WO2016080548A1 - 複合光触媒の製造方法、及び、複合光触媒 - Google Patents

複合光触媒の製造方法、及び、複合光触媒 Download PDF

Info

Publication number
WO2016080548A1
WO2016080548A1 PCT/JP2015/082804 JP2015082804W WO2016080548A1 WO 2016080548 A1 WO2016080548 A1 WO 2016080548A1 JP 2015082804 W JP2015082804 W JP 2015082804W WO 2016080548 A1 WO2016080548 A1 WO 2016080548A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
photocatalyst
promoter
composite photocatalyst
solution
Prior art date
Application number
PCT/JP2015/082804
Other languages
English (en)
French (fr)
Inventor
秋山 誠治
一成 堂免
Original Assignee
三菱化学株式会社
国立大学法人東京大学
人工光合成化学プロセス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, 国立大学法人東京大学, 人工光合成化学プロセス技術研究組合 filed Critical 三菱化学株式会社
Priority to CN201580053680.6A priority Critical patent/CN106794459B/zh
Publication of WO2016080548A1 publication Critical patent/WO2016080548A1/ja
Priority to US15/476,116 priority patent/US10332690B2/en
Priority to US16/400,461 priority patent/US11424080B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to the manufacturing method of the composite photocatalyst which can manufacture hydrogen and / or oxygen by performing the water splitting reaction using sunlight.
  • the photocatalyst currently being studied is usually one in which a promoter is supported on the surface of an optical semiconductor such as an oxide, oxynitride or nitride.
  • the activity of the photocatalyst can be improved by supporting the promoter (for example, Non-Patent Documents 1 and 2).
  • An impregnation supporting method is known as a method for supporting a promoter on the surface of an optical semiconductor (for example, Patent Document 1).
  • Various methods other than the impregnation support method have been proposed (for example, Non-Patent Documents 3 and 4).
  • Patent Documents 2 to 4 Non-Patent Document 5, etc.
  • Patent Document 2 an H-type layered perovskite photocatalyst is obtained by subjecting an Aurivirius phase compound to an acid treatment using an inorganic acid such as hydrochloric acid.
  • Patent Document 3 the general formula (I): ABCO 4 (A is silver, B is one or more elements selected from the group consisting of lanthanoids and yttrium, and C is selected from group IVa elements.
  • the photocatalyst activity of the photocatalyst represented by 1) or more) is improved by performing acid treatment using a low concentration of nitric acid.
  • the improvement of a photocatalytic activity is aimed at by performing a mineral acid process (inorganic acid process) with respect to titanium oxide.
  • the water splitting activity in the case of a photocatalyst is improved by bringing aqua regia into contact with the surface of the optical semiconductor for about 15 seconds.
  • Japanese Unexamined Patent Publication No. 2012-050913 Japanese Unexamined Patent Publication No. 2003-260356 Japanese Laid-Open Patent Publication No. 10-244164 Japanese Laid-Open Patent Publication No. 7-303835
  • Patent Document 1 it is difficult to control the particle size of the promoter supported on the surface of the optical semiconductor, and it is difficult to support the promoter on the surface of the optical semiconductor with high dispersion. It was.
  • the manufacturing process and the manufacturing apparatus may be complicated. Against this background, there is a need for a photocatalyst production method that can improve water splitting activity by enabling control of particle size and high dispersion support of the cocatalyst without requiring complicated processes and devices. It was.
  • Patent Documents 2 to 4 and Non-Patent Document 5 when an optical semiconductor is acid-treated using an inorganic acid, the inorganic acid penetrates into the optical semiconductor in a short time, and light On the contrary, the photocatalytic activity may decrease due to corrosion of the semiconductor. In addition, the inorganic acid easily enters the inside of the optical semiconductor, and there is a possibility that unevenness occurs in the acid treatment. In fact, even in Non-Patent Document 5, when the acid treatment time exceeds 15 seconds, the water splitting activity is lowered. That is, when an inorganic acid is used, it is difficult to control the acid treatment. In addition, inorganic acids have high volatility, and it was difficult to recover them even if they were to be reused after acid treatment.
  • the present invention provides a photocatalyst having improved water splitting activity by efficiently supporting a cocatalyst having a small particle size on the surface of the optical semiconductor with high dispersion, a method for producing the photocatalyst, and a cocatalyst for the photocatalyst.
  • a supporting method is provided.
  • the present invention provides a method for producing a photo-semiconductor and a method for producing a photo-catalyst, in which water decomposition activity is improved by appropriately acid-treating the surface of the photo-semiconductor by a method in which acid treatment is easily controlled.
  • a composite photocatalyst with improved water splitting activity can be produced by compositing a plurality of different types of photo-semiconductors together with a co-catalyst in the liquid using heating by microwaves.
  • Microwave heating in a closed system can support a cocatalyst having a small particle diameter on the optical semiconductor with high dispersion without going through a complicated process. Further, the photocatalyst thus produced has improved water splitting activity as compared with the conventional photocatalyst.
  • the first aspect of the present invention is a method for producing a composite photocatalyst from a plurality of types of optical semiconductors, and a solid-liquid mixture including a solvent, a promoter or a promoter source, and a plurality of types of optical semiconductors.
  • a method for producing a composite photocatalyst comprising a heating step of irradiating microwaves to heat a solid-liquid mixture.
  • Optical semiconductor refers to a semiconductor that can generate holes and electrons by absorbing light.
  • co-catalyst source refers to a substance (component, element, ion) that can become a co-catalyst by heating together with an optical semiconductor in a liquid.
  • Microwave refers to an electromagnetic wave having a frequency of 300 MHz to 30 GHz.
  • the promoter source in the solid-liquid mixture is preferably present in a state dissolved in a solvent before the microwave irradiation.
  • the promoter and the photo semiconductor in the solid-liquid mixture are both present in the solvent as a solid, and the promoter is supported on the photo semiconductor. May be.
  • the first optical semiconductor according to the first aspect of the present invention is, for example, heated by microwaves in a state in which the first optical semiconductor is in contact with the solution in which the promoter source is dissolved as a pre-process of the heating process.
  • a supporting step, and a mixing step in which the first optical semiconductor supporting the cocatalyst and the second optical semiconductor supporting the cocatalyst are included in a solvent to form the solid-liquid mixture described above. can do.
  • At least one of the plurality of types of optical semiconductors contains one or more elements selected from the group consisting of Ti, V, Ga, Zn, Bi, Nb, and Ta. It is preferable that it is a thing, an oxynitride, a chalcogenide, or an oxychalcogenide.
  • At least one of the plurality of types of optical semiconductors is BaTaO 2 N, BaNbO 2 N, TaON, Ta 3 N 5 , LaTiO 2 N, BiVO 4 , GaN: ZnO, or a partial substitution thereof. It is preferable that it is a body. “Partially substituted products of these” refers to those in which some of the elements constituting the compound are substituted with a doping element.
  • the cocatalyst or the cocatalyst source preferably contains Co or Co ions.
  • the promoter or promoter source may contain Pt alone or a compound containing Pt.
  • the solvent is preferably water, alcohols, or a mixed solvent thereof.
  • the heating step according to the first aspect of the present invention it is preferable to heat the solid-liquid mixture by irradiating microwaves in a closed system.
  • “In-closed system” means the inside of the system in which the pressure increases from the outside of the system as the temperature rises when the temperature of the solution in the system exceeds the boiling point outside the system.
  • the first carrying process and the second carrying process according to the first aspect of the present invention it is preferable to irradiate microwaves in a closed system.
  • the pressure in the closed system is preferably higher than the pressure outside the system.
  • Poly organic acid is a concept that includes an organic acid oligomer in addition to an organic acid polymer.
  • the “oligomer” referred to in the present invention means one having a polymerization degree of 10 or more.
  • a solution of at least one organic acid containing a polyorganic acid is formed on the surface of an oxide, oxynitride or nitride containing at least one element selected from Ti, V, Ga, Ge, Nb, La and Ta.
  • a recovery step for recovering oxide, oxynitride or nitride remaining as solids after the organic acid contact step With The recovered solid content is preferably used as the first optical semiconductor and the second optical semiconductor.
  • the organic acid is preferably polysulfonic acid.
  • the organic acid preferably has an aryl group.
  • the weight average molecular weight of the organic acid is preferably 1,000 or more and 1,000,000 or less.
  • the first present invention also has an aspect as a composite photocatalyst. That is, a composite photocatalyst composed of a plurality of types of optical semiconductors carrying a promoter, wherein the promoter is present on the surface of the plurality of types of optical semiconductors, and intervenes or optical semiconductors are present at the joint surfaces of the plurality of types of optical semiconductors. It is a composite photocatalyst characterized by existing in a coated state.
  • “To be present in a state where the optical semiconductors are joined or covered with the optical semiconductor” means in other words that the optical semiconductors are bonded to each other via a cocatalyst. “Junction” is different from mere “contact” and means that it is fixed to the surface of the optical semiconductor. “Coating” means that a layered cocatalyst is present along the surface shape of the optical semiconductor, and “coating” includes those in which the cocatalyst particles are “aggregated” on the surface of the optical semiconductor. Shall not.
  • At least one of a plurality of types of optical semiconductors includes one or more elements selected from the group consisting of Ti, V, Ga, Zn, Bi, Nb, and Ta. Oxides, nitrides, oxynitrides, chalcogenides, or oxychalcogenides are preferable.
  • At least one of a plurality of types of optical semiconductors is BaTaO 2 N, BaNbO 2 N, TaON, Ta 3 N 5 , LaTiO 2 N, BiVO 4 , GaN: ZnO or These partially substituted products are preferable.
  • the cocatalyst preferably contains Co.
  • the promoter may contain Pt alone or a compound containing Pt.
  • the second aspect of the present invention is a method for producing a photocatalyst, characterized by comprising a step of heating with a microwave while bringing a photo semiconductor in contact with a solution in which a promoter source is dissolved in a closed system.
  • the pressure in the closed system is higher than the pressure outside the system by heating with microwaves. Therefore, a promoter can be more efficiently supported on the surface of the optical semiconductor.
  • the optical semiconductor contains an oxide, nitride, or oxynitride containing one or more elements selected from the group consisting of Ti, V, Ga, Zn, Bi, Nb, and Ta, or A chalcogenide or an oxychalcogenide is preferable.
  • the optical semiconductor is BaNbO 2 N, TaON, Ta 3 N 5 , LaTiO 2 N, SnNb 2 O 6 , BaTaO 2 N, La 5 Ti 2 CuS 5 O 7 , BiVO 4 , GaN: ZnO or a partially substituted product thereof is preferable.
  • the solution containing the cocatalyst source is preferably a solution containing Co ions.
  • Pt alone or a compound containing Pt may be included as a promoter source.
  • CoO x or Pt can be supported as a promoter on the surface of the optical semiconductor.
  • the solvent constituting the solution containing the promoter source is water, alcohols such as ethylene glycol, or a mixed solvent thereof.
  • the second aspect of the present invention also has an aspect as a method for supporting a promoter. That is, in the closed system, the photo-semiconductor is brought into contact with a solution containing a co-catalyst source and heated by microwaves to carry the co-catalyst on the surface of the photo-semiconductor.
  • the second aspect of the present invention also has an aspect as a photocatalyst. That is, the photocatalyst is supported on the surface of the optical semiconductor, and the coverage per unit area of the optical semiconductor by the promoter is 30% or more.
  • the particle size of the promoter supported on the surface of the optical semiconductor is preferably 20 nm or less.
  • the third aspect of the present invention based on the findings (3) and (4) can also solve the above problems. That is, the third aspect of the present invention includes a polyorganic acid on the surface of an oxide, oxynitride or nitride containing at least one element selected from Ti, V, Ga, Ge, Nb, La and Ta.
  • the third aspect of the present invention includes at least sulfonic acid on the surface of an oxide, oxynitride or nitride containing at least one element selected from Ti, V, Ga, Ge, Nb, La and Ta.
  • the organic acid is preferably polysulfonic acid.
  • the organic acid preferably has an aryl group.
  • the organic acid preferably has a weight average molecular weight of 1,000 or more and 1,000,000 or less.
  • the pKa of the solution is preferably ⁇ 4 or more and 4 or less.
  • the oxide, oxynitride or nitride is preferably in the form of particles or sheets.
  • Sheet refers to a sheet having a thickness of 1 nm to 10 ⁇ m.
  • a form in which a layered oxide or the like is formed on the surface of some member It is a concept that includes.
  • a layered form having the thickness by laminating powder on the surface of the substrate a form having a layered form having the thickness obtained by compacting and integrating the powder, and sintering the powder Layered oxide, oxynitride or nitride formed on the surface of the substrate by forming a layer composed of a precursor on the surface of the substrate and forming a precursor layer on the surface of the substrate and oxidizing or nitriding the layer.
  • the form etc. which formed are mentioned.
  • the oxide, oxynitride, or nitride contains LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, Ta 3 N 5 , BaTaO 2 N, BiVO 4 , It is preferably at least one selected from GaN: ZnO and ZnGeN 2 : ZnO.
  • the third aspect of the present invention also has an aspect as a photocatalyst production method. That is, the photocatalyst manufacturing method includes a step of supporting a cocatalyst on the surface of the optical semiconductor manufactured by the optical semiconductor manufacturing method according to the third aspect of the present invention.
  • a photocatalyst having excellent water splitting activity can be produced.
  • FIG. 1 is a schematic diagram for explaining a first embodiment of the first invention.
  • FIG. 2 is a schematic diagram for explaining a second embodiment of the first invention.
  • 3 (A) and 3 (B) are schematic views for explaining the second embodiment of the first present invention.
  • FIG. 3A is a schematic view of a process for obtaining the photocatalyst 20'a
  • FIG. 3B is a schematic view of a process for obtaining the photocatalyst 20'b
  • FIGS. 4A and 4B are schematic diagrams for explaining the second embodiment of the first present invention.
  • FIG. 4A is a schematic view of a process for obtaining the photocatalyst 20'a
  • FIG. 4B is a schematic view of a process for obtaining the photocatalyst 20'b.
  • FIG. 5 is a schematic diagram for explaining a third embodiment of the first invention.
  • FIG. 6 is a schematic diagram for explaining the second aspect of the present invention.
  • 7A and 7B are schematic diagrams for explaining the third aspect of the present invention.
  • FIG. 7A illustrates the oxide 201a
  • FIG. 7B illustrates the oxide 201b.
  • FIG. 8 is a schematic diagram for explaining a procedure for producing a photowater decomposition reaction electrode.
  • FIGS. 9A to 9D are STEM images of the composite photocatalyst according to Example 1-1.
  • 9A is a TEM observation image
  • FIG. 9B is an enlarged image of a part of FIG. 9A
  • FIG. 9C is an image of element EDS mapping with the same field of view as FIG. 9A.
  • FIG. 9D is an image of element EDS mapping in the same field of view as FIG. 9B.
  • FIG. 10 is a STEM image (enlarged view) of the composite photocatalyst according to Example 1-1.
  • FIGS. 11A to 11D are STEM images of the composite photocatalyst according to Comparative Example 1-2.
  • 11A is a TEM observation image
  • FIG. 11B is an enlarged image of a part of FIG. 11A
  • FIG. 11C is an image of element EDS mapping with the same field of view as FIG. 11A.
  • FIG. 11D is an image of element EDS mapping in the same field of view as FIG. FIG.
  • FIG. 12 is a TEM observation image of the photocatalyst particles according to Example 2-1-1.
  • FIG. 13 is a TEM observation image of the photocatalyst particles according to Comparative Example 2-1-1.
  • FIG. 14 is a TEM observation image of the photocatalyst particles according to Comparative Example 2-1-2.
  • FIG. 15A and FIG. 15B are diagrams showing PEC evaluation results for Example 2-2-1 and Comparative Example 2-2-1.
  • FIG. 15A corresponds to Example 2-2-1 and FIG. 15B corresponds to Comparative Example 2-2-1.
  • FIG. 16 is a TEM observation image of the photocatalyst particles according to Example 2-2-1.
  • FIGS. 17A and 17B are TEM observation images of the photocatalyst particles according to Comparative Example 2-2-1.
  • FIG. 18A and FIG. 18B are diagrams showing the PEC evaluation results for Example 2-3-1 and Comparative Example 2-3-1.
  • FIG. 18A corresponds to Example 2-3-1
  • FIG. 18B corresponds to Comparative Example 2-3-1.
  • FIGS. 19A and 19B are TEM observation images of the photocatalyst particles according to Example 2-3-1.
  • FIGS. 20A and 20B are TEM observation images of the photocatalyst particles according to Comparative Example 2-3-1.
  • FIG. 21A and FIG. 21B are explanatory diagrams showing the coating state of the cocatalyst Co x on the photocatalyst surface on which 2% by mass of Co is supported.
  • FIG. 21A shows the photocatalyst surface treated with microwaves
  • FIG. 21A shows the photocatalyst surface treated with microwaves
  • FIG. 21B shows the photocatalyst surface treated with the conventional method (impregnation support method).
  • FIG. 22 is a diagram showing the relationship between the standing time for acid treatment and the reduction amount of the optical semiconductor.
  • FIG. 23 is a diagram showing X-ray diffraction measurement results of optical semiconductors in Examples 3-1 and 3-4 and Comparative Example 3-1.
  • 24A to 24D are diagrams showing TEM observation photographs of the optical semiconductor according to Comparative Example 3-1.
  • 24A is an HRTEM observation image
  • FIG. 24B is an enlarged image of a part of FIG. 24A
  • FIG. 24C is an enlarged image of a part of FIG. 24B
  • FIG. 24D is a diffraction grating image incident from the [210] plane.
  • FIGS. 26A to 26D are TEM observation photographs of the optical semiconductor according to Example 3-4.
  • 26A is an HRTEM observation image
  • FIG. 26B is an enlarged image of a part of FIG. 26A
  • FIG. 26C is an enlarged image of a part of FIG.
  • FIG. 26D shows a diffraction grating image incident from the [210] plane.
  • FIG. 26A is an HRTEM observation image
  • FIG. 26B is an enlarged image of a part of FIG. 26A
  • FIG. 26C is an enlarged image of a part of FIG.
  • FIG. 26D shows a diffraction grating image incident from the [210] plane.
  • FIG. 26A is an HRTEM observation image
  • FIG. 26B is an enlarged image of a part of FIG. 26A
  • FIG. 26C is an enlarged image of a part of FIG.
  • FIG. 26D shows a diffraction grating image incident from the [210] plane.
  • FIG. 26A is an
  • FIG. 27 is a graph showing the relationship between the standing time for acid treatment and the photocurrent density for Examples 3-1 to 3-6.
  • FIG. 28 is a graph showing the results of comparison of photowater decomposition activity in Example 3-1 and Comparative example 3-1.
  • FIG. 29 is a schematic diagram for explaining the procedure for producing the photocatalytic reaction electrode according to Example 4-3.
  • FIG. 30 is a diagram showing PEC evaluation results for Example 4-3 and Comparative Example 4-3.
  • a method for producing a photocatalyst according to the first aspect of the present invention is a method for producing a composite photocatalyst from a plurality of types of optical semiconductors, comprising a solvent, a promoter or a promoter source, and a plurality of types of optical semiconductors. And a solid-liquid mixture including a heating step of irradiating the solid-liquid mixture with microwaves to heat the solid-liquid mixture.
  • the optical semiconductor used in the first aspect of the present invention is a semiconductor that can generate holes and electrons by absorbing light as long as it can catalyze the photo-water splitting reaction.
  • a compound containing a metal element (including a metalloid element) that can be a metal ion of d0 or d10 is preferred, and a compound containing a transition metal of d0 or d10 is more preferred.
  • the metal element that can be a metal ion of d0 include Ti, Zr, Nb, Ta, V, W, and La.
  • Examples of the metal element that can be a metal ion of d10 include Zn, Ga, Ge, In, Sn, Sb, Pb, and Bi.
  • an oxide, nitride, oxynitride, chalcogenide, or oxychalcogenide containing one or more elements selected from the group consisting of Ti, V, Ga, Zn, Bi, Nb, and Ta is included. It is done.
  • Titanium-containing oxides such as 3 O 7 , BaTiO 3 , BaTi 4 O 9 , AgLi 1/3 Ti 2/3 O 2 ; titanium-containing oxynitrides such as LaTiO 2 N; La 5 Ti 2 CuS 5 O 7 , La 5 Ti 2 AgS 5 O 7 , titanium-containing (oxy) chalcogenides such as Sm 2 Ti 2 O 5 S 2 ; gallium-containing nitrides such as GaN: ZnO (ZnO solid solution of gallium-containing nitride); ZnGeN 2 : ZnO (germanium) ZnO solid solution) germanium-containing nitrides such as of containing nitride; BiVO 4, Ag 3 VO 4, etc.
  • Niobium-containing oxides such as CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbON 2 ; Ta 2 O 5 , K 2 PrTa 5 O 15 , K 3 Ta 3 Si 2 O 13 , K 3 Ta 3 B 2 O 12 , LiTaO 3 , NaTaO 3 , KTaO 3 , AgTaO 3 , KTaO 3 : Zr, NaTaO 3 : La, NaTaO 3 : Sr, Na 2 Ta 2 O 6 , K 2 Ta 2 O 6 (pyrochlore) , CaTa 2 O 6 , SrTa 2 O 6 , BaTa 2 O 6 , NiTa 2 O 6 , Rb 4 Ta 6 O 17 , H 2 La 2/3 Ta 2 O 7 , K 2 Sr 1.5 Ta 3 O 10 , LiCa 2 Ta 3 O 10 , KBa 2 Ta 3 O 10 , Sr 5 Ta
  • tantalum-containing oxides such as LaTaO 4 , La 3 TaO 7 ; Ta 3 N Tantalum-containing nitrides such as 5 ; tantalum-containing oxynitrides such as CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N 2 , and TaON are used. Furthermore, you may have a different metal as a dopant in the said compound.
  • a visible light responsive optical semiconductor among the various optical semiconductors.
  • BaNbO 2 N, TaON, Ta 3 N 5 , LaTiO 2 N, SnNb 2 O 6 , BaTaO 2 N, La 5 Ti 2 CuS 5 O 7 , and BiVO 4 are preferable, and among these, BaNbO 2 N is particularly preferable.
  • TaON, Ta 3 N 5 , LaTiO 2 N, BaTaO 2 N, BiVO 4 , and GaN: ZnO are preferable.
  • these compounds may be partially substituted by the dope element.
  • the above various optical semiconductors can be easily synthesized by a known synthesis method such as a solid phase method or a solution method.
  • the method for selecting the type of optical semiconductor is not particularly limited, but it is preferable to select two or more types of optical semiconductors having extremely different absorption ranges. This is because if the absorption region of the optical semiconductor is different, the absorption width of the obtained composite photocatalyst is widened, and more photons can be used. Moreover, it is preferable because the energy barrier with the cocatalyst and / or the conductor becomes small due to the different absorption region, and the charge transfer becomes smooth.
  • the absorption edge of one optical semiconductor is 350 nm to 550 nm and the absorption edge of the other optical semiconductor is 500 to 750 nm.
  • the absorption edge of the other optical semiconductor is 500 to 750 nm.
  • the absorption edges of two types of optical semiconductors among a plurality of types of optical semiconductors to be used are compared, it is preferable to include an optical semiconductor having a difference in absorption edge of 25 nm or more.
  • the difference between the absorption edges is more preferably 50 nm or more, and preferably 250 nm or less.
  • three or more types of optical semiconductors it is preferable that at least two types of optical semiconductors have the above relationship, and it is more preferable that all the optical semiconductors have the above relationship.
  • optical semiconductors examples include GaN and LaTiO 2 N, GaN and BaTaO 2 N, TaON and LaTiO 2 N, BiVO 4 and LaTiO 2 N, TaON and BaTaO 2 N, TaON and Ta 3 N 5 , and BiVO 4. And BaTaO 2 N.
  • the form (shape) of the photo semiconductor is not particularly limited as long as it is a form capable of supporting a cocatalyst described below and functioning as a photocatalyst.
  • a lump shape, a plate shape, or the like may be selected as appropriate.
  • a thin film (sheet) -like optical semiconductor can be formed by crystal growth of the optical semiconductor on the electrode.
  • the optical semiconductor needs to be present as a solid when contacting the solution.
  • the composite photocatalyst produced according to the first aspect of the present invention is used as a photocatalyst for water splitting reaction, it is preferable to support a later-described promoter on the surface of the particulate optical semiconductor.
  • the lower limit of the particle diameter of the optical semiconductor is preferably 50 nm or more, and the upper limit is preferably 500 ⁇ m or less.
  • the “particle diameter” means an average value (average particle diameter) of tangential diameters (ferret diameters) in a fixed direction and can be measured by a known means such as XRD, TEM, SEM method.
  • the above-mentioned optical semiconductor is preferably subjected to an acid treatment in advance according to the third invention described later. That is, in the first aspect of the present invention, as a pre-process of the heating process, the surface of an oxide, oxynitride or nitride containing at least one element selected from Ti, V, Ga, Ge, Nb and Ta is used. Contacting a solution of at least one organic acid containing poly organic acid, an organic acid contact step, and after the organic acid contact step, recovering oxide, oxynitride or nitride remaining as a solid content And a recovery step, and the recovered solid content is preferably used as an optical semiconductor. Details will be described later.
  • the co-catalyst source used in the first aspect of the present invention refers to a source (component, element, ion) that can become a co-catalyst by heating together with an optical semiconductor in a liquid.
  • a co-catalyst containing Co such as CoO x which is a co-catalyst for oxygen generation
  • a compound containing Co can be used as a co-catalyst source.
  • a salt containing Co is preferable.
  • the cocatalyst oxygen generator is not intended to be limited to CoO x, Cr in the first aspect of the present invention as a cocatalyst for oxygen evolution, Sb, Nb, Th, Mn , Fe, Co, Ni, Ru, Rh , Ir metals, oxides thereof, sulfides, composite oxides (excluding CoO x ) and the like can be supported, and these oxides are preferable because they are stable against oxidation.
  • a salt containing these elements can be used as a promoter source.
  • a hydrogen generation promoter can be supported on the optical semiconductor.
  • Pt when Pt is supported on the optical semiconductor as a co-catalyst for hydrogen generation, Pt alone or a compound containing Pt can be used as a co-catalyst source.
  • a salt containing Pt is preferable, such as H 2 PtCl 6 .
  • the hydrogen generating co-catalyst is not limited to Pt.
  • Pd, Rh, Ru, Ni, Au, Fe, Ru—Ir, Pt—Ir, NiO, RuO 2 , IrO 2 , Rh 2 O 3 , Cr—Rh composite oxide, sulfides with sulfur, thiourea added to these metals, etc. can be supported.
  • the noble metal oxide which can be oxidized is preferable.
  • a salt containing these elements can be used as a promoter source.
  • solvent water or various organic solvents can be used as the solvent.
  • the optical semiconductor is limited to a solvent that can maintain a solid even when it is brought into contact with the above-described optical semiconductor.
  • water, alcohols such as ethylene glycol, DMF, DMSO, NMP, nitrobenzene, or a mixture thereof.
  • those having a high boiling point are preferred.
  • a solvent having a boiling point of 100 ° C. or higher is preferable, and water, alcohols, or a mixed solvent thereof is particularly preferable.
  • Solid-liquid mixture In the first aspect of the present invention, a plurality of the above-mentioned optical semiconductors, a promoter or a promoter source, and a solvent are mixed to obtain a solid-liquid mixture.
  • the mixing ratio of the photo semiconductor, the co-catalyst or co-catalyst source, and the solvent is not particularly limited, and may be appropriately adjusted according to the characteristics of the composite photo catalyst to be produced.
  • the first aspect of the present invention is characterized in that the above-described solid-liquid mixture is heated by irradiation with microwaves.
  • Microwave means an electromagnetic wave having a frequency of 300 MHz to 30 GHz.
  • the lower limit of the frequency is preferably 900 MHz or higher, and the upper limit is preferably 18 GHz or lower.
  • microwave irradiation conditions are not particularly limited. It can be appropriately adjusted in consideration of the heating temperature and the like.
  • the solid-liquid mixture by microwaves in a closed system.
  • the closed system when the temperature of the solution in the system exceeds the boiling point outside the system, the inside of the system is such that the pressure increases from outside the system as the temperature increases.
  • a container that can be sealed a container that can transmit microwaves and does not react with the solid-liquid mixture (for example, a container made of quartz, Teflon (registered trademark), or silicon carbide) can be used.
  • the pressure in the closed system is higher than the pressure outside the system by heating with microwaves. More preferably, the pressure in the system is set to 1.01 bar or more and 50 bar or less.
  • a composite photocatalyst can be produced in one step by irradiating the above solid-liquid mixture with microwaves and heating. That is, it is only necessary to take out the solid content after heating with microwaves, and subsequent baking or renitriding is not necessary. Further, in the composite photocatalyst produced according to the first aspect of the present invention, the cocatalyst is present on the surface of a plurality of types of optical semiconductors, and the joint surface of the plurality of types of optical semiconductors is interposed or coated with the optical semiconductor. It exists and has excellent water splitting activity.
  • the production method S ⁇ b> 10 mixes a solvent 3, a promoter source 2 ′, and a plurality of types of optical semiconductors 1 a and 1 b to form a solid-liquid mixture 5. And a step of heating by microwave irradiation using the microwave oven 6.
  • the production method S10 is characterized in that the cocatalyst source 2 ′ in the solid-liquid mixture 5 exists in a state dissolved in the solvent 3 (in the state of the solution 4) before the microwave irradiation.
  • the solid-liquid mixture 5 is irradiated with microwaves and heated to deposit the promoter 2 on the surfaces of the optical semiconductors 1a and 1b, and the optical semiconductors 1a and 1b are combined.
  • the composite photocatalyst 10 can be easily manufactured.
  • the medium in the case of normal heating, the medium (solvent) is heated, and the precursor of the cocatalyst is decomposed by the heat to form nuclei, which are attached to the surface of the optical semiconductor and further nucleate. For this reason, the supported cocatalyst tends to be non-uniform and tends to aggregate.
  • the microwave when used, the optical semiconductor itself absorbs the microwave, so that the surface of the optical semiconductor is heated first, and the decomposition and nucleus growth of the promoter precursor simultaneously occur on the surface of the optical semiconductor. Thereby, it is considered that the promoter is supported uniformly and entirely.
  • the promoter source 2 ′ in the solid-liquid mixture 5 only needs to be dissolved in the solvent 3 when irradiating microwaves.
  • the promoter source 2 ′ in the solid-liquid mixture 5 is preferably a solvent before being irradiated with microwaves. 3 exists in a state dissolved in 3 (state of solution 4).
  • the concentration of the cocatalyst source 2 'in the solution 4 is not particularly limited, but preferably the lower limit is 0.1% by mass or more, more preferably 0.5% by mass or more, and the upper limit is preferably 10% by mass or less. More preferably, it is 5 mass% or less. This is because if the concentration of the cocatalyst source 2 ′ is within this range, the cocatalyst 2 does not inhibit the light absorption of the composite photocatalyst 10 in the manufactured composite photocatalyst 10.
  • the solution 4 is not particularly limited as long as it is composed of the promoter source 2 ′ and the solvent 3.
  • the solution 4 may be any solution containing the above promoter source, and Co ions, A solution containing Ru ions or Pt ions is preferred, and a solution containing Co ions is more preferred.
  • a plurality of types of cocatalyst sources 2 ' may be dissolved in the solvent 3.
  • the composite photocatalyst 10 it is possible to carry a plurality of types of promoters 2 on the surfaces of the optical semiconductors 1a and 1b.
  • a plurality of oxides in which a plurality of promoter sources are mixed can also be used.
  • the optical semiconductors 1a and 1b may be combined in advance in the solid-liquid mixture 5 before microwave irradiation. That is, secondary particles may be formed by the particles of the optical semiconductor 1a and the particles of the optical semiconductor 1b.
  • secondary particles composed of particles of the optical semiconductor 1a and particles of the optical semiconductor 1b are obtained, and the secondary particles are dissolved in a solution. 4 to form a solid-liquid mixture 5.
  • a composite photocatalyst having excellent water splitting activity can be produced.
  • a composite photocatalyst production method S20 according to a second embodiment will be described.
  • the manufacturing method S ⁇ b> 20 mixes the solvent 13, the co-catalyst 12, and a plurality of types of optical semiconductors 11 a and 11 b to form a solid-liquid mixture 15.
  • a step of irradiating and heating microwaves using a wave oven 16 is provided.
  • the promoter 12 and the optical semiconductors 11a and 11b in the solid-liquid mixture 15 are both present as a solid in the solvent 13, and the promoter 12 is the optical semiconductor 11a, It is characterized in that it is in a state of being supported on 11b (a state of photocatalysts 20′a and 20′b). That is, in the production method S20, the photocatalysts 20′a and 20′b can be composited by irradiating the solid-liquid mixture 15 with microwaves and heating, and the composite photocatalyst 20 is easily produced. be able to.
  • the photocatalysts 20'a and 20'b are preferably obtained by the following method, for example.
  • FIG. 3 (A) the first optical semiconductor 11a is supported by the first optical semiconductor 11a by heating the first optical semiconductor 11a in contact with the solution 14 in which the promoter 12 'is dissolved, thereby heating the promoter 12 on the first optical semiconductor 11a.
  • the photocatalyst 20′a can be easily obtained (first supporting step).
  • FIG. 3 (B) the second optical semiconductor 11b is heated with the second optical semiconductor 11b by contacting the second optical semiconductor 11b with the solution in which the promoter source 12 ′ is dissolved, whereby the promoter 12 is applied to the second optical semiconductor 11b.
  • the photocatalyst 20′b can be easily obtained (second supporting step). Then, the photocatalyst 20′a and the photocatalyst 20′b obtained by the first supporting step and the second supporting step can be included in a solvent to obtain the above solid-liquid mixture (mixing step). It should be noted that a plurality of types of promoters 12 'may be supported on the optical semiconductors 11a and 11b by dissolving a plurality of types of promoters 12' in the solution 14, respectively.
  • the first supporting step and the second supporting step it is preferable to irradiate microwaves in a closed system.
  • the definition of the closed system and the effect when the microwave is irradiated in the closed system are as described above.
  • the optical semiconductors 11a and 11b are preferably pretreated with acid according to the third aspect of the present invention described later. That is, in the second embodiment, as a pre-process of the first supporting process and the second supporting process, an oxide or an acid containing at least one element selected from Ti, V, Ga, Ge, Nb, and Ta, respectively.
  • An organic acid contact step in which a nitride or a solution of at least one organic acid containing a polyorganic acid is brought into contact with the surface of the nitride, and an oxide or an acid remaining as a solid after the organic acid contact step It is preferable to provide a recovery step of recovering nitride or nitride, and use the recovered solid content as the optical semiconductors 11a and 11b.
  • the photocatalysts 20′a and 20′b can be obtained by the impregnation method shown in FIG.
  • the solution 14 in which the promoter source 12 ′ is dissolved is impregnated with the first optical semiconductor 11a and then irradiated with ultrasonic waves, and then the solvent is removed by distillation under reduced pressure or the like.
  • Photocatalyst 20'a can be obtained by removing and obtaining powder and baking the said powder.
  • FIG. 4B see FIG. 4B.
  • a plurality of types of promoters 12 ′ may be supported on the photocatalysts 20 ′ a and 20 ′ b by dissolving a plurality of types of promoters 12 ′ in the solution 14.
  • a composite photocatalyst production method S30 according to a third embodiment will be described with reference to FIG.
  • the manufacturing method S30 mixes the solution 14 in which the cocatalyst source 12 ′ is dissolved and a plurality of types of photocatalysts 20′a and 20′b to form a solid-liquid mixture 25.
  • a microwave oven 26 is used to irradiate and heat microwaves.
  • the promoter 12 and the optical semiconductors 11a and 11b in the solid-liquid mixture 25 are both present as solids in the solution 14, and the promoter 12 is the optical semiconductor 11a
  • the co-catalyst source 12 ′ is further dissolved in the solution 14 while it is in a state of being supported on the photo-cathode 11 b (photocatalysts 20 ′ a and 20 ′ b). That is, in the production method S30, the solid-liquid mixture 25 is irradiated with microwaves and heated, whereby the cocatalyst derived from the cocatalyst source 12 ′ is further applied to the photocatalysts 20′a and 20′b.
  • the composite photocatalyst 30 can be easily manufactured while being supported.
  • water decomposition activity is improved by compositing a plurality of different types of optical semiconductors together with a promoter in the liquid using microwave heating.
  • a composite photocatalyst can be produced.
  • the embodiment using two types of optical semiconductors 1a and 1b (11a and 11b) as the optical semiconductor has been described.
  • the first invention is not limited to this embodiment. It is also possible to produce a composite photocatalyst using three or more types of optical semiconductors.
  • the composite photocatalyst produced by the production method according to the first aspect of the present invention has a remarkable water splitting activity that has never been seen before. That is, the first aspect of the present invention also has an aspect as a composite photocatalyst. Specifically, it is a composite photocatalyst composed of a plurality of types of optical semiconductors carrying a promoter, wherein the promoter is present on the surface of the plurality of types of optical semiconductors and is interposed between the bonding surfaces of the plurality of types of optical semiconductors. It is a composite photocatalyst characterized by existing in a state where a photo semiconductor is coated.
  • the coverage per unit area of the optical semiconductor by the cocatalyst is preferably 30% or more.
  • the co-catalyst is supported on the surface of the optical semiconductor by the conventional impregnation method, since the crystal nucleus is localized, the co-catalyst aggregates and is supported on the surface of the optical semiconductor with a relatively large particle size of the co-catalyst. There is a tendency. This tendency is the same when the concentration of the solution in which the cocatalyst source is dissolved is increased, and the coverage per unit area of the optical semiconductor is not necessarily proportional to the solution concentration of the cocatalyst source and is less than 30%. .
  • the present inventor found that the composite photocatalyst obtained by the production method of the first invention has a tendency that a cocatalyst having a relatively small particle size is supported on the optical semiconductor in a dense state. .
  • the coverage per unit area of the optical semiconductor is determined based on the solution concentration of the promoter (the promoters 2 ′ and 12 ′ in the solutions 4 and 14 in FIGS. 1 and 3). Even when the concentration is relatively low (1% by mass), it can be 30% or more, preferably 50% or more, more preferably 60% or more, and the coating is proportional to the solution concentration of the promoter source. The rate tends to increase. Therefore, with the composite photocatalyst of the first aspect of the present invention, since the surface of the optical semiconductor is uniformly covered with the promoter particles, the photoactivity can be improved as compared with the conventional method.
  • the composite photocatalyst of the present invention can have a form similar to the form (shape) of the optical semiconductor described above.
  • a particle shape, a lump shape, a plate shape, or the like may be appropriately selected according to the installation form of the photocatalyst.
  • a thin film (sheet) -like optical semiconductor can be formed by crystal growth of the optical semiconductor on the electrode.
  • a cocatalyst having a particle diameter of 20 nm or less, preferably 15 nm or less, more preferably 10 nm or less, and most preferably 5 nm or less is supported on the surface of the optical semiconductor. Since the size of the promoter particles is 20 nm or less and the surface area of the promoter on the optical semiconductor can be increased, a photocatalyst having higher photoactivity than a photocatalyst supporting the promoter by a conventional method is provided. be able to.
  • the particle diameter of the cocatalyst particles means the average value (average particle diameter) of the directional tangential diameter (Ferret diameter) as in the above-mentioned optical semiconductor particle diameter, and was measured from an electron micrograph such as TEM. It can be determined from the average value of the promoter particle diameter.
  • the amount of the promoter supported on the surface of the optical semiconductor is not particularly limited as long as it is an amount capable of improving the photocatalytic activity. However, if the amount of the entire cocatalyst supported is too small, there is no effect. If the amount is too large, the cocatalyst itself absorbs and scatters light, preventing the photocatalyst from absorbing light or acting as a recombination center. The catalytic activity is reduced.
  • a composite photocatalyst obtained by supporting a cocatalyst having a particle diameter of 20 nm or less on the surface of a plurality of types of optical semiconductor particles having a primary particle diameter of 50 nm or more and 500 ⁇ m or less and combining them.
  • the lower limit is more preferably 0.009 parts by mass or more, further preferably 0.010 parts by mass or more, and the upper limit is more preferably 10.0 parts by mass or less, still more preferably 5.0 parts by mass or less, particularly preferably 4 0.0 parts by mass or less.
  • the microwave irradiation conditions may be adjusted in the manufacturing method according to the first aspect of the present invention.
  • the composite photocatalyst produced by the first invention can be suitably used as a photocatalyst for photohydrolysis reaction.
  • the form of the composite photocatalyst is not particularly limited, a form in which the particulate composite photocatalyst is dispersed in water, a form in which the composite photocatalyst is solidified and placed in water as a formed body, on the substrate
  • a layer composed of a composite photocatalyst is provided to form a laminate, and the laminate is placed in water, a composite photocatalyst is immobilized on a current collector to be used as a photo-water splitting reaction electrode and placed in water together with a counter electrode, etc. It is done.
  • the photo-water splitting reaction electrode can be produced by a known method.
  • it can be easily produced by a so-called particle transfer method (Chem. Sci., 2013, 4, 1120-1124). That is, the composite photocatalyst is placed on a first substrate such as glass to obtain a laminate of the composite photocatalyst layer and the first substrate layer.
  • a conductive layer (current collector) is provided on the surface of the composite photocatalyst layer of the obtained laminate by vapor deposition or the like.
  • the composite photocatalyst in the conductive layer side surface layer of the composite photocatalyst layer is fixed to the conductive layer.
  • a 2nd base material is adhere
  • a slurry in which the composite photocatalyst is dispersed may be applied to the surface of the current collector and dried to obtain a photohydrolysis reaction electrode, or the composite photocatalyst and the current collector may be subjected to pressure molding or the like. May be integrated to obtain a photohydrolysis electrode.
  • the current collector may be immersed in a slurry in which the composite photocatalyst is dispersed, and the composite photocatalyst may be accumulated on the current collector by electrophoresis by applying a voltage.
  • the promoter may be supported in a later step.
  • a composite body having a composite optical semiconductor layer, a conductive layer, and a second base material layer is obtained in the same manner using composite optical semiconductor particles instead of composite photocatalyst particles, and then The co-catalyst can be supported on the surface of the composite photo-semiconductor layer by microwave heating while bringing the composite photo-semiconductor layer of the laminate into contact with the above-described solutions (solutions 4 and 14).
  • An electrode for photohydrolysis reaction can be obtained.
  • a metal oxide such as ITO or FTO is desirable as the electrode. This is because in the case of metal, sparks are generated by microwave irradiation.
  • the composite photocatalyst produced according to the first aspect of the present invention or the above-mentioned photohydrolysis reaction electrode is immersed in water or an aqueous electrolyte solution, and the composite photocatalyst or photohydrolysis reaction electrode Hydrogen and / or oxygen can be manufactured by irradiating light to water and performing water photolysis.
  • a composite photocatalyst is immobilized on a current collector made of a conductor to obtain a photo-water splitting reaction electrode for oxygen generation and a water splitting reaction electrode for hydrogen generation. After the connection, light is irradiated while supplying liquid or gaseous water, and the water splitting reaction proceeds.
  • the water splitting reaction can be promoted by providing a potential difference between the electrodes as necessary.
  • the water splitting reaction may be advanced by irradiating light while supplying water to an immobilization product in which the composite photocatalyst is immobilized on an insulating substrate or to a molded body obtained by pressure molding the composite photocatalyst.
  • the composite photocatalyst may be dispersed in water or an aqueous electrolyte solution, and light may be irradiated to proceed with the water splitting reaction. In this case, the reaction can be promoted by stirring as necessary.
  • the reaction conditions during the production of hydrogen and / or oxygen are not particularly limited.
  • the reaction temperature is 0 ° C. or higher and 200 ° C. or lower, and the reaction pressure is 2 MPa (G) or lower.
  • Irradiation light can be suitably used as visible light or ultraviolet light having a wavelength of 650 nm or less, although it depends on the type of composite photocatalyst.
  • the light source of irradiation light include the sun, a lamp capable of irradiating approximate sunlight, such as a xenon lamp and a metal halide lamp, a mercury lamp, and an LED.
  • the photocatalyst manufacturing method according to the second aspect of the present invention is a method of heating by microwave while contacting the optical semiconductor 101 with a solution 105 in which a promoter source is dissolved in a closed system. It is characterized by including the process to do. Through this process, the photocatalyst 110 in which the cocatalyst 102 having a small particle diameter is supported on the surface of the optical semiconductor 101 with high dispersion can be manufactured.
  • the second aspect of the present invention is characterized in that the heating by the microwave is performed inside the closed system.
  • An example of the closed system in the second aspect of the present invention can be the same as that in the closed system exemplified in the first aspect of the present invention.
  • optical semiconductor 101 used in the second aspect of the present invention is a semiconductor that can generate holes and electrons by absorbing light as long as it can catalyze the photo-water splitting reaction. Specifically, it may be appropriately selected from the optical semiconductors exemplified in the first aspect of the present invention. The preferred optical semiconductor is also the same as in the first aspect of the present invention.
  • the cocatalyst source used in the second aspect of the present invention refers to a source (component, element, ion) that can become a cocatalyst by heating together with the optical semiconductor 101 in a liquid.
  • the promoter may be appropriately selected from the promoter sources exemplified in the first aspect of the present invention.
  • a promoter source that can become a promoter on the surface of the optical semiconductor in a solution by microwave heating (such as depositing as a promoter) can be appropriately selected and used.
  • a plurality of types of promoters can be supported on the surface of the optical semiconductor. For example, it is possible to sequentially co-support precursors of an oxygen generating co-catalyst and a hydrogen generating co-catalyst.
  • a plurality of promoter sources may be mixed in the solution. In this case, what is necessary is just to dissolve several types of promoter sources in the solution 5.
  • the cocatalyst source is dissolved in a solvent, whereby the solution 105 in which the cocatalyst source is dissolved can be obtained.
  • a solvent is not particularly limited as long as it can dissolve the above-described promoter source, and water and various organic solvents can be used.
  • the solvent is not limited to the solvent in which the optical semiconductor 101 can maintain a solid even when it is brought into contact with the optical semiconductor 101 described above.
  • water, alcohols such as ethylene glycol, DMF, DMSO, NMP, nitrobenzene, or a mixture thereof.
  • those having a high boiling point are preferred.
  • the concentration of the promoter source contained in the solution 105 is not particularly limited, but preferably the lower limit is 0.1% by mass or more, more preferably 0.5% by mass or more, and the upper limit is preferably 10% by mass. % Or less, more preferably 5% by mass or less. This is because if the concentration of the cocatalyst source is within this range, the cocatalyst does not inhibit the light absorption of the photocatalyst.
  • the solution containing the cocatalyst source is not particularly limited as long as it is composed of the cocatalyst source and the solvent, but may be a solution containing Co ions, Ru ions, or Pt ions.
  • a solution containing Co ions is more preferable.
  • the second aspect of the present invention is characterized in that the solution 105 and the optical semiconductor 101 are heated by microwaves.
  • the microwave irradiation conditions can be the same as those exemplified in the first aspect of the present invention.
  • microwave irradiation conditions are determined according to the concentration of the promoter source contained in the solution 105 and the shape and amount of the optical semiconductor contacted with the solution 105. By adjusting, the amount of the promoter supported on the surface of the optical semiconductor 101 can be easily adjusted.
  • the reaction rate can be greatly improved, and the overall processing time can be shortened.
  • the microwave When the microwave is used, the optical semiconductor itself absorbs the microwave, so that the surface of the optical semiconductor is heated first, and the decomposition of the promoter precursor and the nucleus growth occur simultaneously on the surface of the optical semiconductor. Thereby, it is considered that the promoter is supported uniformly and entirely. Further, it can be heated by a simple process, yield can be improved, and purity can be improved. That is, in the second aspect of the present invention, it is preferable that the pressure in the closed system is higher than the pressure outside the system by heating with microwaves. More preferably, the pressure in the system is set to 1.01 bar or more and 50 bar or less.
  • the amount of the cocatalyst supported on the photo semiconductor surface is not particularly limited as long as it is an amount capable of improving the photocatalytic activity. However, if the amount of the entire cocatalyst supported is too small, there is no effect. If the amount is too large, the cocatalyst itself absorbs and scatters light, preventing the photocatalyst from absorbing light or acting as a recombination center. The catalytic activity is reduced.
  • the microwave irradiation conditions are preferably adjusted so that the promoter particles are supported by 0.008 parts by mass or more and 20.0 parts by mass or less.
  • the lower limit is more preferably 0.009 parts by mass or more, further preferably 0.010 parts by mass or more, and the upper limit is more preferably 10.0 parts by mass or less, still more preferably 5.0 parts by mass or less, particularly preferably 4 0.0 parts by mass or less.
  • the photocatalyst 110 can be easily manufactured in one stage in the closed system through the above-described steps. That is, after heating with microwaves, it is only necessary to take out the solid content from the closed system, and subsequent baking treatment, renitriding treatment, and the like are not necessary. Further, in the photocatalyst 110 produced according to the present invention, a cocatalyst having a small particle diameter is supported on the surface of the optical semiconductor 101 in a highly dispersed state, and is excellent in photohydrolysis activity.
  • the second aspect of the present invention has an aspect as a cocatalyst loading method in addition to the aspect as a photocatalyst production method. That is, in the closed system, the photo semiconductor is brought into contact with a solution containing a promoter source, and the promoter is supported on the surface of the optical semiconductor by heating with a microwave.
  • a cocatalyst loading method in addition to the aspect as a photocatalyst production method. That is, in the closed system, the photo semiconductor is brought into contact with a solution containing a promoter source, and the promoter is supported on the surface of the optical semiconductor by heating with a microwave.
  • Photocatalytic reaction electrode The photocatalyst produced according to the second aspect of the present invention can be suitably used as a photocatalyst for the photohydrolysis reaction.
  • the form of the photocatalyst is not particularly limited, and can be the same as that described in the first aspect of the present invention.
  • the method for producing the photohydrolysis electrode is as described above.
  • Photocatalyst 2nd this invention also has the side surface as a photocatalyst.
  • the photocatalyst according to the second aspect of the present invention is characterized in that a promoter is supported on the surface of the optical semiconductor, and the coverage per unit area of the optical semiconductor by the promoter is 30% or more.
  • the co-catalyst When the co-catalyst is supported on the surface of the optical semiconductor by the conventional impregnation method, since the crystal nucleus is localized, the co-catalyst aggregates and is supported on the surface of the optical semiconductor with a relatively large particle size of the co-catalyst. There is a tendency. This tendency is the same when the concentration of the solution in which the cocatalyst source is dissolved is increased, and the coverage per unit area of the optical semiconductor is not necessarily proportional to the solution concentration of the cocatalyst source and is less than 30%. .
  • the present inventor found that the photocatalyst obtained by the production method of the second invention has a tendency that a cocatalyst having a relatively small particle size is supported on the photo semiconductor in a dense state.
  • the coverage per unit area of the optical semiconductor is 30% or more, preferably 50% or more even when the solution concentration of the promoter source is relatively low (1% by mass). More preferably, it can be 60% or more, and the coverage tends to increase in proportion to the solution concentration of the promoter source. Therefore, in the case of the photocatalyst of the second aspect of the present invention, since almost the entire surface of the optical semiconductor is uniformly covered with the promoter particles, the photoactivity can be improved as compared with the conventional method.
  • a cocatalyst having a particle diameter of 20 nm or less, preferably 15 nm or less, more preferably 10 nm or less, and most preferably 5 nm or less is supported on the surface of the optical semiconductor. Since the size of the promoter particles is 20 nm or less and the surface area of the promoter on the optical semiconductor can be increased, a photocatalyst having higher photoactivity than a photocatalyst supporting the promoter by a conventional method is provided. be able to.
  • the particle diameter of the cocatalyst particles means the average value (average particle diameter) of the directional tangential diameter (Ferret diameter) as in the above-mentioned optical semiconductor particle diameter, and was measured from an electron micrograph such as TEM. It can be determined from the average value of the promoter particle diameter.
  • the photocatalyst of the second present invention is preferably obtained by the method for producing a photocatalyst of the present invention.
  • the raw materials described in the production method of the present invention can be used.
  • the water decomposition activity of the photocatalyst can be improved by appropriately acid-treating the optical semiconductor in advance.
  • a method for manufacturing an optical semiconductor will be described.
  • the method for manufacturing an optical semiconductor according to the third aspect of the present invention includes an oxidation process including at least one element selected from Ti, V, Ga, Ge, Nb, La, and Ta.
  • a first step organic acid contact step in which a solution 202 of a predetermined organic acid is brought into contact with the surface of the product, oxynitride or nitride 201a (hereinafter sometimes referred to as “oxide etc. 201a”), and After the first step, a second step (recovery step) for recovering oxide, oxynitride or nitride 201b (hereinafter sometimes referred to as “oxide etc. 201b”) remaining as a solid content is performed. It is characterized by providing.
  • the first step is a step of bringing a predetermined organic acid solution 202 into contact with the surface of an oxide 201a or the like. Specifically, (i) a step of bringing a solution of at least one organic acid containing a polyorganic acid into contact with the surface of the oxide 201a, or (ii) sulfonic acid on the surface of the oxide 201a. It is a step of bringing into contact with a solution of at least one or more organic acids.
  • the oxide 201a or the like used in the third aspect of the present invention contains at least one element selected from Ti, V, Ga, Ge, Nb, La and Ta and absorbs light, holes and electrons. Any oxide, nitride, or oxynitride that can generate a photocatalytic reaction can be used.
  • the oxide 201a usually has surface defects, interface defects, and the like. If the surface defects, interface defects, and the like can be successfully removed by acid treatment, the photohydrolysis activity of the optical semiconductor can be improved. Especially, when oxide etc. 201a contains Ti or Nb, since the effect of an acid treatment is show
  • the oxide etc. 201a it may be appropriately selected from the oxides, nitrides or oxynitrides exemplified as the optical semiconductor in the first invention described above.
  • These oxides 201a can be easily synthesized by a known synthesis method such as a solid phase method or a solution method.
  • the oxides 201a include LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, Ta 3 N 5 , BaTaO 2 N, BiVO 4 , TaON, LaTiO 2 N, SnNb. It is preferably at least one selected from 2 O 6 , La 5 Ti 2 CuS 5 O 7 , GaN: ZnO and ZnGeN 2 : ZnO. Of these, it is preferable that the oxide 201a is LaTiO 2 N, SrNbO 2 N, or BaNbO 2 N because the effect of acid treatment is particularly remarkable.
  • the shape of the oxide 201a is not particularly limited. In addition to particles (powder) and lumps, a molded body such as a sheet or a pellet may be used. From the viewpoint of easily producing an optical semiconductor having a shape particularly suitable for the water splitting reaction, a particulate or sheet-like one is preferable. Particularly preferred is a particulate form.
  • the average particle diameter thereof has a lower limit of usually 10 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and an upper limit of usually 50 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the “average particle diameter” means an average value of tangential diameters (ferret diameters) in a fixed direction, and can be measured by a known means such as XRD, TEM, or SEM method.
  • the lower limit is usually 1 nm or more, preferably 10 nm or more, more preferably 100 nm or more, and the upper limit is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less. It is.
  • the sheet-like oxide 201a may be a thin layer formed on the surface of a substrate or the like (a crystal directly grown on the surface of the substrate or the like).
  • the solution 202 used in the present invention is (i) a solution of at least one organic acid containing a polyorganic acid, or (ii) a solution of at least one organic acid containing a sulfonic acid.
  • the polyorganic acid has a large molecular weight, the size (chain length) is almost the same as the particle size of the oxide, and when the polyorganic acid solution is brought into contact with the surface of the oxide etc. 201a, the oxide etc. Since the poly organic acid hardly penetrates into the interior of 201a, it can be gradually dissolved as if the surface of the optical semiconductor is polished. That is, the acid treatment can be easily controlled, and the entire surface of the oxide 201a or the like can be appropriately acid-treated without unevenness. Thereby, the surface defect of the oxide etc. 201a, an interface defect, etc. can be removed appropriately, and water splitting activity can be improved appropriately.
  • sulfonic acid various organic acids can be applied as the monomer constituting the polyorganic acid, sulfonic acid and acrylic acid are preferable, and sulfonic acid is particularly preferable.
  • sulfonic acid various sulfonic acids can be applied, and those having a hydrocarbon group having 6 or more carbon atoms are particularly preferable, and those having an aryl group are particularly preferable. Since an aryl group can stabilize the anionic state of sulfonic acid by conjugation, it has a high acidity and is more preferable as an acid.
  • the aryl group is hydrophobic and does not easily enter the inside of the oxide or the like, and does not excessively corrode the oxide or the like.
  • benzenesulfonic acid, toluenesulfonic acid, and styrenesulfonic acid are preferable, and styrenesulfonic acid is particularly preferable.
  • polystyrene sulfonic acid is used as the polyorganic acid, the balance between the solubility of the optical semiconductor by the acid treatment and the controllability of the acid treatment is particularly excellent. That is, it is not excessively dissolved while the acid treatment is appropriately progressed.
  • the degree of polymerization of the polyorganic acid is 10 or more, the effect according to the present invention is exhibited. This is because when the degree of polymerization is 10 or more, it becomes difficult for the polyorganic acid to penetrate into the inside of the oxide 201a, and the surface of the oxide 201a can be appropriately dissolved without unevenness.
  • the polyorganic acid preferably has a weight average molecular weight of 1,000 or more and 1,000,000 or less.
  • the lower limit of the weight average molecular weight is more preferably 1000 or more, still more preferably 2000 or more, and the upper limit is more preferably 1,000,000 or less, still more preferably 100,000 or less.
  • a polyorganic acid having a molecular weight in such a range does not easily penetrate into the inside of the oxide 201a, and the surface of the oxide 201a can be appropriately acid-treated without unevenness. That is, the control of the acid treatment becomes easier.
  • sulfonic acid can be used instead of or together with the polyorganic acid.
  • the sulfonic acid the same sulfonic acid as exemplified as the monomer constituting the poly organic acid can be used.
  • the surface of the oxide etc. 201a is acid-treated using sulfonic acid, the surface of the oxide etc. 201a is gradually reduced without excessively corroding the oxide etc. 201a as compared with the case of using aqua regia etc. It can be dissolved.
  • the sulfonic acid is substituted with a hydrophobic organic group, and the penetration into the oxide can be suppressed.
  • the acid treatment can be easily controlled, and the entire surface of the oxide 201a or the like can be appropriately acid-treated without unevenness. Thereby, the surface defect of the oxide etc. 201a, an interface defect, etc. can be removed appropriately, and water splitting activity can be improved appropriately.
  • a polyorganic acid among polyorganic acids and sulfonic acids. This is because by using a polyvolatile organic acid having a small volatility, the recovery after the acid treatment becomes easy and can be reused.
  • the organic acid as described above is dissolved in the solution 202.
  • the solvent for dissolving the organic acid is not particularly limited.
  • a mixed solvent of water or various organic solvents (preferably alcohols such as methanol, ethanol, ethylene glycol) and water can be used. Water is particularly preferable.
  • the concentration of the organic acid described above in the solution 202 is not particularly limited as long as the surface of the oxide 201a or the like can be acid-treated.
  • the concentration is preferably such that the pKa is -4 or more and 4 or less.
  • the lower limit of pKa is more preferably ⁇ 3 or more, and the upper limit is more preferably 2 or less.
  • said pKa changes also with the kind of solvent besides the density
  • the solution 202 may contain “other organic acids” other than the organic acids described above as long as the effects of the present invention are not impaired.
  • a solution containing a small amount of carboxylic acid together with polysulfonic acid is also within the scope of the present invention.
  • the content of such “other organic acids” is preferably 50% by mass or less based on the entire solution 202 (100% by mass).
  • the solution 202 may contain an inorganic acid as long as the effects of the present invention are not impaired.
  • the inorganic acid corrodes the oxide 201a and the like excessively in a short time as described above, the content thereof needs to be very small.
  • the total amount of the solution 202 is 10% by mass or less based on the standard (100% by mass).
  • the contact method between the oxide 201a and the solution 202 as described above is not particularly limited. Any material can be used as long as the acid treatment of the oxide 201a or the like can be appropriately advanced by contact. For example, there are various forms such as a form in which the oxide 202a is impregnated in the solution 202, a form in which the solution 202 is applied to the surface of the oxide 201a, a form in which the solution 202 is sprayed on the surface of the oxide 201a, etc. .
  • the temperature of the solution 202 is not particularly limited. Even if the solution 202 is at about room temperature, a sufficient effect can be obtained.
  • the temperature of the solution 202 is usually 0 ° C. or higher and lower than 100 ° C., preferably 5 ° C. or higher and 80 ° C. or lower, more preferably 10 ° C. or higher and 50 ° C. or lower.
  • the contact time between the oxide 201a and the solution 202 may be appropriately adjusted according to the type and shape of the oxide 201a. That is, in the second step to be described later, the contact time may be set such that the oxide 201b can remain as a solid content. Even when the contact time is short, surface defects and interface defects can be reduced, and the effects of the present invention are exhibited. On the other hand, as described above, since the acid treatment is performed with the organic acid solution 202 in the present invention, the surface of the oxide 201a or the like may be excessively roughened even when the contact time is long (for example, about 15 to 20 hours). The effect of the present invention is achieved. That is, the contact time may be a short time or a long time. The relationship between the contact time and the photohydrolysis activity will be described in more detail in Examples.
  • the pressure at the time of contact between the oxide 201a and the solution 202 is not particularly limited, and may be any of reduced pressure, normal pressure or increased pressure. Usually, it is 0 to 10 atmospheres, preferably 0 to 5 atmospheres, more preferably 0 to 3 atmospheres.
  • the second step is a step of recovering the oxide 201b remaining as a solid content after the first step.
  • the recovery method is not particularly limited.
  • the particulate oxide 201b when the particulate oxide 201b is immersed in the solution 202, the particulate oxide 201b can be recovered by filtration and washing. Further, when the sheet-like oxide 201b is immersed in the solution 202, the sheet-like oxide 201b can be recovered by pulling up the sheet-like oxide 201b from the solution 202. .
  • the solution 202 remains on the surface of the oxide 201b or the like by the first step. Therefore, in recovering the oxide 201b, it is preferable to wash the oxide 201b with water or an organic solvent and remove the solution 202 from the surface of the oxide 201b.
  • an oxide 201b with reduced surface defects and interface defects as shown in FIG. 7B can be obtained.
  • the oxide 201b is an optical semiconductor having excellent water splitting activity.
  • the optical semiconductor manufactured according to the third aspect of the present invention may have an organic acid-derived element remaining on the surface thereof. Even if the functional group (hydroxyl group, amino group, etc.) on the surface of the photocatalyst and the element derived from the organic acid are chemically bonded by hydrogen bonding or the like, and the photo semiconductor is washed with water or an organic solvent, the element derived from the organic acid This is probably because it is difficult to completely remove the surface of the optical semiconductor.
  • the manufactured optical semiconductor is an oxide, a nitride, or an oxynitride, but the surface has 0.05 atm% or more and 2 atm% or less.
  • the S component remains. This is unique to the product according to the invention.
  • an optical semiconductor made of an oxide, nitride or oxynitride having an S content of 0.05 atm% or more and 2 atm% or less on the surface is presumed to have been produced by the production method according to the present invention. can do.
  • the third aspect of the present invention also has a side as a photocatalyst production method. That is, the photocatalyst manufacturing method includes a step of supporting a cocatalyst on the surface of the optical semiconductor manufactured by the above-described optical semiconductor manufacturing method.
  • Co-catalyst Any co-catalyst may be used as long as it can be applied as a co-catalyst for the photocatalyst.
  • oxygen generation promoter include Co, Cr, Sb, Nb, Th, Mn, Fe, Co, Ni, Ru, Rh, and Ir metals, oxides, sulfides, and composite oxides thereof.
  • the promoter may be of a size that can be supported on the surface of the optical semiconductor. In order to support the cocatalyst on the surface of the optical semiconductor, it needs to be smaller than the optical semiconductor in the form of particles, lumps or sheets. Particularly preferred is a mode in which a cocatalyst having a particle size of 1.0 nm to 25 nm is supported on the surface of an optical semiconductor particle having a particle size of 50 nm to 500 ⁇ m.
  • the lower limit of the particle diameter of the cocatalyst is more preferably 1.2 nm or more, still more preferably 1.5 nm or more, and the upper limit is more preferably 20 nm or less, still more preferably 10 nm or less.
  • the amount of the cocatalyst supported there is no effect if it is too small, and if it is too large, the cocatalyst itself absorbs and scatters light and prevents light absorption of the optical semiconductor, or acts as a recombination center. On the contrary, the catalytic activity is lowered.
  • the amount of the cocatalyst supported in the photocatalyst is preferably 0.01% by mass or more and 20% by mass or less, more preferably 15% by mass or less, particularly based on the total photocatalyst (100% by mass) Preferably it is 10 mass% or less.
  • the method of supporting the cocatalyst on the optical semiconductor is preferably a microwave.
  • the method for supporting the cocatalyst in the third aspect of the present invention is not limited to this. Any known loading method can be applied. For example, a method of immersing a photo-semiconductor powder or compact in a solution or colloidal solution containing a metal source as a cocatalyst and evaporating it to dryness, or by adsorbing a metal carbonyl compound to the surface of the photo-semiconductor by sublimation.
  • the cocatalyst can be supported on the surface of the optical semiconductor by a method of thermally decomposing the catalyst.
  • a photo semiconductor powder or molded body is immersed in a solution containing ions serving as promoters and irradiated with light. You may carry.
  • a photocatalyst excellent in water splitting activity can be produced by supporting a cocatalyst on the surface of the optical semiconductor produced according to the third invention.
  • the acid treatment of an optical semiconductor cannot be performed appropriately. This is because the co-catalyst may be dissolved by the acid treatment. Therefore, in the present invention, it is important to support the promoter on the optical semiconductor obtained through the acid treatment with the organic acid.
  • the optical semiconductor produced according to the third aspect of the present invention can be used as it is as a photocatalyst without supporting a promoter.
  • Co (NO 3 ) 2 29 mg, 0.1N was dissolved in ethylene glycol (3 ml) to form a solution, and the solution was irradiated with microwaves (frequency 2.45 GHz) in a closed system at 250 ° C. The temperature was raised and heated for 15 minutes. However, there was no change in the appearance of the solution before and after heating, and no precipitation of promoter particles was observed.
  • BiVO 4 As an optical semiconductor was added to the above solution and irradiated with microwaves in the same manner as above, followed by filtration and washing to obtain a solid content.
  • a composite photocatalyst was obtained by compositing a plurality of different types of photo semiconductors with a co-catalyst in liquid using microwave heating, and the water splitting activity was evaluated.
  • TaON LaTiO 2 N composite photocatalyst ⁇ Example 1-1, 1-2, 1-3> (Preparation of TaON: LaTiO 2 N composite photocatalyst) Co (NH 3 ) 6 Cl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • TaON particles particle size distribution number ⁇ m
  • LaTiO 2 N particles particle size distribution number ⁇ m
  • the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes.
  • microwaves frequency: 2.45 GHz
  • the solid content was taken out from the container, filtered, and washed with ethanol to obtain a composite photocatalyst in which CoO x was supported as a promoter on the surface of TaON: LaTiO 2 N composite particles.
  • the electrode for water photolysis reaction was produced by the method shown in FIG. That is, the obtained composite photocatalyst (30 mg) was suspended in 1 mL of 2-propanol, 200 ⁇ L of this suspension was dropped onto the first glass substrate (soda lime glass 30 ⁇ 30 mm), and drying was repeated three times. Thus, a photocatalyst layer was formed. Next, Nb to be a contact layer was laminated by sputtering. As the apparatus, ULVAC VPC-260F was used, and about several hundreds of nanometers were stacked. Next, Ti which becomes a current collecting conductor layer was laminated by about several ⁇ m by sputtering.
  • the 2nd glass base material (soda lime glass; not shown) was adhere
  • the first glass substrate was removed, and ultrasonic cleaning was performed in pure water for 10 minutes to obtain a photowater decomposition reaction electrode including a composite photocatalyst layer / contact layer / current collecting layer.
  • Example 1-4 (Preparation of TaON / CoO x photocatalyst particles) Co (NH 3 ) 6 Cl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • 150 mg of TaON particles (particle size distribution number ⁇ m) was charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes.
  • photocatalyst particles (A)) in which CoO x is supported as a promoter on the surface of TaON particles. It was.
  • Co (NH 3 ) 6 Cl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • 150 mg of LaTiO 2 N particles (particle size distribution number ⁇ m) were charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 198 ° C., and heated and held for 30 minutes.
  • photocatalyst particles (B) After the heat treatment, the solid content is taken out from the container, filtered and washed with ethanol, whereby photocatalyst particles having CoO x supported as a promoter on the surface of LaTiO 2 N particles (hereinafter referred to as photocatalyst particles (B)). Got.
  • Photocatalyst particles (A) and photocatalyst particles (B) were introduced into ethylene glycol at a predetermined mass ratio shown in Table 1, and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain a composite photocatalyst in which the photocatalyst particles (A) and the photocatalyst particles (B) were composited.
  • microwaves frequency: 2.45 GHz
  • a photo-water splitting reaction electrode was prepared in the same manner as in Example 1-1 except that the composite photocatalyst according to Example 1-4 was used as the TaON: LaTiO 2 N composite photocatalyst. Evaluated. The results are shown in Table 1 below.
  • TaON particles particles (particle size distribution number ⁇ m) and LaTiO 2 N particles (particle size distribution number ⁇ m) were introduced into ethylene glycol at a predetermined mass ratio shown in Table 1 below, and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, the TaON: LaTiO 2 N composite semiconductor was obtained by taking out the solid content from the container and performing filtration and ethanol washing.
  • TaON LaTiO 2 N Preparation of composite photocatalyst
  • a TaON: LaTiO 2 N composite photocatalyst was obtained by microwave irradiation in the same manner as in Example 1-1 except that the TaON: LaTiO 2 N composite semiconductor was used as a plurality of types of optical semiconductors.
  • a photowater splitting reaction electrode was prepared in the same manner as in Example 1-1 except that the composite photocatalyst according to Example 1-5 was used as the TaON: LaTiO 2 N composite photocatalyst. Evaluated. The results are shown in Table 1 below.
  • Example 1-6 Preparation of TaON / CoO x photocatalyst particles
  • 0.17 mM of Co (NO 3 ) 2 as a promoter source was dissolved to obtain a 2% by mass solution.
  • 100 mg of TaON particles (particle size distribution number ⁇ m) dispersed in 0.3 mL of water were added thereto, and 0.3 mL of water was further added.
  • water was removed and the resulting powder ammonia 50 mL / min under a stream by heating one hour at 600 ° C., TaON photocatalyst particles CoO x is supported (photocatalyst particles (C )).
  • Photocatalyst particles (C) and photocatalyst particles (D) were irradiated by microwave irradiation in the same manner as in Example 1-4 except that the above-mentioned photocatalyst particles (C) and photocatalyst particles (D) were used as a plurality of types of photosemiconductors. A composite composite photocatalyst was obtained.
  • a photo-water splitting reaction electrode was prepared in the same manner as in Example 1-4, except that the composite photocatalyst according to Example 1-6 was used as the TaON: LaTiO 2 N composite photocatalyst. Evaluated. The results are shown in Table 1 below.
  • a photo-water splitting reaction electrode was prepared in the same manner as in Example 1-1 except that the composite photocatalyst according to Comparative Example 1-2 was used as the TaON: LaTiO 2 N composite photocatalyst, and performance was evaluated according to the same evaluation criteria. Evaluated. The results are shown in Table 1 below.
  • Example 1-1 Except that TaON particles were used in place of the TaON: LaTiO 2 N composite photocatalyst, a photohydrolysis electrode was prepared in the same manner as in Example 1-1, and the performance was evaluated according to the same evaluation criteria. The results are shown in Table 1 below.
  • Example 1-2 Except for using LaTiO 2 N particles in place of the TaON: LaTiO 2 N composite photocatalyst, a photohydrolysis reaction electrode was prepared in the same manner as in Example 1-1, and performance was evaluated according to the same evaluation criteria. . The results are shown in Table 1 below. In the table, LTON is an abbreviation for LaTiO 2 N.
  • Example 1-3 Except for using BiVO 4 particles in place of the TaON: LaTiO 2 N composite photocatalyst, a photohydrolysis electrode was prepared in the same manner as in Example 1-1, and the performance was evaluated according to the same evaluation criteria. The results are shown in Table 2 below.
  • TaON BaTaO 2 N composite photocatalyst ⁇ Example 1-8> Except for using BaTaO 2 N instead of LaTiO 2 N was carried out by following the procedure of Experimental Example 1-1. The results are shown in Table 3 below.
  • Example 1-4 Except that BaTaO 2 N particles were used in place of the TaON: LaTiO 2 N composite photocatalyst, a photohydrolysis electrode was prepared in the same manner as in Example 1-1, and the performance was evaluated based on the same evaluation criteria. . The results are shown in Table 3 below.
  • FIGS. 9A is a TEM observation image
  • FIG. 9B is an enlarged image of a part of FIG. 9A
  • FIG. 9C is an element of Co in the same field of view as FIG. 9A.
  • FIG. 9D is an image of Co elemental EDS mapping in the same field of view as FIG. 9B.
  • the composite photocatalyst according to Example 1-1 is present between the TaON particles and the LaTiO 2 N particles, and also exists to cover the composite photocatalyst surface. It was. That is, in the composite photocatalyst according to Example 1-1, the cocatalyst is present on the surface of a plurality of types of optical semiconductors, and is present in a state where the joint surface of the plurality of types of optical semiconductors is interposed or covered with the optical semiconductor I understood. Further, in the composite photocatalyst according to Example 1-1, a crystal lattice was also observed in the promoter portion. On the other hand, as is apparent from FIG.
  • FIG. 11 is a TEM observation image
  • FIG. 11B is an enlarged image of a part of FIG. 11A
  • FIG. 11C is an element of Co in the same field of view as FIG. 11A.
  • FIG. 11D is an image of Co elemental EDS mapping in the same field of view as FIG.
  • a solid-liquid mixture including a solvent, a promoter or a promoter source, and a plurality of types of optical semiconductors is irradiated with microwaves to heat the solid-liquid mixture.
  • the electrode for water photolysis reaction was produced by the method shown in FIG. That is, the obtained photocatalyst (30 mg) was suspended in 1 mL of 2-propanol, 200 ⁇ L of this suspension was dropped onto the first glass substrate (soda lime glass 30 ⁇ 30 mm), and drying was repeated three times. A photocatalytic layer was formed. Next, Nb to be a contact layer was laminated by sputtering. As the apparatus, ULVAC VPC-260F was used, and about several hundreds of nanometers were stacked. Next, Ti which becomes a current collecting conductor layer was laminated by about several ⁇ m by sputtering.
  • the 2nd glass base material (soda lime glass; not shown) was adhere
  • the first glass substrate was removed, and ultrasonic cleaning was performed in pure water for 10 minutes to obtain a photowater decomposition reaction electrode having a photocatalyst layer / contact layer / current collecting layer.
  • Example 2-1-2 (Production of photocatalyst) Photocatalyst particles having CoO x supported on the surface of BaNbO 2 N particles as the promoter are obtained in the same manner as in Example 2-1-1 except that Co (NH 3 ) 6 Cl 3 is used as the promoter. It was.
  • Example 2-1-3> (Production of photocatalyst)
  • Fe (NO 3 ) 2 was dissolved as a co-catalyst source to obtain a 2% by mass solution, and then 150 mg of BaNbO 2 N particles (particle size distribution number ⁇ m) were added to this solution. Sealed inside. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, 2% by mass of Co (NH 3 ) 2 Cl 3 is added to the container, and the container is irradiated with microwaves (frequency 2.45 GHz), heated to 150 ° C., and heated for 60 minutes. did.
  • the solid content is taken out from the container, filtered and washed with ethanol, so that FeO x (FeO, Fe 2 O 3 , or a mixture thereof) and CoO x as a cocatalyst on the surface of the BaNbO 2 N particles, or Thus, photocatalyst particles carrying the composite oxide were obtained.
  • FIGS. 13 and 14 show TEM observation images of the photocatalysts according to Example 2-1-1, Comparative Example 2-1-1, and Comparative Example 2-1-2.
  • 12 corresponds to Example 2-1-1
  • FIG. 13 corresponds to Comparative Example 2-1-1
  • FIG. 14 corresponds to Comparative Example 2-1-2.
  • FIG. 12 it can be seen that the photocatalyst according to Example 2-1-1 has very small promoter particles supported thereon in a highly dispersed state.
  • FIGS. 13 and 14 it can be seen that in the photocatalyst according to the comparative example, the cocatalyst is aggregated on the surface of the optical semiconductor.
  • TaON Example 2-2-1> (Production of photocatalyst) Co (NH 3 ) 6 Cl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • 150 mg of TaON particles (particle size distribution number ⁇ m) was charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain photocatalyst particles having CoO x supported on the surface of TaON particles as a promoter.
  • Example 2-2-1 where microwave heating was performed in a closed system was compared with the impregnation supporting method (Comparative Example 2-2-1) which is a conventional method.
  • the photocurrent density of the electrode for photohydrolysis reaction was large, and the performance was excellent.
  • the current density at a low potential (0.6 V) has been improved by more than twice, which proves useful for water separation without bias.
  • FIG. 15 shows the results of PEC evaluation of the electrodes for photohydrolysis reaction according to Example 2-2-1 and Comparative Example 2-2-1.
  • FIG. 15A corresponds to Example 2-2-1 and
  • FIG. 15B corresponds to Comparative Example 2-2-1.
  • the activity of Example 2-2-1 is greatly improved particularly at a low potential as compared with Comparative Example 2-2-1.
  • FIG. 16 and 17 show TEM observation images of the photocatalysts according to Example 2-2-1 and Comparative Example 2-2-1.
  • FIG. 16 corresponds to Example 2-2-1
  • FIG. 17 corresponds to Comparative Example 2-2-1.
  • the photocatalyst according to Example 2-2-1 has very small promoter particles supported thereon with high dispersion.
  • FIG. 17 it can be seen that the photocatalyst according to the comparative example aggregates the promoter on the surface of the optical semiconductor.
  • Ta 3 N 5 Example 2-3-1> (Production of photocatalyst) Co (NH 3 ) 6 Cl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • 150 mg of Ta 3 N 5 particles (particle distribution number ⁇ m) were charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain photocatalyst particles having CoO x supported on the surface of Ta 3 N 5 particles as a promoter.
  • Example 2-3-1 in which microwave heating was performed in a closed system was compared with the conventional impregnation support method (Comparative Example 2-3-1).
  • the photocurrent density of the electrode for photohydrolysis reaction was large and the performance was excellent.
  • FIG. 18 shows the PEC evaluation results of the photohydrolysis electrode according to Example 2-3-1 and Comparative Example 2-3-1.
  • FIG. 18A corresponds to Example 2-3-1
  • FIG. 18B corresponds to Comparative Example 2-3-1.
  • FIG. 19 and 20 show TEM observation images of the photocatalysts according to Example 2-3-1 and Comparative Example 2-3-1.
  • FIG. 19 corresponds to Example 2-3-1
  • FIG. 20 corresponds to Comparative Example 2-3-1.
  • the photocatalyst according to Example 2-3-1 did not confirm the aggregation of the promoter particles on the surface.
  • FIG. 20 it can be seen that the cocatalyst of the photocatalyst according to the comparative example is aggregated on the surface of the optical semiconductor.
  • LaTiO 2 N (Production of photocatalyst) Co (NH 3 ) 6 Cl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • 150 mg of LaTiO 2 N particles (particle size distribution number ⁇ m) were charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 198 ° C., and heated and held for 30 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain photocatalyst particles in which CoO x was supported as a promoter on the surface of LaTiO 2 N particles.
  • Example 2-4-1 in which microwave heating was performed in a closed system was more effective than Comparative Example 2-4-1 in which microwave heating was performed in an open system.
  • the photocurrent density of the photohydrolysis electrode was large, and the performance was excellent.
  • Example 2-4-1 is superior in performance because the photocurrent density of the photocatalytic reaction electrode is large compared to the conventional impregnation support method (Comparative Example 2-4-2). It was.
  • the surface of the photocatalyst treated with microwaves was coated with Co x having a particle diameter of 5 to 10 nm at a coverage of 75.2%.
  • the photocatalyst surface treated by the conventional method is coated with Co x having a particle diameter of more than 20 nm and not more than 40 nm at a coverage of 9.6%.
  • the photocatalyst of the present invention is supported on the surface of the photocatalyst at a high coverage in a well-dispersed state with a small particle diameter of the supported promoter.
  • LaTiO 2 N Manufacture of optical semiconductors>
  • PSS polystyrene sulfonic acid
  • Example 3-1 460 mg of the optical semiconductor according to the above was obtained.
  • the following acid hydrolysis reactions arise by acid treatment, for example.
  • Examples 3-2 to 3-6 The optical semiconductor according to Examples 3-2 to 3-6 was manufactured in the same manner as in Example 3-1, except that the standing time for acid treatment was 15 minutes, 30 minutes, 60 minutes, 90 minutes, and 2 hours. Obtained. As the time increased, the amount of the obtained optical semiconductor decreased.
  • FIG. 22 shows the relationship between the standing time and the reduction amount of the optical semiconductor.
  • TS toluenesulfonic acid
  • TS toluenesulfonic acid
  • MS methanesulfonic acid
  • Comparative Example 3-1 An optical semiconductor according to Comparative Example 3-1 was obtained without performing acid treatment on LaTiO 2 N used in Example 3-1.
  • CoO x was supported as a co-catalyst to form a photocatalyst.
  • the cocatalyst was supported as follows.
  • Co (NO 3 ) 2 was dissolved as a co-catalyst source to make a 2% by mass solution, and then 150 mg of an optical semiconductor was added thereto and sealed in a predetermined container. Thereafter, the sealed container was irradiated with microwaves (frequency: 2.45 GHz), the contents in the container were heated to 250 ° C., and then heated and held for 15 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain photocatalyst particles carrying CoO x as a promoter on the surface of the optical semiconductor.
  • microwaves frequency: 2.45 GHz
  • the electrode for water photolysis reaction was produced by the method shown in FIG. That is, the obtained photocatalyst (30 mg) was suspended in 1 mL of 2-propanol, 200 ⁇ L of this suspension was dropped onto the first glass substrate (soda lime glass 30 ⁇ 30 mm), and drying was repeated three times. A photocatalytic layer was formed. Next, Nb to be a contact layer was laminated by sputtering. As the apparatus, ULVAC VPC-260F was used, and about several hundreds of nanometers were stacked. Next, Ti which becomes a current collecting conductor layer was laminated by about several ⁇ m by sputtering.
  • the 2nd glass base material (soda lime glass; not shown) was adhere
  • the first glass substrate was removed, and ultrasonic cleaning was performed in pure water for 10 minutes to obtain a photowater decomposition reaction electrode having a photocatalyst layer / contact layer / current collecting layer.
  • the S content was 0.39 atm% on the surface of the optical semiconductor by the acid treatment with the PSS aqueous solution.
  • an oxide or the like was acid-treated with an aqueous PSS solution, an S component that cannot normally exist remains on the surface.
  • FIGS. FIG. 24 corresponds to Comparative Example 3-1
  • FIG. 25 corresponds to Example 3-1
  • FIG. 26 corresponds to Example 3-4.
  • 24 to 26 are (A) HRTEM observation images, (B) is an enlarged image obtained by enlarging a part of (A), and (C) is an enlarged image obtained by enlarging a part of (B). It is. Further, (D) in FIGS. 24 to 26 are diffraction grating images incident from the [210] plane, and it can be confirmed whether or not the crystal is a single crystal.
  • the optical semiconductor according to Comparative Example 3-1 was confirmed to have distortion and misalignment of the crystal lattice in the observation range (FIGS. 24C and 24D).
  • the position of the crystal plane does not match between the [210] plane at the outermost surface portion of the optical semiconductor particle and the [210] plane deeper than that (shift in the horizontal direction on the paper). ing).
  • the optical semiconductor according to the example shows no distortion or misalignment of the crystal lattice in the observation range, and surface defects and interface defects are reduced by the acid treatment. It was.
  • ⁇ Evaluation 4 Photohydrolysis activity> The performance of the electrode for photohydrolysis reaction was evaluated by current-potential measurement in a three-electrode system using a potentiostat.
  • a Pyrex (registered trademark) glass electrochemical cell with a flat window was used, an Ag / AgCl electrode was used as the reference electrode, and a Pt wire was used as the counter electrode.
  • the inside of the electrochemical cell was filled with argon, and dissolved oxygen and carbon dioxide were removed by sufficiently bubbling before measurement.
  • the value without parentheses is an average value obtained by measuring the photocurrent density a plurality of times, and the values shown in parentheses are examples of actual measured values.
  • the water splitting activity could be improved by acid treatment of the optical semiconductor with a polyorganic acid or sulfonic acid. Further, even when the standing time for acid treatment is extremely short, an improvement in water splitting activity is recognized, and even when the standing time is set to 17 hours, the water splitting activity is lowered, and further improvement is achieved. Admitted. That is, when acid treatment is performed using a polyorganic acid or sulfonic acid, as long as the optical semiconductor remains as a solid content, the water splitting activity can be improved even if the acid treatment time is short or long. It was found that it is easy to control.
  • a polyorganic acid having a low acidity such as PAA can be used, but the acidity is low and the efficiency may be slightly lacking. Therefore, it is considered most preferable to use PSS as the polyorganic acid from the viewpoint of facilitating the production of an optical semiconductor with significantly improved photowater decomposition activity while facilitating the control of acid treatment.
  • FIG. 28 shows an example of the relationship between the voltage and the photocurrent density for each of the electrode using the optical semiconductor according to Comparative Example 3-1 and the electrode using the optical semiconductor according to Example 3-1. From FIG. 28, the electrode of Example 3-1 has a higher photocurrent density than the electrode of Comparative Example 3-1, at any measurement voltage. That is, it can be seen that the optical semiconductor according to Example 3-1 has excellent water splitting activity.
  • the surface treatment and interface defect of the optical semiconductor can be reduced with good control by the acid treatment using the polyorganic acid or the sulfonic acid as the organic acid, and the water splitting activity of the optical semiconductor can be improved. .
  • This effect is considered to be achieved in the same manner as long as it is a crystalline inorganic compound that can be dissolved in a polyorganic acid or sulfonic acid.
  • LaTiO 2 N for example, niobium-containing oxynitride such BaNbO 2 N or tantalum-containing nitrides such as Ta 3 N 5, BaTaO tantalum-containing oxynitrides such as 2 N, vanadium such BiVO 4 It is self-evident that the same effect can be obtained for the containing oxide, the gallium-containing nitride such as GaN: ZnO, and the germanium-containing nitride such as ZnGeN 2 : ZnO.
  • PSS polystyrene sulfonic acid
  • IrCl 3 was dissolved as a cocatalyst source in 18 mL of ethylene glycol to obtain a 2% by mass solution.
  • 150 mg of LaTiO 2 N particles (particle size distribution number ⁇ m) were charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, the solid content was taken out from the container, filtered and washed with ethanol to obtain photocatalyst particles having IrO 2 supported as a promoter on the surface of LaTiO 2 N particles.
  • Example 4-1-2 Photocatalyst particles were obtained in the same manner as in Example 4-1-1 except that the concentration of the solution in which the cocatalyst source was dissolved was 3% by mass, and the photohydrolysis reaction was performed in the same manner as in Example 4-1-1. An electrode was prepared and evaluated. The results are shown in Table 10 below.
  • Example 4-1-3 Photocatalyst particles were obtained in the same manner as in Example 4-1-1 except that the heating and holding temperature by microwave was 200 ° C., and an electrode for photohydrolysis reaction was produced in the same manner as in Example 4-1-1. And evaluated. The results are shown in Table 10 below.
  • Example 4-1-4 Photocatalyst particles were obtained in the same manner as in Example 4-1-1 except that the heating and holding temperature by microwave was set to 250 ° C., and a photohydrolysis reaction electrode was produced in the same manner as in Example 4-1-1. And evaluated. The results are shown in Table 10 below.
  • Example 4-1-5> (Production of photocatalytic particles)
  • Ga (NO 3 ) 2 was dissolved as a cocatalyst source to obtain a 1.8% by mass solution.
  • 150 mg of LaTiO 2 N particles (particle size distribution number ⁇ m) were charged and sealed in a container. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 200 ° C., and heated and held for 60 minutes.
  • Co (NH 3 ) 6 Cl 3 is added as a co-catalyst source to prepare a 2% by mass solution, and then microwaves (frequency: 2.45 GHz) are irradiated into the container to raise the temperature to 200 ° C. And heated for 60 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain photocatalyst particles having CoO x supported as a cocatalyst on the surface of the photocatalyst precursor. Using the obtained photocatalyst particles, an electrode for water splitting reaction was prepared and evaluated in the same manner as in Example 4-1-1. The results are shown in Table 10 below.
  • Example 4-2-1> (Production of photocatalyst)
  • Co (NO 3 ) 2 was dissolved as a co-catalyst source to make a 2% by mass solution, and then 150 mg of BaTaO 2 N particles (particle size distribution number ⁇ m) were added thereto in the container. Sealed. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated and held for 60 minutes. After the heat treatment, the solid content was taken out from the container, and filtered and washed with ethanol to obtain photocatalyst particles in which CoO x was supported as a promoter on the surface of BaTaO 2 N particles.
  • Example 4-2-2 Photocatalyst particles were obtained in the same manner as in Example 4-2-1 except that GaN: ZnO particles were used instead of BaTaO 2 N particles, and the photocatalytic particles were used in the same manner as in Example 4-2-1. An electrode was prepared and evaluated. The results are shown in Table 11 below.
  • Example 4-3> (Preparation of LaTiO 2 N / TaN / Ta electrode) In the following procedure, a LaTiO 2 N layer (thickness 300 nm) and a TaN layer (thickness 200 nm) were produced on a Ta substrate, and a three-layer electrode sheet (LaTiO 2 N / TaN / Ta electrode) was produced.
  • a 300 nm film of La 2 Ti 2 O 7 was sputtered thereon (using a sputtering apparatus manufactured by Eiko Co., Ltd., 90 W, working pressure: 1 ⁇ 10 0 Pa, 3 hours)) and further nitriding in an nitriding furnace under the conditions of an ammonia flow rate of 200 sccm and a temperature of 900 ° C. to obtain an electrode sheet.
  • the electrode sheet was immersed in an ethylene glycol solution (20 mL) containing Co (NH 3 ) 6 Cl 3 (3 mg) and sealed. Thereafter, the container was irradiated with microwaves (frequency: 2.45 GHz), heated to 150 ° C., and heated for 6 minutes. Thereafter, the electrode sheet was taken out and washed with water to obtain a photohydrolysis reaction electrode carrying CoOx as a promoter.
  • the obtained photo-water splitting reaction electrode was evaluated in the same manner as in Example 4-2-1.
  • Example 4-3 A three-layer electrode sheet (LaTiO 2 N / TaN / Ta electrode) was produced in the same manner as in Example 4-3.
  • FIG. 30 shows the PEC evaluation results of the photohydrolysis electrode according to Example 4-3 and Comparative Example 4-3.
  • Example 4-3 has an improved photohydrolysis activity as compared with Comparative Example 4-3.
  • the effect according to the present invention can be achieved by supporting the promoter by microwave irradiation even in the case of an optical semiconductor that is not only a particulate optical semiconductor but also various molded bodies such as a sheet. I understand.
  • the photo-semiconductor or photocatalyst obtained by the production method of the present invention has a high water-splitting activity, and is particularly suitably used for a photo-water-splitting reaction that produces hydrogen and / or oxygen by performing a water-splitting reaction using sunlight. It is done.

Abstract

 本発明は、光半導体の表面に粒子サイズの小さな助触媒を高分散にて効率良く担持させることができるとともに、顕著な水分解活性を有する複合光触媒の製造方法を提供する。本発明は、複数種類の光半導体から複合光触媒を製造する方法であって、溶媒と、助触媒又は助触媒源と、複数種類の光半導体と、を含む固液混合物に対して、マイクロ波を照射して加熱する工程を有することを特徴とする複合光触媒の製造方法とする。

Description

複合光触媒の製造方法、及び、複合光触媒
 本発明は、太陽光を利用した水分解反応を行うことにより水素及び/又は酸素を製造可能な複合光触媒の製造方法に関する。
 近年、光触媒と太陽エネルギーとを用いて水を分解し水素や酸素を製造する技術が注目されている。現在研究が進められている光触媒は、通常、酸化物、酸窒化物或いは窒化物といった光半導体の表面に助触媒が担持されてなるものである。助触媒を担持させることで光触媒の活性を向上させることができる(例えば非特許文献1、2)。
 光半導体の表面に助触媒を担持する方法としては、含浸担持法が知られている(例えば特許文献1)。含浸担持法以外にも種々の方法が提案されている(例えば非特許文献3、4)。
 一方で、光半導体を用いて光触媒を構成する際は、無機酸を用いて光半導体の表面を事前に酸処理する場合がある(特許文献2~4や非特許文献5等)。例えば、特許文献2では、アウリビリウス相化合物に対して塩酸等の無機酸を用いた酸処理を施すことで、H型層状ペロブスカイト系光触媒を得ている。また、特許文献3では、一般式(I):ABCO4 (Aは銀であり、Bはランタノイド及びイットリウムからなる群から選択された1種以上の元素であり、CはIVa族元素から選択された1種以上の元素である)で表される光触媒に対して、低濃度の硝酸を用いて酸処理を行うことで、光触媒活性の向上を図っている。また、特許文献4では、酸化チタンに対して鉱酸処理(無機酸処理)を施すことで、光触媒活性の向上を図っている。さらに、非特許文献5では、光半導体の表面に王水を15秒程度接触させることで光触媒とした場合の水分解活性を向上させている。
日本国特開2012-050913号公報 日本国特開2003-260356号公報 日本国特開平10-244164号公報 日本国特開平7-303835号公報
Chem.Asian.J.,2012,7,642-657 J.Chem.Soc.,Faraday Trans.1,1988,84(8),2795-2806 Catal.Lett.,2009,129,404 J.Mat.Chem.,2013,1,8101 Nano.Lett.,2014,14,1038-1041
 しかしながら、特許文献1の含浸担持法においては、光半導体の表面に担持される助触媒の粒子サイズの制御が難しく、また、助触媒を光半導体の表面に高分散で担持させることが困難であった。また、非特許文献3、4に開示の方法では製造工程や製造装置が複雑化する場合があった。このような背景から、複雑な工程や装置を要することなく粒子サイズの制御や助触媒の高分散担持を可能とすることで、水分解活性を向上させることが可能な光触媒の製造方法が求められていた。
 また、特許文献2~4や非特許文献5に開示されているように無機酸を用いて光半導体の酸処理を行う場合、当該無機酸が光半導体の内部にまで短時間で浸透し、光半導体が腐食される等して、光触媒活性が逆に低下してしまう場合がある。また、当該無機酸が光半導体の内部に侵入しやすく、酸処理にムラが生じる虞もある。実際、非特許文献5においても、酸処理の時間が15秒を超える場合、水分解活性が低下している。すなわち、無機酸を用いる場合、酸処理の制御が困難であった。また、無機酸は揮発性が高く、酸処理後に当該無機酸を再利用しようとしても、回収することが困難であった。一方で、カルボン酸(特に、モノカルボン酸やジカルボン酸)を用いる場合、光半導体の酸処理が適切に進行しない場合があり、水分解活性を必ずしも向上させることはできなかった。このような背景から、光半導体の表面を適切に酸処理することによって水分解活性を向上させることが可能な光半導体の製造方法や光触媒の製造方法が求められていた。
 そこで、本発明は優れた水分解活性を有する光触媒の製造方法を提供することを課題とする。
 例えば、本発明は、光半導体の表面に粒子サイズの小さな助触媒を高分散にて効率良く担持させることで、水分解活性を向上させた光触媒、及びその製造方法、並びに該光触媒への助触媒の担持方法を提供する。
 或いは、本発明は、酸処理の制御が容易な方法で、光半導体の表面を適切に酸処理することによって水分解活性を向上させた、光半導体の製造方法及び光触媒の製造方法を提供する。
 上記の課題を解決すべく本発明者らが鋭意研究を進めた結果、以下の知見を得た。
(1)マイクロ波による加熱を利用して、液中にて、複数種類の異なる光半導体を助触媒とともにコンポジット化することにより、水分解活性が向上した複合光触媒を製造できる。
(2)密閉系でのマイクロ波加熱によって、複雑な工程を経ることなく、光半導体上に粒子径の小さな助触媒を高分散で担持させることができる。また、そのようにして製造された光触媒は、従来の光触媒と比較して、水分解活性が向上する。
(3)所定の光半導体の表面に、ポリ有機酸の溶液を接触させた場合、光半導体の内部にポリ有機酸が侵入し難く、光半導体の表面をあたかも磨き上げるようにして徐々に溶解等させることができる。すなわち、酸処理の制御が容易で、光半導体の表面全体をムラなく適切に酸処理することができる。これにより、光半導体の表面欠陥及び界面欠陥等を適切に除去して、水分解活性を適切に向上させることができる。
(4)所定の光半導体の表面に、有機スルホン酸の溶液を接触させた場合、光半導体を過度に腐食させることなく、光半導体の表面を徐々に溶解等させることができる。すなわち、酸処理の制御が容易で、光半導体の表面全体をムラなく適切に酸処理することができる。これにより、光半導体の表面欠陥及び界面欠陥等を適切に除去して、水分解活性を適切に向上させることができる。
 上記知見(1)に基づく第1の発明によって、上記課題を解決することができる。
 すなわち、第1の本発明は、複数種類の光半導体から複合光触媒を製造する方法であって、溶媒と、助触媒又は助触媒源と、複数種類の光半導体と、を含む固液混合物に対して、マイクロ波を照射して、固液混合物を加熱する、加熱工程を備えることを特徴とする複合光触媒の製造方法である。
 「光半導体」とは、光を吸収することによって正孔と電子とを生じ得る半導体をいう。
 「助触媒源」とは液中で光半導体とともに加熱することによって助触媒となり得るもの(成分、元素、イオン)をいう。
 「マイクロ波」とは周波数300MHz以上30GHz以下の電磁波をいう。
 第1の本発明では、マイクロ波を照射する前において、固液混合物中の助触媒源が溶媒に溶解した状態で存在することが好ましい。
 或いは、第1の本発明では、マイクロ波を照射する前において、固液混合物中の助触媒と光半導体とが溶媒中にともに固体として存在しており、助触媒が光半導体に担持された状態にあってもよい。
 この場合、第1の本発明は、例えば、加熱工程の前工程として、助触媒源が溶解した溶液に第1の光半導体を接触させた状態でマイクロ波により加熱することによって第1の光半導体に助触媒を担持させる第1担持工程と、助触媒源が溶解した溶液に第2の光半導体を接触させた状態でマイクロ波により加熱することによって第2の光半導体に助触媒を担持させる第2担持工程と、助触媒が担持された第1の光半導体と助触媒が担持された第2の光半導体とを溶媒に含ませて上述した固液混合物とする混合工程と、を備えるものとすることができる。
 第1の本発明において、複数種類の光半導体のうちの少なくとも一種が、Ti、V、Ga、Zn、Bi、Nb及びTaからなる群から選ばれる1種以上の元素を含む、酸化物、窒化物、酸窒化物、カルコゲン化物、又は、オキシカルコゲン化物であることが好ましい。
 第1の本発明において、複数種類の光半導体のうちの少なくとも一種が、BaTaON、BaNbON、TaON、Ta、LaTiON、BiVO、GaN:ZnO又はこれらの一部置換体であることが好ましい。「これらの一部置換体」とは、化合物を構成する元素の一部がドープ元素により置換されているものをいう。
 第1の本発明において、助触媒又は助触媒源がCo又はCoイオンを含むことが好ましい。或いは、助触媒又は助触媒源がPt単体やPtを含む化合物を含むものであってもよい。
 第1の本発明において、溶媒が、水、アルコール類、又はその混合溶媒であることが好ましい。
 第1の本発明に係る加熱工程おいて、密閉系内で、マイクロ波を照射して固液混合物を加熱することが好ましい。
 「密閉系内」とは、系内の溶液の温度が系外における沸点を超えた場合において、温度の上昇とともに系外よりも圧力が上昇するような系内をいう。
 第1の本発明に係る第1担持工程及び第2担持工程において、密閉系内でマイクロ波を照射することが好ましい。
 加熱工程、第1担持工程及び第2担持工程を密閉系内で行う場合において、当該密閉系内の圧力は系外の圧力よりも高いことが好ましい。
 第1の本発明において、加熱工程の前工程として、
 Ti、V、Ga、Ge、La、Nb及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、有機酸接触工程、並びに、
 有機酸接触工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、回収工程、
 を備え、
 回収した固形分を上記の光半導体として用いることが好ましい。
 「ポリ有機酸」とは、有機酸のポリマーの他、有機酸のオリゴマーも含む概念である。ここで、本発明にいう「オリゴマー」とは重合度10以上のものをいう。
 第1の本発明において、第1担持工程の前工程及び第2担持工程の前工程として、それぞれ、
 Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、有機酸接触工程、並びに、
 有機酸接触工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、回収工程、
 を備え、
 回収した固形分を上記の第1の光半導体及び第2の光半導体として用いることが好ましい。
 第1の本発明において、有機酸がポリスルホン酸であることが好ましい。
 第1の本発明において、有機酸がアリール基を有することが好ましい。
 第1の本発明において、有機酸の重量平均分子量が1,000以上1,000,000以下であることが好ましい。
 第1の本発明は、複合光触媒としての側面も有する。すなわち、助触媒を担持した複数種類の光半導体からなる複合光触媒であって、助触媒は、複数種類の光半導体の表面に存在するとともに、複数種類の光半導体の接合面に介在又は光半導体を被覆した状態で存在することを特徴とする複合光触媒である。
 「複数種類の光半導体の接合面に介在又は光半導体を被覆した状態で存在する」とは、言い換えれば、複数種類の光半導体が助触媒を介して互いに接合されていることを意味する。「接合」は単なる「接触」とは異なり、光半導体の表面に固着していることを意味する。また、「被覆」とは、層状の助触媒が光半導体の表面形状に沿って存在することを意味し、光半導体の表面に助触媒粒子が「凝集」したものについては「被覆」には含まれないものとする。
 第1の本発明に係る複合光触媒においては、複数種類の光半導体のうちの少なくとも一種が、Ti、V、Ga、Zn、Bi、Nb及びTaからなる群から選ばれる1種以上の元素を含む、酸化物、窒化物、酸窒化物、カルコゲン化物、又は、オキシカルコゲン化物であることが好ましい。
 第1の本発明に係る複合光触媒においては、複数種類の光半導体のうちの少なくとも一種が、BaTaON、BaNbON、TaON、Ta、LaTiON、BiVO、GaN:ZnO又はこれらの一部置換体であることが好ましい。
 一方、第1の本発明に係る複合光触媒においては、助触媒がCoを含むことが好ましい。或いは、助触媒がPt単体やPtを含む化合物を含むものであってもよい。
 上記知見(2)に基づく第2の本発明によっても、上記課題を解決することができる。
 すなわち、第2の本発明は、密閉系内で、助触媒源が溶解した溶液に光半導体を接触させつつ、マイクロ波により加熱する工程を備えることを特徴とする、光触媒の製造方法である。
 第2の本発明においては、マイクロ波による加熱によって、密閉系内の圧力が系外の圧力よりも高いものとされることが好ましい。これにより、光半導体の表面に助触媒を一層効率的に担持することができる。
 第2の本発明においては、光半導体が、Ti、V、Ga、Zn、Bi、Nb及びTaからなる群から選ばれる1種以上の元素を含む、酸化物、窒化物若しくは酸窒化物、又は、カルコゲン化物若しくはオキシカルコゲン化物であることが好ましい。
 第2の本発明においては、光半導体が、BaNbON、TaON、Ta、LaTiON、SnNb、BaTaON、LaTiCuS、BiVO、GaN:ZnO又はこれらの一部置換体であることが好ましい。
 第2の本発明においては、助触媒源を含む溶液が、Coイオンを含む溶液であることが好ましい。或いは、助触媒源としてPt単体やPtを含む化合物を含むものであってもよい。この場合、光半導体の表面に助触媒としてCoOやPtを担持することができる。
 第2の本発明においては、助触媒源を含む溶液を構成する溶媒が、水、エチレングリコールなどのアルコール類、又はその混合溶媒であることが好ましい。
 尚、第2の本発明は助触媒の担持方法としての側面も有する。すなわち、密閉系内で、助触媒源を含む溶液に光半導体を接触させつつ、マイクロ波により加熱して前記光半導体の表面に助触媒を担持する方法である。
 また、第2の本発明は光触媒としての側面も有する。すなわち、助触媒が光半導体表面に担持された光触媒であって、助触媒による光半導体の単位面積当たりの被覆率が30%以上であることを特徴とする光触媒である。
 この場合、光半導体表面に担持された助触媒の粒子径が20nm以下であることが好ましい。
 上記知見(3)及び(4)に基づく第3の本発明によっても、上記課題を解決することができる。
 すなわち、第3の本発明は、Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、第1工程、並びに、第1工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、第2工程、を備える、光半導体の製造方法である。
 或いは、第3の本発明は、Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、スルホン酸を含む少なくとも一種以上の有機酸の溶液を接触させる、第1工程、並びに、第1工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、第2工程、を備える、光半導体の製造方法としてもよい。
 第3の本発明において、有機酸がポリスルホン酸であることが好ましい。
 第3の本発明において、有機酸がアリール基を有することが好ましい。
 第3の本発明において、有機酸の重量平均分子量が1,000以上1,000,000以下であることが好ましい。
 第3の本発明において、溶液のpKaが-4以上4以下であることが好ましい。
 第3の本発明において、酸化物、酸窒化物又は窒化物が、粒子状又はシート状であることが好ましい。
 「シート状」とは、厚さ1nm以上10μm以下のものをいい、酸化物等からなるシートとして独立して取り扱い得る形態の他、何らかの部材の表面に層状の酸化物等が形成された形態も含む概念である。例えば、基板の表面に粉体を積層して当該厚さを有する層状とした形態、粉体を圧粉成形して一体化させ当該厚さを有する層状とした形態、粉体を焼結させて一体化させ当該厚さを有する層状とした形態、基板の表面に前駆体からなる層を形成し、これを酸化や窒化することによって、基板の表面に層状の酸化物、酸窒化物又は窒化物を形成した形態等が挙げられる。
 第3の本発明において、酸化物、酸窒化物又は窒化物が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、Ta、BaTaON、BiVO、GaN:ZnO及びZnGeN:ZnOから選ばれる少なくとも一種以上であることが好ましい。
 尚、第3の本発明は、光触媒の製造方法としての側面も有する。すなわち、第3の本発明に係る光半導体の製造方法により製造された光半導体の表面に助触媒を担持する工程を備える、光触媒の製造方法である。
 本発明によれば、優れた水分解活性を有する光触媒を製造することができる。
図1は、第1の本発明の第1実施形態について説明するための概略図である。 図2は、第1の本発明の第2実施形態について説明するための概略図である。 図3(A)、図3(B)は、第1の本発明の第2実施形態について説明するための概略図である。図3(A)は光触媒20’aを得る工程の概略図であり、図3(B)は光触媒20’bを得る工程の概略図である。 図4(A)、図4(B)は、第1の本発明の第2実施形態について説明するための概略図である。図4(A)は光触媒20’aを得る工程の概略図であり、図4(B)は光触媒20’bを得る工程の概略図である。 図5は、第1の本発明の第3実施形態について説明するための概略図である。 図6は、第2の本発明について説明するための概略図である。 図7(A)、図7(B)は、第3の本発明について説明するための概略図である。図7(A)は酸化物等201aを示し、図7(B)は酸化物等201bを示す。 図8は、光水分解反応用電極の作製手順を説明するための概略図である。 図9(a)~図9(d)は、実施例1-1に係る複合光触媒のSTEM画像である。図9(a)はTEM観察画像、図9(b)は図9(a)の一部を拡大した拡大画像、図9(c)は図9(a)と同一視野の元素EDSマッピングの画像、図9(d)は図9(b)と同一視野の元素EDSマッピングの画像である。 図10は、実施例1-1に係る複合光触媒のSTEM画像(拡大図)である。 図11(a)~図11(d)は、比較例1-2に係る複合光触媒のSTEM画像である。図11(a)はTEM観察画像、図11(b)は図11(a)の一部を拡大した拡大画像、図11(c)は図11(a)と同一視野の元素EDSマッピングの画像、図11(d)は図11(b)と同一視野の元素EDSマッピングの画像である。 図12は、実施例2-1-1に係る光触媒粒子のTEM観察画像である。 図13は、比較例2-1-1に係る光触媒粒子のTEM観察画像である。 図14は、比較例2-1-2に係る光触媒粒子のTEM観察画像である。 図15(A)、図15(B)は、実施例2-2-1と比較例2-2-1とについて、PEC評価結果を示す図である。図15(A)が実施例2-2-1に対応し、図15(B)が比較例2-2-1に対応する。 図16は、実施例2-2-1に係る光触媒粒子のTEM観察画像である。 図17(A)、図17(B)は、比較例2-2-1に係る光触媒粒子のTEM観察画像である。 図18(A)、図18(B)は、実施例2-3-1と比較例2-3-1とについて、PEC評価結果を示す図である。図18(A)が実施例2-3-1に対応し、図18(B)が比較例2-3-1に対応する。 図19(A)、図19(B)は、実施例2-3-1に係る光触媒粒子のTEM観察画像である。 図20(A)、図20(B)は、比較例2-3-1に係る光触媒粒子のTEM観察画像である。 図21(A)、図21(B)は、2質量%のCoを担持させた光触媒表面における助触媒Coの被覆状況を示す説明図である。図21(A)がマイクロ波で処理した光触媒表面を示し、図21(B)が従来法(含浸担持法)で処理した光触媒表面を示す。 図22は、酸処理に係る放置時間と光半導体の減少量との関係を示す図である。 図23は、実施例3-1及び3-4並びに比較例3-1について、光半導体のX線回折測定結果を示す図である。 図24(A)~図24(D)は、比較例3-1に係る光半導体のTEM観察写真を示す図である。図24(A)はHRTEM観察画像、図24(B)は図24(A)の一部を拡大した拡大画像、図24(C)は図24(B)の一部を拡大した拡大画像、図24(D)は[210]面から入射した回折格子像である。 図25(A)~図25(D)は、実施例3-1に係る光半導体のTEM観察写真を示す図である。図25(A)はHRTEM観察画像、図25(B)は図25(A)の一部を拡大した拡大画像、図25(C)は図25(B)の一部を拡大した拡大画像、図25(D)は[210]面から入射した回折格子像である。 図26(A)~図26(D)は、実施例3-4に係る光半導体のTEM観察写真を示す図である。図26(A)はHRTEM観察画像、図26(B)は図26(A)の一部を拡大した拡大画像、図26(C)は図26(B)の一部を拡大した拡大画像、図26(D)は[210]面から入射した回折格子像である。 図27は、実施例3-1~3-6について酸処理に係る放置時間と光電流密度との関係を示す図である。 図28は、実施例3-1と比較例3-1とについて、光水分解活性の比較をした結果を示す図である。 図29は、実施例4-3に係る光水分解反応用電極の作製手順を説明するための概略図である。 図30は、実施例4-3と比較例4-3とについて、PEC評価結果を示す図である。
1.第1の本発明
1.1.光触媒の製造方法
 第1の本発明に係る光触媒の製造方法は、複数種類の光半導体から複合光触媒を製造する方法であって、溶媒と、助触媒又は助触媒源と、複数種類の光半導体と、を含む固液混合物に対して、マイクロ波を照射して、当該固液混合物を加熱する、加熱工程を有することを特徴とする。
(光半導体)
 第1の本発明において用いられる光半導体は、光を吸収することによって正孔と電子とを生じ得る半導体であり、光水分解反応を触媒可能なものであればよい。好ましくはd0又はd10の金属イオンとなり得る金属元素(半金属元素を含む)を含む化合物であり、より好ましくはd0又はd10の遷移金属を含む化合物である。d0の金属イオンとなり得る金属元素としては、Ti、Zr、Nb、Ta、V、W、Laが挙げられる。また、d10の金属イオンとなり得る金属元素としては、Zn、Ga、Ge、In、Sn、Sb、Pb、Biが挙げられる。好ましくは、Ti、V、Ga、Zn、Bi、Nb及びTaからなる群から選ばれる1種以上の元素を含む、酸化物、窒化物、酸窒化物、カルコゲン化物、又は、オキシカルコゲン化物が挙げられる。具体的には、TiO、CaTiO、SrTiO、SrTi、SrTi、KLaTi10、RbLaTi10、CsLaTi10、CsLaTiNbO10,LaTiO、LaTi、LaTi、LaTi:Ba、KaLaZr0.3Ti0.7、LaCaTi、KTiNbO、NaTi13、BaTi、GdTi、YTi、NaTi、KTi、KTi、CsTi、H-CsTi(H-CsはCsがHでイオン交換されていることを示す。以下同様)、CsTi11、CsTi13、H-CsTiNbO、H-CsTiNbO、SiO-pillared KTi、SiO-pillared KTi2.7Mn0.3、BaTiO、BaTi、AgLi1/3Ti2/3等のチタン含有酸化物;LaTiON等のチタン含有酸窒化物;LaTiCuS、LaTiAgS、SmTi等のチタン含有(オキシ)カルコゲナイド;GaN:ZnO(ガリウム含有窒化物のZnO固溶体)等のガリウム含有窒化物;ZnGeN:ZnO(ゲルマニウム含有窒化物のZnO固溶体)等のゲルマニウム含有窒化物;BiVO、AgVO等のバナジウム含有酸化物;KNb17、RbNb17、CaNb、SrNb、BaNb15、NaCaNb10、ZnNb、CsNb11、LaNbO、H-KLaNb、H-RbLaNb、H-CsLaNb、H-KCaNb10、SiO-pillared KCaNb10(Chem.Mater.1996,8,2534.)、H-RbCaNb10、H-CsCaNb10、H-KSrNb10、H-KCaNaNb13、PbBiNb等のニオブ含有酸化物;CaNbON、BaNbON、SrNbON、LaNbON等のニオブ含有酸窒化物;Ta、KPrTa15、KTaSi13、KTa12、LiTaO、NaTaO、KTaO、AgTaO、KTaO:Zr、NaTaO:La、NaTaO:Sr、NaTa、KTa(pyrochlore)、CaTa、SrTa、BaTa、NiTa、RbTa17、HLa2/3Ta、KSr1.5Ta10、LiCaTa10、KBaTa10、SrTa15、BaTa15、H1.8Sr0.81Bi0.19Ta、Mg-Ta oxide(Chem.Mater.2004 16,4304-4310)、LaTaO、LaTaO等のタンタル含有酸化物;Ta等のタンタル含有窒化物;CaTaON、SrTaON、BaTaON、LaTaON、YTa、TaON等のタンタル含有酸窒化物等が用いられる。さらに上記化合物に異なる金属をドーパントとして有してもよい。
 太陽光を利用した光水分解反応をより効率的に生じさせる観点からは、上記各種光半導体のうち、可視光応答型の光半導体を用いることが好ましい。具体的には、BaNbON、TaON、Ta、LaTiON、SnNb、BaTaON、LaTiCuS、BiVOが好ましく、この中でも特に、BaNbON、TaON、Ta、LaTiON、BaTaON、BiVO、GaN:ZnOが好ましい。尚、これら化合物がドープ元素によって一部置換されていてもよい。上記の各種光半導体は、固相法、溶液法等の公知の合成方法によって容易に合成可能である。
 複数種類の光半導体から複合光触媒を製造する場合に、光半導体の種類の選択方法は特に制限されないが、吸収域が極端に異なるような2種以上の光半導体を選択することが好ましい。これは、光半導体の吸収域がそれぞれ異なると、得られる複合光触媒の吸収幅が広がり、より多くのフォトンを利用可能であることによる。また、吸収域が異なることにより助触媒及び/又は導電体とのエネルギー障壁が小さくなって、電荷移動がスムーズとなるため好ましい。
 例えば2種類の光半導体選択する場合には、一方の光半導体の吸収端が350nm~550nmであって、他方の光半導体の吸収端が500~750nmであることが好ましい。3種類以上の光半導体を選択する場合には、少なくともそのうちの2種が上述の吸収端を有することが好ましい。
 また、用いる複数種類の光半導体のうち2種類の光半導体の吸収端を比較した場合に、吸収端の差が25nm以上である光半導体を含むことが好ましい。吸収端の差は、より好ましくは50nm以上であって、好ましくは250nm以下である。3種類以上の光半導体を選択する場合には、少なくとも2種類の光半導体が上記の関係であることが好ましく、全ての光半導体が互いに上記の関係であることがより好ましい。
 光半導体の好ましい組合せの例としては、GaNとLaTiON、GaNとBaTaON、TaONとLaTiON、BiVOとLaTiON、TaONとBaTaON、TaONとTa、BiVOとBaTaONなどが挙げられる。
 光半導体の形態(形状)については、以下に説明する助触媒を担持して光触媒として機能し得るような形態であれば特に限定されるものではなく、光触媒の設置形態等に合わせて、粒子状、塊状、板状等を適宜選択すればよい。電極上に光半導体を結晶成長させることで薄膜(シート)状の光半導体とすることもできる。ただし、光半導体は、溶液と接触させる場合において固体として存在している必要がある。第1の本発明により製造される複合光触媒を水分解反応用光触媒として利用する場合は、粒子状の光半導体の表面に後述の助触媒を担持することが好ましい。この場合、光半導体の粒子径の下限が好ましくは50nm以上であり、上限が好ましくは500μm以下である。
 尚、本願において「粒子径」とは、定方向接線径(フェレ径)の平均値(平均粒子径)を意味し、XRD、TEM、SEM法等の公知の手段によって測定することができる。
 上記の光半導体は、後述する第3の本発明によって、事前に酸処理がなされていることが好ましい。すなわち、第1の本発明においては、加熱工程の前工程として、Ti、V、Ga、Ge、Nb及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、有機酸接触工程、並びに、有機酸接触工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、回収工程、を備え、回収した固形分を光半導体として用いることが好ましい。詳細については後述する。
(助触媒又は助触媒源)
 第1の本発明において用いられる助触媒源は、液中で光半導体とともに加熱することによって助触媒となり得るもの(成分、元素、イオン)をいう。例えば、光半導体にCoを含む助触媒(酸素発生用助触媒であるCoO等)を担持させる場合は、Coを含む化合物を助触媒源として用いることができる。Coを含む化合物の例としては、Coを含む塩が好ましく、具体的にはCo(NO、Co(NHCl、Co(OAc)(Acはアセチル基を示す)等である。さらにリン酸ナトリウムやホウ酸ナトリウムを添加し、CoPi、CoBiとして担持することも可能である。尚、酸素発生用助触媒はCoOに限定されるものではなく、第1の本発明においては酸素発生用助触媒としてCr、Sb、Nb、Th、Mn、Fe、Co、Ni、Ru、Rh、Irの金属、これらの酸化物、硫化物、又は複合酸化物(CoOを除く)等を担持させることもでき、なかでも酸化に対して安定であることからこれらの酸化物が好ましい。これらを担持させる場合は、助触媒源として、例えば、これら元素を含む塩を用いることができる。
 一方、光半導体に水素発生用助触媒を担持することもできる。例えば、光半導体に水素発生用助触媒としてPtを担持させる場合は、Pt単体やPtを含む化合物を助触媒源として用いることができる。Ptを含む化合物の例としては、Ptを含む塩が好ましくHPtCl等である。尚、水素発生用助触媒はPtに限定されるものではなく、第1の本発明においては水素発生用助触媒としてPd、Rh、Ru、Ni、Au、Fe、Ru-Ir、Pt-Ir、NiO、RuO、IrO、Rh、Cr-Rh複合酸化物、これらの金属に硫黄、チオウレアを添加した硫化物等を担持させることもでき、なかでも還元能力があることから金属、若しくは酸化可能な貴金属酸化物が好ましい。これらを担持させる場合は、助触媒源として、例えば、これら元素を含む塩を用いることができる。
(溶媒)
 第1の本発明において溶媒としては水や各種有機溶媒を用いることができる。ただし、上記した光半導体に接触させても光半導体が固体を維持できる溶媒に限られる。具体的には水、エチレングリコールなどのアルコール類、DMF、DMSO、NMP、ニトロベンゼン、又はこれらの混合物等である。特に、沸点の高いものが好ましい。具体的には、沸点が100℃以上の溶媒が好ましく、水、アルコール類、又はその混合溶媒が特に好ましい。
(固液混合物)
 第1の本発明においては、上述の光半導体を複数種類と、助触媒又は助触媒源と、溶媒とを混合し、固液混合物とする。光半導体、助触媒又は助触媒源、及び、溶媒の混合比については特に限定されるものではなく、製造すべき複合光触媒の特性に併せて適宜調整すればよい。
(マイクロ波)
 第1の本発明においては、上記した固液混合物に対してマイクロ波を照射して加熱を行うことに特徴がある。マイクロ波とは周波数300MHz以上30GHz以下の電磁波をいう。周波数の下限は好ましくは900MHz以上であり、上限は好ましくは18GHz以下である。第1の本発明において、マイクロ波の照射条件(波長、出力、照射時間等)は特に限定されるものではない。加熱温度等を考慮して適宜調整可能である。
 第1の本発明においては、固液混合物に対し密閉系内でマイクロ波により加熱を行うことが好ましい。密閉系内とは、系内の溶液の温度が系外における沸点を超えた場合において、温度の上昇とともに系外よりも圧力が上昇するような系内をいう。密閉系内の例としては、例えば、容器内に固液混合物を投入し、当該容器に蓋をして密閉した後で、マイクロ波を照射して加熱する形態が挙げられる。密閉可能な容器については、マイクロ波を透過可能であり、固液混合物と反応しないもの(例えば石英、テフロン(登録商標)、或いは、炭化ケイ素からなる容器)を用いることができる。密閉系とすることで、迅速な昇温・加圧が可能となり、反応速度を大幅に向上させることができ、全体の処理時間を短縮できる。また、簡易な工程で加熱可能であり、収率も向上し、純度を向上させることもできる。言い換えれば、第1の本発明においては、マイクロ波による加熱によって、密閉系内の圧力が系外の圧力よりも高いものとされることが好ましい。より好ましくは、系内の圧力を1.01bar以上50bar以下とする。
 第1の本発明においては、上述の固液混合物にマイクロ波を照射して加熱することで、1段階にて複合光触媒を製造することができる。すなわち、マイクロ波による加熱後に固形分を取り出すだけでよく、その後の焼成処理や再窒化処理等は必要ない。また、第1の本発明により製造される複合光触媒においては、助触媒が、複数種類の光半導体の表面に存在するとともに、複数種類の光半導体の接合面に介在又は光半導体を被覆した状態で存在し、水分解活性に優れたものである。
 以下、第1の本発明に係る製造方法について、具体例を示しつつより詳細に説明する。
1.1.1.第1実施形態
 図1を参照しつつ、第1実施形態に係る複合光触媒の製造方法S10について説明する。図1に示すように、製造方法S10は、溶媒3と、助触媒源2’と、複数種類の光半導体1a、1bと、を混合して固液混合物5とし、当該固液混合物5に対してマイクロウェーブオーブン6を用いてマイクロ波を照射して加熱する工程を備えている。製造方法S10では、マイクロ波を照射する前において、固液混合物5中の助触媒源2’が溶媒3に溶解した状態(溶液4の状態)で存在している点に特徴がある。すなわち、製造方法S10においては、固液混合物5に対してマイクロ波を照射して加熱することによって、光半導体1a、1bの表面に助触媒2を析出させるとともに、光半導体1a、1bを複合化することができ、複合光触媒10を容易に製造することができる。
 通常の加熱の場合では、媒体(溶媒)が加熱されて、その熱で助触媒の前駆体が分解して核が出来、それが光半導体表面に付着し、さらに核成長すると考えられる。そのため、担持される助触媒は不均一になりやすく、凝集しやすい。一方、マイクロ波を用いた場合には、光半導体自体がマイクロ波を吸収することにより、光半導体表面が先に加熱され、光半導体表面上で助触媒前駆体の分解・核成長が同時に起こる。これにより、均一かつ全面的に助触媒が担持されると考えられる。
 よって、第1の本発明においては、マイクロ波を照射する際に固液混合物5中の助触媒源2’が溶媒3に溶解した状態であればよく、マイクロ波を照射しながら助触媒源が溶解された溶液を複数種類の光半導体と接触させて固液混合物とすることなども可能であるが、好ましくはマイクロ波を照射する前において、固液混合物5中の助触媒源2’が溶媒3に溶解した状態(溶液4の状態)で存在することである。
 溶液4における助触媒源2’の濃度については特に限定されるものではないが、好ましくは下限が0.1質量%以上、より好ましくは0.5質量%以上、上限が好ましくは10質量%以下、より好ましくは5質量%以下である。助触媒源2’の濃度がこの範囲であれば、製造された複合光触媒10において、助触媒2が複合光触媒10の光吸収を阻害しないからである。
 また、第1の本発明において、溶液4は、上記助触媒源2’及び溶媒3で構成されていれば特に限定はないが、上述の助触媒源を含む溶液であればよく、Coイオン、Ruイオン又はPtイオンを含む溶液であることが好ましく、Coイオンを含む溶液であることがさらに好ましい。
 製造方法S10においては、溶媒3中に複数種類の助触媒源2’を溶解させてもよい。これにより、複合光触媒10において、光半導体1a、1bの表面に複数種類の助触媒2を担持させることが可能である。例えば、酸素発生用助触媒と水素発生用助触媒との前駆体を逐次的に共担持させることも可能である。また、第1の本発明では複数の助触媒源を混合した複数酸化物として用いることもできる。
 尚、製造方法S10においては、マイクロ波照射前の固液混合物5において、光半導体1a、1bがあらかじめ複合化されていてもよい。すなわち、光半導体1aの粒子と光半導体1bの粒子とで二次粒子が形成された状態であってもよい。例えば、溶媒に光半導体1a、1bを含ませてここにマイクロ波を照射することで、光半導体1aの粒子と光半導体1bの粒子とからなる二次粒子を得て、当該二次粒子を溶液4に含ませて固液混合物5とする形態である。複数種類の光半導体としてこのような二次粒子を用いた場合であっても、優れた水分解活性を有する複合光触媒を製造することができる。ただし、本発明者らの知見によれば、固液混合物5において複数種類の光半導体は互いに複合化されていない状態である方が、より優れた水分解活性を有する複合光触媒を製造することができる。
1.1.2.第2実施形態
 図2を参照しつつ、第2実施形態に係る複合光触媒の製造方法S20について説明する。図2に示すように、製造方法S20は、溶媒13と、助触媒12と、複数種類の光半導体11a、11bと、を混合して固液混合物15とし、当該固液混合物15に対してマイクロウェーブオーブン16を用いてマイクロ波を照射して加熱する工程を備えている。製造方法S20では、マイクロ波を照射する前において、固液混合物15中の助触媒12と光半導体11a、11bとが溶媒13中にともに固体として存在しており、助触媒12が光半導体11a、11bに担持された状態(光触媒20’a、20’bの状態)にある点に特徴がある。すなわち、製造方法S20においては、固液混合物15に対してマイクロ波を照射して加熱することによって、光触媒20’a、20’bを複合化することができ、複合光触媒20を容易に製造することができる。
 すなわち、製造方法S20においては光触媒20’a、20’bをあらかじめ準備する必要がある。光触媒20’a、20’bは例えば以下の方法により得ることが好ましい。
 図3を参照しつつ、光触媒20’a、20’bを得る方法について説明する。図3(A)に示すように、助触媒源12’が溶解した溶液14に第1の光半導体11aを接触させつつマイクロ波により加熱することによって第1の光半導体11aに助触媒12を担持させることができ、光触媒20’aを容易に得ることができる(第1担持工程)。一方、図3(B)に示すように、助触媒源12’が溶解した溶液に第2の光半導体11bを接触させつつマイクロ波により加熱することによって第2の光半導体11bに助触媒12を担持させることができ、光触媒20’bを容易に得ることができる(第2担持工程)。そして、第1担持工程及び第2担持工程によって得られた光触媒20’aと光触媒20’bとを溶媒に含ませて上記の固液混合物とすることができる(混合工程)。
 尚、溶液14に複数種類の助触媒源12’を溶解させることで、光半導体11a、11bそれぞれに複数種類の助触媒12を担持させるようにしてもよい。
 第1担持工程及び前記第2担持工程においては、密閉系内でマイクロ波を照射することが好ましい。密閉系の定義及び密閉系内でマイクロ波を照射した場合の効果については既に説明した通りである。
 光半導体11a、11bは、後述する第3の本発明によって、事前に酸処理がなされていることが好ましい。すなわち、第2実施形態においては、第1担持工程及び第2担持工程の前工程として、それぞれ、Ti、V、Ga、Ge、Nb及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、有機酸接触工程、並びに、有機酸接触工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、回収工程、を備え、回収した固形分を光半導体11a、11bとして用いることが好ましい。
 或いは、図4に示す含浸法によって光触媒20’a、20’bを得ることもできる。例えば、図4(A)に示すように、助触媒源12’が溶解した溶液14に第1の光半導体11aを含浸させたうえで超音波を照射し、その後、減圧留去等によって溶媒を除去して粉末を得て、当該粉末を焼成することにより光触媒20’aを得ることができる。光触媒20’bについても同様である(図4(B)参照)。
 尚、溶液14に複数種類の助触媒源12’を溶解させることで、光触媒20’a、20’bそれぞれに複数種類の助触媒12を担持させるようにしてもよい。
1.1.3.第3実施形態
 図5を参照しつつ、第3実施形態に係る複合光触媒の製造方法S30について説明する。図5示すように、製造方法S30は、助触媒源12’が溶解した溶液14と、複数種類の光触媒20’a、20’bと、を混合して固液混合物25とし、当該固液混合物25に対してマイクロウェーブオーブン26を用いてマイクロ波を照射して加熱する工程を備えている。製造方法S30では、マイクロ波を照射する前において、固液混合物25中の助触媒12と光半導体11a、11bとが溶液14中にともに固体として存在しており、助触媒12が光半導体11a、11bに担持された状態(光触媒20’a、20’bの状態)にある一方で、溶液14中にさらに助触媒源12’が溶解している点に特徴がある。すなわち、製造方法S30においては、固液混合物25に対してマイクロ波を照射して加熱することによって、光触媒20’a、20’bに対して、さらに助触媒源12’に由来する助触媒を担持させつつ複合化することができ、複合光触媒30を容易に製造することができる。
 以上のように、製造方法S10~S30のように、マイクロ波による加熱を利用して、液中にて、複数種類の異なる光半導体を助触媒とともにコンポジット化することで、水分解活性が向上した複合光触媒を製造できる。
 尚、製造方法S10~S30では、光半導体として2種類の光半導体1a、1b(11a、11b)を用いる形態について説明したが、第1の本発明はこの形態に限定されるものではない。3種類以上の光半導体を用いて複合光触媒を製造することも可能である。
1.2.複合光触媒
 第1の本発明に係る製造方法により製造される複合光触媒は従来にない顕著な水分解活性を有する。すなわち、第1の本発明は複合光触媒としての側面も有する。具体的には、助触媒を担持した複数種類の光半導体からなる複合光触媒であって、助触媒が、複数種類の光半導体の表面に存在するとともに、複数種類の光半導体の接合面に介在又は光半導体を被覆した状態で存在することを特徴とする複合光触媒である。
 第1の本発明に係る複合光触媒は、助触媒による光半導体の単位面積当たりの被覆率が30%以上であることが好ましい。
 従来の含浸法により光半導体表面に助触媒を担持させた場合、結晶核が局在化するため、助触媒が凝集し、助触媒の粒子サイズが比較的大きな状態で光半導体表面に担持される傾向にある。この傾向は助触媒源を溶解した溶液の濃度を高くした場合も同様であり、光半導体の単位面積当たりの被覆率は助触媒源の溶液濃度には必ずしも比例せず、30%未満であった。これに対し、第1の本発明の製造方法で得られた複合光触媒は、比較的粒子サイズの小さな助触媒が緻密な状態で光半導体に担持される傾向があることを本発明者が見出した。第1の本発明の複合光触媒であれば、光半導体の単位面積当たりの被覆率は、助触媒源の溶液濃度(図1、図3の溶液4、14における助触媒源2’、12’の濃度)が比較的低い場合(1質量%)においても30%以上、好ましくは50%以上、さらに好ましくは60%以上とすることができ、かつ、当該助触媒源の溶液濃度に比例して被覆率が増加する傾向がある。そのため、第1の本発明の複合光触媒であれば、光半導体表面が当該助触媒粒子で均一に覆われているため、従来法と比較して光活性を向上させることもできる。
 本発明の複合光触媒は、前述の光半導体の形態(形状)と同様の形態とすることができる。光触媒の設置形態等に合わせて、粒子状、塊状、板状等を適宜選択すればよい。電極上に光半導体を結晶成長させることで薄膜(シート)状の光半導体とすることもできる。
 第1の本発明の複合光触媒は、光半導体表面に粒子径20nm以下、好ましくは15nm以下、さらに好ましくは10nm以下、最も好ましくは5nm以下の助触媒が担持されている。助触媒粒子のサイズが粒子径20nm以下であり、光半導体上の助触媒の表面積を大きくし得るため、従来法により助触媒を担持させた光触媒と比較して高い光活性を有する光触媒を提供することができる。
 尚、助触媒粒子の粒子径についても上述の光半導体の粒子径と同様に、定方向接線径(フェレ径)の平均値(平均粒子径)を意味し、TEMなどの電顕写真から測定した助触媒粒子径の平均値より求めることができる。
 第1の本発明に係る複合光触媒において、光半導体表面への助触媒の担持量については、光触媒活性を向上可能な量であれば特に限定されるものではない。ただし、助触媒全体の担持量は少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして光触媒の光吸収を妨げたり、再結合中心として働いたりしてかえって触媒活性が低下してしまう。このような観点からは、例えば、一次粒子径が50nm以上500μm以下の複数種類の光半導体粒子の表面に粒子径が20nm以下の助触媒を担持させ、且つ、これらを複合化してなる複合光触媒とする場合は、光半導体(光半導体粒子)100質量部に対し、助触媒粒子が0.008質量部以上20.0質量部以下担持されるようにするとよい。下限はより好ましくは0.009質量部以上、さらに好ましくは0.010質量部以上であり、上限はより好ましくは10.0質量部以下、さらに好ましくは5.0質量部以下、特に好ましくは4.0質量部以下である。これにより光半導体表面の略全体を当該助触媒粒子で均一に覆うことができ、光触媒活性が向上する。尚、助触媒の担持量を調整するには、例えば、第1の本発明に係る製造方法においてマイクロ波の照射条件を調整すればよい。
1.3.光水分解反応用電極
 第1の本発明により製造される複合光触媒は、光水分解反応用の光触媒として好適に利用できる。その場合、複合光触媒の形態については特に限定されるものではなく、水中に粒子状の複合光触媒を分散させる形態、複合光触媒を固めて成形体として当該成形体を水中に設置する形態、基材上に複合光触媒からなる層を設けて積層体とし当該積層体を水中に設置する形態、集電体上に複合光触媒を固定化して光水分解反応用電極とし対極とともに水中に設置する形態等が挙げられる。
 これらのうち、光水分解反応用電極は公知の方法により作製可能である。例えば、いわゆる粒子転写法(Chem.Sci.,2013,4,1120-1124)によって容易に作製可能である。すなわち、ガラス等の第1の基材上に複合光触媒を載せて、複合光触媒層と第1の基材層との積層体を得る。得られた積層体の複合光触媒層表面に蒸着等によって導電層(集電体)を設ける。ここで、複合光触媒層の導電層側表層にある複合光触媒が導電層に固定化される。その後、導電層表面に第2の基材を接着し、第1の基材層から導電層及び複合光触媒層を剥がす。複合光触媒の一部は導電層の表面に固定化されているので、導電層とともに剥がされ、結果として、複合光触媒層と導電層と第2の基材層とを有する光水分解反応用電極を得ることができる。
 或いは、複合光触媒が分散されたスラリーを集電体の表面に塗布して乾燥させることで、光水分解反応用電極を得てもよいし、複合光触媒と集電体とを加圧成形等して一体化することで光水分解反応用電極を得てもよい。また、複合光触媒が分散されたスラリー中に集電体を浸漬し、電圧を印可して複合光触媒を電気泳動により集電体上に集積してもよい。
 或いは、助触媒の担持を後工程で行うような形態であってもよい。例えば、上記した粒子転写法において、複合光触媒粒子ではなく複合光半導体粒子を用いて、同様の方法で複合光半導体層と導電層と第2の基材層とを有する積層体を得て、その後、積層体の複合光半導体層を上記した溶液(溶液4、14)に接触させつつマイクロ波加熱することで、複合光半導体層の表面に助触媒を担持させることができ、複合光触媒層を有する光水分解反応用電極を得ることができる。この際、電極としてはITOやFTOなどの金属酸化物が望ましい。金属の場合、マイクロ波照射によりスパークが発生するためである。
1.4.水素及び/又は酸素の製造方法
 第1の本発明により製造される複合光触媒、或いは、上記した光水分解反応用電極を、水又は電解質水溶液に浸漬し、当該複合光触媒又は光水分解反応用電極に光を照射して光水分解を行うことで、水素及び/又は酸素を製造することができる。
 例えば、上述のように導電体で構成される集電体上に複合光触媒を固定化して酸素生成用の光水分解反応用電極及び水素生成用の水分解反応用電極を得て、電極間を接続の後、液体状又は気体状の水を供給しながら光を照射し、水分解反応を進行させる。必要に応じて電極間に電位差を設けることで、水分解反応を促進することができる。
 一方、絶縁基材上に複合光触媒を固定化した固定化物に、又は、複合光触媒を加圧成形等した成形体に、水を供給しながら光を照射して水分解反応を進行させてもよい。或いは、複合光触媒を水又は電解質水溶液に分散させて、ここに光を照射して水分解反応を進行させてもよい。この場合、必要に応じて攪拌することで、反応を促進することができる。
 水素及び/又は酸素の製造時の反応条件については特に限定されるものではないが、例えば反応温度を0℃以上200℃以下とし、反応圧力を2MPa(G)以下とする。
 照射光は、複合光触媒の種類にもよるが、650nm以下の波長を有する可視光、又は紫外光が好適に利用できる。照射光の光源としては太陽や、キセノンランプ、メタルハライドランプ等の太陽光近似光を照射可能なランプ、水銀ランプ、LED等が挙げられる。
2.第2の本発明
 上記の第1の本発明においては、「複数種類」の光半導体を用いて「複合光触媒」を製造する形態について説明したが、以下に説明する第2の本発明によっても、優れた水分解活性を有する光触媒を製造することができる。
2.1.光触媒の製造方法
 図6に示すように、第2の本発明に係る光触媒の製造方法は、密閉系内で、助触媒源が溶解した溶液105に光半導体101を接触させつつ、マイクロ波により加熱する工程を備えることを特徴とする。当該工程を経ることで、光半導体101の表面に粒子径の小さな助触媒102が高分散で担持された光触媒110を製造することができる。
2.1.1.密閉系内
 第2の本発明においては、マイクロ波による加熱を密閉系内で行うことに一つの特徴がある。第2の本発明における密閉系内の例としては、上述の第1の本発明において例示した密閉系内と同様とすることができる。
2.1.2.光半導体101
 第2の本発明において用いられる光半導体101は、光を吸収することによって正孔と電子とを生じ得る半導体であり、光水分解反応を触媒可能なものであればよい。具体的には、上述の第1の本発明において例示した光半導体から適宜選択して用いればよい。好ましい光半導体についても、第1の本発明と同様である。
2.1.3.助触媒源が溶解した溶液105
(助触媒源)
 第2の本発明において用いられる助触媒源は、液中で光半導体101とともに加熱することによって助触媒となり得るもの(成分、元素、イオン)をいう。具体的には、上述の第1の本発明において例示した助触媒源から適宜選択して用いればよい。
 以上の通り、第2の本発明においては、マイクロ波加熱によって溶液中で光半導体表面において助触媒となり得る(助触媒として析出するような)助触媒源を適宜選択して用いることができる。尚、第2の本発明においては、光半導体の表面に複数種類の助触媒を担持させることが可能である。例えば、酸素発生用助触媒と水素発生用助触媒との前駆体を逐次的に共担持させることも可能である。また、第2の本発明では溶液において複数の助触媒源を混合してもよい。この場合は、溶液5において複数種類の助触媒源を溶解させればよい。
(溶媒)
 第2の本発明においては、助触媒源を溶媒に溶解させることで、助触媒源が溶解した溶液105とすることができる。そのような溶媒としては、上記したような助触媒源を溶解させることが可能なものであればよく、水や各種有機溶媒を用いることができる。ただし、上記した光半導体101に接触させても光半導体101が固体を維持できる溶媒に限られる。具体的には水、エチレングリコールなどのアルコール類、DMF、DMSO、NMP、ニトロベンゼン、又はこれらの混合物等である。特に、沸点の高いものが好ましい。具体的には、沸点が100℃以上の溶媒が好ましく、水、アルコール類、又はその混合溶媒が特に好ましい。尚、溶液105に含まれる助触媒源の濃度については特に限定されるものではないが、好ましくは下限が0.1質量%以上、より好ましくは0.5質量%以上、上限が好ましくは10質量%以下、より好ましくは5質量%以下である。助触媒源の濃度がこの範囲であれば、助触媒が光触媒の光吸収を阻害しないからである。
 また、第2の本発明において、助触媒源を含む溶液は、上記助触媒源及び溶媒で構成されていれば特に限定はないが、Coイオン、Ruイオン又はPtイオンを含む溶液であることが好ましく、Coイオンを含む溶液であることがさらに好ましい。
2.1.4.マイクロ波
 第2の本発明においては、マイクロ波によって上記した溶液105及び光半導体101の加熱を行うことにもう一つの特徴がある。マイクロ波の照射条件については、上述の第1の本発明において例示した条件と同様とすることができる。第2の本発明においては、上記した溶液105に含まれる助触媒源の濃度や溶液105と接触させる光半導体の形状・量に応じてマイクロ波の照射条件(波長、出力、照射時間等)を調整することで、光半導体101の表面に担持される助触媒の量を容易に調整することができる。
 第2の本発明においては、密閉系内でマイクロ波により加熱を行うことで、迅速な昇温・加圧が可能となり、反応速度を大幅に向上させることができ、全体の処理時間を短縮できる。マイクロ波を用いた場合には、光半導体自体がマイクロ波を吸収することにより、光半導体表面が先に加熱され、光半導体表面上で助触媒前駆体の分解・核成長が同時に起こる。これにより、均一かつ全面的に助触媒が担持されると考えられる。
 また、簡易な工程で加熱可能であり、収率も向上し、純度を向上させることもできる。すなわち、第2の本発明においては、マイクロ波による加熱によって、密閉系内の圧力が系外の圧力よりも高いものとされることが好ましい。より好ましくは、系内の圧力を1.01bar以上50bar以下とする。
 光半導体表面への助触媒の担持量については、光触媒活性を向上可能な量であれば特に限定されるものではない。ただし、助触媒全体の担持量は少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして光触媒の光吸収を妨げたり、再結合中心として働いたりしてかえって触媒活性が低下してしまう。このような観点からは、例えば、粒子径が50nm以上500μm以下の光半導体粒子の表面に、粒子径が20nm以下の助触媒を担持させる場合は、光半導体(光半導体粒子)100質量部に対し、助触媒粒子が0.008質量部以上20.0質量部以下担持されるようにマイクロ波の照射条件を調整することが好ましい。下限はより好ましくは0.009質量部以上、さらに好ましくは0.010質量部以上であり、上限はより好ましくは10.0質量部以下、さらに好ましくは5.0質量部以下、特に好ましくは4.0質量部以下である。これにより光半導体表面の略全体を当該助触媒粒子で均一に覆うことができ、光触媒活性が向上する。
 第2の本発明においては、上記した工程を経て密閉系内で1段階にて光触媒110を容易に製造することができる。すなわち、マイクロ波による加熱後、密閉系内から固形分を取り出すだけでよく、その後の焼成処理や再窒化処理等は必要ない。また、本発明により製造される光触媒110においては、光半導体101の表面に粒子径の小さな助触媒が高分散にて担持されており、光水分解活性に優れたものである。
2.2.助触媒の担持方法
 第2の本発明は光触媒の製造方法としての側面の他、助触媒の担持方法としての側面も有する。すなわち、密閉系内で、助触媒源を含む溶液に光半導体を接触させつつ、マイクロ波により加熱して光半導体の表面に助触媒を担持する方法である。各詳細については上述した通りであり、ここでは説明を省略する。
2.3.光水分解反応用電極
 第2の本発明により製造される光触媒は、光水分解反応用の光触媒として好適に利用できる。その場合、光触媒の形態については特に限定されるものではなく、上述の第1の本発明において説明したような形態と同様とすることができる。特に、光水分解反応を大規模にて行う場合、バイアスを付与して水分解反応を促進できる観点から、光水分解反応用電極とするとよい。光水分解反応用電極の作製方法については上述した通りである。
2.4.水素及び/又は酸素の製造方法
 本発明により製造される光触媒、或いは、上記した光水分解反応用電極を、水又は電解質水溶液に浸漬し、当該光触媒又は光水分解反応用電極に光を照射して光水分解を行うことで、水素及び/又は酸素を製造することができる。詳しくは、第1の本発明において説明した通りである。
2.5.光触媒
 第2の本発明は光触媒としての側面も有する。第2の本発明に係る光触媒は、光半導体表面に助触媒が担持され、該助触媒による光半導体の単位面積当たりの被覆率が30%以上であることを特徴とする。
 従来の含浸法により光半導体表面に助触媒を担持させた場合、結晶核が局在化するため、助触媒が凝集し、助触媒の粒子サイズが比較的大きな状態で光半導体表面に担持される傾向にある。この傾向は助触媒源を溶解した溶液の濃度を高くした場合も同様であり、光半導体の単位面積当たりの被覆率は助触媒源の溶液濃度には必ずしも比例せず、30%未満であった。これに対し、第2の本発明の製造方法で得られた光触媒は、比較的粒子サイズの小さな助触媒が緻密な状態で光半導体に担持される傾向があることを本発明者が見出した。第2の本発明の光触媒であれば、光半導体の単位面積当たりの被覆率は、助触媒源の溶液濃度が比較的低い場合(1質量%)においても30%以上、好ましくは50%以上、さらに好ましくは60%以上とすることができ、かつ、助触媒源の溶液濃度に比例して被覆率が増加する傾向がある。そのため、第2の本発明の光触媒であれば、光半導体表面の略全体が当該助触媒粒子で均一に覆われているため、従来法と比較して光活性を向上させることができる。
 第2の本発明の光触媒は、光半導体表面に粒子径20nm以下、好ましくは15nm以下、さらに好ましくは10nm以下、最も好ましくは5nm以下の助触媒が担持されている。助触媒粒子のサイズが粒子径20nm以下であり、光半導体上の助触媒の表面積を大きくし得るため、従来法により助触媒を担持させた光触媒と比較して高い光活性を有する光触媒を提供することができる。
 尚、助触媒粒子の粒子径についても上述の光半導体の粒子径と同様に、定方向接線径(フェレ径)の平均値(平均粒子径)を意味し、TEMなどの電顕写真から測定した助触媒粒子径の平均値より求めることができる。
 第2の本発明の光触媒は、本発明の光触媒の製造方法により得られることが好ましい。本発明の光触媒の製造方法では、本発明の製造方法で述べた原料等を用いることができる。
3.第3の本発明
 光半導体を事前に適切に酸処理することによって、光触媒の水分解活性を向上させることができる。以下、第3の本発明として、光半導体の製造方法について説明する。
3.1.光半導体の製造方法
 図7に示すように、第3の本発明に係る光半導体の製造方法は、Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物201a(以下、「酸化物等201a」という場合がある。)の表面に、所定の有機酸の溶液202を接触させる、第1工程(有機酸接触工程)、並びに、第1工程の後で、固形分として残った酸化物、酸窒化物又は窒化物201b(以下、「酸化物等201b」という場合がある。)を回収する、第2工程(回収工程)を備えることを特徴とする。
3.1.1.第1工程(有機酸接触工程)
 第1工程は、図7(A)に示すように、酸化物等201aの表面に、所定の有機酸の溶液202を接触させる工程である。具体的には、(i)酸化物等201aの表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる工程、或いは、(ii)酸化物等201aの表面に、スルホン酸を含む少なくとも一種以上の有機酸の溶液を接触させる工程である。
(酸化物等201a)
 第3の本発明において用いられる酸化物等201aは、Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含むとともに、光を吸収することによって正孔と電子とを生じ得る酸化物、窒化物又は酸窒化物であって、光水分解反応を触媒可能なものであればよい。酸化物等201aは、通常、表面欠陥及び界面欠陥等を有しており、酸処理によって当該表面欠陥及び界面欠陥等を上手く除去することができれば、光半導体の光水分解活性を向上できる。なかでも、酸化物等201aがTi又はNb含む場合には、特に酸処理の効果を顕著に奏するため好ましい。
 酸化物等201aの具体例としては、上述の第1の本発明において光半導体として例示した酸化物、窒化物又は酸窒化物から適宜選択して用いればよい。これら酸化物等201aは、固相法、溶液法等の公知の合成方法によって容易に合成可能である。
 太陽光を利用した光水分解反応をより効率的に生じさせる観点からは、特に可視光応答型の酸化物等が好ましい。具体的には、酸化物等201aは、LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、Ta、BaTaON、BiVO、TaON、LaTiON、SnNb、LaTiCuS、GaN:ZnO及びZnGeN:ZnOから選ばれる少なくとも一種以上であることが好ましい。なかでも、酸化物等201aがLaTiON、SrNbON、BaNbONであると、特に酸処理の効果を顕著に奏するため好ましい。
 酸化物等201aの形状は特に限定されるものではない。粒子状(粉末状)や塊状の他、シートやペレット等の成形体とされていてもよい。水分解反応に特に適した形状の光半導体を容易に製造できる観点からは、粒子状のものやシート状のものが好ましい。特に好ましくは粒子状のものである。
 酸化物等201aが粒子状である場合、その平均粒子径は、下限が通常10nm以上、好ましくは50nm以上、より好ましくは100nm以上であり、上限が通常50μm以下、好ましくは10μm以下、より好ましくは5μm以下である。なお、本願において「平均粒子径」とは、定方向接線径(フェレ径)の平均値を意味し、XRD、TEM、SEM法等の公知の手段によって測定することができる。
 酸化物等201aがシート状である場合、その厚みは、下限が通常1nm以上、好ましくは10nm以上、より好ましくは100nm以上であり、上限が通常10μm以下、好ましくは5μm以下、より好ましくは1μm以下である。なお、シート状の酸化物等201aは、上述の通り、基板等の表面に薄い層として形成されたようなもの(基板等の表面に直接結晶成長させたもの)であってもよい。
(溶液202)
 本発明において用いられる溶液202は、(i)ポリ有機酸を含む少なくとも一種以上の有機酸の溶液、或いは、(ii)スルホン酸を含む少なくとも一種以上の有機酸の溶液である。
(ポリ有機酸)
 ポリ有機酸は、分子量が大きく、その大きさ(鎖長)が酸化物の粒径とほぼ同じであり、酸化物等201aの表面に、ポリ有機酸の溶液を接触させた場合、酸化物等201aの内部にポリ有機酸が侵入し難く、光半導体の表面をあたかも磨き上げるようにして徐々に溶解等させることができる。すなわち、酸処理の制御が容易で、酸化物等201aの表面全体をムラなく適切に酸処理することができる。これにより、酸化物等201aの表面欠陥及び界面欠陥等を適切に除去して、水分解活性を適切に向上させることができる。
 ポリ有機酸を構成するモノマーとしては種々の有機酸を適用できるが、スルホン酸やアクリル酸が好ましく、特にスルホン酸が好ましい。スルホン酸としては種々のスルホン酸を適用できるが、特に炭素数6以上の炭化水素基を有するものが好ましく、アリール基を有するものが特に好ましい。アリール基は共役によりスルホン酸のアニオン状態を安定化させることが可能であるため、酸性度が高く、酸としてより好ましい。またアリール基は疎水性であり、酸化物等の内部に入り難く、酸化物等を過度に腐食させることがない。具体的には、ベンゼンスルホン酸、トルエンスルホン酸、スチレンスルホン酸が好ましく、スチレンスルホン酸が特に好ましい。ポリ有機酸としてポリスチレンスルホン酸を用いた場合、酸処理による光半導体の溶解性と酸処理の制御性とのバランスが特に優れたものとなる。すなわち、酸処理を適切に進行させつつも、過度に溶解させることがない。
 ポリ有機酸の重合度は10以上であれば本発明に係る効果が奏される。重合度が10以上であることで、ポリ有機酸が酸化物等201aの内部に浸透し難くなり、酸化物等201aの表面をムラなく適切に溶解させることができるためである。
 特に、ポリ有機酸は、重量平均分子量が1,000以上1,000,000以下であることが好ましい。重量平均分子量の下限はより好ましくは1000以上、さらに好ましくは2000以上であり、上限はより好ましくは1,000,000以下、さらに好ましくは100,000以下である。このような範囲の分子量を有するポリ有機酸は、酸化物等201aの内部に浸透し難く、酸化物等201aの表面をムラなく適切に酸処理することができる。すなわち、酸処理の制御がより容易となる。
(スルホン酸)
 第1工程においては、ポリ有機酸に替えて、或いは、ポリ有機酸とともに、スルホン酸を用いることも可能である。スルホン酸としては、上記のポリ有機酸を構成するモノマーとして例示したスルホン酸と同じものを用いることができる。スルホン酸を用いて酸化物等201aの表面を酸処理した場合、王水等を用いた場合と比較して、酸化物等201aを過度に腐食させることなく、酸化物等201aの表面を徐々に溶解等させることができる。スルホン酸には疎水性の有機基が置換されており、酸化物内への侵入を抑制することが出来る。すなわち、酸処理の制御が容易で、酸化物等201aの表面全体をムラなく適切に酸処理することができる。これにより、酸化物等201aの表面欠陥及び界面欠陥等を適切に除去して、水分解活性を適切に向上させることができる。
 本発明においては、ポリ有機酸及びスルホン酸のうち、ポリ有機酸を用いることが好ましい。揮発性の小さなポリ有機酸を用いることで、酸処理後の回収が容易となり、再利用することができるためである。
 溶液202には上記したような有機酸が溶解している。ここで、有機酸を溶解させる溶媒としては、特に限定されるものではない。水や各種有機溶媒(好ましくはメタノール、エタノール、エチレングリコールなどのアルコール)と水との混合溶媒を用いることができる。特に水が好ましい。
 溶液202において上記した有機酸の濃度は、酸化物等201aの表面を酸処理可能な濃度であれば特に限定されるものではない。特に、pKaが-4以上4以下となるような濃度とすることが好ましい。pKaは下限がより好ましくは-3以上であり、上限がより好ましくは2以下である。pKaをこのような範囲とすることで、酸処理による光半導体の溶解性と酸処理の制御性とのバランスが一層良好なものとなる。尚、上記のpKaは有機酸の濃度以外にも、溶媒の種類によっても変化する。言い換えれば、有機酸の濃度を調整する他、溶媒の種類を変更することによっても、pKaを好ましい範囲に調整することができる。
 尚、溶液202には、本発明の効果を損なわない範囲で、上記した有機酸以外の「その他の有機酸」が含まれていてもよい。例えば、ポリスルホン酸とともに少量のカルボン酸を含む溶液も本発明の範囲内である。このような「その他の有機酸」の含有量は、溶液202全体を基準(100質量%)として50質量%以下とすることが好ましい。また、溶液202には、本発明の効果を損なわない範囲で、無機酸が含まれていてもよい。ただし、上述の通り無機酸は酸化物等201aを短時間で過度に腐食させるため、その含有量はごく少量とする必要がある。例えば、溶液202全体を基準(100質量%)として10質量%以下とする。
(酸化物201aと溶液202との接触方法)
 第1工程において、上記したような酸化物等201aと溶液202との接触方法については、特に限定されるものではない。接触によって酸化物等201aの酸処理を適切に進行させられるものであればよい。例えば、酸化物等201aを溶液202中に含浸させる形態、酸化物等201aの表面に溶液202を塗布する形態、酸化物等201aの表面に溶液202を噴霧する形態等、種々の形態が挙げられる。
 なお、溶液202の温度については特に制限はない。室温程度の溶液202であっても十分な効果が奏される。溶液202の温度は、通常、0℃以上100℃未満であり、好ましくは5℃以上80℃以下、より好ましくは、10℃以上50℃以下である。
 酸化物等201aと溶液202との接触時間については、酸化物等201aの種類や形状に応じて適宜調整すればよい。すなわち、後述する第2工程において、固形分として酸化物等201bを残存させ得る程度の接触時間とすればよい。なお、接触時間をわずかな時間としても、表面欠陥及び界面欠陥等を低減することが可能であり、本発明の効果が奏される。一方、上述の通り、本発明では有機酸の溶液202によって酸処理を行うため、接触時間を長時間(例えば15時間~20時間程度)としても、酸化物等201aの表面が過度に荒れることがなく、本発明の効果が奏される。すなわち、接触時間は短時間であっても長時間であってもよい。接触時間と光水分解活性との関係については、実施例にてさらに詳細に説明する。
 また、酸化物等201aと溶液202との接触時の圧力については、特に限定されるものではなく、減圧、常圧又は加圧のいずれでもよい。通常、0気圧以上10気圧以下であり、好ましくは0気圧以上5気圧以下、より好ましくは0気圧以上3気圧以下である。
3.1.2.第2工程(回収工程)
 第2工程は、第1工程の後で、固形分として残った酸化物等201bを回収する工程である。回収の方法は特に限定されない。例えば、粒子状の酸化物等201bが溶液202中に浸された状態にある場合、濾過及び洗浄によって粒子状の酸化物等201bを回収することができる。また、シート状の酸化物等201bが溶液202中に浸された状態にある場合、シート状の酸化物等201bを溶液202から引き上げることによって、シート状の酸化物等201bを回収することができる。いずれにしても、第1工程により酸化物等201bの表面には溶液202が残存している。そのため、酸化物等201bを回収するにあたっては、水や有機溶媒を用いて酸化物等201bを洗浄し、酸化物等201bの表面から溶液202を除去することが好ましい。
 以上の通り、第1工程及び第2工程を経ることで、図7(B)に示すような、表面欠陥及び界面欠陥等が低減された酸化物等201bを得ることができる。当該酸化物等201bは、優れた水分解活性を有する光半導体である。
3.2.製造される光半導体の表面状態
 第3の本発明により製造される光半導体は、その表面に有機酸由来の元素が残存している場合がある。光触媒表面の官能基(水酸基、アミノ基など)と有機酸由来の元素とが水素結合等によって化学的に結合し、仮に光半導体を水や有機溶媒によって洗浄したとしても、有機酸由来の元素を光半導体の表面から完全に除去することは困難だからであると考えられる。例えば、第1工程において有機酸としてポリスルホン酸を用いた場合、製造される光半導体は、酸化物、窒化物又は酸窒化物であるにもかかわらず、表面に0.05atm%以上、2atm%以下のS分が残存している場合が多い。これは、本発明に係る製造物特有のものである。言い換えれば、表面に0.05atm%以上、2atm%以下のS分が存在している酸化物、窒化物又は酸窒化物からなる光半導体は、本発明に係る製造方法によって製造されたものと推定することができる。
3.3.光触媒の製造方法
 第3の本発明は光触媒の製造方法としての側面も有する。すなわち、上記した光半導体の製造方法により製造された光半導体の表面に助触媒を担持する工程を備える、光触媒の製造方法である。
3.3.1.助触媒
 助触媒は、光触媒の助触媒として適用可能なものであればよい。酸素発生用助触媒としては、Co、Cr、Sb、Nb、Th、Mn、Fe、Co、Ni、Ru、Rh、Irの金属、これらの酸化物、硫化物、又は複合酸化物等が挙げられる。また、水素発生用助触媒としては、Pt、Pd、Rh、Ru、Ni、Au、Fe、Ru-Ir、Pt-Ir、NiO、RuO、IrO、Rh、Cr-Rh複合酸化物、これらの金属に硫黄、チオウレアを添加した硫化物等が挙げられる。
 助触媒は、上記した光半導体の表面に担持可能な程度の大きさであればよい。光半導体の表面に助触媒を担持させるためには、粒子状、塊状、シート状等の光半導体よりも小さい必要がある。特に粒子径が50nm以上500μm以下の光半導体粒子の表面に、粒子径が1.0nm以上25nm以下の助触媒を担持させる形態が好ましい。助触媒の粒子径は下限がより好ましくは1.2nm以上、さらに好ましくは1.5nm以上であり、上限がより好ましくは20nm以下、さらに好ましくは10nm以下である。助触媒の粒子径をこのような範囲に調整することで、光水分解活性を一層向上可能である。
 助触媒の担持量については、少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして光半導体の光吸収を妨げたり、再結合中心として働いたりして、かえって触媒活性が低下してしまう。このような観点から、光触媒における助触媒の担持量は、光触媒全体を基準(100質量%)として、好ましくは0.01質量%以上20質量%以下であり、より好ましくは15質量%以下、特に好ましくは10質量%以下である。
3.3.2.助触媒の担持方法
 光半導体への助触媒の担持方法については、上記の第1の本発明や第2の本発明にて説明したように、マイクロ波によるものが好ましい。ただし、第3の本発明において助触媒の担持方法はこれに限定されるものではない。公知の担持方法をいずれも適用することができる。例えば、助触媒となる金属源を含有する溶液やコロイド溶液に光半導体の粉体や成形体を浸漬し、蒸発乾固する方法、又は金属のカルボニル化合物を昇華によって光半導体表面へ吸着させ、これを熱分解させる方法などによって、光半導体の表面に助触媒を担持することができる。また、文献(PNAS vol.106,20633-20636(2009))に記載されている、助触媒となるイオンを含有する溶液に、光半導体の粉体や成型体を浸漬し、光照射する方法により担持してもよい。
 以上のように、第3の本発明により製造された光半導体の表面に、助触媒を担持することによって、水分解活性に優れた光触媒を製造することができる。なお、光半導体に助触媒を担持させた後では、光半導体の酸処理を適切に行うことができない。酸処理によって助触媒が溶解してしまう虞があるためである。よって、本発明では、有機酸による酸処理を経て得られる光半導体に助触媒を担持させることが重要である。
 尚、第3の本発明により製造される光半導体は、助触媒を担持せずにそのまま光触媒として用いることも可能である。ただし、水分解活性に一層優れる光触媒とする観点からは、光半導体に助触媒を担持させることが好ましい。
 以上、本発明について図面を参照しつつ説明した。尚、上述の説明では、第1~第3の本発明について個別に説明したが、本発明は第1~第3の本発明が組み合わされたものであってもよい。以下、実施例により本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例により制限されるものではない。
<予備実験>
 密閉系内において、助触媒源が溶解した溶液のみで光半導体を存在させないものをマイクロ波で加熱した場合と当該溶液と光半導体粒子とをマイクロ波で加熱した場合について、それぞれ助触媒粒子の析出の有無を確認した。
(光半導体粒子を存在させない場合)
 Co(NO(29mg、0.1N)をエチレングリコール(3ml)に溶解させて溶液とし、当該溶液に対して密閉系内でマイクロ波(周波数2.45GHz)を照射して250℃に昇温させて、15分間加熱した。しかしながら、加熱の前後で溶液の見た目に変化はなく、助触媒粒子の析出は認められなかった。
(光半導体粒子を存在させる場合)
 上記した溶液に光半導体としてBiVOを100mg投入し、上記と同様にしてマイクロ波を照射したうえで、濾過及び洗浄をして固形分を得た。加熱処理前においては黄色であったBiVOは、加熱処理後においては黒く変色しており、BiVOの表面に助触媒としてCoO、Co、又はこれらの混合物(以下、CoOという。)を担持することができた。
 以上の予備実験の結果を踏まえて、マイクロ波による加熱を利用して、液中にて、複数種類の異なる光半導体を助触媒とともにコンポジット化して複合光触媒を得て、水分解活性を評価した。
1.第1の本発明に関して
1.1.TaON:LaTiON複合光触媒
<実施例1-1、1-2、1-3>
(TaON:LaTiON複合光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液を得た。ここに、複数種類の光半導体として、TaON粒子(粒度分布数μm)とLaTiON粒子(粒度分布数μm)とを下記表1に示す所定の質量比にて合計150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、TaON:LaTiON複合粒子の表面に助触媒としてCoOが担持された複合光触媒を得た。
(光水分解反応用電極の作製)
 図8に示す方法で、光水分解反応用電極を作製した。すなわち、得られた複合光触媒(30mg)を1mLの2-プロパノールに懸濁させ、この懸濁液200μLを第1のガラス基材(ソーダライムガラス30×30mm)上に滴下、乾燥を3回繰り返して光触媒層を形成した。次に、接触層となるNbをスパッタ法により積層した。装置はULVAC VPC-260Fを使用し、数百nm程度積層した。次に、集電導体層となるTiをスパッタ法により数μm程度積層した。その後、エポキシ樹脂を用いて集電導体層に第2のガラス基材(ソーダライムガラス;図示せず)を接着した。最後に第1のガラス基材を除去し、純水中で10分間超音波洗浄することで、複合光触媒層/接触層/集電層を備えた光水分解反応用電極を得た。
(性能評価)
 得られた光水分解反応用電極を用いて、以下の測定条件によって、電解液の分解を行った。測定電位0.7V、1.0V、及び1.2Vにおける光電流密度を評価の指標とした。結果を以下の表1に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液NaOH、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.1V、E=0.3V、T=1s、T=10ms/V)
<実施例1-4>
(TaON/CoO光触媒粒子の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液を得た。ここに、TaON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、TaON粒子の表面に助触媒としてCoOが担持された光触媒粒子(以下、光触媒粒子(A)という。)を得た。
(LaTiON/CoO光触媒粒子の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液を得た。ここに、LaTiON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、198℃まで昇温させたうえで、30分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、LaTiON粒子の表面に助触媒としてCoOが担持された光触媒粒子(以下、光触媒粒子(B)という。)を得た。
(TaON:LaTiON複合光触媒の作製)
 エチレングリコール中に、光触媒粒子(A)及び光触媒粒子(B)を表1に示す所定の質量比で投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、光触媒粒子(A)と光触媒粒子(B)とがコンポジット化された複合光触媒を得た。
(光水分解反応用電極の作製及び性能評価)
 TaON:LaTiON複合光触媒として実施例1-4に係る複合光触媒を用いたこと以外は実施例1-1と同様にして、光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。
<実施例1-5>
(TaON:LaTiON複合半導体の作製)
 エチレングリコール中に、TaON粒子(粒度分布数μm)とLaTiON粒子(粒度分布数μm)とを下記表1に示す所定の質量比にて投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、TaON:LaTiON複合半導体を得た。
(TaON:LaTiON複合光触媒の作製)
 複数種類の光半導体として上記TaON:LaTiON複合半導体を用いたこと以外は実施例1-1と同様にして、マイクロ波照射によりTaON:LaTiON複合光触媒を得た。
(光水分解反応用電極の作製及び性能評価)
 TaON:LaTiON複合光触媒として実施例1-5に係る複合光触媒を用いたこと以外は実施例1-1と同様にして、光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。
<実施例1-6>
(TaON/CoO光触媒粒子の作製)
 水0.2mL中に、助触媒源としてCo(NOを0.17mM溶解し、2質量%の溶液を得た。ここに、0.3mLの水に分散させたTaON粒子(粒度分布数μm)100mgを投入し、さらに水を0.3mL加えた。超音波を1分かけた後、水を除去し、得られた粉末をアンモニア50mL/min気流下、600℃で一時間加熱することにより、CoOが担持されたTaON光触媒粒子(光触媒粒子(C))を得た。
(LaTiON/CoO光触媒粒子の作製)
 水0.2mL中に、助触媒源としてCo(NOを0.17mM溶解し、2質量%の溶液を得た。ここに、0.3mLの水に分散させたLaTiON粒子(粒度分布数μm)100mgを投入し、さらに水を0.3mL加えた。超音波を1分かけた後、水を除去し、得られた粉末をアンモニア50mL/min気流下、600℃で一時間加熱することにより、CoOが担持されたLaTiON光触媒粒子(光触媒粒子(D))を得た。
(TaON:LaTiON複合光触媒の作製)
 複数種類の光半導体として上記光触媒粒子(C)と光触媒粒子(D)を用いた以外は実施例1-4と同様にして、マイクロ波照射により光触媒粒子(C)と光触媒粒子(D)とがコンポジット化された複合光触媒を得た。
(光水分解反応用電極の作製及び性能評価)
 TaON:LaTiON複合光触媒として実施例1-6に係る複合光触媒を用いたこと以外は実施例1-4と同様にして、光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。
<比較例1-1>
(TaON:LaTiON光触媒混合物の作製)
 実施例1-4に係る光触媒粒子(A)及び光触媒粒子(B)を、下記表1に示す所定の質量比にて混合して光触媒混合物を得た。
(光水分解反応用電極の作製及び性能評価)
 TaON:LaTiON複合光触媒に替えて当該光触媒混合物を用いたこと以外は、実施例1-1と同様にして光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。
<比較例1-2:含浸担持>
(TaON:LaTiON複合光触媒の作製)
 下記表1に示す質量比にてTaON粒子及びLaTiON粒子を混合し、当該混合物合計0.1gに水300μLを加えた後、10mMのCo(NOを加え、2質量%の溶液とした後、超音波を1分照射し、溶媒を減圧留去した。得られた粉末をアンモニア(200mL/min)気流下、500℃で1時間焼成することにより、TaON:LaTiON複合光半導体の表面に助触媒としてCoOxが担持されたTaON:LaTiON複合光触媒を得た。
(光水分解反応用電極の作製及び性能評価)
 TaON:LaTiON複合光触媒として比較例1-2に係る複合光触媒を用いたこと以外は実施例1-1と同様にして、光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。
<参考例1-1>
 TaON:LaTiON複合光触媒に替えてTaON粒子を用いたこと以外は、実施例1-1と同様にして光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。
<参考例1-2>
 TaON:LaTiON複合光触媒に替えてLaTiON粒子を用いたこと以外は、実施例1-1と同様にして光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表1に示す。なお、表中のLTONはLaTiONの略号である。
Figure JPOXMLDOC01-appb-T000001
1.2.BiVO:LaTiON複合光触媒
<実施例1-7>
 TaONの代わりにBiVOを用いた以外は実施例1-1と同様に実験を行った。結果を以下の表2に示す。
<参考例1-3>
 TaON:LaTiON複合光触媒に替えてBiVO粒子を用いたこと以外は、実施例1-1と同様にして光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
1.3.TaON:BaTaON複合光触媒
<実施例1-8>
 LaTiONの代わりにBaTaONを用いた以外は実施例1-1と同様に実験を行った。結果を以下の表3に示す。
<参考例1-4>
 TaON:LaTiON複合光触媒に替えてBaTaON粒子を用いたこと以外は、実施例1-1と同様にして光水分解反応用電極を作製し、同様の評価基準にて性能を評価した。結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
(TEM、STEM-EDSによる評価)
 実施例1-1、比較例1-1、1-2に係る複合光触媒について、TEM、STEM-EDSにより表面性状を評価した。結果を図9~11に示す。
 なお、図9(a)はTEM観察画像、図9(b)は図9(a)の一部を拡大した拡大画像、図9(c)は図9(a)と同一視野におけるCoの元素EDS(Energy Dispersive x-ray Spectroscopy)マッピングの画像、図9(d)は図9(b)と同一視野におけるCoの元素EDSマッピングの画像である。
 図9、10から明らかなように、実施例1-1に係る複合光触媒については、TaON粒子とLaTiON粒子との合間にも存在し、また、複合光触媒表面を被覆するようにも存在していた。すなわち、実施例1-1に係る複合光触媒は、助触媒が、複数種類の光半導体の表面に存在するとともに、複数種類の光半導体の接合面に介在又は光半導体を被覆した状態で存在することが分かった。さらに、実施例1-1に係る複合光触媒においては助触媒部分にも結晶格子が観察された。
 一方、図11から明らかなように、比較例1-2に係る複合光触媒については、助触媒が光触媒上に凝集しており、界面にもほとんど存在しない。
 なお、図11(a)はTEM観察画像、図11(b)は図11(a)の一部を拡大した拡大画像、図11(c)は図11(a)と同一視野におけるCoの元素EDS(Energy Dispersive x-ray Spectroscopy)マッピングの画像、図11(d)は図11(b)と同一視野におけるCoの元素EDSマッピングの画像である。
 以上の通り、溶媒と、助触媒又は助触媒源と、複数種類の光半導体と、を含む固液混合物に対して、マイクロ波を照射して、固液混合物を加熱する、加熱工程を経ることにより、光半導体の表面に粒子サイズの小さな助触媒を高分散にて効率良く担持させることができるとともに、優れた水分解活性を有する光触媒を製造することができることが分かった。
2.第2の本発明に関して
2.1.BaNbO
<実施例2-1-1>
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NOを溶解し、2質量%の溶液とした後、ここに、BaNbON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、250℃まで昇温させたうえで、15分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、BaNbON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製)
 図8に示す方法で、光水分解反応用電極を作製した。すなわち、得られた光触媒(30mg)を1mLの2-プロパノールに懸濁させ、この懸濁液200μLを第1のガラス基材(ソーダライムガラス30×30mm)上に滴下、乾燥を3回繰り返して光触媒層を形成した。次に、接触層となるNbをスパッタ法により積層した。装置はULVAC VPC-260Fを使用し、数百nm程度積層した。次に、集電導体層となるTiをスパッタ法により数μm程度積層した。その後、エポキシ樹脂を用いて集電導体層に第2のガラス基材(ソーダライムガラス;図示せず)を接着した。最後に第1のガラス基材を除去し、純水中で10分間超音波洗浄することで、光触媒層/接触層/集電層を備えた光水分解反応用電極を得た。
(性能評価)
 得られた光水分解反応用電極を用いて、以下の測定条件によって、電解液の分解を行った。測定電位1.2Vにおける光電流密度を評価の指標とした。結果を以下の表4に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液NaOH、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.1V、E=0.3V、T=1s、T=10ms/V)
<実施例2-1-2>
(光触媒の作製)
 助触媒源として、Co(NHClを用いた以外は、実施例2-1-1と同様にしてBaNbON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
<実施例2-1-3>
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてFe(NOを溶解させ、2質量%の溶液とした後、この溶液に、BaNbON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内にCo(NHClを2質量%加え、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、BaNbON粒子の表面に助触媒としてFeO(FeO、Fe、又はその混合物)とCoO、若しくは、その複合酸化物が担持された光触媒粒子を得た。
<比較例2-1-1:アンミン浸漬担持>
(光触媒の作製)
 助触媒源として10mMのCo(NO5mL、0.1Nのアンモニア水5mLをそれぞれ純水40mLに加え、pH8.5に調整した後、BaNbONを0.1g加え、1時間浸漬した。遠心分離で上澄みを除去したのち、吸引濾過し、70℃で一晩乾燥させることによりBaNbON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
<比較例2-1-2:含浸担持>
(光触媒の作製)
 BaNbON(0.1g)に水300μLを加えた後、10mMのCo(NOを加え、2質量%の溶液とした後、超音波を1分照射し、溶媒を減圧留去した。得られた粉末をアンモニア(200mL/min)気流下、500℃で1時間焼成することにより、BaNbON粒子の表面に助触媒としてCoOxが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 実施例2-1-2、2-1-3、比較例2-1-1、2-1-2に係る光触媒粒子それぞれについて、実施例2-1-1と同様にして光水分解反応用電極を作製し、性能を評価した。結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなように、密閉系内でマイクロ波加熱を行った実施例2-1-1乃至実施例2-1-3については、従来法であるアンミン浸漬担持法(比較例2-1-1)及び含浸担持法(比較例2-1-2)と比較しても、光水分解反応用電極の光電流密度が大きく、性能に優れていた。
 図12~14に、実施例2-1-1、比較例2-1-1、及び比較例2-1-2に係る光触媒のTEM観察画像を示す。図12が実施例2-1-1、図13が比較例2-1-1、図14が比較例2-1-2と対応する。図12から明らかなように、実施例2-1-1に係る光触媒は、極めて小さな助触媒粒子が、高分散で担持されていることが分かる。一方で、図13、14から明らかなように、比較例に係る光触媒は、光半導体の表面で助触媒が凝集していることが分かる。
2.2.TaON
<実施例2-2-1>
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液を得た。ここに、TaON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、TaON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 光触媒の種類を変更し導電層としてTiを利用したこと以外は、実施例2-1-1と同様にして光水分解反応用電極を作製し、以下の条件で性能を評価した。測定電位0.6V、1.2Vそれぞれにおける光電流密度を評価の指標とした。結果を以下の表5に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液0.1M NaPO、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.267V、E=0.333V、T=1s、T=10ms/V)
<比較例2-2-1:含浸担持>
(光触媒の作製)
 TaON(0.1g)に水を300μL加えたのち、0.17mMのCo(NOを2質量%加え、さらに水を300μL加えたのち、超音波を1分照射し、溶媒を減圧留去した。得られた粉末をアンモニア(50mL/min)気流下、600℃で1時間焼成することにより、TaON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 比較例2-2-1に係る光触媒粒子について、実施例2-2-1と同様にして光水分解反応用電極を作製し、性能を評価した。結果を以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から明らかなように、密閉系内でマイクロ波加熱を行った実施例2-2-1については、従来法である含浸担持法(比較例2-2-1)と比較して、光水分解反応用電極の光電流密度が大きく、性能に優れていた。特に低電位(0.6V)での電流密度が二倍以上向上しており、無バイアスでの水分解を行う上で有用であることが分かった。
 図15に、実施例2-2-1及び比較例2-2-1に係る光水分解反応用電極のPEC評価結果を示す。図15(A)が実施例2-2-1、図15(B)が比較例2-2-1と対応する。図15から明らかなように、実施例2-2-1は比較例2-2-1と比較して、特に低電位で大きく活性が向上していることが分かる。
 図16、17に、実施例2-2-1、比較例2-2-1に係る光触媒のTEM観察画像を示す。図16が実施例2-2-1、図17が比較例2-2-1と対応する。図16から明らかなように、実施例2-2-1に係る光触媒は、極めて小さな助触媒粒子が、高分散で担持されていることが分かる。一方、図17から明らかなように、比較例に係る光触媒は、光半導体の表面で助触媒が凝集していることが分かる。
2.3.Ta
<実施例2-3-1>
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液を得た。ここに、Ta粒子(粒子分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、Ta粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 光触媒の種類を変更したこと以外は、実施例2-1-1と同様にして光水分解反応用電極を作製し、以下の測定条件で性能を評価した。結果を以下の表6に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液0.1M NaPO、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.3V、E=0.33V、T=1s、T=10ms/V)
<比較例2-3-1:含浸担持>
 Ta(0.1g)に水300μLを加えた後、0.17mMのCo(NOを加え、2質量%の溶液を得た。これに水を300μL加えた後、超音波を1分照射し、溶媒を減圧留去した。得られた粉末をアンモニア(50mL/min)気流下、600℃で1時間焼成することにより、Ta粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 比較例2-3-1に係る光触媒粒子について、実施例2-3-1と同様にして光水分解反応用電極を作製し、性能を評価した。結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から明らかなように、密閉系内でマイクロ波加熱を行った実施例2-3-1は、従来法である含浸担持法(比較例2-3-1)と比較して、光水分解反応用電極の光電流密度が大きく、性能に優れていた。
 図18に、実施例2-3-1及び比較例2-3-1に係る光水分解反応用電極のPEC評価結果を示す。図18(A)が実施例2-3-1、図18(B)が比較例2-3-1と対応する。図18から明らかなように、実施例2-3-1は比較例2-3-1と比較して、高電位で大きく活性が向上していることが分かる。
 図19、20に、実施例2-3-1、比較例2-3-1に係る光触媒のTEM観察画像を示す。図19が実施例2-3-1、図20が比較例2-3-1と対応する。図19から明らかなように、実施例2-3-1に係る光触媒は、表面において助触媒粒子の凝集は確認されなかった。上述の通り、高電位での活性向上が認められることから、TEMでは確認できない極めて小さな助触媒粒子が担持されているものと推測される。一方で、図20から明らかなように、比較例に係る光触媒は、光半導体の表面で助触媒が凝集していることが分かる。
2.4.LaTiO
<実施例2-4-1>
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液を得た。ここに、LaTiON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、198℃まで昇温させたうえで、30分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、LaTiON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 光触媒の種類を変更したこと以外は、実施例2-1-1と同様にして光水分解反応用電極を作製し、以下の測定条件で性能を評価した。結果を以下の表7に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液1M NaOH、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.07V、E=0.54V、T=1s、T=10ms/V)
<比較例2-4-1:開放系でのマイクロ波加熱>
(光触媒の作製)
 還流管を連結した反応容器にエチレングリコール18mL中に、助触媒源としてCo(NHClを溶解し、2質量%の溶液とした後、LaTiON粒子(粒度分布数μm)150mgを投入した。その後、容器内にマイクロリアクター(四国計測機器)を用いてマイクロ波(周波数2.45GHz)を照射し、198℃まで昇温させたうえで、30分間加熱還流した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、LaTiON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
<比較例2-4-2:含浸担持>
(光触媒の作製)
 LaTiON(0.1g)に水300μLを加えた後、0.17mMのCo(NOを加え、2質量%の溶液とした後、水を300μL加え、超音波を1分照射し、溶媒を減圧留去した。得られた粉末をアンモニア(50mL/min)気流下、600℃で1時間焼成することにより、LaTiON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 比較例2-4-1、2-4-2に係る光触媒粒子それぞれについて、実施例2-4-1と同様にして光水分解反応用電極を作製し、性能を評価した。結果を以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果から明らかなように、密閉系内でマイクロ波加熱を行った実施例2-4-1については、開放系でマイクロ波加熱を行った比較例2-4-1よりも、光水分解反応用電極の光電流密度が大きく、性能に優れていた。また、実施例2-4-1は、従来法である含浸担持法(比較例2-4-2)と比較しても、光水分解反応用電極の光電流密度が大きく、性能に優れていた。
(光半導体表面における助触媒の被覆率の測定)
 実施例2-4-1及び比較例2-4-2で作製したCo担持光触媒(Co/LaTiON)の表面をSEMで確認した。SEM-EDXにより得られたデータから、Photoshop CCソフトを用いて、光触媒表面のCo(黄緑)部分の面積(ピクセル)を導き出し、以下の計算式により算出した。
   被覆率=(Co部分の面積/光触媒全体の面積)X100 (%)
 算出した結果、図21(A)に示すようにマイクロ波で処理した光触媒表面には、粒子径5~10nmのCoが被覆率75.2%で被覆されていた。これに対し、図21(B)に示すように従来法(含浸担持法)で処理した光触媒表面には、粒子径20nm超40nm以下のCoが被覆率9.6%で被覆されていることが確認できた。これにより、本発明の光触媒は担持された助触媒の粒子径が小さく、かつ、よく分散された状態で光触媒表面に高い被覆率で担持されていることが分かる。
3.第3の本発明に関して
3.1.LaTiO
<光半導体の製造>
(実施例3-1)
 LaTiON(平均粒子径700nm)500mgを、ポリスチレンスルホン酸(PSS、重合度:75,000)の水溶液(PSS:水=18:82重量%)10gに含浸させ、27℃にて17時間放置することにより酸処理を行った。その後、固形分として残ったLaTiON粒子を吸引濾過により回収し、回収した粒子に水100mLを加え吸引濾過し、さらにエタノール100mLを加え吸引濾過することにより粒子を洗浄し、実施例3-1に係る光半導体を460mg得た。尚、酸処理によって、例えば、以下の酸加水分解反応が生じるものと考えられる。窒化物についても同様である。
M-O-M’+ H+ → M-OH-M’+ HO → M-OH + M’-OH
(実施例3-2~3-6)
 酸処理に係る放置時間を15分間、30分間、60分間、90分間、2時間としたこと以外は実施例3-1と同様にして、実施例3-2~3-6に係る光半導体を得た。なお、時間の増加に伴って、得られる光半導体の量が減少した。図22に、放置時間と光半導体の減少量との関係を示す。
(実施例3-7)
 酸処理用の水溶液として、PSS水溶液に替えて、トルエンスルホン酸(TS)の水溶液(TS:水=18:82重量%)を用いたこと以外は、実施例3-1と同様にして、実施例3-7に係る光半導体を得た。
(実施例3-8)
 酸処理用の水溶液として、PSS水溶液に替えて、トルエンスルホン酸(TS)の水溶液(TS:水=18:82重量%)を用い、酸処理に係る放置時間を2時間としたこと以外は、実施例3-1と同様にして、実施例3-8に係る光半導体を得た。
(実施例3-9)
 酸処理用の水溶液として、PSS水溶液に替えて、メタンスルホン酸(MS)の水溶液(MS:水=18:82重量%)を用い、酸処理に係る放置時間を2時間としたこと以外は、実施例3-1と同様にして、実施例3-9に係る光半導体を得た。
(比較例3-1)
 実施例3-1において使用したLaTiONに対して酸処理を行わずに、比較例3-1に係る光半導体を得た。
(比較例3-2)
 酸処理用の水溶液として、PSS水溶液に替えて、王水(原液、濃塩酸HCl:濃硝酸HNO(3:1)、触媒1gに対して15mL:5mL)を用いて実施例3-1と同様の操作を行ったところ、光半導体がすべて溶解してしまい、固形分を回収することができなかった。
(比較例3-3)
 酸処理用の水溶液として、PSS水溶液に替えて王水(原液、濃塩酸HCl:濃硝酸HNO(3:1)、触媒1gに対して15mL:5mL)を用い、且つ、LaTiONを含浸させた後で直ちに固形分を回収したこと以外は、実施例3-1と同様にして、比較例3-3に係る光半導体を得た。
<光触媒の製造>
 実施例及び比較例に係る光半導体それぞれについて、助触媒としてCoOを担持させ、光触媒とした。助触媒の担持は以下のようにして行った。
 エチレングリコール18mL中に、助触媒源としてCo(NOを溶解し、2質量%の溶液とした後、ここに、光半導体を150mg投入して、所定の容器に密閉した。その後、密閉した容器にマイクロ波(周波数2.45GHz)を照射して、容器内の内容物を250℃まで昇温させたうえで、15分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、光半導体の表面に助触媒としてCoOが担持された光触媒粒子を得た。
<光水分解反応用電極の作製>
 図8に示す方法で、光水分解反応用電極を作製した。すなわち、得られた光触媒(30mg)を1mLの2-プロパノールに懸濁させ、この懸濁液200μLを第1のガラス基材(ソーダライムガラス30×30mm)上に滴下、乾燥を3回繰り返して光触媒層を形成した。次に、接触層となるNbをスパッタ法により積層した。装置はULVAC VPC-260Fを使用し、数百nm程度積層した。次に、集電導体層となるTiをスパッタ法により数μm程度積層した。その後、エポキシ樹脂を用いて集電導体層に第2のガラス基材(ソーダライムガラス;図示せず)を接着した。最後に第1のガラス基材を除去し、純水中で10分間超音波洗浄することで、光触媒層/接触層/集電層を備えた光水分解反応用電極を得た。
<評価1:X線回折測定>
 実施例3-1及び3-4並びに比較例3-1に係る光半導体について、CuKα線を用いたX線回折測定を行った。結果を図23に示す。図23に示す結果から明らかなように、PSS水溶液による酸処理の前(比較例3-1)と酸処理の後(実施例3-1及び3-4)において、光半導体のX線回折ピークに変化はなかった。
<評価2:光半導体の表面元素分析>
 PSS溶液により酸処理を行った実施例に係る光半導体についてSTEM-EDX装置により、表面に存在するSの分析を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、PSS水溶液による酸処理によって、光半導体の表面にS分が0.39atm%の存在していた。すなわち、酸化物等をPSS水溶液で酸処理した場合、その表面には通常存在し得ないS分が残存することが分かった。
<評価3:光半導体の形態観察>
 比較例3-1、実施例3-1及び3-4に係る光半導体について、TEMによりその形態を観察した。結果を図24~26に示す。図24が比較例3-1、図25が実施例3-1、図26が実施例3-4と対応する。
 なお、図24~26の(A)はHRTEM観察画像であり、それぞれ、(B)は(A)の一部を拡大した拡大画像、(C)は(B)の一部を拡大した拡大画像である。また、図24~26の(D)は[210]面から入射した回折格子像であり、単一の結晶であるかどうかを確認可能である。
 図24に示すように、比較例3-1に係る光半導体は、観察範囲において、結晶が厚く、結晶同士の凝集が確認できた(図24(A)、(B))。結晶格子が厚いと光により励起された電荷の移動パスが長くなるため再結合しやすくなり、触媒活性が低くなると考えられる。また結晶同士の凝集も再結合の要因となると考えられる。一方で、図25及び26から、実施例に係る光半導体は、観察範囲において、結晶の一つ一つが薄く、結晶同士の凝集が解砕されていることが分かった。酸処理によって、表層全面を溶解しつつ、結晶間の接点も溶解し、個々の結晶へと分離できたことが分かる。
 また、図24に示すように、比較例3-1に係る光半導体は、観察範囲において、結晶格子の歪みやズレが確認できた(図24(C)、(D))。特に図24(D)から、光半導体粒子の最表面部分における[210]面と、それよりも深部にある[210]面とで、結晶面の位置が一致していない(紙面左右方向にズレている)。一方で、図25及び26から、実施例に係る光半導体は、観察範囲において、いずれも結晶格子の歪みやズレは認められず、酸処理によって表面欠陥及び界面欠陥が低減されていることが分かった。
<評価4:光水分解活性>
 ポテンショスタットを用いた3電極系での電流-電位測定によって光水分解反応用電極の性能を評価した。平面窓付きのパイレックス(登録商標)ガラス製電気化学セルを用い、参照極にAg/AgCl電極、対極にPtワイヤを用いた。電解液にはNaOH水溶液(pH=13.0)100mLを用いた。電気化学セル内部はアルゴンで満たし、かつ、測定前に十分にバブリングを行うことによって溶存する酸素、二酸化炭素を除去した。光電気化学測定には、ソーラーシミュレーター(AM1.5G(100mW/cm))を光源として用い、電気化学セルの平面窓から光を照射した。LSV測定条件をE=-1.1V、E=0.3V、T=1s、T=10ms/Vとして、測定電位1.23Vにおける光電流密度を評価の指標とした。結果を表9及び図27に示す。
Figure JPOXMLDOC01-appb-T000009
 尚、上記の表9において、括弧無の値は光電流密度の測定を複数回行って得られた平均値であり、括弧書きで示した値は実際の測定値の一例である。
 表9及び図27に示すように、ポリ有機酸又はスルホン酸によって光半導体の酸処理を行うことで、水分解活性を向上させることができた。また、酸処理に係る放置時間を極めて短時間とした場合でも水分解活性の向上が認められ、且つ、放置時間を17時間と長時間とした場合でも水分解活性が低下するどころか、さらなる向上が認められた。すなわち、ポリ有機酸又はスルホン酸を用いて酸処理を行う場合、光半導体が固形分として残存している限り、酸処理時間を短時間としても長時間としても水分解活性を向上でき、酸処理の制御が容易であることが分かった。
 尚、上記実施例では、ポリ有機酸としてポリスルホン酸(PSS)を用いた場合について説明したが、PSS以外のポリ有機酸を用いた場合でも、本発明の効果が奏されるものと考えられる。例えば、ポリ有機酸としてポリアクリル酸(PAA)を用いた場合でも、比較例3-1よりも優れた性能を備えた光半導体が製造できるものと考えられる。ただし、PAAはPSSよりも酸性度が小さいため、PAAを用いる場合は、酸化物等の表面を適切に溶解させるために長時間を要すると考えられる。すなわち、酸処理の制御を容易とする観点からはPAA等の酸性度の小さなポリ有機酸を用いることも可能と言えるものの、酸性度が低く、やや効率性に欠ける可能性がある。したがって、酸処理の制御を容易としつつも、光水分解活性が顕著に向上した光半導体を一層効率的に製造できる観点からは、ポリ有機酸としてPSSを用いることが最も好ましいと考えられる。
 図28に、比較例3-1に係る光半導体を用いた電極と、実施例3-1に係る光半導体を用いた電極とのそれぞれについて、電圧と光電流密度との関係の一例を示す。図28から、実施例3-1の電極は、いずれの測定電圧においても、比較例3-1の電極よりも光電流密度が高い。すなわち、実施例3-1に係る光半導体が優れた水分解活性を有することが分かる。
 以上の通り、有機酸としてポリ有機酸又はスルホン酸を用いた酸処理によって、光半導体の表面欠陥及び界面欠陥を制御良く低減することができ、光半導体の水分解活性を向上させることができた。この作用効果は、ポリ有機酸やスルホン酸に溶解可能な結晶性無機化合物であれば、同様に奏されるものと考えられる。すなわち、LaTiON以外にも、例えば、BaNbON等のニオブ含有酸窒化物や、Ta等のタンタル含有窒化物、BaTaON等のタンタル含有酸窒化物、BiVO等のバナジウム含有酸化物、GaN:ZnO等のガリウム含有窒化物、ZnGeN:ZnO等のゲルマニウム含有窒化物等に対しても同様の効果が奏されることが自明である。
4.その他の実施形態に関するデータ
4.1.その他の助触媒
 CoO以外の助触媒を用いた場合について検討を行った。
<実施例4-1-1>
(光半導体の酸処理)
 LaTiON(平均粒子径700nm)500mgを、ポリスチレンスルホン酸(PSS、重合度:75,000)の水溶液(PSS:水=18:82重量%)10gに含浸させ、27℃にて1時間放置することにより酸処理を行った。その後、固形分として残ったLaTiON粒子を吸引濾過により回収し、回収した粒子に水100mLを加え吸引濾過し、さらにエタノール100mlを加え吸引濾過することにより粒子を洗浄し、酸処理がなされたLaTiON粒子を得た。
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてIrClを溶解し、2質量%の溶液を得た。ここに、LaTiON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、LaTiON粒子の表面に助触媒としてIrOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 光触媒の種類を変更したこと以外は、上記の実施例2-1-1と同様にして光水分解反応用電極を作製し、以下の測定条件で性能を評価した。結果を以下の表10に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液1M NaOH、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.07V、E=0.54V、T=1s、T=10ms/V)
<実施例4-1-2>
 助触媒源が溶解した溶液の濃度を3質量%としたこと以外は実施例4-1-1と同様にして光触媒粒子を得て、実施例4-1-1と同様にして光水分解反応用電極を作製し、評価を行った。結果を以下の表10に示す。
<実施例4-1-3>
 マイクロ波による加熱保持温度を200℃としたこと以外は実施例4-1-1と同様にして光触媒粒子を得て、実施例4-1-1と同様にして光水分解反応用電極を作製し、評価を行った。結果を以下の表10に示す。
<実施例4-1-4>
 マイクロ波による加熱保持温度を250℃としたこと以外は実施例4-1-1と同様にして光触媒粒子を得て、実施例4-1-1と同様にして光水分解反応用電極を作製し、評価を行った。結果を以下の表10に示す。
<実施例4-1-5>
(光触媒粒子の作製)
 エチレングリコール18mL中に、助触媒源としてGa(NOを溶解し、1.8質量%の溶液を得た。ここに、LaTiON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、200℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、助触媒源としてCo(NHClを追加して2質量%の溶液を調整したのち、容器内にマイクロ波(周波数2.45GHz)を照射し、200℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、光触媒前駆体の表面に助触媒としてCoOが担持された光触媒粒子を得た。得られた光触媒粒子を用いて、実施例4-1-1と同様にして光水分解反応用電極を作製し、評価を行った。結果を以下の表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示す結果から明らかなように、マイクロ波照射によってCoOx以外の助触媒を担持させた場合でも、光水分解活性の極めて高い光触媒粒子を得ることができた。
4.2.その他の光半導体
 光半導体としてBaTaONやGaN:ZnOを用いた場合について検討した。
<実施例4-2-1>
(光触媒の作製)
 エチレングリコール18mL中に、助触媒源としてCo(NOを溶解し、2質量%の溶液とした後、ここに、BaTaON粒子(粒度分布数μm)を150mg投入して、容器中に密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、60分間加熱保持した。加熱処理後、容器内から固形分を取り出し、濾過及びエタノール洗浄を行うことで、BaTaON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。
(光水分解反応用電極の作製、評価)
 光触媒の種類を変更したこと以外は、上記の実施例2-1-1と同様にして光水分解反応用電極を作製し、以下の測定条件で性能を評価した。結果を以下の表11に示す。
(測定条件)
・ 光源 AM1.5ソーラーシミュレーター[AM1.5G(100mW/cm)]
・ pH=13.0 電解液NaOH、100mL
・ アルゴン雰囲気
・ 参照電極 Ag/AgCl、対電極Ptワイヤ
・ LSV測定(E=-1.1V、E=0.3V、T=1s、T=10ms/V)
<実施例4-2-2>
 BaTaON粒子に替えてGaN:ZnO粒子を用いたこと以外は実施例4-2-1と同様にして光触媒粒子を得て、実施例4-2-1と同様にして光水分解反応用電極を作製し、評価を行った。結果を以下の表11に示す。
<比較例4-2-1>
 助触媒源として10mMのCo(NO5mL、0.1Nのアンモニア水5mLをそれぞれ純水40mLに加え、pH8.5に調整した後、BaTaON粒子を0.1g加え、1時間浸漬した。遠心分離で上澄みを除去したのち、吸引濾過し、70℃で一晩乾燥させることによりBaTaON粒子の表面に助触媒としてCoOが担持された光触媒粒子を得た。得られた光触媒粒子を用いて、実施例4-2-1と同様にして光水分解反応用電極を作製し、評価を行った。結果を以下の表11に示す。
<比較例4-2-2>
 助触媒を担持していないGaN:ZnO粒子を用いて、実施例4-2-1と同様にして光水分解反応用電極を作製した。得られた光水分解反応用電極に対し、硝酸コバルト0.5mMになるように調液された0.1Mのリン酸バッファー溶液100mL(pH=7.0)中で、AM1.5Gの光を照射して、10μA/cmの電流密度で5分間、光電着を行った。その後、電極を取り出し、水洗したのち、実施例4-2-1と同様にして電極評価を行った。結果を以下の表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示す結果から明らかなように、光半導体としてBaTaONやGaN:ZnOを用いた場合であっても、マイクロ波照射によって助触媒を担持させることで、光水分解活性の極めて高い光触媒粒子を得ることができた。
4.3.光半導体の形状の変更
 上記実施例では、粒子状の光半導体を用いた場合について検討した。以下、シート状の光半導体を用いた場合について検討する。
<実施例4-3>
(LaTiON/TaN/Ta電極の作製)
 以下の手順で、LaTiON層(厚み300nm)、TaN層(厚み200nm)をTa基板上に作製し、3層構成の電極シート(LaTiON/TaN/Ta電極)を作製した。
 まず、Ta鏡面基板(10mm×10mm)上にTaNをスパッタで200nm成膜したのち、その上に、LaTiをスパッタで300nm成膜(エイコー社製のスパッタ装置を用い、90W、working pressure:1×10Pa、3時間の条件とした。)し、さらに窒化炉にてアンモニア流量200sccm、温度900℃の条件で1時間窒化させることにより、電極シートを得た。
(助触媒の担持)
 図29に示すように、Co(NHCl(3mg)を含むエチレングリコール溶液(20mL)の中に上記の電極シートを浸漬し密閉した。その後、容器内にマイクロ波(周波数2.45GHz)を照射し、150℃まで昇温させたうえで、6分間加熱保持した。その後、電極シートを取り出し、水洗することで、助触媒としてCoOxが担持された光水分解反応用電極を得た。得られた光水分解反応用電極に対して、実施例4-2-1と同様にして評価を行った。
<比較例4-3>
 実施例4-3と同様にして3層構成の電極シート(LaTiON/TaN/Ta電極)を作製した。得られた電極シートに対し、硝酸コバルト0.5mMになるように調液された0.1Mのリン酸バッファー溶液100mL(pH=7.0)中で、AM1.5Gの光を照射して、10μA/cmの電流密度で5分間、光電着を行った。その後、電極シートを取り出し、水洗したのち、実施例4-3と同様にして電極評価を行った。
 図30に、実施例4-3、比較例4-3に係る光水分解反応用電極のPEC評価結果を示す。図30から明らかなように、実施例4-3は比較例4-3と比較して、光水分解活性が向上していることが分かる。このように、粒子状の光半導体だけでなくシート状等の各種成形体とした光半導体であっても、マイクロ波照射によって助触媒を担持させることで、本発明に係る効果が奏されることが分かる。
 本発明の製造方法により得られる光半導体や光触媒は高い水分解活性を有し、太陽光を利用した水分解反応を行うことにより水素及び/又は酸素を製造する光水分解反応に特に好適に用いられる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2014年11月21日付で出願された日本特許出願(特願2014-236221)、2015年1月27日付で出願された日本特許出願(特願2015-013006)、及び2015年8月18日付で出願された日本特許出願(特願2015-161131)に基づいており、その全体が引用により援用される。
1a、1b、11a、11b 光半導体
2’、12’ 助触媒源
2、12、22 助触媒
3、13 溶媒
4、14 溶液
5、15、25 固液混合物
10、20、30 複合光触媒
101 光半導体
102 助触媒
105 溶液
110 光触媒
201a 酸化物、酸窒化物又は窒化物
201b 酸化物、酸窒化物又は窒化物
202 溶液

Claims (20)

  1.  複数種類の光半導体から複合光触媒を製造する方法であって、
     溶媒と、助触媒又は助触媒源と、前記複数種類の光半導体と、を含む固液混合物に対して、マイクロ波を照射して、前記固液混合物を加熱する、加熱工程を備えることを特徴とする複合光触媒の製造方法。
  2.  前記マイクロ波を照射する前において、前記固液混合物中の助触媒源が前記溶媒に溶解した状態で存在する、請求項1に記載の複合光触媒の製造方法。
  3.  前記マイクロ波を照射する前において、前記固液混合物中の前記助触媒と前記光半導体とが前記溶媒中にともに固体として存在しており、前記助触媒が前記光半導体に担持された状態にある、請求項1に記載の複合光触媒の製造方法。
  4.  前記加熱工程の前工程として、
     前記助触媒源が溶解した溶液に第1の光半導体を接触させた状態でマイクロ波により加熱することによって前記第1の光半導体に助触媒を担持させる第1担持工程と、
     前記助触媒源が溶解した溶液に第2の光半導体を接触させた状態でマイクロ波により加熱することによって前記第2の光半導体に助触媒を担持させる第2担持工程と、
     前記助触媒が担持された前記第1の光半導体と前記助触媒が担持された前記第2の光半導体とを前記溶媒に含ませて前記固液混合物とする混合工程と、
     を備える、請求項3に記載の複合光触媒の製造方法。
  5.  前記複数種類の光半導体のうちの少なくとも一種が、Ti、V、Ga、Zn、Bi、Nb及びTaからなる群から選ばれる1種以上の元素を含む、酸化物、窒化物、酸窒化物、カルコゲン化物、又は、オキシカルコゲン化物である、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記複数種類の光半導体のうちの少なくとも一種が、BaTaON、BaNbON、TaON、Ta、LaTiON、BiVO、GaN:ZnO又はこれらの一部置換体である、請求項5に記載の製造方法。
  7.  前記助触媒又は前記助触媒源がCo又はCoイオンを含む、請求項1~6のいずれか1項に記載の製造方法。
  8.  前記溶媒が、水、アルコール類、又はその混合溶媒である、請求項1~7のいずれか1項に記載の製造方法。
  9.  前記加熱工程において、密閉系内で、マイクロ波を照射して前記固液混合物を加熱する、請求項1~8のいずれか1項に記載の複合光触媒の製造方法。
  10.  前記第1担持工程及び前記第2担持工程において、密閉系内でマイクロ波を照射する、請求項4に記載の複合光触媒の製造方法。
  11.  前記密閉系内の圧力が系外の圧力よりも高い、請求項9又は10に記載の複合光触媒の製造方法。
  12.  前記加熱工程の前工程として、
     Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、有機酸接触工程、並びに、
     前記有機酸接触工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、回収工程、
     を備え、
     回収した前記固形分を前記光半導体として用いる、
     請求項1に記載の複合光触媒の製造方法。
  13.  前記第1担持工程の前工程及び前記第2担持工程の前工程として、それぞれ、
     Ti、V、Ga、Ge、Nb、La及びTaから選ばれる少なくとも一種以上の元素を含む酸化物、酸窒化物又は窒化物の表面に、ポリ有機酸を含む少なくとも一種以上の有機酸の溶液を接触させる、有機酸接触工程、並びに、
     前記有機酸接触工程の後で、固形分として残った酸化物、酸窒化物又は窒化物を回収する、回収工程、
     を備え、
     回収した前記固形分を前記第1の光半導体及び前記第2の光半導体として用いる、
     請求項4に記載の複合光触媒の製造方法。
  14.  前記有機酸がポリスルホン酸である、請求項12又は13に記載の複合光触媒の製造方法。
  15.  前記有機酸がアリール基を有する、請求項12~14のいずれか1項に記載の複合光触媒の製造方法。
  16.  前記有機酸の重量平均分子量が1,000以上1,000,000以下である、請求項12~15のいずれか1項に記載の複合光触媒の製造方法。
  17.  助触媒を担持した複数種類の光半導体からなる複合光触媒であって、
     前記助触媒は、前記複数種類の光半導体の表面に存在するとともに、前記複数種類の光半導体の接合面に介在又は前記光半導体を被覆した状態で存在することを特徴とする複合光触媒。
  18.  前記複数種類の光半導体のうちの少なくとも一種が、Ti、V、Ga、Zn、Bi、Nb及びTaからなる群から選ばれる1種以上の元素を含む、酸化物、窒化物、酸窒化物、カルコゲン化物、又は、オキシカルコゲン化物である、請求項17に記載の複合光触媒。
  19.  前記複数種類の光半導体のうちの少なくとも一種が、BaTaON、BaNbON、TaON、Ta、LaTiON、BiVO、GaN:ZnO又はこれらの一部置換体である、請求項18に記載の複合光触媒。
  20.  前記助触媒がCoを含む、請求項17~19のいずれか1項に記載の複合光触媒。
PCT/JP2015/082804 2014-11-21 2015-11-20 複合光触媒の製造方法、及び、複合光触媒 WO2016080548A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580053680.6A CN106794459B (zh) 2014-11-21 2015-11-20 复合光催化剂的制造方法以及复合光催化剂
US15/476,116 US10332690B2 (en) 2014-11-21 2017-03-31 Method of producing composite photocatalyst and composite photocatalyst
US16/400,461 US11424080B2 (en) 2014-11-21 2019-05-01 Method of producing composite photocatalyst

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-236221 2014-11-21
JP2014236221 2014-11-21
JP2015013006 2015-01-27
JP2015-013006 2015-01-27
JP2015161131 2015-08-18
JP2015-161131 2015-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/476,116 Continuation US10332690B2 (en) 2014-11-21 2017-03-31 Method of producing composite photocatalyst and composite photocatalyst

Publications (1)

Publication Number Publication Date
WO2016080548A1 true WO2016080548A1 (ja) 2016-05-26

Family

ID=56014078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082804 WO2016080548A1 (ja) 2014-11-21 2015-11-20 複合光触媒の製造方法、及び、複合光触媒

Country Status (4)

Country Link
US (2) US10332690B2 (ja)
JP (2) JP6654871B2 (ja)
CN (1) CN106794459B (ja)
WO (1) WO2016080548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108342776A (zh) * 2018-02-12 2018-07-31 岭南师范学院 一种铜锌锡硫单晶颗粒膜及光电化学全分解纯水装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553367B2 (en) * 2017-10-20 2020-02-04 Qatar Foundation Photovoltaic perovskite oxychalcogenide material and optoelectronic devices including the same
CN107774258B (zh) * 2017-11-09 2021-06-11 南京大学(苏州)高新技术研究院 一种粉末催化材料、含沸石复合多孔纳米催化材料的制备及应用
EP3814003A1 (en) 2018-06-27 2021-05-05 Nitto Denko Corporation Ultraviolet activated photocatalytic materials; their use in volatile compound decomposition
JP7230663B2 (ja) * 2018-09-18 2023-03-01 三菱ケミカル株式会社 光触媒と、この光触媒を用いた水素及び酸素の製造方法
JP7255128B2 (ja) * 2018-10-11 2023-04-11 富士通株式会社 光励起材料、及びその製造方法、光化学電極、並びに光電気化学反応装置
CN109433202B (zh) * 2018-10-24 2020-05-12 武汉大学 一种负载于钽酸钡表面的钌基催化剂及其在合成氨中的应用
CN109622007A (zh) * 2018-12-04 2019-04-16 盐城工学院 一种氮掺杂复合光催化剂及其制备方法
JP7230595B2 (ja) * 2019-03-07 2023-03-01 富士通株式会社 光化学電極の製造方法
CN111804323B (zh) * 2020-06-24 2022-03-15 广东邦普循环科技有限公司 一种光催化剂及其在动力电池光催化环保处理中的应用
CN114452969B (zh) * 2022-01-21 2023-05-30 山东大学 一种双助催化剂负载的光催化剂及其制备方法与应用
CN114703500B (zh) * 2022-04-18 2023-06-30 台州学院 一种三氧化钨-钒酸铋-有机酸复合光电极及其制备方法和应用
CN114804021A (zh) * 2022-04-29 2022-07-29 江苏大学 一种基于羟基化合物光催化材料分解水制备氢气的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057878A (ja) * 2002-07-25 2004-02-26 Toyota Central Res & Dev Lab Inc 光触媒体の製造方法
JP2012187520A (ja) * 2011-03-10 2012-10-04 Mitsubishi Chemical Holdings Corp 水分解用光触媒固定化物、並びに、水素及び/又は酸素の製造方法
JP2013180245A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 水分解用光触媒及び水素生成方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788370A (ja) 1993-09-24 1995-04-04 Yasunobu Inoue 光触媒および光触媒の製造方法
TW431908B (en) 1994-02-07 2001-05-01 Ishihara Sangyo Kaisha Titanium oxide photocatalyst
JP2909403B2 (ja) 1994-02-07 1999-06-23 石原産業株式会社 光触媒用酸化チタンおよびその製造方法
JPH10244164A (ja) 1997-03-07 1998-09-14 Nikon Corp 可視光領域で触媒活性をもつ光触媒
JP2002153758A (ja) * 2000-11-17 2002-05-28 Asahi Kasei Corp アナターゼ型酸化チタン分散液
JP2003260356A (ja) 2002-03-08 2003-09-16 Univ Waseda H型層状ペロブスカイト系光触媒の製造方法およびh型層状ペロブスカイト系光触媒
EP1614694A4 (en) * 2003-03-31 2008-11-05 Toto Ltd TITANIUM DIOXIDE COMPLEX HAVING A RECONNAISSABLE MOLECULE
CN100521249C (zh) * 2005-01-27 2009-07-29 日本化药株式会社 改性氧化钛微粒和使用它的光电转换器
US7625835B2 (en) * 2005-06-10 2009-12-01 Gm Global Technology Operations, Inc. Photocatalyst and use thereof
JP2008055372A (ja) * 2006-09-01 2008-03-13 Japan Science & Technology Agency 水質浄化剤及びその製造方法
JP2009165953A (ja) * 2008-01-16 2009-07-30 Sumitomo Chemical Co Ltd 貴金属含有光触媒体分散液の製造方法
WO2010004814A1 (ja) * 2008-07-07 2010-01-14 旭硝子株式会社 コア-シェル粒子およびコア-シェル粒子の製造方法
JP5675224B2 (ja) 2010-08-31 2015-02-25 トヨタ自動車株式会社 可視光水分解用触媒および光電極の製造方法
CN102060330B (zh) * 2010-11-24 2012-07-11 江南大学 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
JP2012110831A (ja) * 2010-11-24 2012-06-14 Hokkaido Univ 揮発性芳香族化合物分解用光触媒体および光触媒機能製品
CN102085482B (zh) * 2010-12-28 2012-10-10 南京林业大学 一种p-CoO/n-CdS/TiO2复合半导体光催化剂的制备方法
CN102125858B (zh) * 2010-12-28 2012-08-22 南京林业大学 一种p-CuO/n-CdS/ZnS复合半导体光催化剂的制备方法
JP5675500B2 (ja) * 2011-05-27 2015-02-25 国立大学法人 宮崎大学 電極触媒用触媒微粒子の製造方法、及び電極触媒用カーボン担持触媒微粒子の製造方法
JP6028562B2 (ja) * 2011-12-28 2016-11-16 株式会社豊田中央研究所 半導体ヘテロ粒子およびその製造方法
FR2992637B1 (fr) * 2012-06-29 2014-07-04 IFP Energies Nouvelles Photocatalyseur composite a base de sulfures metalliques pour la production d'hydrogene
JP2014046236A (ja) 2012-08-30 2014-03-17 Toyota Central R&D Labs Inc 半導体ヘテロ粒子
JP5920478B2 (ja) * 2012-09-21 2016-05-18 Toto株式会社 複合光触媒および光触媒材
US10320005B2 (en) 2013-03-07 2019-06-11 Tokyo University Of Science Foundation Bismuth-vanadate-laminate manufacturing method and bismuth-vanadate laminate
CN103816897B (zh) * 2014-03-11 2015-11-18 中国科学院合肥物质科学研究院 二氧化钛-银复合核壳结构球及其制备方法和用途
JP6258827B2 (ja) * 2014-09-19 2018-01-10 シャープ株式会社 光触媒材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057878A (ja) * 2002-07-25 2004-02-26 Toyota Central Res & Dev Lab Inc 光触媒体の製造方法
JP2012187520A (ja) * 2011-03-10 2012-10-04 Mitsubishi Chemical Holdings Corp 水分解用光触媒固定化物、並びに、水素及び/又は酸素の製造方法
JP2013180245A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 水分解用光触媒及び水素生成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108342776A (zh) * 2018-02-12 2018-07-31 岭南师范学院 一种铜锌锡硫单晶颗粒膜及光电化学全分解纯水装置

Also Published As

Publication number Publication date
CN106794459B (zh) 2021-07-27
US20190259543A1 (en) 2019-08-22
US10332690B2 (en) 2019-06-25
JP6654871B2 (ja) 2020-02-26
JP2017039115A (ja) 2017-02-23
JP6876778B2 (ja) 2021-05-26
US11424080B2 (en) 2022-08-23
CN106794459A (zh) 2017-05-31
US20170250031A1 (en) 2017-08-31
JP2020044534A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6876778B2 (ja) 複合光触媒の製造方法、及び、複合光触媒
Ismael Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles
Liu et al. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties
Ma et al. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts
Gu et al. Modified solvothermal strategy for straightforward synthesis of cubic NaNbO3 nanowires with enhanced photocatalytic H2 evolution
Zhao et al. Effect of post-treatments on the photocatalytic activity of Sm 2 Ti 2 S 2 O 5 for the hydrogen evolution reaction
US20140147377A1 (en) Photocatalyst for water splitting
Ida et al. Black-colored nitrogen-doped calcium niobium oxide nanosheets and their photocatalytic properties under visible light irradiation
JP6371648B2 (ja) 水分解用光触媒電極
JP6427465B2 (ja) 立方体形状を有するチタン酸ストロンチウム微粒子の製造方法、及び、立方体形状のチタン酸ストロンチウム微粒子、立方体形状の金属ドープチタン酸ストロンチウム微粒子、及びその製造方法
Cui et al. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance
Azam et al. In-situ synthesis of TiO2/La2O2CO3/rGO composite under acidic/basic treatment with La3+/Ti3+ as mediators for boosting photocatalytic H2 evolution
JP7028393B2 (ja) 酸素生成用光触媒用助触媒、及び該助触媒を担持した酸素生成用光触媒、並びに複合体及び該複合体の製造方法
Zhang et al. Enhanced photocatalytic activity of SiC-based ternary graphene materials: A DFT study and the photocatalytic mechanism
Fan et al. Fabrication of SiO 2 incorporated ordered mesoporous TiO 2 composite films as functional Pt supports for photo-electrocatalytic methanol oxidation
JP2019037918A (ja) 光触媒の製造方法、及び水素生成方法
CN111589447A (zh) 一种异质结纳米颗粒及其制备方法和应用
Wan et al. Selectively constructing sandwich-like heterostructure of CdS/PbTiO3/TiO2 to improve visible-light photocatalytic H2 evolution
Ramchiary et al. Hydrogenated mixed phase Ag/TiO2 nanoparticle–A super-active photocatalyst under visible radiation with multi-cyclic stability
JP6156822B2 (ja) 光触媒及び水分解反応用電極並びに水素及び/又は酸素の製造方法
Kim et al. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process
Mishra et al. Low Temperature Fabrication of Photoactive Anatase TiO2 Coating and Phosphor from Water–Alcohol Dispersible Nanopowder
JP7230663B2 (ja) 光触媒と、この光触媒を用いた水素及び酸素の製造方法
Wei et al. Reactivity and mechanistic insight into visible-light-induced anerobic selective reaction by Ag/brookite titania
JP2017128458A (ja) 酸窒化物微粒子、水分解用光触媒、水素・酸素生成用光触媒電極、水素・酸素生成用光触媒モジュールおよび酸窒化物微粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861318

Country of ref document: EP

Kind code of ref document: A1