduction of
  • a water splitting photocatalyst electrode (hereinafter, also simply referred to as “electrode”) 10 includes a photocatalyst layer 12 and a current collecting layer 14.
  • the electrode 10 electrons generated in the photocatalytic layer 12 by light irradiation flow to the current collecting layer 14.
  • the electrode 10 is often irradiated with light from the direction of the white arrow.
  • the surface of the photocatalyst layer 12 opposite to the current collecting layer 14 is the light receiving surface.
  • the electrode 100 may further include a contact layer 16 between the photocatalyst layer 12 and the current collecting layer 14. .
  • each member which comprises an electrode is explained in full detail.
  • the type of the photocatalyst is not particularly limited.
  • a photocatalyst on the hydrogen generation side that reduces hydrogen ions or water specifically, SrTiO 3 , LaTi 2 O 7 , SnNb 2 O 6 , CuBi 2 O 4 , TiO 2 doped with Cr, Ni, Sb, Nb, Th, Rh, Sb, etc., SrTiO 3 doped with Cr, Sb, Ta, Rh, Na, Ga, K, La, etc., La doped with Cr, Fe, etc.
  • Oxides such as 2 Ti 2 O 7 or SnNb 2 O 6 ; LaTiO 2 N, BaNbO 2 N, CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N 2 , Zr 1 + x GeN 2 O x , Ga 1-x Zn x N 1-x Oxynitride compounds such as O x (x represents a numerical value of 0 to 1, hereinafter the same); Nitride compounds such as Ta 3 N 5 , GaN, Mg doped GaN, Ge 3 N 4 ; ZnS, Cu, Ni, ZnS doped with Pb, CdS doped with Ag, Cd x Zn 1-x S, CuInS 2, CuIn 5 S 8, CuGaS 2, CuGa 3 S 5, CuGa 5 S 8, AgGaS 2, AgGa 3 S 5 , AgGa 5 S 8 , AgGa 0.9 In 0.1 S 2 , AgIn 5 S 8
  • photocatalyst for example, as a photocatalyst on the oxygen generation side that oxidizes water molecules or hydroxide ions to oxygen molecules, specifically, Cr, Ni, Sb, Nb, Th, Rh , Sb doped TiO 2 , WO 3 , BiWO 6 , Bi 2 MoO 6 , In 2 O 3 (ZnO) 3 , PbBi 2 Nb 2 O 9 , BiVO 4 , Ag 3 VO 4 , AgLi 1/3 Ti Oxides such as 2/3 O 2 , AgLi 1/3 Sn 2/3 O 2 ; LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, TaON, CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N 2 , Zr 1+ 2 O x, oxynitride compounds such as Ga 1-x Z
  • an oxynitride compound, a nitride compound, an oxysulfide compound, a sulfide compound, an oxyselenide compound, or a selenide compound is preferable, and an oxynitride compound, a nitride compound, an oxysulfide compound, or a selenide compound Is more preferable.
  • a visible light responsive photocatalyst is more preferable.
  • the photocatalyst can be synthesized by a conventionally known method.
  • the average particle diameter of the primary particles of the photocatalyst particles contained in the photocatalyst layer is not particularly limited, but since the photoelectric conversion efficiency is high, the lower limit is preferably 1 nm or more, more preferably 10 nm or more, further preferably 50 nm or more, and the upper limit. Is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, even more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the primary particle refers to the smallest unit particle constituting the powder, and the average particle diameter is 100 arbitrary photocatalyst particles observed by TEM (Transmission Electron Microscopy) or SEM (Scanning Electron Microscope). The particle diameter (diameter) was measured and the arithmetic average of them was obtained. If the particle shape is not a perfect circle, the major axis is measured.
  • the photocatalyst particles may carry a promoter as required.
  • Co-catalysts include Group 2-14 metals, intermetallic compounds of these metals, alloys, or oxides, composite oxides, nitrides, oxynitrides, sulfides, oxysulfides, or these It is preferable to use any one of the following mixtures.
  • the “intermetallic compound” is a compound formed from two or more kinds of metal elements, and the atomic ratio of the components constituting the intermetallic compound is not necessarily a stoichiometric ratio, but has a wide composition range. Say.
  • These oxides, composite oxides, nitrides, oxynitrides, sulfides, oxysulfides are metals in Group 2-14, intermetallic compounds of these metals, or oxides and composites of alloys. Oxides, nitrides, oxynitrides, sulfides, oxysulfides. “A mixture thereof” refers to a mixture of any two or more of the compounds exemplified above.
  • the current collecting layer plays a role of flowing electrons generated in the photocatalytic layer.
  • the current collecting layer is a layer formed by vapor deposition on the photocatalyst layer. That is, the current collecting layer is a layer formed by vapor deposition on the previously formed photocatalyst layer.
  • the material to be laminated (or film-formed) is heated in a vacuum, vaporized or sublimated, and attached to the surface of a substrate (deposited member) placed at a distant position. It is a method of forming (vacuum evaporation method).
  • the vapor deposition method is suitable in that the layer can be formed so as not to damage the previously formed layer (the photocatalyst layer).
  • known types for example, resistance heating vapor deposition method, ion beam vapor deposition method
  • the type varies depending on the heating method (heat source), for example, resistance heating vapor deposition method, high frequency heating vapor deposition method
  • Examples include an electron beam vapor deposition method and an ion beam vapor deposition method (ion beam assist vapor deposition method).
  • the film formation rate in the vapor deposition method is not particularly limited, and various film formation rates are set depending on the material used. From the viewpoint of the characteristics and productivity of the current collecting layer to be formed, 0.5 to 500 nm / S is preferable, and 1 to 50 nm / s is more preferable.
  • the material constituting the current collecting layer is not particularly limited, and may be any material that can be formed by the above-described vapor deposition method and exhibits conductive characteristics. Examples thereof include a single metal or an alloy thereof. Specific examples of the material constituting the current collecting layer include Au, Al, Cu, Cd, Co, Cr, Fe, Ga, Ge, Hg, Ir, In, Mn, Mo, Nb, Ni, Pb, and Pd.
  • the current collecting layer preferably contains tin (Sn) or gold (Au), and tin is more preferred in that the material in the current collecting layer hardly oxidizes and the conductive properties are more maintained.
  • the resistance value of the current collecting layer is not particularly limited, but is preferably 4.0 ⁇ / ⁇ or less, and preferably 3.0 ⁇ / ⁇ in terms of more excellent characteristics (photocurrent density, dark current) of the water splitting photocatalyst electrode. The following is more preferable.
  • the lower limit is not particularly limited, but is often 0.01 ⁇ / ⁇ or more.
  • the method for measuring the resistance value of the current collecting layer is to measure the resistance value of the current collecting layer formed on the glass substrate by a 4-terminal 4-probe method (Mitsubishi Chemical Analytech Loresta GP MCP-T610, probe PSP). .
  • the thickness of the current collecting layer is not particularly limited, but is preferably 0.1 ⁇ m to 10 mm, and more preferably 1 ⁇ m to 2 mm, from the viewpoint of the balance between conductive characteristics and cost.
  • the shape of the current collecting layer is not particularly limited, and may be any shape that can be produced by the above-described vapor deposition method. For example, a punching metal shape, a mesh shape, a lattice shape, or a porous body having through pores It may be a thing.
  • the contact layer is an arbitrary layer that may be disposed between the photocatalyst layer and the current collecting layer.
  • the conductive path between the photocatalyst layer and the current collecting layer can be increased, and the photoelectric conversion efficiency can be improved.
  • the photocatalyst layer and the contact layer can be firmly bonded, and the photocatalyst layer can be prevented from easily falling off from the contact layer.
  • the contact layer may have a role as a strength reinforcing layer of the current collecting layer. For example, when tin is used as the current collecting layer, the effect is great. Note that when the conductive path between the photocatalyst layer and the current collecting layer is sufficient and the adhesiveness is excellent, the contact layer may not be provided.
  • the materials constituting the contact layer include Au, Al, Cu, Cd, Co, Cr, Fe, Ga, Ge, Hg, Ir, In, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Ru, Re , Rh, Sb, Sn, Ta, Ti, V, W, Zn, TiN, TiO 2 , Ta 3 N 5 , TaON, ZnO, SnO 2 , Indium Tin Oxide (ITO), SnO, TiO 2 (: Nb), SrTiO 3 (: Nb), fluorine-doped tin oxide (FTO), CuAlO 2 , CuGaO 2 , CuInO 2 , ZnO (: Al), ZnO (: Ga), ZnO (: In), GaN, GaN (: C), GaN (: Si), GaN (: Sn), C, and alloys and mixtures thereof.
  • the method for producing the water-splitting photocatalyst electrode is not particularly limited as long as the water-splitting photocatalyst electrode of the above-described aspect can be produced, but the characteristics (photocurrent density and dark current) of the water-splitting photocatalyst electrode to be formed are more excellent.
  • the manufacturing method described below with reference to FIG. 3 is preferable. 3 shows a method for manufacturing the water splitting photocatalyst electrode 100 including the photocatalyst layer 12, the contact layer 16, and the current collecting layer 14.
  • the step S2 contact
  • the layer forming step may not be performed.
  • Step S1 is a step of forming a photocatalyst layer.
  • the method for forming the photocatalyst layer is not particularly limited, and examples thereof include a method for forming the photocatalyst layer by kneading photocatalyst particles and a binder and pressure molding, and a method for laminating the photocatalyst layer on the first substrate. It is done. In particular, a strong layer can be formed without using a binder, and impurities are difficult to mix between the photocatalyst layer and the contact layer (or current collecting layer). A method of forming a photocatalyst layer by laminating is preferable. In FIG.
  • the photocatalyst layer 12 is formed on the first substrate 20.
  • the photocatalyst layer 12 includes photocatalyst particles 18.
  • As the first base material used in this step it is preferable to select a base material made of a material that is inert to the reaction with the photocatalyst and is excellent in chemical stability and heat resistance. Ti plate and Cu plate are preferable. Note that the surface of the first substrate on which the photocatalytic layer is disposed may be subjected to polishing treatment and / or cleaning treatment.
  • the method for forming the photocatalyst layer is not particularly limited.
  • the photocatalyst particles are dispersed in a solvent to form a suspension, and the suspension is applied on the first substrate and dried as necessary. be able to.
  • the solvent in the suspension include water; alcohols such as methanol and ethanol; ketones such as acetone; and aromatics such as benzene, toluene and xylene.
  • the photocatalyst particles can be uniformly dispersed in the solvent by performing ultrasonic treatment.
  • Step S3 is a step of forming a current collecting layer on the surface opposite to the photocatalyst layer side of the contact layer formed in step S2. More specifically, in this step, the current collecting layer 14 is formed over the contact layer 16 as shown in FIG.
  • the vapor deposition method is employed as a method of forming the current collecting layer. The vapor deposition method is as described above.
  • Step S4 is a step of removing photocatalyst particles that are not in contact with the contact layer.
  • the removal method is not particularly limited, for example, a cleaning step S4c that removes the photocatalyst particles using a cleaning liquid such as an ultrasonic cleaning process is applicable.
  • the cleaning liquid examples include water, electrolyte aqueous solution; alcohol such as methanol and ethanol; aliphatic hydrocarbon such as pentane and hexane; aromatic hydrocarbon such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; Examples include esters; halides such as fluorocarbons; ethers such as diethyl ether and tetrahydrofuran; sulfoxides such as dimethyl sulfoxide; nitrogen-containing compounds such as dimethylformamide. Of these, water or a water-soluble compound such as methanol, ethanol, and tetrahydrofuran is preferred.
  • the method for removing the first base material performed in the base material removal step S4b is not particularly limited.
  • the method for mechanically removing the first base material or the photocatalyst particle stacking part by immersing in water is not particularly limited.
  • the method for mechanically removing the first base material or the photocatalyst particle stacking part by immersing in water is not particularly limited.
  • a method of peeling the substrate is preferable because the possibility of damage to the photocatalyst layer is low.
  • the base material removal step S4b (FIG. 3E).
  • the photocatalyst particles that are in contact with the contact layer are physically bonded to the contact layer to some extent, they remain on the contact layer side without falling off when the first substrate is removed. It will be.
  • the non-contact photocatalyst particles that could not be removed in the substrate removal step S4b are preferably subjected to further removal treatment in the washing step S4c.
  • the photocatalyst electrode for water splitting provided with the photocatalyst layer and the current collecting layer described above and a contact layer which is an optional component produces the excellent effects described above.
  • the photocatalytic electrode for water splitting can be suitably used as a so-called anode electrode.
  • the light to be irradiated may be any light that can cause a photodecomposition reaction. Specifically, visible light such as sunlight, ultraviolet light, infrared light, and the like can be used. Sunlight with an unlimited amount is preferred.
  • the water-splitting apparatus provided with the said photocatalyst electrode for water splitting shows the outstanding characteristic
  • structures (for example, counter electrodes etc.) other than the photocatalyst electrode for water splitting can use a well-known structure.
  • the obtained photocatalyst powder was pulverized in an agate mortar and confirmed to be a single phase of titanium oxide (rutile structure) from XRD measurement.
  • the resulting photocatalyst powder 0.05g poured into a magnetic evaporating dish, water 500 ⁇ L and cobalt nitrate: Co (NO 3) (as Co) 0.344 mol / L were dissolved 2 ⁇ 6H 2 O (Wako Pure Chemical) solution was evaporated to dryness at 120 ° C. on a hot plate and then baked in an electric furnace at 300 ° C. for 2 hours. SEM observation confirmed that the cocatalyst (cobalt oxide) was supported on the photocatalyst powder.
  • the obtained Ba 5 Nb 4 O 15 was subjected to nitriding treatment at 850 ° C. for 50 hours in a 100% ammonia stream (500 ml / min) in an electric tube furnace. Thereafter, the surface of the product was washed with 1M nitric acid to obtain barium niobium oxynitride (BaNbO 2 N).
  • the magnetic evaporating dish was heated with water vapor rising from a beaker containing boiling water, and stirred with a glass rod.
  • the obtained powder was heat-treated at 500 ° C. for 1 hour under an ammonia stream (200 ml / min), and further heat-treated at 200 ° C. for 1 hour under an oxygen atmosphere to produce a photocatalyst powder.
  • SEM-EDX device name: Hitachi High-Technologies Corporation SU-8020
  • the promoter cobalt oxide
  • the obtained solution was sealed in a 100 ml Teflon (registered trademark) inner cylinder stainless steel autoclave and subjected to microwave hydrothermal reaction at 200 ° C. for 60 minutes to produce BiVO 4 .
  • the obtained photocatalyst powder was confirmed to be a single phase of BiVO 4 from XRD measurement.
  • Titanium oxide (trade name: TIO14BP, manufactured by High-Purity Chemical Laboratory) was suspended in a low boiling point organic solvent (solvent: isopropyl alcohol) to prepare a suspension.
  • concentration of the photocatalyst powder (titanium oxide) in suspension was 1.66 mass%.
  • the obtained suspension was applied onto a substrate (float plate glass (FL glass)) and dried to prepare a substrate A with a photocatalyst layer in which a photocatalyst layer was disposed on the substrate.
  • Examples 1 to 6 On the photocatalyst layer of the base material A with the photocatalyst layer, a titanium layer (thickness 600 nm) serving as a contact layer was laminated by an evaporation method. As the apparatus, VPC-260F manufactured by ULVAC, Inc. was used so that the film formation rate was 5 nm / s. Next, a tin layer (4.4 ⁇ m) serving as a current collecting layer was laminated on the contact layer by a vapor deposition method. As the apparatus, VPC-260F manufactured by ULVAC, Inc. was used so that the film formation rate was 5 nm / s.
  • the thickness of the photocatalyst layer in the substrates A to F with the photocatalyst layer obtained above was about 0.5 to 2.0 ⁇ m.
  • the resistance values of the titanium layer and the tin layer when directly forming a film on the glass substrate under the same conditions as the above deposition conditions were 2.8 ⁇ / ⁇ and 0.4 ⁇ / ⁇ , respectively.
  • Example 7 The photocatalyst powder (photocatalyst particles) produced in Synthesis Example 6 was suspended in a low boiling point organic solvent (solvent: methanol) to prepare a suspension. The concentration of the photocatalyst powder (BaTaO 2 N) in the suspension was 6.3% by mass. Next, the obtained suspension was applied onto a base material (float plate glass (FL glass)) and dried to place a photocatalyst layer (thickness: 0.5 to 2.0 ⁇ m) on the base material. A substrate G with a photocatalyst layer was produced.
  • solvent methanol
  • a titanium layer (thickness 600 nm) to be a contact layer was laminated by a vapor deposition method.
  • VPC-260F manufactured by ULVAC, Inc. was used so that the film formation rate was 5 nm / s.
  • a tin layer (4.4 ⁇ m) serving as a current collecting layer was laminated on the contact layer by a vapor deposition method.
  • VPC-260F manufactured by ULVAC, Inc. was used so that the film formation rate was 5 nm / s.
  • the metal film (laminated photocatalyst layer, contact layer and current collecting layer) is peeled off from the base material (float plate glass (FL glass)), and ultrasonically washed in pure water for 10 minutes.
  • (BaTaO 2 N electrode) was obtained.
  • a co-catalyst was applied by applying 1.1 V (vs Ag / AgCl) for 100 seconds by a three-electrode electrochemical measurement method using a BaTaO 2 N electrode as a working electrode, an Ag / AgCl electrode as a reference electrode, and a Pt line as a counter electrode.
  • a BaTaO 2 N electrode as a working electrode
  • an Ag / AgCl electrode as a reference electrode
  • a Pt line as a counter electrode.
  • Example 8 On the photocatalyst layer of the base material H with the photocatalyst layer, a titanium layer (thickness 1 ⁇ m) to be a contact layer was laminated by a vapor deposition method.
  • VPC-260F manufactured by ULVAC, Inc. was used so that the film formation rate was 5 nm / s.
  • a gold layer (2 ⁇ m) serving as a current collecting layer was laminated on the contact layer by a vapor deposition method.
  • the apparatus used was ULVAC KIKOH Co., Ltd. (VPC-260F) so that the film formation rate was 5 nm / s.
  • the metal film laminated photocatalyst layer, contact layer and current collecting layer
  • is peeled off from the base material float plate glass (FL glass)
  • a titanium layer (thickness 4 ⁇ m) serving as a current collecting layer was laminated by a sputtering method.
  • the apparatus used was an ULVAC CS-S, and the substrate temperature was 300 ° C.
  • a photocatalytic electrode for water splitting was produced according to the same procedure as in Examples 1 to 6.
  • a photocatalyst electrode for water splitting was produced according to the same procedure as described above except that the substrates B to F with a photocatalyst layer were used in place of the substrate A with a photocatalyst layer.
  • the resistance value of the titanium layer when directly forming a film on the glass substrate under the same conditions as the above deposition conditions was 6.8 ⁇ / ⁇ .
  • the photocurrent density (mA / cm 2 ) at a measurement potential of 1.2 V (vs. RHE) was measured.
  • the dark current is a current value when light is not irradiated, and was evaluated at measurement potentials of 1.2 V (vs. RHE) and 1.4 V (vs. RHE).
  • Table 1 “Dark Current Density Evaluation 1” represents an evaluation at a measurement potential of 1.2 V (vs. RHE), and “Dark Current Density Evaluation 2” represents an evaluation at a measurement potential of 1.4 V (vs. RHE).
  • Example 1 in which the current collecting layer was produced by the vapor deposition method had higher photocurrent density and generation of dark current than Comparative Example 1 in which the current collecting layer was produced by the sputtering method. was more suppressed. Similar results were confirmed from comparison between Examples 2 to 6 and Comparative Examples 2 to 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 本発明は、高い光電流密度を示すと共に、暗電流が低減された、水分解用光触媒電極を提供する。本発明の水分解用光触媒電極は、光触媒層と、光触媒層上に配置され、蒸着法にて形成される集電層と、を有する。

Description

水分解用光触媒電極
 本発明は、水分解用光触媒電極に関する。
 炭酸ガス排出削減、エネルギーのクリーン化の観点から、太陽エネルギーを利用して、光触媒により水を分解して、水素や酸素を製造する技術に注目が集まっている。
 光触媒による水分解反応に関する研究は数多くなされており、例えば、非特許文献1においては粒子転写法(particle transfer method)によって水分解用光触媒電極を形成する方法が開示されている。より具体的には、上記粒子転写法においては、まず、基材上に光触媒粒子を含む光触媒層を配置して、光触媒層上にさらに集電層を配置して、その後、集電層を剥離することにより、光触媒層と集電層とを含む水分解用光触媒電極が形成される。なお、非特許文献1においては、上記集電層の形成は、スパッタリング法によって実施されている。
Chem.Sci.,2013,4,1120-1124
 一方、近年、より効率よく水分解を進めることが求められており、光触媒電極の特性に関してより一層の向上が求められている。特に、より高い光電流密度を実現することが求められると共に、暗電流のより一層の低減も求められている。
 本発明者らが、非特許文献1に記載されるような、スパッタリングにて集電層を形成し、得られた水分解用光触媒電極に関して上記特性(光電流密度、暗電流)を評価したところ、昨今要求されるレベルを必ずしも満たしておらず、さらなる改良が必要であった。
 本発明は、上記実情に鑑みて、高い光電流密度を示すと共に、暗電流が低減された、水分解用光触媒電極を提供することを課題とする。
 本発明者らは、従来技術の問題点について鋭意検討を行ったところ、集電層を蒸着法にて形成することにより、上記課題を解決できることを見出した。
 つまり、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 光触媒層と、
 光触媒層上に配置され、蒸着法にて形成される集電層と、を有する水分解用光触媒電極。
(2) 光触媒層と集電層との間に、さらに、半導体または良導体を含むコンタクト層を有し、
 コンタクト層が蒸着法にて形成される、(1)に記載の水分解用光触媒電極。
(3) 蒸着法が、抵抗加熱蒸着法またはイオンビーム蒸着法である、(1)または(2)に記載の水分解用光触媒電極。
(4) 集電層が、錫または金を含む、(1)~(3)のいずれかに記載の水分解用光触媒電極。
(5) 集電層の抵抗値が、4.0Ω/以下である、(1)~(4)のいずれかに記載の水分解用光触媒電極。
 本発明によれば、高い光電流密度を示すと共に、暗電流が低減された、水分解用光触媒電極を提供することができる。
本発明の水分解用光触媒電極の一実施形態の模式的断面図である。 本発明の水分解用光触媒電極の他の実施形態の模式的断面図である。 本発明の水分解用光触媒電極の製造方法の一実施形態を工程順に示す模式的断面図である。
 以下に、本発明の水分解用光触媒電極について詳述する。
 まず、本発明の従来技術と比較した特徴点の一つとしては、集電層を蒸着法にて形成している点が挙げられる。本発明の効果が得られる詳細は不明だが、以下のように推測される。まず、従来技術においては主にスパッタリング法にて光触媒層上に集電層を形成していたが、この方法ではスパッタリングの際に光触媒層中の光触媒材料へ、プラズマによるダメージを与えてしまう、および、集電層自体もプラズマによるダメージを受けてしまい抵抗が上昇するなどが想定され、各種特性が悪化していたと考えられる。そこで、本発明者らは、集電層の形成方法として蒸着法を採用したところ、集電層形成の際の光触媒材料および集電層自体へのダメージが抑制され、結果として、光電流密度の上昇、および、暗電流の低減が実現されたと推測される。
 さらに、集電層の材料として錫を用いる場合は、チタンに比べ表面酸化被膜が出来にくいため、光触媒層との間の酸化被膜が薄くなり、結果として、光電流密度の上昇、および、暗電流の低減が実現されたと推測される。
 図1に、本発明の水分解用光触媒電極の一実施形態の断面図を示す。図1に示すように、水分解用光触媒電極(以後、単に「電極」とも称する)10は、光触媒層12と、集電層14とを備える。電極10においては、光照射によって光触媒層12にて生成した電子が集電層14へと流れる。なお、通常、電極10には、白抜き矢印の方向から光が照射される場合が多く、その場合、光触媒層12の集電層14とは反対側の表面が受光面となる。
 なお、水分解用光触媒電極の他の実施形態としては、図2に示すように、電極100は、光触媒層12と集電層14との間に、さらにコンタクト層16を有していてもよい。
 以下、電極を構成する各部材について詳述する。
<光触媒層>
 光触媒層は、光触媒(光触媒材料)を含む層であり、図1および図2においては、光触媒層12には光触媒粒子18が含まれる。なお、本発明は図1および図2の形態には限定されず、光触媒の形状は粒状以外であってもよい。
 光触媒の種類は特に制限されないが、例えば、水素イオンまたは水を還元する、水素発生側の光触媒としては、具体的には、SrTiO、LaTi、SnNb、CuBi、Cr,Ni,Sb,Nb,Th,Rh,SbなどをドープしたTiO、Cr,Sb,Ta,Rh,Na,Ga,K,LaなどをドープしたSrTiO、Cr,FeなどをドープしたLaTiまたはSnNbなどの酸化物;
 LaTiON、BaNbON、CaTaON、SrTaON、BaTaON、LaTaON、YTa、Zr1+xGeN、Ga1-xZn1-x(xは、0~1の数値を表す。以下、同様)などのオキシナイトライド化合物;
 Ta、GaN、MgをドープしたGaN、Geなどのナイトライド化合物;
 ZnS、Cu,Ni,PbをドープしたZnS、AgをドープしたCdS、CdZn1-xS、CuInS、CuIn、CuGaS、CuGa、CuGa、AgGaS、AgGa、AgGa、AgGa0.9In0.1、AgIn、NaInS、AgInZn、CuInGaS、Cu0.09In0.09Zn1.82、Cu0.25Ag0.25In0.5ZnS、CuZnSnSなどのサルファイド化合物;
 SmTi、LaTiCuS、LaTiAgS、LaTiAgOなどのオキシサルファイド化合物;
 La,Inを含むオキシサルファイド化合物;
 CuGaSe、CuGaSe、CuGaSe、AgCu1-xGaSe、AgCu1-xGaSe、AgCu1-xGaSe、AgGaSe、AgGaSeAgGaSe、CuInGaSeなどのセレナイド化合物;
 LaTiCuSe、LaTiAgSeなどのオキシセレナイド化合物;
 LaTiCu(S,Se1-x、LaTiAg(S,Se1-xなどの部分的にS、Seが任意の割合で混合したカルコゲナイド化合物;などが挙げられる。
 また、光触媒の他の態様としては、例えば、水分子または水酸化物イオンを酸素分子に酸化する、酸素発生側の光触媒としては、具体的には、Cr,Ni,Sb,Nb,Th,Rh,SbなどをドープしたTiOやWO、BiWO、Bi2MoO、In(ZnO)3、、PbBiNb、BiVO、AgVO、AgLi1/3Ti2/3、AgLi1/3Sn2/3などの酸化物;
 LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、TaON、CaTaON、SrTaON、BaTaON、LaTaON、YTa、Zr1+xGeN、Ga1-xZn1-xなどのオキシナイトライド化合物;
 Ta、GaN、Ge、MgおよびZrをドープしたTa、MgをドープしたGaNなどのナイトライド化合物;
 SmTi、LaTiAgSなどのオキシサルファイド化合物;
 LaTiAgSeなどのオキシセレナイド化合物;
 LaTiCu(S,Se1-x、LaTiAg(S,Se1-xなどの、部分的にS、Seが任意の割合で混在したカルコゲナイド化合物などが挙げられる。
 上記光触媒としては、オキシナイトライド化合物、ナイトライド化合物、オキシサルファイド化合物、サルファイド化合物、オキシセレナイド化合物、または、セレナイド化合物が好ましく、オキシナイトライド化合物、ナイトライド化合物、オキシサルファイド化合物、または、セレナイド化合物がより好ましい。なかでも、可視光応答型光触媒であることがさらに好ましい。
 上記光触媒は、従来公知の方法により合成することができる。
 光触媒層に含まれる光触媒粒子の一次粒子の平均粒子径は特に制限されないが、光電変換効率が高いことから、下限としては1nm以上が好ましく、10nm以上がより好ましく、50nm以上がさらに好ましく、上限としては500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましく、100μm以下が特に好ましい。
 ここで、一次粒子とは、粉体を構成する最小単位の粒子を指し、平均粒子径は、TEM(Transmission Electron Microscopy)またはSEM(Scanning Electron Microscope)にて観察された任意の100個の光触媒粒子の粒径(直径)を測定し、それらを算術平均したものである。なお、粒子形状が真円状でない場合は、長径を測定する。
 光触媒粒子には、必要に応じて、助触媒が担持されていてもよい。助触媒としては、第2~14族の金属、この金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物、あるいは、これらの混合物のいずれかを用いることが好ましい。ここで、「金属間化合物」とは、2種以上の金属元素から形成される化合物であり、金属間化合物を構成する成分原子比は必ずしも化学量論比でなく、広い組成範囲をもつものをいう。「これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物」とは、第2~14族の金属、この金属の金属間化合物、または、合金の酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。
 助触媒としては、酸素発生側の光触媒としては、好ましくは、Ti、Mn、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、In、Ta、W、Ir、PtまたはPbの金属、これらの酸化物または複合酸化物であり、より好ましくは、Mn、Co、Ni、Ru、Rh、Irの金属、これらの酸化物または複合酸化物であり、さらに好ましくは、Ir、MnO、MnO、Mn、Mn、CoO、Co、NiCo、RuO、Rh、IrOである。
 水素発生側の光触媒としては、好ましくは、Pt、Pd、Rh、Ru、Ni、Au、Fe、CrまたはMoの金属、これらの酸化物、硫化物または複合酸化物であり、より好ましくは、Pt、Pd、Rh、Ru、Ni、Au、Fe、NiO、RuO2、Cr-Rh酸化物、MoS2、Mo34、Cr23で被覆されコアシェル構造をとったPt、Rh、Ru、およびRh-Cr酸化物等であり、さらに好ましくは、Pt、Pd、Rh、Ru、Ni、NiO、RuO2、MoS2、Mo34、Cr23で被覆されコアシェル構造をとったPt、Rh、Ru、およびRh-Cr酸化物である。
 助触媒の担持量は、特に限定されないが、光触媒粒子を基準(100質量%)として、0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.05~3質量%がさらに好ましい。
 光触媒層の厚みは特に制限されないが、水分解効率がより優れる点で、0.01~3.0μmが好ましく、0.5~2.0μmがより好ましい。
<集電層>
 集電層は、上記光触媒層にて生成した電子を流す役割を果たす。
 集電層は、上記光触媒層上で蒸着法にて形成される層である。つまり、集電層は先に形成されている光触媒層上に蒸着法にて形成される層である。
 蒸着法とは、積層(または成膜)しようとする材料を真空中で加熱し、気化または昇華して、離れた位置に置かれた基材(被蒸着部材)の表面に付着させ、薄膜を形成する方法(真空蒸着法)である。蒸着法は、上述したように、先に形成されている層(上記光触媒層)に対しダメージを与えないように層を形成させ得る点で好適である。
 蒸着法としては公知の種類(例えば、抵抗加熱蒸着法、イオンビーム蒸着法)が知られているが、加熱方法(熱源)によってその種類が異なり、例えば、抵抗加熱蒸着法、高周波加熱蒸着法、電子ビーム蒸着法、イオンビーム蒸着法(イオンビームアシスト蒸着法)が挙げられる。
 蒸着法の際の成膜レートは特に制限されず、使用される材料によって種々の成膜レートが設定されるが、形成される集電層の特性および生産性の点から、0.5~500nm/sが好ましく、1~50nm/sがより好ましい。
 集電層を構成する材料は特に制限されず、上記蒸着法により形成可能であり、導電特性を示す材料であればよく、例えば、金属の単体、または、これらの合金などが挙げられる。集電層を構成する材料としては、具体的には、Au、Al、Cu、Cd、Co、Cr、Fe、Ga、Ge、Hg、Ir、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Ru、Re、Rh、Sb、Sn、Ta、Ti、V、W、Zn、TiN、TiO、Ta、TaON、ZnO、SnO、Indium Tin Oxide(ITO)、SnO、TiO(:Nb)、SrTiO(:Nb)、フッ素ドープ酸化錫(FTO)、CuAlO、CuGaO、CuInO、ZnO(:Al)、ZnO(:Ga)、ZnO(:In)、GaN、GaN(:C)、GaN(:Si)、GaN(:Sn)、C、並びに、これらの合金および混合物が挙げられる。
 なお、本明細書において、α(:β)と記載がある場合、α中にβがドープされているものを表す。例えば、TiO(:Nb)は、TiO中にNbがドープされていることを表す。
 なかでも、集電層中の材料の酸化が起きにくく、導電特性がより維持される点で、集電層は錫(Sn)または金(Au)を含むことが好ましく、錫がより好ましい。
 集電層の抵抗値は特に制限されないが、水分解用光触媒電極の特性(光電流密度、暗電流)がより優れる点で、4.0Ω/□以下であることが好ましく、3.0Ω/□以下であることがより好ましい。下限は特に制限されないが、0.01Ω/□以上の場合が多い。
 集電層の抵抗値の測定方法は、ガラス基板上に製膜した集電層の抵抗値を4端子4探針法(三菱化学アナリテック製ロレスタGP MCP-T610型、プローブPSP)で測定する。
 集電層の厚みは特に制限されないが、導電特性およびコストのバランスの点から、0.1μm~10mmが好ましく、1μm~2mmがより好ましい。
 集電層の形状は特に制限されず、上述した蒸着法にて製造できる形状であればよく、例えば、パンチングメタル状、メッシュ状、格子状、または、貫通した細孔を持つ多孔体のようなものであってもよい。
<コンタクト層>
 コンタクト層は、上記光触媒層と上記集電層との間に配置してもよい任意の層である。コンタクト層が配置されることにより、光触媒層と集電層との間の導電パスを増大させることが可能となり、光電変換効率を向上させることができる。また、光触媒層とコンタクト層とを強固に結合させることができ、コンタクト層から光触媒層が容易に脱落してしまうといったことも防止できる。なお、コンタクト層は、上記特性以外にも、集電層の強度補強層としての役割を持つ場合もあり、例えば、集電層として錫を用いた場合、その効果が大きい。
 なお、光触媒層と集電層との導電パスが十分にあり、密着性にも優れる場合は、コンタクト層は設けなくてもよい。
 コンタクト層は、上記集電層と同じく、蒸着法にて形成される層である。蒸着法に関する説明は、上記集電層で説明した蒸着法と同じである。
 コンタクト層は、半導体または良導体を含む層である。半導体または良導体としては、良好な電気伝導性を示し、かつ、水分解反応の逆反応や光触媒の水分解反応の対となる反応を触媒しない材料を使用することが好ましい。
 コンタクト層を構成する材料としては、Au、Al、Cu、Cd、Co、Cr、Fe、Ga、Ge、Hg、Ir、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Ru、Re、Rh、Sb、Sn、Ta、Ti、V、W、Zn、TiN、TiO、Ta、TaON、ZnO、SnO、Indium Tin Oxide(ITO)、SnO、TiO(:Nb)、SrTiO(:Nb)、フッ素ドープ酸化錫(FTO)、CuAlO、CuGaO、CuInO、ZnO(:Al)、ZnO(:Ga)、ZnO(:In)、GaN、GaN(:C)、GaN(:Si)、GaN(:Sn)、C、並びに、これらの合金および混合物が挙げられる。
 コンタクト層の厚みは特に制限されないが、光触媒層の受光面とは反対側を被覆し得る程度の厚みがあればよく、例えば、0.3nm以上が好ましく、1nm以上がより好ましく、10nm以上がさらに好ましく、1mm以下の場合が多い。
<水分解用光触媒電極>
 水分解用光触媒電極は、上述した光触媒層と集電層とを少なくとも有する。また、水分解用光触媒電極は、光触媒層と集電層との間にコンタクト層を有していてもよい。
 水分解用光触媒電極は、上記層以外の他の層を有していてもよい。例えば、後述する粒子転写法により水分解用光触媒電極を作製する場合は、集電層の光触媒層側とは反対側の表面上に、電極の機械的強度を補強するために基材(後述する第2の基材に該当)を有していてもよい。また、集電層と基材との間には接着層を有していてもよい。
<水分解用光触媒電極の製造方法>
 水分解用光触媒電極の製造方法は特に制限されず、上述した態様の水分解用光触媒電極が製造できればよいが、形成される水分解用光触媒電極の特性(光電流密度、暗電流)がより優れる点で、以下図3を用いて説明する製造方法が好ましい。なお、図3では、光触媒層12、コンタクト層16と、集電層14とを含む水分解用光触媒電極100の製造方法を示すが、コンタクト層16を設けない場合は、後述する工程S2(コンタクト層形成工程)を実施しなければよい。
 図3は、本発明の水分解用光触媒電極の製造工程を説明するための概略図である。
 図3に示す製造方法は、光触媒層を形成する工程S1と、光触媒層の一方の面に、半導体または良導体を含むコンタクト層を形成する工程S2と、コンタクト層の光触媒層側とは反対側の面に集電層を形成する工程S3とを少なくとも備える。なお、上記工程S3の後に、非接触光触媒を除去する工程S4を実施してもよい。なお、工程S4に関しては、後述するような、補強基材形成工程S4aまたは洗浄工程S4cを備えることが好ましい。
(工程S1:光触媒層形成工程)
 工程S1は、光触媒層を形成する工程である。光触媒層を形成する方法は特に制限されないが、例えば、光触媒粒子とバインダーとの混錬、加圧成型により光触媒層を形成する方法や、第1の基材上に光触媒層を積層する方法が挙げられる。特に、バインダーを使用せずに強固な層を形成することができ、かつ、光触媒層とコンタクト層(または集電層)との間に不純物が混入しがたいことから、第1の基材上に積層することによって光触媒層を形成する方法が好ましい。
 図3では、第1の基材を用いる態様について詳述する。より具体的には、本工程では、図3(A)に示すように、第1の基材20上に光触媒層12を形成する。なお、光触媒層12には、光触媒粒子18が含まれる。
 本工程で使用される第1の基材としては、光触媒との反応に不活性であり、化学的安定性、耐熱性に優れる材料からなる基材を選択することが好ましく、例えば、ガラス板、Ti板、Cu板が好ましい。
 なお、光触媒層が配置される第1の基材の表面は、研磨処理および/または洗浄処理が施されていてもよい。
 光触媒層の形成方法は特に制限されないが、例えば、光触媒粒子を溶媒に分散させて懸濁液として、第1の基材上に懸濁液を塗布して、必要に応じて乾燥することにより行うことができる。
 懸濁液中の溶媒としては、水;メタノール、エタノール等のアルコール類;アセトン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族類が挙げられる。なお、溶媒に光触媒粒子を分散させる場合、超音波処理を施すことで、光触媒粒子を溶媒中に均一に分散させることができる。
 第1の基材上に懸濁液を塗布する方法は特に制限されず、例えば、スプレー法、ディップ法、スキージ法、ドクターブレード法、スピンコート法、スクリーンコート法、ロールコーティング法、インクジェット法などの公知の方法が挙げられる。また、懸濁液を入れた容器の底面に第1の基材を配置しておき、第1の基材上に光触媒粒子を沈降させた後に水を拭き取る方法でもよい。
 塗布後の乾燥条件としては、溶媒の融点以上の温度に保持するか、短時間での溶媒が揮発する程度の温度(例えば、15~200℃程度)に加熱すればよい。
 上記手順により形成された光触媒層中においては、光触媒粒子同士、および、光触媒粒子と第1の基材とは、光触媒粒子の有する静電力で付着していることが好ましい。
 また、光触媒層と、コンタクト層または集電層との間の導電パスの形成が阻害されないように、光触媒層にはバインダーなど他の成分は含まれないほうが好ましい。特に、有色または絶縁性のバインダーは含まれない方が好ましい。
(工程S2:コンタクト層形成工程)
 工程S2は、工程S1で形成された光触媒層の一方の面に、半導体または良導体を含むコンタクト層を形成する工程である。より具体的には、本工程では、図3(B)に示すように、光触媒層12上にコンタクト層16を形成する。
 コンタクト層(半導体または良導体)を形成する方法は、上述したように蒸着法が採用される。蒸着法については上述した通りである。
(工程S3:集電層形成工程)
 工程S3は、工程S2で形成されたコンタクト層の光触媒層側とは反対側の面に集電層を形成する工程である。より具体的には、本工程では、図3(C)に示すように、コンタクト層16上に集電層14を形成する。
 集電層を形成する方法は、上述したように蒸着法が採用される。蒸着法については上述した通りである。
(工程S4:非接触光触媒除去工程)
 工程S4は、コンタクト層と接触していない光触媒粒子を除去する工程である。除去方法は特に制限されないが、例えば、超音波洗浄処理等の洗浄液を用いて光触媒粒子を除去する洗浄工程S4cが適用可能である。
 洗浄液としては、例えば、水、電解質水溶液;メタノール、エタノールなどのアルコール:ペンタン、ヘキサンなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;酢酸エチルなどのエステル類;フルオロカーボンなどのハロゲン化物;ジエチルエーテル、テトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルホルムアミドなどの含窒素化合物などが挙げられる。なかでも、水、または、メタノール、エタノール、テトラヒドロフランなどの水溶性の化合物が好ましい。
 なお、集電層の機械的強度が低く、工程S4において水分解用光触媒電極の破損が懸念される場合には、集電層のコンタクト層側とは反対側の面に第2の基材を設ける、補強基材形成工程S4aを経て、洗浄工程S4cに供することが好ましい。
 第2の基材を設ける方法は特に制限されないが、例えば、カーボンテープなどの接着剤を用いて、集電層と第2の基材とを接着する方法が挙げられる。すなわち、図3(D)に示すように、集電層14のコンタクト層16側とは反対側の面に、接着層22を介して、第2の基材24を貼り付けることができる。
 また、上記工程S1において、第1の基材上に光触媒粒子を積層した場合、第1の基材を除去する基材除去工程S4bを経た後(好ましくは、図3(E)に示すように、補強基材形成工程S4aに引き続き基材除去工程S4bを経た後)、コンタクト層と接触していない光触媒粒子を洗浄工程S4cにより除去することが好ましい。
 基材除去工程S4bにて実施される第1の基材の除去方法は特に制限されないが、例えば、第1の基材を機械的に除去する方法や、水に浸漬して光触媒粒子積層部を湿潤させ、光触媒粒子間の結合を弱めて第1の基材を除去する方法、酸またはアルカリ等の薬剤で基材を溶解させて除去する方法、基材を物理的に破壊して除去する方法などが挙げられるが、光触媒層の損傷の可能性が低い点で、基材を剥離する方法が好ましい。なお、基材除去工程S4bにより、コンタクト層と非接触の光触媒粒子の一部を第1の基材とともに物理的に除去することが可能である(図3(E))。
 一方で、コンタクト層と接触している光触媒粒子については、コンタクト層と物理的にある程度強固に結合しているため、第1の基材を除去する際も、脱落することなくコンタクト層側に残ることとなる。この場合、基材除去工程S4bでは除去しきれなかった非接触の光触媒粒子については、洗浄工程S4cにより、さらの除去処理に供されることが好ましい。
 上述した光触媒層および集電層、さらに任意の構成要素であるコンタクト層を備える水分解用光触媒電極は、上述した優れた効果を生じる。
 この水分解用光触媒電極と水とを接触させ、光を照射することにより、水の分解が進行し、酸素または水素が生成される。特に、上記水分解用光触媒電極は、いわゆるアノード電極として好適に使用できる。
 なお、照射される光としては、光分解反応を生じさせうる光であればよく、具体的には、太陽光などの可視光、紫外光、赤外光などが利用でき、そのなかでも、その量が無尽蔵である太陽光が好ましい。
 また、上記水分解用光触媒電極を備える水分解装置は、優れた特性を示すが、水分解用光触媒電極以外の構成(例えば、対極など)は公知の構成を使用することができる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(合成例1:SnNb
 酸化第一スズ:SnO(和光純薬製)1.35gと酸化ニオブ:Nb(アルドリッチ製)2.66gをメノウ乳鉢で混ぜてからアルミナ製ボートに入れ、電気管状炉にて、窒素流速50mL/minの条件下、800℃で10時間アニール処理した。得られた粉末は、メノウ乳鉢で解砕した。XRD(X-ray diffraction、リガク製 粉末X線回折装置 全自動水平型多目的X線回折装置 SmartLab)測定から、得られた粉末がSnNbであることを確認した。
(合成例2:酸化コバルトを担持したRh、Sb共ドープTiO(CoOx/TiO:Rh、Sb))
 酸化チタン:TiO(高純度化学製)4.61gおよび酸化ロジウム:Rh(和光純薬製)0.099g、酸化アンチモン:Sb(ナカライテスク製)0.227gをメノウ乳鉢で混合した(原子比Ti/Rh/Sb=0.961/0.013/0.026)。得られた混合物をアルミナルツボに入れ、電気炉にて大気中、900℃で1時間焼成してから解砕し、アルミナルツボに入れて、さらに電気炉で大気中、1150℃で10時間焼成した。得られた光触媒粉末をメノウ乳鉢で解砕し、XRD測定から酸化チタン(ルチル型構造)の単一相であることを確認した。
 得られた光触媒粉末0.05gを磁性蒸発皿に入れ、水500μLおよび硝酸コバルト:Co(NO・6HO(和光純薬製)を溶かした0.344mol/L(Coとして)水溶液を25μL加え、ホットプレート上にて120℃で蒸発乾固させた後、電気炉にて、大気中、300℃で2時間焼成した。SEM観察により、助触媒(酸化コバルト)が光触媒粉末に担持されていることを確認した。
(合成例3:酸化コバルトを担持したRh、Sb共ドープSrTiO(CoOX/STO:Rh、Sb))
 水27.5mLを入れた200mLテフロン(登録商標)容器に、水酸化ストロンチウム:Sr(OH)・8HO(高純度化学製)10.6g、酸化チタン:TiO(日本アエロジル製)3.04g、および、酸化アンチモン:Sb(高純度化学製)0.194gを入れて撹拌し、懸濁液とした。得られた懸濁液に、硝酸ロジウム:Rh(NO(関東化学製)を溶かした35.6mmol/L水溶液(Rhとして)を22.5mL加えて、十分に撹拌した(原子比Sr/Ti/Rh/Sb=1.00/0.95/0.02/0.03)。次に、上記テフロン(登録商標)容器をステンレス製反応容器に入れて、水熱反応装置にて160℃で20時間水熱処理をした。得られた沈殿物は、80℃の水で3回洗浄してから遠心分離により分離・回収し、60℃で一晩乾燥して、解砕した。得られた沈殿物をアルミナルツボに入れて電気炉にて、大気中、1150℃で10時間焼成し、メノウ乳鉢で解砕した。得られた光触媒粉末は、XRD測定からがチタン酸ストロンチウムの単一相であることを確認した。
 得られた光触媒粉末0.05gを磁性蒸発皿に入れ、水500μLおよび硝酸コバルト:Co(NO・6HO(和光純薬製)を溶かした0.344mol/L(Coとして)水溶液を25μL加え、ホットプレート上にて120℃で蒸発乾固させた後、電気炉にて、大気中、300℃で2時間焼成した。SEM観察により、助触媒(酸化コバルト)が光触媒粉末に担持されていることを確認した。
(合成例4:酸化コバルト担持BaNbON)
 NbCl(高純度化学研究所製、3N、2.93g)、BaCO(関東化学製、3N、2.68g)、クエン酸(和光純薬製、23.5g)、エチレングリコール(和光純薬製、試薬特級、30.3g)およびメタノール(和光純薬製、99.5%、39.1g)を混合し(Ba/Nb(モル比)=1.25)、ホットスターラー上で均一に撹拌を行い、錯化を行った。続いて350℃のマントルヒーターで、得られた混合物を350℃で3時間加熱し、炭化させた。次に、アルミナボート上でさらに500℃で5時間加熱し、白色の固体を得た。さらに、得られた固体を700℃で2時間焼成し、さらにその後800℃で3時間焼成した。得られたBaNb15の生成はXRDにて確認した。得られたBaNb15に対して、電気管状炉にて、100%アンモニア気流下(500ml/min)にて850℃で50時間窒化処理を施した。その後、生成物の表面を1M硝酸で洗浄処理し、バリウムニオブオキシナイトライド(BaNbON)を得た。バリウムニオブオキシナイトライドの生成はXRDにて確認した。また、拡散反射スペクトル測定より、バリウムニオブオキシナイトライドの吸収端は740nmであることが確認された。なお、上記Ba/Nb(モル比)は、BaCO由来のバリウム原子のモル量と、NbCl由来のニオブ原子のモル量との比を意図する。
 磁性蒸発皿で得られたバリウムニオブオキシナイトライドの懸濁液(溶媒:HO)を作製し、硝酸コバルト水溶液をCo/BaNbONが質量比で2質量%となるように添加した。その後、沸騰した水の入ったビーカー上から上がってくる水蒸気で磁性蒸発皿を加熱しつつ、ガラス棒で攪拌した。
 得られた粉末をアンモニア気流下(200ml/min)、500℃で1時間加熱処理し、さらに酸素雰囲気下で、200℃で1時間加熱処理を行い、光触媒粉末を製造した。得られた光触媒粉末をSEM-EDX(装置名:株式会社 日立ハイテクノロジーズ SU-8020)にて観察したところ、バリウムニオブオキシナイトライドに助触媒(酸化コバルト)が担持されていることが確認された。
(合成例5:BiVO
 6.0mmolのNHVO(関東化学,99.0%)の硝酸水溶液(2.0mol/l,100ml)、6.0mmolのBi(NO・5HO(関東化学,99.9%)を含む硝酸水溶液(2.0mol/l,100ml)をそれぞれ作製した。それぞれを30分攪拌した後、2種類の溶液を1:1(モル比)で混合した。次に、5gの尿素(関東化学,99.0%)を得られた溶液に添加した。得られた溶液を100mlのテフロン(登録商標)内筒のステンレススチール製のオートクレーブに封入し、200℃で60分マイクロウェーブ水熱反応を行って、BiVOを製造した。得られた光触媒粉末は、XRD測定からがBiVOの単一相であることを確認した。
<水分解用光触媒電極の作製>
 酸化チタン(高純度化学研究所製、商品名 TIO14BP)を低沸点有機溶剤(溶媒:イソプロピルアルコール)に懸濁させて、懸濁液を作製した。なお、懸濁液中における光触媒粉末(酸化チタン)の濃度は1.66質量%であった。
 次に、得られた懸濁液を基材(フロート板ガラス(FLガラス))上に塗布し、乾燥させて、基材上に光触媒層が配置された光触媒層付き基材Aを作製した。
 また、上記酸化チタンの代わりに、上記合成例1~5にて製造した光触媒粉末(光触媒粒子)それぞれを用いた以外は、上記と同様の手順に従って、光触媒層付き基材B~Fをそれぞれ作製した。
(実施例1~6)
 上記光触媒層付き基材Aの光触媒層上に、コンタクト層となるチタン層(厚み600nm)を蒸着法にて積層した。装置はアルバック製機工製 VPC-260Fを使用して、成膜レートが5nm/sとなるようにした。
 次に、コンタクト層上に、集電層となる錫層(4.4μm)を蒸着法にて積層した。装置はアルバック製機工製 VPC-260Fを使用して、成膜レートが5nm/sとなるようにした。
 次に、カーボンテープを用いて集電層上にガラス基材(ソーダライムガラス)を接着した。その後、得られた積層体(基材(FLガラス)、光触媒層、コンタクト層、集電層、カーボンテープ層、ガラス基材(ソーダライムガラス))から基材(FLガラス)を剥離して、純水中で10分間超音波洗浄することで、水分解用光触媒電極を得た。
 上記光触媒層付き基材Aの代わりに、光触媒層付き基材B~Fをそれぞれ用いた以外は、上記と同様の手順に従って、水分解用光触媒電極をそれぞれ作製した。
 なお、上記で得られた光触媒層付き基材A~F中における光触媒層の厚みは0.5~2.0μm程度であった。
 なお、上記蒸着条件と同条件でガラス基板上へ直接成膜した際のチタン層および錫層の抵抗値は、それぞれ2.8Ω/□および0.4Ω/□であった。
(合成例6:BaTaON)
 酸化タンタル(高純度化学製)0.88gと炭酸バリウム(関東化学製)0.79gをメノウ乳鉢で粉砕混合した後にアルミナ製ボートに入れ、ボックス型電気炉で1000℃、10時間焼成し酸化物前駆体を得た。この前駆体を電気管状炉にて、100%アンモニア気流下(200ml/min)にて、900℃で10時間窒化処理した。得られた粉末は、メノウ乳鉢で解砕した。XRD測定より、得られた粉末がバリウムタンタルオキシナイトライド(BaTaO2N)であることを確認した。
(実施例7)
 上記合成例6にて製造した光触媒粉末(光触媒粒子)を低沸点有機溶剤(溶媒:メタノール)に懸濁させて、懸濁液を作製した。なお、懸濁液中における光触媒粉末(BaTaO2N)の濃度は6.3質量%であった。
 次に、得られた懸濁液を基材(フロート板ガラス(FLガラス))上に塗布し、乾燥させて、基材上に光触媒層(厚み:0.5~2.0μm)が配置された光触媒層付き基材Gを作製した。
 上記光触媒層付き基材Gの光触媒層上に、コンタクト層となるチタン層(厚み600nm)を蒸着法にて積層した。装置はアルバック製機工製 VPC-260Fを使用して、成膜レートが5nm/sとなるようにした。
 次に、コンタクト層上に、集電層となる錫層(4.4μm)を蒸着法にて積層した。装置はアルバック製機工製 VPC-260Fを使用して、成膜レートが5nm/sとなるようにした。基材(フロート板ガラス(FLガラス))上より金属膜(光触媒層、コンタクト層および集電層の積層体)を剥離させ、純水中で10分間超音波洗浄することで、水分解用光触媒電極(BaTaO2N電極)を得た。
(助触媒担持)
 pH7の0.1M-K2HPO4、0.1M-KH2PO4溶液に10mMのCo(NO33・6H2Oを溶解させ、この中に作製したBaTaO2N電極を浸漬した。BaTaO2N電極を作用極、Ag/AgCl電極を参照極、Pt線を対極とした三電極式の電気化学測定方法にて1.1V(vs Ag/AgCl)を100秒間印加して、助触媒をBaTaO2N電極上に担持した。その後蒸留水で洗浄し、水分解用光触媒電極とした。
(合成例8)
 合成例5と同様にBiVOを合成した。次に、磁性るつぼ中で、BiVOの懸濁液(溶媒:HO)を作製し、硝酸コバルト水溶液をCo/BiVOの質量割合{(Co/BiVO)×100}で0.5質量%となるように添加した。その後、沸騰した水の入ったビーカーから上がってくる水蒸気で磁性るつぼを加熱しつつ、ガラス棒で攪拌した。
 得られた粉末を、大気下で、400℃で2時間加熱処理を行い、酸化コバルトが担持されたBiVOを製造した。
 水分解用光触媒電極の作製は、酸化チタンの代わりに、上記合成例8にて製造した光触媒粉末(光触媒粒子)を用いた以外は、実施例1と同様の手順に従って、光触媒層(厚み:0.5~2.0μm)付き基材Hを作製した。
(実施例8)
 上記光触媒層付き基材Hの光触媒層上に、コンタクト層となるチタン層(厚み1μm)を蒸着法にて積層した。装置はアルバック製機工製 VPC-260Fを使用して、成膜レートが5nm/sとなるようにした。
 次に、コンタクト層上に、集電層となる金層(2μm)を蒸着法にて積層した。装置はアルバック製機工製(VPC-260F)を使用して、成膜レートが5nm/sとなるようにした。基材(フロート板ガラス(FLガラス))上より金属膜(光触媒層、コンタクト層および集電層の積層体)を剥離させ、純水中で10分間超音波洗浄することで、水分解用光触媒電極を得た。
(比較例1~6)
 上記光触媒層付き基材Aの光触媒層上に、集電層となるチタン層(厚み4μm)をスパッタリング法にてそれぞれ積層した。装置はアルバック社製 CS‐Sを使用して、基板温度は300℃とした。
 得られた集電層付き基材を用いて、上記実施例1~6と同様の手順に従って、水分解用光触媒電極を作製した。
 なお、上記光触媒層付き基材Aの代わりに、光触媒層付き基材B~Fをそれぞれ用いた以外は、上記と同様の手順に従って、水分解用光触媒電極を作製した。
 なお、上記蒸着条件と同条件でガラス基板上へ直接成膜した際のチタン層の抵抗値は、6.8Ω/□であった。
<電極の評価>
(光電流密度)
 作製した水分解用光触媒電極の光電流密度の評価は、ポテンショスタットを用いた3電極系での電流-電位測定によって行った。平面窓付きのセパラブルフラスコを電気化学セルに用い、参照極にAg/AgCl電極、対極にPtワイヤーを用いた。電解液は、0.1M KBi緩衝液(pH=9.3)を用いた。電気化学セル内部はアルゴンで満たし、かつ、測定前に十分にバブリングを行うことによって溶存する酸素、二酸化炭素を除去した。光電気化学測定には、ソーラーシミュレータ(AM1.5G)を光源として用いた。
 上記実施例1~8および比較例1~6にて作製した水分解用光触媒電極について、測定電位1.2V(vs.RHE)における光電流密度(mA/cm)を測定した。
 暗電流については、光を照射しない場合の電流値のことで、測定電位1.2V(vs.RHE)と1.4V(vs.RHE)で評価した。
 結果を以下の表1にまとめて示す。なお、表1中、「暗電流密度評価1」は測定電位1.2V(vs.RHE)の評価を、「暗電流密度評価2」は測定電位1.4V(vs.RHE)の評価を表す。
 また、実施例8に関しては、電解液は0.1M KPi緩衝液(pH=7.0)を用いた。
Figure JPOXMLDOC01-appb-T000001
 上記表に示すように、蒸着法にて集電層を作製した実施例1は、スパッタリング法にて集電層を作製した比較例1と比較して、光電流密度が高く、暗電流の発生もより抑制されていた。なお、実施例2~6と比較例2~6とのそれぞれの比較からも、同様の結果が確認された。
 10,100  水分解用光触媒電極
 12  光触媒層
 14  集電層
 16  コンタクト層
 18  光触媒粒子
 20  第1の基材
 22  接着層
 24  第2の基材

Claims (6)

  1.  光触媒層と、
     前記光触媒層上に配置され、蒸着法にて形成される集電層と、を有する水分解用光触媒電極。
  2.  前記光触媒層と前記集電層との間に、さらに、半導体または良導体を含むコンタクト層を有し、
     前記コンタクト層が蒸着法にて形成される、請求項1に記載の水分解用光触媒電極。
  3.  前記蒸着法が、抵抗加熱蒸着法またはイオンビーム蒸着法である、請求項1または2に記載の水分解用光触媒電極。
  4.  前記集電層が、錫または金を含む、請求項1~3のいずれか1項に記載の水分解用光触媒電極。
  5.  前記集電層が、錫を含む、請求項1~4のいずれか1項に記載の水分解用光触媒電極。
  6.  前記集電層の抵抗値が、4.0Ω/□以下である、請求項1~5のいずれか1項に記載の水分解用光触媒電極。
PCT/JP2015/074985 2014-09-12 2015-09-02 水分解用光触媒電極 WO2016039240A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/455,983 US20170183787A1 (en) 2014-09-12 2017-03-10 Photocatalyst electrode for water decomposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186373 2014-09-12
JP2014186373A JP6371648B2 (ja) 2014-09-12 2014-09-12 水分解用光触媒電極

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/455,983 Continuation US20170183787A1 (en) 2014-09-12 2017-03-10 Photocatalyst electrode for water decomposition

Publications (1)

Publication Number Publication Date
WO2016039240A1 true WO2016039240A1 (ja) 2016-03-17

Family

ID=55458989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074985 WO2016039240A1 (ja) 2014-09-12 2015-09-02 水分解用光触媒電極

Country Status (3)

Country Link
US (1) US20170183787A1 (ja)
JP (1) JP6371648B2 (ja)
WO (1) WO2016039240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845879A (zh) * 2022-09-26 2023-03-28 汉江师范学院 简单水热法合成MoS2/Bi2MoO6复合材料的方法及其高效降解环丙沙星

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320005B2 (en) * 2013-03-07 2019-06-11 Tokyo University Of Science Foundation Bismuth-vanadate-laminate manufacturing method and bismuth-vanadate laminate
CN107224986B (zh) * 2017-07-21 2020-02-21 江苏大学 一种二硫化钼/铌酸锡复合纳米材料及用途
US11505870B2 (en) * 2018-07-20 2022-11-22 King Fahd University Of Petroleum And Minerals Efficient method for plasmon-aided solar water-splitting using (BiVO4)x—(TiO2)1-x ternary nanocomposites
CN108993502B (zh) * 2018-08-22 2020-08-25 延安大学 银和氧缺陷共修饰钼酸铋基复合光催化材料及其制备方法
CN109019685B (zh) * 2018-09-12 2021-01-01 西南科技大学 一种合成CuBi2O4基胶体材料的方法
CN109589993B (zh) * 2018-12-17 2021-06-29 浙江工商大学 电化学改性的钒酸铋-硫化钼-四氧化三钴催化电极及其制备方法和应用
CN110252352B (zh) * 2019-05-23 2022-05-10 广东工业大学 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN112536039B (zh) * 2020-12-03 2021-09-17 浙江大学 一种阶层结构复合氧化物可见光催化材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237574A (en) * 1975-09-19 1977-03-23 Sanyo Electric Co Ltd Water decomposition apparatus using light energy
JP3262174B2 (ja) * 1996-10-09 2002-03-04 仗祐 中田 半導体デバイス
JP2007107043A (ja) * 2005-10-13 2007-04-26 Japan Science & Technology Agency 光触媒用集電電極、光反応素子および光触媒反応装置、並びに光電気化学反応実行方法
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662893B2 (ja) * 2011-07-25 2015-02-04 富士フイルム株式会社 光電変換素子用蒸着材料及び光電変換素子、センサ、撮像素子
JP5981399B2 (ja) * 2012-10-04 2016-08-31 富士フイルム株式会社 成膜用有機材料及びそれを用いて得られた有機光電変換素子、撮像素子、受光層形成方法、有機光電変換素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237574A (en) * 1975-09-19 1977-03-23 Sanyo Electric Co Ltd Water decomposition apparatus using light energy
JP3262174B2 (ja) * 1996-10-09 2002-03-04 仗祐 中田 半導体デバイス
JP2007107043A (ja) * 2005-10-13 2007-04-26 Japan Science & Technology Agency 光触媒用集電電極、光反応素子および光触媒反応装置、並びに光電気化学反応実行方法
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGYUAN LIU ET AL.: "Improving the photoelectrochemical activity of La5Ti2CuS507 for hydrogen evolution by particle transfer and doping", ENERGY & ENVIRONMENTAL SCIENCE, vol. 7, 19 May 2014 (2014-05-19), pages 2239 - 2242 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845879A (zh) * 2022-09-26 2023-03-28 汉江师范学院 简单水热法合成MoS2/Bi2MoO6复合材料的方法及其高效降解环丙沙星

Also Published As

Publication number Publication date
US20170183787A1 (en) 2017-06-29
JP6371648B2 (ja) 2018-08-08
JP2016055279A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6371648B2 (ja) 水分解用光触媒電極
JP6082728B2 (ja) 光水分解反応用電極およびその製造方法
US10914013B2 (en) Photocatalyst electrode for oxygen generation and module
Hara et al. Ta3N5 and TaON thin films on Ta foil: Surface composition and stability
JP6438567B2 (ja) 水分解用光触媒電極の製造方法
WO2016080548A1 (ja) 複合光触媒の製造方法、及び、複合光触媒
JP5641499B2 (ja) 光触媒を用いた光水分解反応用電極
Wang et al. Preparation of ordered mesoporous WO3–TiO2 films and their performance as functional Pt supports for synergistic photo-electrocatalytic methanol oxidation
Cui et al. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance
JP6559911B2 (ja) 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール
JP6270884B2 (ja) 光水分解反応用電極の製造方法
Kang et al. Direct coating of a gC 3 N 4 layer onto one-dimensional TiO 2 nanocluster/nanorod films for photoactive applications
JP6399981B2 (ja) 水分解用光触媒電極およびこれの製造方法
Hayashi et al. Enhancement of photoelectrochemical activity of TiO2 electrode by particulate/dense double-layer formation
Tezcan et al. Photocorrosion protection of BiVO4 electrode by α-Cr2O3 core–shell for photoelectrochemical hydrogen production
JP2014223629A (ja) 光触媒を用いた光水分解反応用電極
JP7321121B2 (ja) アノード電極用触媒及び光アノード電極用助触媒
JP7230595B2 (ja) 光化学電極の製造方法
JP2017217623A (ja) 光触媒材の製造方法
Low TiO2 loaded on reduced graphene oxide nanosheets as efficient electrodes in Dye-sensitized solar cell/Low Foo Wah
Wah TiO 2 Loaded on Reduced Graphene Oxide Nanosheets as Efficient Electrodes in Dye-Sensitized Solar Cell
Šulčiūtė Synthesis, structure and electrochemical properties of ZnO and Zn-Co oxide coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840676

Country of ref document: EP

Kind code of ref document: A1