WO2016039164A1 - 液晶保護板および液晶保護板の製造方法 - Google Patents

液晶保護板および液晶保護板の製造方法 Download PDF

Info

Publication number
WO2016039164A1
WO2016039164A1 PCT/JP2015/074323 JP2015074323W WO2016039164A1 WO 2016039164 A1 WO2016039164 A1 WO 2016039164A1 JP 2015074323 W JP2015074323 W JP 2015074323W WO 2016039164 A1 WO2016039164 A1 WO 2016039164A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
protective plate
sintered body
spinel
crystal protective
Prior art date
Application number
PCT/JP2015/074323
Other languages
English (en)
French (fr)
Inventor
慶一郎 下司
中山 茂
吉村 雅司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2016547359A priority Critical patent/JPWO2016039164A1/ja
Priority to US15/505,938 priority patent/US20180222763A1/en
Priority to CN201580045008.2A priority patent/CN106575055A/zh
Priority to KR1020177006729A priority patent/KR20170048402A/ko
Publication of WO2016039164A1 publication Critical patent/WO2016039164A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/162Magnesium aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present invention relates to a liquid crystal protective plate and a method for manufacturing the same, and more particularly to a liquid crystal protective plate formed of a spinel sintered body and a method for manufacturing the same.
  • LCD screens are often used with protective plates installed to protect the surface from dirt and outside air.
  • a technique using a tempered glass or single crystal sapphire substrate as a protective plate for a liquid crystal screen has been proposed.
  • tempered glass is inexpensive to manufacture, further improvements are required in terms of strength and hardness.
  • single crystal sapphire has higher hardness and strength than tempered glass and is superior in performance as a protective plate, but has a very high manufacturing cost and has a problem in terms of practical use.
  • the surface shape of the liquid crystal screen has been proposed not only in a planar shape but also in a non-planar shape including various curved surfaces. For this reason, a protective plate including a curved surface is also required for the liquid crystal protective plate.
  • a protective plate including a curved surface using a spinel sintered body for example, a cubic spinel sintered body 6 is produced, and curved spin cutting is performed on the spinel sintered body 6.
  • a method of cutting the protective plate 100 having a curved surface by performing the above is conceivable.
  • this method has a problem in that the manufacturing cost increases because the spinel sintered body other than the cut-out portion becomes a manufacturing loss.
  • an object of the present invention is to provide a liquid crystal protective plate having a shape including a curved surface having excellent strength and reduced manufacturing cost, and a method for manufacturing the liquid crystal protective plate.
  • the liquid crystal protective plate according to an aspect of the present invention is a liquid crystal protective plate formed of a spinel sintered body, and the spinel sintered body has an average particle size of 10 ⁇ m or more and 100 ⁇ m or less. And having a shape including a curved surface.
  • a method for manufacturing a liquid crystal protective plate according to an aspect of the present invention is a method for manufacturing a liquid crystal protective plate according to the above aspect, wherein the outer peripheral surface of the intermediate molding die including a curved surface and the outer peripheral surface of the intermediate molding die are spaced apart from each other.
  • a step of preparing a stretchable outer mold that covers the outer mold, a step of filling a gap formed between the intermediate mold and the outer mold with a raw material mixture containing spinel particles, and the outer A method for producing a liquid crystal protective plate, comprising: a step of pressing a molding die to obtain a spinel molded body containing the raw material mixture; and a step of sintering the spinel molded body to obtain a spinel sintered body.
  • a method for producing a liquid crystal protective plate according to one aspect of the present invention is a method for producing a liquid crystal protective plate according to the above aspect, comprising a step of preparing a flat plate of a spinel sintered body having an average particle size of 10 ⁇ m to 100 ⁇ m, and a curved surface And a step of preparing an upper mold including a curved surface that fits into the lower mold, and a flat plate of the spinel sintered body is disposed between the lower mold and the upper mold And a step of deforming the flat plate of the spinel sintered body by heating and pressurizing the lower mold and the upper mold.
  • liquid crystal protective plate having a shape including a curved surface with excellent strength and reduced manufacturing cost, and a method for manufacturing the liquid crystal protective plate.
  • FIG. 1A is a plan view illustrating an example of a liquid crystal protective plate according to one embodiment of the present invention.
  • 1B is a cross-sectional view taken along line XX of FIG. 1A.
  • FIG. 2A is a plan view illustrating an example of a liquid crystal protective plate according to one embodiment of the present invention.
  • 2B is a cross-sectional view taken along line YY in FIG. 2A.
  • FIG. 3A is a plan view illustrating an example of a liquid crystal protective plate according to one embodiment of the present invention.
  • 3B is a cross-sectional view taken along the line ZZ in FIG. 3A.
  • 6 is a flowchart showing a manufacturing process of a liquid crystal protective plate according to Embodiment 2.
  • FIG. 10 is a flowchart showing a manufacturing process of a liquid crystal protective plate according to Embodiment 3. It is a figure explaining the manufacturing method of the liquid-crystal protective plate which concerns on Embodiment 3.
  • FIG. It is a figure explaining the manufacturing method of the liquid-crystal protective plate which concerns on Embodiment 3.
  • FIG. It is a figure explaining the manufacturing method of the liquid-crystal protective plate which concerns on Embodiment 3.
  • FIG. It is a figure explaining the manufacturing method of the liquid-crystal protective plate which concerns on Embodiment 3.
  • FIG. It is a figure explaining the manufacturing method of the liquid-crystal protective plate which concerns on Embodiment 3.
  • FIG. It is a figure explaining an example of the manufacturing method of the liquid-crystal protective board containing a curved surface. It is a figure explaining an example of the manufacturing method of the liquid-crystal protective board containing a curved surface.
  • the liquid crystal protective plate according to an aspect of the present invention is (1) a liquid crystal protective plate formed of a spinel sintered body, and the spinel sintered body has an average particle size of 10 ⁇ m to 100 ⁇ m, and the liquid crystal The protective plate has a shape including a curved surface.
  • the particle size of the spinel sintered body affects the strength of the spinel sintered body.
  • the average particle size of the spinel sintered body is 10 ⁇ m or more and 100 ⁇ m or less
  • the spinel sintered body has excellent strength. Therefore, the liquid crystal protective plate formed of the spinel sintered body also has excellent strength. Further, since the liquid crystal protective plate has a shape including a curved surface, the liquid crystal protective plate can be used as a protective plate for a liquid crystal screen whose surface includes a curved surface.
  • the liquid crystal protective plate has a surface roughness Ra of preferably 20 nm or less, and more preferably 10 nm or less. According to this, the liquid crystal protective plate has high light transmittance and can have excellent image display quality.
  • the liquid crystal protective plate preferably has a Si element content of 20 ppm or less. According to this, high light transmittance can be stably obtained.
  • the liquid crystal protective plate preferably has an average light transmittance of 85% or more for light having a wavelength of 400 nm to 800 nm at a thickness of 1 mm. According to this, the liquid crystal protective plate has high light transmittance and can have excellent image display quality.
  • a method for producing a liquid crystal protective plate according to an aspect of the present invention is (5) the method for producing a liquid crystal protective plate according to any one of (1) to (4) above, wherein the outer peripheral surface includes a curved surface.
  • a process for producing a liquid crystal protective plate is (5) the method for producing a liquid crystal protective plate according to any one of (1) to (4) above, wherein the outer peripheral surface includes a curved surface.
  • the manufacturing cost of the liquid crystal protective plate having a strength and a shape including a curved surface can be suppressed.
  • a method for producing a liquid crystal protective plate according to one aspect of the present invention is (6) the method for producing a liquid crystal protective plate according to any one of (1) to (4) above, wherein the average particle size is 10 ⁇ m or more and 100 ⁇ m or less.
  • a step of preparing a flat plate of a spinel sintered body, a step of preparing a lower mold including a curved surface, an upper mold including a curved surface fitted to the lower mold, the lower mold and the upper molding A step of deforming the flat plate of the spinel sintered body by disposing the flat plate of the spinel sintered body between the mold and heating and pressurizing the lower mold and the upper mold. It is a manufacturing method.
  • the manufacturing cost of the liquid crystal protective plate having a strength and a shape including a curved surface can be suppressed.
  • the method for producing a liquid crystal protective plate of (5) or (6) further includes a step of cutting the spinel sintered body. According to this, a liquid crystal protective plate having a shape suitable for the liquid crystal screen to be protected can be obtained.
  • the method for producing a liquid crystal protective plate of the above (5) to (7) further comprises a step of polishing the surface of the spinel sintered body. According to this, the light transmittance of the liquid crystal protective plate is improved, and a liquid crystal protective plate having excellent image display quality can be obtained.
  • the liquid crystal protective plate according to an embodiment of the present invention is a liquid crystal protective plate having a shape including a curved surface, which is formed of a spinel sintered body.
  • the liquid crystal protection plate 100 is rectangular when viewed from above, and has a side-section having an arc shape.
  • the liquid crystal protective plate 101 has a lens-like shape that is circular when viewed from above, and that the side surface cross-section is an arc shape.
  • the liquid crystal protection plate 102 is rectangular when viewed from above, and includes a concave portion and a convex portion whose side cross section is a curve.
  • the shape of the liquid crystal protective plate is not limited to these shapes, and may have various curved surfaces suitable for the shape of the liquid crystal screen to be protected.
  • the curved surface means a surface including a concave portion and / or a convex portion, and a part of the curved surface may include a flat surface or a corner portion.
  • the liquid crystal protective plate preferably has a surface roughness Ra of 20 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less. According to this, the liquid crystal protective plate has high light transmittance, surface scattering is suppressed, and excellent image display quality can be obtained.
  • the surface roughness Ra is an arithmetic average roughness according to JIS standards.
  • the arithmetic average roughness is a kind of parameter representing the surface roughness, and is calculated as follows.
  • the liquid crystal protective plate preferably has an average light transmittance of 85% or more for light having a wavelength of 400 nm to 800 nm at a thickness of 1 mm. According to this, the liquid crystal protective plate has high light transmittance and can have excellent image display quality.
  • the size of the liquid crystal protective plate is not particularly limited as long as the surface of the liquid crystal screen can be covered.
  • the liquid crystal protective plate is formed of a spinel sintered body.
  • the spinel sintered body is a spinel sintered body having a composition formula represented by MgO.nAl 2 O 3 (1 ⁇ n ⁇ 6).
  • the spinel sintered body is polycrystalline, does not generate a birefringence, and has excellent light transmittance.
  • the spinel sintered body is excellent in mechanical strength and wear resistance, it is difficult to crack and the surface is hardly damaged. Furthermore, the corrosion resistance is also good. Therefore, the liquid crystal protective plate formed of the spinel sintered body also has excellent light transmittance, mechanical strength, wear resistance, and corrosion resistance.
  • the spinel sintered body can be manufactured using powder metallurgy technology in addition to the inexpensive raw material, it can be manufactured at a low cost.
  • the shape is not limited. Furthermore, it is easier to process than sapphire. Therefore, a liquid crystal protective plate formed of a spinel sintered body can also be manufactured at a low cost.
  • the spinel sintered body has an average particle size of 10 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size of the spinel sintered body is 10 ⁇ m or more. It was discovered that a spinel sintered body having a good balance between strength and light transmittance can be obtained when the thickness is 100 ⁇ m or less.
  • the average particle size of the spinel sintered body is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 80 ⁇ m or less. If the average particle size of the spinel sintered body is smaller, for example, if it is less than 10 ⁇ m, the light grain boundary scattering increases, so that the light transmittance of the spinel sintered body tends to decrease. On the other hand, as the average particle size of the spinel sintered body is larger, for example, when it exceeds 100 ⁇ m, the strength of the spinel sintered body tends to decrease due to the Hall-Petch rule.
  • the average particle diameter of the spinel sintered body is mirrored on the surface of the liquid crystal protective plate formed of the spinel sintered body using a polishing machine (NF-300 manufactured by Nano Factor Co., Ltd.), and is then in a certain range.
  • the average particle size was calculated by measuring the particle diameters of all the spinel sintered bodies included in the above range.
  • the spinel sintered body includes pores, the maximum diameter of the pores is 100 ⁇ m or less, and the number of pores having a diameter of 10 ⁇ m or more is 2.0 or less per 1 cm 3 of the spinel sintered body. According to this, scattering of light passing through the spinel sintered body is suppressed, and the light transmittance of the spinel sintered body is further improved. Furthermore, the spinel sintered body also improves the Weibull coefficient, which is an index of variation in mechanical strength, and a stable product can be obtained. This excellent mechanical property seems to have been brought about by the low number of pores.
  • the spinel sintered body does not include pores having a maximum diameter exceeding 100 ⁇ m.
  • “does not contain” means that it does not contain substantially, and a minute amount of pores having a maximum diameter exceeding 100 ⁇ m may be contained within a range not causing an increase in light scattering factor.
  • a maximum pore diameter of 50 ⁇ m or less is preferable because the light scattering factor is further reduced.
  • the maximum diameter of the pores contained in the spinel sintered body is measured by observing a certain range of the spinel sintered body with a microscope using transmitted light.
  • a spinel sintered body is cut into a fixed volume (preferably, a thickness of 10 to 15 mm, a length of 20 mm, a width of 20 mm), the upper and lower surfaces are polished, and the obtained sample is observed with a micrograph, It can be obtained by measuring the diameter of the pores contained therein.
  • the pores are not spherical, the diameters in the respective directions in the pores are different in size, but the largest one is the maximum diameter.
  • a spinel sintered body is cut into a thickness of 15 mm, a length of 20 mm, and a width of 20 mm, and the upper and lower surfaces are polished to prepare a sample.
  • the pore diameter is measured. When pores having a maximum diameter exceeding 100 ⁇ m are not observed for eight or more samples, it is assumed that the pores having a maximum diameter exceeding 100 ⁇ m are not substantially included.
  • the number of pores having a diameter of 10 ⁇ m or more in the spinel sintered body is 2.0 or less per 1 cm 3 of the spinel sintered body because a certain volume of the spinel sintered body is measured with a microscope using transmitted light. Observe and measure. Specifically, the spinel sintered body is cut into a thickness of 10 to 15 mm, a length of 20 mm, and a width of 20 mm (or a plurality of spinel sintered bodies so that the total volume is the same as described above). The upper and lower surfaces are polished, and the obtained sample is observed with a micrograph to measure the diameter and number of pores. When the pores are not spherical, the number of pores having a maximum diameter of 10 ⁇ m or more is measured.
  • the composition of the spinel sintered body is preferably MgO.nAl 2 O 3 (1.05 ⁇ n ⁇ 1.30).
  • the value of n is more preferably 1.07 ⁇ n ⁇ 1.15, and further preferably 1.08 ⁇ n ⁇ 1.09. According to this, the strength and light transmittance of the spinel sintered body are improved in a well-balanced manner. Therefore, the liquid crystal protective plate formed of the spinel sintered body also has a good balance between strength and light transmittance.
  • the spinel sintered body contains impurities, but the average particle size of the impurities is preferably 20 ⁇ m or less and the content is preferably 10 ppm or less.
  • Impurities contained in the spinel sintered body form internal defects such as pores, increase the light scattering factor, and decrease the light transmittance of the spinel sintered body. It also affects the refractive index and the like. Therefore, the smaller the average particle size of impurities, the better, and the smaller the content, the better.
  • Impurities are contained in the raw material powder, mixed in when producing the sintered body, and contained in the spinel sintered body. Therefore, it is preferable to use a spinel having a high purity, preferably 99.9% by mass or more as a raw material powder, with respect to a component that is not removed by sintering. Also, it is preferable to manage so that no impurities are mixed in the sintering process.
  • impurities that are likely to be contained in the raw material powder and impurities that are likely to be mixed when the sintered body is produced include silicon (Si), tungsten (W), cobalt (Co), iron (Fe), carbon ( C), copper (Cu), tin (Sn), zinc (Zn), nickel (Ni) and the like.
  • these impurities coalesce or precipitate to form impurity particles with a size that adversely affects the optical properties, increase the light scattering factor, and affect the transmission.
  • the Si element reacts with the spinel powder during sintering to generate a liquid phase. When this liquid phase is present at the grain boundary, it becomes a different phase and lowers the light transmittance.
  • the Si element content is more preferably 10 ppm or less, and further preferably 7 ppm or less. Since W, Co, Fe, C, Cu, Sn, Zn, and Ni also coalesce or precipitate to lower the light transmittance, the total content of W, Co, Fe, C, Cu, Sn, Zn, and Ni It is preferable to manage the purity of the raw material powder and the sintering process so as to be 10 ppm or less, more preferably 5 ppm or less.
  • FIG. 4 is a flowchart showing a manufacturing process of the liquid crystal protective plate of the second embodiment.
  • 5A to 5E are views for explaining a method for manufacturing the liquid crystal protective plate of Embodiment 2.
  • FIG. 4 and 5A to 5E show a method for manufacturing a liquid crystal protective plate having the shape shown in FIGS. 1A and 1B.
  • the method for producing a spinel sintered body includes a step of preparing an intermediate molding die 1 having a curved surface on the outer peripheral surface and an extendable outer molding die 2 that covers the outer peripheral surface of the intermediate molding die 1 with a certain interval ( S11), a step (S12) of filling the gap 3 formed between the intermediate mold 1 and the outer mold 2 with the raw material mixture 4 containing spinel particles, and pressurizing the outer mold 2
  • the step (S13) of obtaining the spinel molded body 5 containing the raw material mixture 4 and the step of obtaining the spinel sintered body 6 by sintering the spinel molded body 5 (S14) are provided.
  • an intermediate mold 1 having a curved surface on the outer peripheral surface is prepared.
  • the curved surface of the outer peripheral surface of the middle mold 1 corresponds to the curved shape of a desired liquid crystal protective plate.
  • a cylindrical intermediate mold 1 can be used.
  • a metal such as iron can be used as the material of the intermediate mold 1, for example, a metal such as iron can be used.
  • an extensible outer mold 2 that covers the outer peripheral surface of the intermediate mold 1 with a certain interval is prepared.
  • the outer mold 2 can have a cylindrical shape in which the diameter of the inner peripheral surface is about 1 mm to 100 mm larger than the diameter of the outer peripheral surface of the intermediate mold 1.
  • rubber can be used as the material of the outer mold 2.
  • Step of filling raw material mixture (S12)> the gap 3 formed between the intermediate mold 1 and the outer mold 2 is filled with the raw material mixture 4 containing spinel particles.
  • the raw material mixture 4 can be prepared in the following steps.
  • spinel particles are prepared, and the spinel particles are dispersed in a dispersion medium to prepare a slurry.
  • the slurry can be prepared by blending appropriate amounts of high-purity spinel particles, a dispersion medium, a dispersant and the like and mechanically stirring and mixing them.
  • the mechanical stirring and mixing method include a method of mixing by a ball mill, a method of irradiating ultrasonic waves from the outside using an ultrasonic bath, and a method of irradiating ultrasonic waves by an ultrasonic homogenizer.
  • the raw material mixture 4 can be obtained by granulating the slurry by spray drying or the like.
  • Polyacrylic acid ammonium salt when the dispersion medium is water), ethyl oleate, sorbitan monooleate, sorbitan trioleate, polycarboxylic acid (when the dispersion medium is an organic solvent), etc., to enable uniform dispersion
  • organic binders such as polyvinyl alcohol, polyvinyl acetal, various acrylic polymers, methyl cellulose, polyvinyl acetate, polyvinyl butyral, various waxes, various polysaccharides, etc. may be added to the slurry. Good.
  • the raw material spinel particles are preferably of high purity. Organic substances, halogens and water contained in the raw material are removed from the raw material in the primary sintering process and do not impair the characteristics of the spinel sintered body, so these impurities in the stage before the primary sintering. Is allowed to mix.
  • the outer mold 2 is pressurized to obtain a spinel molded body 5 containing the raw material mixture 4. Since the outer mold 2 is made of a stretchable material, it is deformed so as to contract in the direction of the middle mold 1 when pressed. On the other hand, since the middle mold 1 is made of a material that is not easily deformed such as metal, it is not deformed by pressurization. Therefore, the raw material mixture 4 filled in the gap 3 is pressed by the deformation of the outer mold 2 to become a spinel molded body 5.
  • the shape of the spinel molded body 5 can be controlled by the shape of the outer peripheral surface of the intermediate mold 1 and the shape of the inner peripheral surface of the outer mold 2.
  • a cold isostatic press (CIP) can be mentioned.
  • the pressurizing pressure is preferably selected from a range in which the relative density of the spinel compact after primary sintering is in the range of 95 to 98%, and is usually 100 to 300 MPa.
  • the sintering process can include a primary sintering process and a secondary sintering process.
  • the spinel molded body 5 is heated and sintered at 1500 to 1900 ° C. in a predetermined normal pressure or reduced pressure (vacuum) atmosphere.
  • a reducing atmosphere such as hydrogen or an inert gas atmosphere such as Ar is preferable.
  • the pressure of the atmosphere is preferably reduced pressure (vacuum), specifically about 1 to 200 Pa is preferable.
  • the primary sintering time is preferably about 1 to 5 hours.
  • the relative density of the spinel primary sintered body after the primary sintering is preferably in the range of 95 to 98%.
  • the relative density represents the ratio of the actual density to the theoretical density of spinel (3.60 g / cm 3 at 25 ° C.) (theoretical density ratio, expressed in%).
  • the density (25 ° C.) is 3.42 g / cm 3 .
  • the relative density of the spinel primary sintered body is less than 95%, the sintering in the secondary sintering step is difficult to proceed and it is difficult to obtain a transparent spinel sintered body.
  • the relative density exceeds 98%, the coalescence of the pores already existing in the spinel molded body easily proceeds in the secondary sintering step, and the pores having a maximum diameter exceeding 100 ⁇ m are easily generated. Also, the number of pores increases, and it becomes difficult to obtain a spinel sintered body having 2.0 or less pores having a diameter of 10 ⁇ m or more per 1 cm 3 of the spinel sintered body.
  • the density of the compact before the primary sintering varies depending on the pressure of the press during molding. Further, the relative density of the spinel molded body after the primary sintering step varies depending on the density of the molded body before the primary sintering, the temperature and time of the primary sintering. Accordingly, a relative density in the range of 95 to 98% can be obtained by adjusting the pressure of the press at the time of molding and the temperature and time of primary sintering.
  • the spinel primary sintered body obtained by the primary sintering step is subjected to secondary sintering.
  • the compact In the secondary sintering, the compact is heated and sintered at 1500 to 2000 ° C., preferably 1600 to 1900 ° C. under pressure.
  • the pressurizing pressure is in the range of 5 to 300 MPa, preferably about 50 to 250 MPa, more preferably about 100 to 200 MPa.
  • the secondary sintering time is preferably about 1 to 5 hours.
  • an atmosphere of secondary sintering an atmosphere of an inert gas such as Ar is preferably exemplified.
  • the relative density of the spinel secondary sintered body after the secondary sintering step is preferably 99.6% or more.
  • the relative density after secondary sintering of the spinel compact varies depending on the pressure and temperature in the secondary sintering step and the time of secondary sintering. Accordingly, a relative density of 99.6% or more can be obtained by adjusting the pressure and temperature in the secondary sintering step and the time of secondary sintering.
  • the relative density of the spinel sintered body after the secondary sintering process is controlled, and the spinel The coalescence of fine pores accompanying grain growth can be suppressed.
  • the spinel sintered body 6 obtained in the above process is cut into a predetermined shape and processed into a liquid crystal protective plate.
  • the spinel sintered body 6 can be cut along the lines AA and BB shown in FIG. 5D.
  • the cutting method is not particularly limited, and for example, cutting can be performed using laser irradiation.
  • the size and thickness of the liquid crystal protection plate may be determined according to the size and design of the applied liquid crystal screen, and are not particularly limited. Moreover, you may form a lens in order to form a penetration part in the surface of a liquid-crystal protective board, or to enlarge and display a part of liquid crystal screen.
  • Step of polishing the spinel sintered body (S16)> The spinel sintered body 6 obtained in the above process is processed into a liquid crystal protective plate by being polished. Note that the order of the step of cutting the spinel sintered body (S15) and the step of polishing the spinel sintered body (S16) is not particularly limited, and any step may be performed first.
  • the surface roughness Ra is preferably 20 nm or less, preferably 10 nm or less.
  • the method of polishing is not particularly limited, and for example, cylindrical grinding can be used.
  • an antireflection coating layer or a layer that performs an optical action can be formed on the surface of the liquid crystal protective plate.
  • the light transmission function can be further improved by forming an antireflection coating layer on one or both sides of the liquid crystal protective plate.
  • the antireflection coating layer is, for example, a metal oxide or metal fluoride layer, and the formation method thereof is a conventionally known PVD method (physical vapor deposition method), specifically, a sputtering method, an ion plating method, a vacuum. An evaporation method or the like can be used.
  • PVD method physical vapor deposition method
  • FIG. 6 is a flowchart showing a manufacturing process of the liquid crystal protective plate of the third embodiment.
  • 7A to 7D are views for explaining a method for manufacturing the liquid crystal protective plate of the third embodiment.
  • 6 and FIGS. 7A to 7D show a method for manufacturing a liquid crystal protective plate having the shape shown in FIGS. 1A and 1B.
  • the method for producing a spinel sintered body includes a step (S21) of preparing a flat plate 16 of a spinel sintered body having an average particle size of 10 ⁇ m or more and 100 ⁇ m or less, a lower mold 8 including a curved surface, and a fitting to the lower mold 8 A step (S22) of preparing an upper mold 7 including a curved surface to be joined, a flat plate 16 of the spinel sintered body is disposed between the lower mold 8 and the upper mold 7, and the lower mold 8 and the step (S23) of deforming the flat plate 16 of the spinel sintered body by heating and pressurizing the upper mold 7.
  • a spinel sintered plate 16 having an average particle size of 10 ⁇ m to 100 ⁇ m is prepared.
  • the flat plate 16 of the spinel sintered body can be produced, for example, by the following method. First, a raw material mixture similar to the raw material mixture used in the second embodiment is prepared, and the raw material mixture is filled in a mold used for producing a normal spinel sintered body, and then molded under the same conditions as in the second embodiment. Then, for example, a cubic spinel sintered body 6 is produced. The spinel sintered body 6 can be cut to a desired thickness along the C1-C1 line, C2-C2 line, etc. of FIG. 7A by using laser irradiation to obtain a flat plate 16 of the spinel sintered body.
  • a lower mold 8 including a curved surface and an upper mold 7 including a curved surface to be fitted to the lower mold 8 are prepared.
  • the shape of the curved surface of the lower mold 8 corresponds to the shape of the liquid crystal screen to be protected.
  • the upper mold 7 includes a curved surface that fits with the lower mold 8.
  • the material of the lower mold 8 and the upper mold 7 is not particularly limited, and for example, a metal such as iron can be used.
  • Step of deforming flat plate of spinel sintered body (S23)>
  • the flat plate 16 of the spinel sintered body is disposed between the lower mold 8 and the upper mold 7, and the lower mold 8 and the upper mold 7 are heated and pressurized to thereby form the flat plate 16 of the spinel sintered body.
  • the heating temperature is preferably 1200 ° C. or higher and 1800 ° C. or lower, more preferably 1200 ° C. or higher and 1300 ° C. or lower. If the heating temperature exceeds 1800 ° C., the surface of the flat plate 16 of the spinel sintered body is etched, and the smoothness of the surface may be impaired.
  • the pressure for pressurization is preferably 1 MPa or more and 200 MPa or less, and more preferably 10 MPa or more and 150 MPa or less.
  • the flat plate 16 of the spinel sintered body can be deformed into a shape capable of covering the curved surface of the lower mold 8. Therefore, the liquid crystal protective plate obtained by deforming the flat plate 16 can include a shape that can cover the surface of the liquid crystal screen to be protected.
  • the step of cutting the spinel sintered body 100 (S24) and / or the step of polishing the spinel sintered body 100 (S25) can be performed. Furthermore, the process of forming an antireflection coating layer can also be performed.
  • Example 1 ⁇ Preparation of LCD protective plate> [Production Example 1] A cylindrical metal intermediate mold (diameter 100 mm, length 50 mm) and a cylindrical rubber external mold (inner diameter 120 mm, outer diameter 140 mm, length 50 mm) were prepared. The thickness of the gap between the middle mold and the outer mold was 10 mm.
  • the slurry is granulated by spray drying, and the moisture content of the granule is adjusted to 0.5% by mass, and then filled in the gap between the middle mold and the outer mold, and a pressure of 196 MPa is applied to the outer mold.
  • Primary molding was performed, followed by secondary molding with a cold isostatic press (CIP) at a pressure of 196 MPa to obtain a spinel molded body.
  • the spinel compact was cylindrical (inner diameter 100 mm, outer diameter 110 mm).
  • the obtained molded body was put in a graphite container and subjected to primary sintering in vacuum (5 Pa or less) at 1700 ° C. for 2 hours.
  • the relative density of the obtained primary sintered body was measured by the Archimedes method, it was 98%.
  • the primary sintered body was heated and pressurized by hot isostatic pressing (HIP) at a temperature of 1700 ° C. for 2 hours under the conditions of Ar atmosphere and atmospheric pressure of 196 MPa. Obtained.
  • HIP hot isostatic pressing
  • the secondary sintered body of spinel obtained by the above method was cut into 6 equal parts along the height direction, and then both surfaces of the main surface were polished with a polishing machine (NF-300 manufactured by Nano Factor).
  • a liquid crystal protective plate having a surface roughness Ra of 8 nm and a thickness of 1 mm was obtained (volume 1.0 cm 3 ).
  • the liquid crystal protective plate has a shape including a curved surface.
  • Production Examples 2 to 16 were the same as Production Example 1 except that the composition of the raw material spinel particles, the primary sintering conditions, the secondary sintering conditions, and the surface roughness Ra of the liquid crystal protective plate were the conditions shown in Table 1.
  • a liquid crystal protective plate having a shape including a curved surface was produced by the method.
  • Mohs hardness was measured based on the method defined in JIS. The results are shown in Table 1.
  • Si element content The content of Si element in the liquid crystal protective plate was measured by ICP emission analysis. The results are shown in Table 1.
  • a lower mold and an upper mold having the shape shown in FIG. 7C were prepared.
  • a flat plate of a spinel sintered body was placed between the lower mold and the upper mold, and was heated and pressed at a temperature of 1250 ° C. and a pressure of 100 MPa to deform the flat plate.
  • both surfaces of the main surface were polished with a polishing machine (NF-300 manufactured by Nano Factor) to obtain a liquid crystal protective plate having a surface roughness Ra of 8 nm and a thickness of 1 mm (volume 1.0 cm 3 ).
  • the liquid crystal protective plate has a shape including a curved surface.
  • the liquid crystal protective plate of the present invention has excellent light transmittance and strength and has a shape including a curved surface, it is useful when used for a portable device or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Liquid Crystal (AREA)

Abstract

 優れた強度を有しつつ、製造コストの抑制された、曲面を含む形状を有する液晶保護板および該液晶保護板の製造方法を提供する。スピネル焼結体で形成される液晶保護板であって、前記スピネル焼結体は、平均粒径が10μm以上100μm以下であり、前記液晶保護板は、曲面を含む形状を有する。

Description

液晶保護板および液晶保護板の製造方法
 本発明は液晶保護板およびその製造方法に関し、より特定的にはスピネル焼結体で形成される液晶保護板およびその製造方法に関する。
 液晶画面は、表面を汚れや外気から保護する目的で、保護板を設置して使用される場合が多い。現在、液晶画面の保護板としては、強化ガラスや単結晶サファイヤの基板を用いる技術が提案されている。
 強化ガラスは製造コストが安価であるが、強度および硬度の面でさらなる向上が求められている。また、単結晶サファイヤは、強化ガラスに比べて硬度および強度が大きく、保護板としての性能は優れているが、製造コストが非常に高価であり、実用化の観点から問題がある。
 そこで、優れた強度を有しつつ、製造コストの抑制された液晶保護板の素材として、スピネル焼結体を用いる技術が考えられる。
 一方、近年、各種の携帯デバイスが急速に普及しており、それに伴い、液晶画面の表面形状について、平面形状だけではなく、様々な曲面を含む非平面形状も提案されている。このため、液晶保護板についても、曲面を含む保護板が求められている。
 図8Aおよび図8Bを参照して、スピネル焼結体を用いて曲面を含む保護板を得るためには、たとえば立方体形状のスピネル焼結体6を作製し、該スピネル焼結体6に曲面切削を行って、曲面を有する保護板100を切り出す方法が考えられる。
 しかし、この方法では、切り出された部分以外のスピネル焼結体が製造ロスとなるため、製造コストが上昇するという問題がある。
 そこで、本発明は、優れた強度を有しつつ、製造コストの抑制された、曲面を含む形状を有する液晶保護板および該液晶保護板の製造方法を提供することを目的とする。
 本発明の一態様に係る液晶保護板は、スピネル焼結体で形成される液晶保護板であって、前記スピネル焼結体は、平均粒径が10μm以上100μm以下であり、前記液晶保護板は、曲面を含む形状を有する。
 本発明の一態様に係る液晶保護板の製造方法は、上記態様の液晶保護板の製造方法であって、外周面に曲面を含む中成形型と、前記中成形型の外周面を一定の間隔を設けて覆う伸縮可能な外成形型とを準備する工程と、前記中成形型と前記外成形型との間に形成される間隙に、スピネル粒子を含む原料混合物を充填する工程と、前記外成形型を加圧して、前記原料混合物を含むスピネル成形体を得る工程と、前記スピネル成形体を焼結して、スピネル焼結体を得る工程とを備える、液晶保護板の製造方法である。
 本発明の一態様に係る液晶保護板の製造方法は、上記態様の液晶保護板の製造方法であって、平均粒径が10μm以上100μm以下のスピネル焼結体の平板を準備する工程と、曲面を含む下成形型と、前記下成形型に嵌合する曲面を含む上成形型とを準備する工程と、前記下成形型と前記上成形型との間に前記スピネル焼結体の平板を配置し、前記下成形型および前記上成形型を加熱加圧することにより、前記スピネル焼結体の平板を変形させる工程とを含む、液晶保護板の製造方法である。
 上記態様によれば、優れた強度を有しつつ、製造コストの抑制された、曲面を含む形状を有する液晶保護板および該液晶保護板の製造方法を提供することが可能となる。
図1Aは、本発明の一態様に係る液晶保護板の一例を示す平面図である。 図1Bは、図1AのX-X線における断面図である。 図2Aは、本発明の一態様に係る液晶保護板の一例を示す平面図である。 図2Bは、図2AのY-Y線における断面図である。 図3Aは、本発明の一態様に係る液晶保護板の一例を示す平面図である。 図3Bは、図3AのZ-Z線における断面図である。 実施形態2に係る液晶保護板の製造工程を示すフローチャートである。 実施形態2に係る液晶保護板の製造方法を説明する図である。 実施形態2に係る液晶保護板の製造方法を説明する図である。 実施形態2に係る液晶保護板の製造方法を説明する図である。 実施形態2に係る液晶保護板の製造方法を説明する図である。 実施形態2に係る液晶保護板の製造方法を説明する図である。 実施形態3に係る液晶保護板の製造工程を示すフローチャートである。 実施形態3に係る液晶保護板の製造方法を説明する図である。 実施形態3に係る液晶保護板の製造方法を説明する図である。 実施形態3に係る液晶保護板の製造方法を説明する図である。 実施形態3に係る液晶保護板の製造方法を説明する図である。 曲面を含む液晶保護板の製造方法の一例を説明する図である。 曲面を含む液晶保護板の製造方法の一例を説明する図である。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 本発明の一態様に係る液晶保護板は、(1)スピネル焼結体で形成される液晶保護板であって、前記スピネル焼結体は、平均粒径が10μm以上100μm以下であり、前記液晶保護板は、曲面を含む形状を有する。
 スピネル焼結体の粒径は、スピネル焼結体の強度に影響を与える。スピネル焼結体の平均粒径が10μm以上100μm以下であると、スピネル焼結体が優れた強度を有する。したがって、該スピネル焼結体で形成された液晶保護板も、優れた強度を有する。また、液晶保護板は曲面を含む形状を有するため、表面が曲面を含む液晶画面の保護板として用いることができる。
 (2)前記液晶保護板は、表面粗さRaが20nm以下であることが好ましく、10nm以下であることがより好ましい。これによると、液晶保護板は高い光透過率を有し、優れた画像表示品質を有することができる。
 (3)前記液晶保護板は、Si元素の含有量が20ppm以下であることが好ましい。これによると、高い光透過率を安定して得ることが出来るようになる。
 (4)前記液晶保護板は、厚さ1mmにおける波長400nm~800nmの光の平均光透過率が85%以上が好ましい。これによると、液晶保護板は高い光透過率を有し、優れた画像表示品質を有することができる。
 本発明の一態様に係る液晶保護板の製造方法は、(5)上記(1)~(4)のいずれかに記載の液晶保護板の製造方法であって、外周面に曲面を含む中成形型と、前記中成形型の外周面を一定の間隔を設けて覆う伸縮可能な外成形型とを準備する工程と、前記中成形型と前記外成形型との間に形成される間隙に、スピネル粒子を含む原料混合物を充填する工程と、前記外成形型を加圧して、前記原料混合物を含むスピネル成形体を得る工程と、前記スピネル成形体を焼結して、スピネル焼結体を得る工程とを備える、液晶保護板の製造方法である。
 これによると、スピネル焼結体の製造ロスの発生を抑制できるため、強度が優れた、曲面を含む形状を有する液晶保護板の製造コストを抑制することができる。
 本発明の一態様に係る液晶保護板の製造方法は、(6)上記(1)~(4)のいずれかに記載の液晶保護板の製造方法であって、平均粒径が10μm以上100μm以下のスピネル焼結体の平板を準備する工程と、曲面を含む下成形型と、前記下成形型に嵌合する曲面を含む上成形型とを準備する工程と、前記下成形型と前記上成形型との間に前記スピネル焼結体の平板を配置し、前記下成形型および前記上成形型を加熱加圧することにより、前記スピネル焼結体の平板を変形させる工程とを含む、液晶保護板の製造方法である。
 これによると、スピネル焼結体の製造ロスの発生を抑制できるため、強度が優れた、曲面を含む形状を有する液晶保護板の製造コストを抑制することができる。
 (7)上記(5)または(6)の液晶保護板の製造方法は、さらに前記スピネル焼結体を切断する工程を備えることが好ましい。これによると、保護される液晶画面に適した形状を有する液晶保護板を得ることができる。
 (8)上記(5)~(7)の液晶保護板の製造方法は、さらに前記スピネル焼結体の表面を研磨する工程を備えることが好ましい。これによると、液晶保護板の光透過率が向上し、優れた画像表示品質を有する液晶保護板を得ることができる。
 [本発明の実施形態の詳細]
 本発明の実施形態にかかる液晶保護板およびその製造方法の具体例を、以下に図面を参照しつつ説明する。
 [実施形態1]
 <液晶保護板>
 本発明の一実施態様に係る液晶保護板は、スピネル焼結体で形成される、曲面を含む形状を有する液晶保護板である。
 液晶保護板の形状の例を、図1A~図3Bを用いて説明する。
 図1Aおよび図1Bを参照して、液晶保護板100は、上面から見ると矩形であり、側面断面が弧状の形状を有する。図2Aおよび図2Bを参照して、液晶保護板101は、上面から見ると円形であり、側面断面が弧状の形状である、レンズ状の形状を有する。図3Aおよび図3Bを参照して、液晶保護板102は、上面から見ると矩形であり、側面断面が曲線からなる凹部と凸部とを含む。液晶保護板の形状はこれらの形状に限定されず、保護される液晶画面の形状に適する、さまざまな曲面を有する形状とすることができる。なお、本明細書において曲面とは凹部および/または凸部を含む面を意味し、曲面の一部に平面や角部を含んでいてもよい。
 液晶保護板は、表面粗さRaが20nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。これによると、液晶保護板は高い光透過率を有し、表面の散乱が抑えられ、優れた画像表示品質を有することができる。なお、表面粗さRaはJIS規格の算術平均粗さである。算術平均粗さは、表面の粗さを表すパラメータの一種であり以下のように計算される。ある表面の粗さ曲線からその平均線の方向に位置0から位置lまで基準長さだけを抜き取り、この抜き取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取る。粗さ曲線をy=f(x)で表したときに、X軸方向の位置0から位置lまでの領域における算術平均粗さRaは以下の式により求められる。
Figure JPOXMLDOC01-appb-M000001
 液晶保護板は、厚さ1mmにおける波長400nm~800nmの光の平均光透過率が85%以上であることが好ましい。これによると、液晶保護板は高い光透過率を有し、優れた画像表示品質を有することができる。
 液晶保護板の大きさは、液晶画面の表面を覆うことができれば特に限定されない。
 <スピネル焼結体>
 本発明の一実施態様かかる液晶保護板は、スピネル焼結体で形成される。
 スピネル焼結体とは、組成式がMgO・nAl(1≦n≦6)で表されるスピネルの焼結体である。スピネル焼結体は多結晶であり複屈折率が発生せず、優れた光透過性を有する。また、スピネル焼結体は機械的強度および耐摩耗性に優れているため、割れ難く、表面が傷つき難い。さらに、耐食性も良好である。したがって、スピネル焼結体で形成される液晶保護板も、優れた光透過性、機械的強度、耐摩耗性および耐食性を有する。
 また、スピネル焼結体は、原料が安価であることに加え、粉末冶金技術を用いて製造することができるため、低コストで製造することができる。また形状が限定されない。さらに、サファイヤに比べて加工が容易である。したがって、スピネル焼結体で形成された液晶保護板も、低コストで製造することができる。
 前記スピネル焼結体は、平均粒径が10μm以上100μm以下である。一般的に、スピネル焼結体を構成するスピネル粒子の粒径が小さいほど、スピネル焼結体の強度が大きくなるが、光透過率が低下してしまう。本発明者らは、スピネル焼結体を構成するスピネル粒子の粒径と、スピネル焼結体の強度および光透過性との関係を鋭意検討した結果、スピネル焼結体の平均粒径が10μm以上100μm以下であると、強度と光透過性のバランスの良いスピネル焼結体を得ることができることを発見した。
 スピネル焼結体の平均粒径は10μm以上100μm以下が好ましく、20μm以上80μm以下がさらに好ましい。スピネル焼結体の平均粒径が小さいほど、たとえば10μm未満であると、光の粒界散乱が増えるため、スピネル焼結体の光透過性が低下してしまう傾向がある。一方、スピネル焼結体の平均粒径が大きいほど、たとえば100μmを超えると、Hall-Petch則によりスピネル焼結体の強度が低下してしまう傾向がある。
 なお、スピネル焼結体の平均粒径は、スピネル焼結体で形成される液晶保護板の表面を研磨機(ナノファクター社製NF-300)を用いて鏡面加工した後、一定範囲を光学顕微鏡にて観察し、前記範囲に含まれるすべてのスピネル焼結体の粒径を測定して、平均を算出した値である。
 スピネル焼結体は気孔を含み、前記気孔の最大直径は100μm以下であり、かつ直径が10μm以上の気孔数が前記スピネル焼結体1cmあたり2.0個以下であることが好ましい。これによると、スピネル焼結体を通過する光の散乱が抑制され、スピネル焼結体の光透過性がさらに向上する。さらに、該スピネル焼結体は機械的強度のばらつきの指標であるワイブル係数も向上し、安定した製品が得られる。この優れた機械的性質は、気孔数が少ないことによりもたらされたものと思われる。
 スピネル焼結体は、最大直径が100μmを超える気孔を含まないことが好ましい。ここで、「含まない」とは、実質的に含まないとの意味であり、光の散乱因子の増大をもたらさない範囲で、最大直径が100μmを超える気孔が微量に含まれていてもよい。気孔の最大直径が50μm以下の場合は、光の散乱因子がさらに低減されるため好ましい。
 スピネル焼結体中に含有される気孔の最大直径は、スピネル焼結体の一定の範囲を、透過光を用いて顕微鏡により観察して測定される。通常、スピネル焼結体を、一定の体積(好ましくは、厚さ10~15mm、長さ20mm、幅20mm)に切りだして上下面を研磨し、得られたサンプルを顕微鏡写真により観察し、その中に含まれる気孔の直径を測定することにより得ることができる。気孔が球形でない場合は、気孔中の各方向の直径の大きさが異なるが、その中で最大の大きさのものを最大直径とする。
 具体的には、スピネル焼結体を厚さ15mm、長さ20mm、幅20mmに切りだし、上下面を研磨してサンプルを準備する。該サンプル10個について、気孔の直径の測定を行う。8個以上のサンプルについて最大直径が100μmを越える気孔が観察されない場合は、最大直径が100μmを超える気孔を実質的に含まないとする。
 スピネル焼結体中の直径が10μm以上の気孔数が、前記スピネル焼結体1cmあたり2.0個以下である点は、スピネル焼結体の一定の体積を、透過光を用いて顕微鏡により観察して測定される。具体的には、スピネル焼結体を、厚さ10~15mm、長さ20mm、幅20mmに(又は、合計の体積が前記と同じ大きさとなるように複数のスピネル焼結体を)切りだして上下面を研磨し、得られたサンプルを顕微鏡写真により観察して気孔の直径および数を測定する。気孔が球形でない場合は、最大直径が10μm以上の気孔数を測定する。
 本発明の一実施態様においては、スピネル焼結体は、組成がMgO・nAl(1.05≦n≦1.30)であることが好ましい。nの値は、1.07≦n≦1.15がさらに好ましく、1.08≦n≦1.09がよりさらに好ましい。これによると、スピネル焼結体は強度と光透過性がバランスよく向上する。したがって、該スピネル焼結体で形成された液晶保護板も、強度と光透過性がバランスよく向上する。
 本発明の一実施態様においては、スピネル焼結体は不純物を含むが、前記不純物の平均粒径は20μm以下であり、かつ含有量は10ppm以下であることが好ましい。スピネル焼結体中に含まれる不純物は、気孔等の内部欠陥を形成して光の散乱因子を増大させ、スピネル焼結体の光透過性を低下させる。また、屈折率等にも影響を与える。したがって、不純物の平均粒径は小さいほど好ましく、含有量は少ないほど好ましい。
 不純物は、原料粉末に含まれていたり、焼結体を作製する際に混入して、スピネル焼結体中に含まれる。したがって、原料粉末としては高純度、好ましくは、焼結により除去されない成分についての純度が99.9質量%以上のスピネルを用いることが好ましい。また、焼結工程においても不純物の混入がないように管理することが好ましい。
 原料粉末に含まれやすい不純物および焼結体を作製する際に混入しやすい不純物としては、具体的には、珪素(Si)、タングステン(W)、コバルト(Co)、鉄(Fe)、炭素(C)、銅(Cu)、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)などを挙げることができる。焼結工程において、これらの不純物同士が合体あるいは析出して、光学的特性に悪影響を与える大きさの不純物粒子を形成し、光の散乱因子を増大させ、透過性に影響を与えるものと考えられる。特に、Si元素は焼結時にスピネル粉末と反応して液相を生成する。この液相が粒界に存在すると、異相となり、光透過率を低下させるため、Si元素の含有率を20ppm以下とすることにより、高い光透過率を安定して得ることが出来るようになる。かかる観点から、Si元素の含有量は、10ppm以下がより好ましく、7ppm以下がさらに好ましい。W、Co、Fe、C、Cu、Sn、Zn、Niも合体あるいは析出することにより光透過率を低下させるため、W、Co、Fe、C、Cu、Sn、Zn、Niの合計含有量が10ppm以下、より好ましくは5ppm以下となるように原料粉末の純度、焼結工程の管理を行うことが好ましい。
 [実施形態2]
 <スピネル焼結体の製造方法>
 本実施形態に係るスピネル焼結体の製造方法について、図4および図5A~図5Eを用いて説明する。図4は、実施形態2の液晶保護板の製造工程を示すフローチャートである。図5A~図5Eは、実施形態2の液晶保護板の製造方法を説明する図である。なお、図4および図5A~図5Eは、図1Aおよび図1Bに示す形状を有する液晶保護板の製造方法を示している。
 スピネル焼結体の製造方法は、外周面に曲面を含む中成形型1と、前記中成形型1の外周面を一定の間隔を設けて覆う伸縮可能な外成形型2とを準備する工程(S11)と、前記中成形型1と前記外成形型2との間に形成される間隙3に、スピネル粒子を含む原料混合物4を充填する工程(S12)と、前記外成形型2を加圧して、前記原料混合物4を含むスピネル成形体5を得る工程(S13)と、前記スピネル成形体5を焼結して、スピネル焼結体6を得る工程(S14)とを備える。
 <中成形型と外成形型を準備する工程(S11)>
 まず、外周面に曲面を含む中成形型1を準備する。中成形型1の外周面の曲面は、所望の液晶保護板の曲面形状に対応している。たとえば、図1Aおよび図1Bに示す形状の液晶保護板を得るためには、円柱状の中成形型1を用いることができる。中成形型1の材質は、たとえば鉄などの金属を用いることができる。
 また、該中成形型1の外周面を一定の間隔を設けて覆う伸縮可能な外成形型2を準備する。たとえば、外成形型2の形状は、内周面の直径が、中成形型1の外周面の直径よりも1mm~100mm程度大きい円筒形状とすることができる。外成形型2の材質は、たとえばゴムを用いることができる。中成形型1の外側に外成形型2を配置することで、中成形型1および外成形型2の間には、間隙3が形成される。
 <原料混合物を充填する工程(S12)>
 次に、中成形型1と外成形型2との間に形成される間隙3に、スピネル粒子を含む原料混合物4を充填する。原料混合物4は、以下の工程で準備することができる。
 まず、スピネル粒子を準備し、該スピネル粒子を分散媒に分散させてスラリーを作製する。スラリーの作製は、高純度のスピネル粒子、分散媒、分散剤等を適量配合し機械的に撹拌混合して行うことができる。機械的な撹拌混合の方法としては、ボールミルにより混合する方法、超音波槽を用いて外部より超音波を照射する方法、超音波ホモジナイザーにより超音波を照射する方法を挙げることができる。スピネル粒子は、分散媒中で容易に分散し、均一なスラリーとなりやすいこと、セラミックスボール等を使用する分散方法は、不純物となる酸化物あるいは塩類が混入しやすいと考えられることから、超音波を用いる方法が好ましい。撹拌混合時間は該スラリーの量や超音波の照射量により適宜調整するべきであるが、例えばスラリー量が10リットルで、照射能力が25キロヘルツ程度の超音波槽を用いる場合、30分以上行うことが望ましい。スピネル粒子を分散する分散媒としては、水や各種有機溶媒を用いることができる。撹拌混合後は、静置沈降、遠心分離、ロータリーエバポレーター等による減圧濃縮等を行い、スラリー中のスピネル濃度を高めることもできる。
 次にこのスラリーをスプレードライ等により顆粒状として、原料混合物4を得ることができる。
 均一な分散を可能にするためポリアクリル酸アンモニウム塩(分散媒が水の場合)やオレイン酸エチル、ソルビタンモノオレート、ソルビンタントリオレート、ポリカルボン酸系(分散媒が有機溶媒の場合)等の分散剤や、顆粒の形成を容易にするためポリビニルアルコール、ポリビニルアセタール、各種アクリル系ポリマー、メチルセルロース、ポリ酢酸ビニル、ポリビニルブチラール系、各種ワックス、各種多糖類等の有機バインダーをスラリーに添加してもよい。
 原料のスピネル粒子は高純度のものが望ましい。原料中に含まれる有機物、ハロゲンや水は1次焼結の工程で原料中より除去され、スピネル焼結体の特徴を損うものではないので、1次焼結前の段階でのこれらの不純物の混入は許容される。
 <スピネル成形体を得る工程(S13)>
 次に、外成形型2を加圧して、原料混合物4を含むスピネル成形体5を得る。外成形型2は伸縮可能な材料から形成されているため、加圧すると中成形型1の方向へ収縮するように変形する。一方、中成形型1は金属などの変形しにくい材質でできているため、加圧により変形しない。したがって、間隙3に充填された原料混合物4は外成形型2の変形によりプレスされ、スピネル成形体5となる。スピネル成形体5の形状は、中成形型1の外周面の形状および外成形型2の内周面の形状によって制御することができる。
 加圧の方法としては、冷間等方圧プレス(CIP)を挙げることができる。加圧の圧力は、好ましくは、1次焼結後のスピネル成形体の相対密度が95~98%の範囲になる範囲から選択され、通常100~300MPaである。
 <スピネル焼結体を得る工程(S14)>
 次に、スピネル成形体5を焼結して、スピネル焼結体6を得る。焼結工程は、1次焼結工程および2次焼結工程を含むことができる。
 1次焼結では、スピネル成形体5を、所定の常圧または減圧(真空)雰囲気下、1500~1900℃に加熱して焼結する。常圧または減圧(真空)雰囲気としては、水素等の還元雰囲気やAr等の不活性ガスの雰囲気が好ましい。雰囲気の圧力としては、減圧(真空)が好ましく、具体的には、1~200Pa程度が好ましい。1次焼結の時間は、1~5時間程度が好ましい。
 1次焼結後のスピネル1次焼結体の相対密度は95~98%の範囲とすることが好ましい。ここで相対密度とは、スピネルの理論密度(25℃で3.60g/cm)に対する実際の密度の比(理論密度比。%で表示する)を表し、例えば、相対密度95%のスピネルの密度(25℃)は3.42g/cmである。
 スピネル1次焼結体の相対密度が95%未満の場合は、2次焼結工程における焼結が進みにくく透明なスピネル焼結体が得られにくい。一方、この相対密度が98%を超える場合は、2次焼結工程においてスピネル成形体内に既に存在している気孔の合体が進みやすく、最大直径が100μmを超える気孔が生成しやすい。また気孔数も増え、スピネル焼結体1cmあたりの直径10μm以上の気孔数が2.0個以下のスピネル焼結体が得られにくくなる。
 1次焼結前の成形体の密度は、成形時のプレスの圧力により変動する。また、1次焼結工程後のスピネル成形体の相対密度は、1次焼結前の成形体の密度や1次焼結の温度や時間により変動する。従って、95~98%の範囲の相対密度は、成形時のプレスの圧力や1次焼結の温度や時間を調整することにより得ることができる。
 1次焼結工程により得られたスピネル1次焼結体は、2次焼結される。2次焼結では、成形体を、加圧下、1500~2000℃、好ましくは1600~1900℃に加熱して焼結する。加圧の圧力としては、5~300MPaの範囲であり、好ましくは50~250MPa程度、より好ましくは100~200MPa程度である。2次焼結の時間は、1~5時間程度が好ましい。2次焼結の雰囲気としては、Ar等の不活性ガスの雰囲気が好ましく挙げられる。
 2次焼結工程後のスピネル2次焼結体の相対密度は99.6%以上であることが好ましい。スピネル成形体の2次焼結後の相対密度は、2次焼結工程における圧力や温度および2次焼結の時間により変動する。従って、99.6%以上の相対密度は、2次焼結工程における圧力や温度および2次焼結の時間を調整することにより得ることができる。
 以上のようにして、2次焼結工程後のスピネル焼結体の相対密度が99.6%以上となるように調整することにより、焼結工程中のスピネルの粒成長が制御され、スピネルの粒成長に伴う微細な気孔の合体を抑制することができる。その結果、最大直径が100μmを超えるような気孔の発生が抑制され、また気孔数が抑制されたスピネル焼結体を得ることができる。
 <スピネル焼結体を切断する工程(S15)>
 上記の工程で得られたスピネル焼結体6は、所定の形状へ切断され、液晶保護板に加工される。たとえば図1Aおよび図1Bに示す形状の液晶保護板を得るためには、スピネル焼結体6を、図5Dに示すA-A線およびB-B線に沿って切断することができる。
 切断の方法は特に限定されないが、たとえば、レーザ照射を用いて切断することができる。液晶保護板の大きさや厚さは、適用される液晶画面の大きさやデザイン等に応じて決定されればよく、特に限定されない。また、液晶保護板の表面に貫通部を形成したり、液晶画面の一部を拡大表示するためにレンズを形成してもよい。
 <スピネル焼結体を研磨する工程(S16)>
 上記の工程で得られたスピネル焼結体6は、研磨されることによって、液晶保護板に加工される。なお、前記のスピネル焼結体を切断する工程と(S15)、スピネル焼結体を研磨する工程(S16)の順序は特に限定されず、いずれの工程を先に行っても構わない。
 スピネル焼結体6を研磨する際は、表面粗さRaが20nm以下、好ましくは10nm以下となるようにすることが好ましい。研磨の方法は特に限定されないが、たとえば、円筒研削を用いることができる。
 <反射防止コーティング層を形成する工程>
 また、必要に応じて反射防止コーティング層や光学的作用を行なう層を、液晶保護板の表面に形成することもできる。例えば液晶保護板の片面または両面に、反射防止コーティング層を形成することにより光透過機能をより向上させることができる。
 反射防止コーティング層は、例えば金属酸化物や金属弗化物の層であり、その形成方法としては、従来公知のPVD法(物理蒸着法)、具体的には、スパッタリング法、イオンプレーティング法、真空蒸着法等を用いることができる。
 [実施形態3]
 本実施態様に係るスピネル焼結体の製造方法について、図6および図7A~図7Dを用いて説明する。図6は、実施形態3の液晶保護板の製造工程を示すフローチャートである。図7A~図7Dは、実施形態3の液晶保護板の製造方法を説明する図である。なお、図6および図7A~図7Dは、図1Aおよび図1Bに示す形状を有する液晶保護板の製造方法を示している。
 スピネル焼結体の製造方法は、平均粒径が10μm以上100μm以下のスピネル焼結体の平板16を準備する工程(S21)と、曲面を含む下成形型8と、前記下成形型8に嵌合する曲面を含む上成形型7とを準備する工程(S22)と、前記下成形型8と前記上成形型7との間に前記スピネル焼結体の平板16を配置し、前記下成形型8および前記上成形型7を加熱加圧することにより、前記スピネル焼結体の平板16を変形させる工程(S23)とを含む、
 <スピネル焼結体の平板を準備する工程(S21)>
 まず、平均粒径が10μm以上100μm以下のスピネル焼結体の平板16を準備する。スピネル焼結体の平板16は、たとえば、以下の方法で作製することができる。まず、実施形態2で用いた原料混合物と同様の原料混合物を準備し、該原料混合物を通常のスピネル焼結体の作製で用いられる成形型に充填した後、実施形態2と同様の条件で成形および焼結を行い、たとえば、立方体形状のスピネル焼結体6を作製する。該スピネル焼結体6を、レーザ照射を用いて、図7AのC1-C1線、C2-C2線などに沿って所望の厚みに切断し、スピネル焼結体の平板16を得ることができる。
 <下成形型と上成形型を準備する工程(S22)>
 また、曲面を含む下成形型8と、前記下成形型8に嵌合する曲面を含む上成形型7とを準備する。下成形型8の曲面の形状は、保護される液晶画面の形状に対応している。上成形型7は、下成形型8と嵌合する曲面を含む。下成形型8および上成形型7の材質は特に限定されず、たとえば、鉄などの金属を用いることができる。
 <スピネル焼結体の平板を変形させる工程(S23)>
 次に、下成形型8と上成形型7との間にスピネル焼結体の平板16を配置し、下成形型8および上成形型7を加熱加圧することにより、スピネル焼結体の平板16を変形させる。加熱温度は1200℃以上1800℃以下が好ましく、1200°以上1300℃以下がさらに好ましい。加熱温度が1800℃を超えると、スピネル焼結体の平板16の表面がエッチングされ、表面の平滑性が損なわれるおそれがある。加圧の圧力は、1MPa以上200MPa以下が好ましく、10MPa以上150MPa以下がさらに好ましい。
 これにより、スピネル焼結体の平板16を、下成形型8の曲面を被覆することのできる形状に変形できる。よって、平板16を変形して得られた液晶保護板は、保護される液晶画面の表面を被覆することができる形状を含むことができる。
 その後、実施形態2と同様に、スピネル焼結体100を切断する工程(S24)および/またはスピネル焼結体100を研磨する工程(S25)を行うことができる。さらに反射防止コーティング層を形成する工程を行うこともできる。
 本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。
 [実施例1]
 <液晶保護板の作製>
 [製造例1]
 円柱状の金属製の中成形型(直径100mm、長さ50mm)と、円筒状のゴム製の外成形型(内径120mm、外径140mm、長さ50mm)とを準備した。中成形型と外成形型との間隙の厚みは10mmであった。
 組成がMgO・nAl(n=1.09)のスピネル粒子4750g(純度99.9%以上)、水(分散媒)3100g、ポリカルボン酸アンモニウム40質量%水溶液(分散剤、サンノプコ社製:商品名SN-D5468)125gを、容量40リットルの超音波槽に入れ、超音波を照射しながら、30分間撹拌混合を行った。その後有機バインダーとしてポリビニルアルコール(クラレ社製:商品名PVA-205C)の10質量%溶液を1000gと、可塑剤としてポリエチレングリコール#400(試薬特級)を10g添加し、60分間撹拌混合してスラリーを調製した。
 次にスラリーをスプレードライにより顆粒状とし、さらに顆粒の含水率を0.5質量%に調湿した後、中成形型と外成形型との間隙に充填し、196MPaの圧力を外成形型にかけて1次成形し、さらに196MPaの圧力で冷間等方圧プレス(CIP)により2次成形し、スピネル成形体を得た。スピネル成形体は円筒状であった(内径100mm、外径110mm)。
 得られた成形体をグラファイト製の容器に入れ、真空中(5Pa以下)で1700℃で2時間で1次焼結した。得られた1次焼結体をアルキメデス法にて相対密度を測定したところ、98%であった。
 1次焼結体を、Ar雰囲気下、雰囲気圧力196MPaの条件の下、温度1700℃にて2時間、熱間等方圧プレス(HIP)による加熱、加圧を行い、2次焼結体を得た。得られた2次焼結体をアルキメデス法にて相対密度を測定したところ、99.8%であった。
 前記の方法で得られたスピネルの2次焼結体を、高さ方向に沿って6等分に切断した後、主面の両面を研磨機(ナノファクター社製NF-300)で研磨して、表面粗さRaが8nm、厚さ1mmの液晶保護板を得た(体積1.0cm)。上記液晶保護板は、曲面を含む形状を有する。
 [製造例2~16]
 製造例2~16は、原料スピネル粒子の組成、1次焼結条件、2次焼結条件および液晶保護板の表面粗さRaを表1に示す条件としたほかは、製造例1と同様の方法で曲面を含む形状を有する液晶保護板を作製した。
 <測定>
 (モース硬度)
 JISに規定された方法に基づき、モース硬度を測定した。結果を表1に示す。
 (光透過性)
 液晶保護板の波長400nm~800nmにおける平均光透過率(%)を測定した。結果を表1に示す。
 (曲げ強度)
 JISに規定された方法に基づき、3点曲げ強度を測定した。結果を表1に示す。
 (気孔の観察)
 液晶保護板の表面を光学顕微鏡(ニコン社製T-300)を使用して倍率50倍で観察し、気孔の最大直径と、直径が10μm以上の気孔の焼結体1cm当たりの数を測定した。結果を表1に示す。
 (Si元素含有量)
 液晶保護板のSi元素の含有量をICP発光分析にて測定した。結果を表1に示す。
 (密度)
 液晶保護板の相対密度をアルキメデス法にて測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 <評価結果>
 製造例1~16を比較すると、液晶保護板に含まれるスピネル焼結体の平均粒径が10μm以上100μm以下であると(製造例2~6および8~16)、液晶保護板は85%以上の優れた平均光透過率および350MPa以上の高い曲げ強度を有することが確認された。また、製造例2~6および8~16は、いずれも表面粗さRaが20nm以下、Si元素の含有量が20ppm以下であった。
 [実施例2]
 <液晶保護板の作製>
 [製造例17]
 下成形型と上成形型とに挟まれる空間部が直方体形状となる成形型を準備した。該成形型の空間部に製造例2と同様の原料混合物を充填し、製造例2と同様の条件で1次成形および2次成形を行い、スピネル成形体を得た。スピネル成形体は直方体形状であった。得られたスピネル成形体をレーザ照射で切断し、主表面が一辺100mmの正方形で、厚さ3mmのスピネル焼結体の平板を得た。
 次に、図7Cに示す形状の下成形型および上成形型を準備した。下成形型および上成形型の間にスピネル焼結体の平板を配置し、温度1250℃、圧力100MPaで加熱加圧して、平板を変形させた。その後、主面の両面を研磨機(ナノファクター社製NF-300)で研磨して、表面粗さRaが8nm、厚さ1mmの液晶保護板を得た(体積1.0cm)。上記液晶保護板は、曲面を含む形状を有する。
 <測定>
 得られた液晶保護板について、実施例1と同様の方法で、モース硬度、平均光透過率、曲げ強度を測定したところ、製造例2と同様の結果であった。したがって、製造例17の製造方法で得られた曲面を含む形状を有する液晶保護板は、優れた光透過率および強度を有することが確認された。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の液晶保護板は、優れた光透過率と強度を有し、曲面を含む形状を有するため、携帯デバイスなどに用いると有益である。
1 中成形型
2 外成形型
3 間隙部
4 原料混合物
5 スピネル成形体
6 スピネル焼結体
7 上成形型
8 下成形型
16 スピネル焼結体の平板
100,101,102 液晶保護板

Claims (8)

  1.  スピネル焼結体で形成される液晶保護板であって、
     前記スピネル焼結体は、平均粒径が10μm以上100μm以下であり、
     前記液晶保護板は、曲面を含む形状を有する、
     液晶保護板。
  2.  前記液晶保護板は、表面粗さRaが20nm以下である、
     請求項1に記載の液晶保護板。
  3.  前記液晶保護板は、Si元素の含有量が20ppm以下である、
     請求項1または請求項2に記載の液晶保護板。
  4.  前記液晶保護板は、厚さ1mmにおける波長400nm~800nmの光の平均光透過率が85%以上である、
     請求項1~請求項3のいずれか1項に記載の液晶保護板。
  5.  請求項1~請求項4のいずれか1項に記載の液晶保護板の製造方法であって、
     外周面に曲面を含む中成形型と、前記中成形型の外周面を一定の間隔を設けて覆う伸縮可能な外成形型とを準備する工程と、
     前記中成形型と前記外成形型との間に形成される間隙に、スピネル粒子を含む原料混合物を充填する工程と、
     前記外成形型を加圧して、前記原料混合物を含むスピネル成形体を得る工程と、
     前記スピネル成形体を焼結して、スピネル焼結体を得る工程とを備える、
     液晶保護板の製造方法。
  6.  請求項1~請求項4のいずれか1項に記載の液晶保護板の製造方法であって、
     平均粒径が10μm以上100μm以下のスピネル焼結体の平板を準備する工程と、
     曲面を含む下成形型と、前記下成形型に嵌合する曲面を含む上成形型とを準備する工程と、
     前記下成形型と前記上成形型との間に前記スピネル焼結体の平板を配置し、前記下成形型および前記上成形型を加熱加圧することにより、前記スピネル焼結体の平板を変形させる工程とを含む、
     液晶保護板の製造方法。
  7.  前記液晶保護板の製造方法は、さらに前記スピネル焼結体を切断する工程を備える、
     請求項5または請求項6に記載の液晶保護板の製造方法。
  8.  前記液晶保護板の製造方法は、さらに前記スピネル焼結体の表面を研磨する工程を備える、請求項5~請求項7のいずれか1項に記載の液晶保護板の製造方法。
PCT/JP2015/074323 2014-09-12 2015-08-28 液晶保護板および液晶保護板の製造方法 WO2016039164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016547359A JPWO2016039164A1 (ja) 2014-09-12 2015-08-28 液晶保護板および液晶保護板の製造方法
US15/505,938 US20180222763A1 (en) 2014-09-12 2015-08-28 Liquid-crystal-display protection plate and method for producing liquid-crystal-display protection plate
CN201580045008.2A CN106575055A (zh) 2014-09-12 2015-08-28 液晶显示器保护板及液晶显示器保护板的制造方法
KR1020177006729A KR20170048402A (ko) 2014-09-12 2015-08-28 액정 보호판 및 액정 보호판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186571 2014-09-12
JP2014-186571 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016039164A1 true WO2016039164A1 (ja) 2016-03-17

Family

ID=55458918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074323 WO2016039164A1 (ja) 2014-09-12 2015-08-28 液晶保護板および液晶保護板の製造方法

Country Status (6)

Country Link
US (1) US20180222763A1 (ja)
JP (1) JPWO2016039164A1 (ja)
KR (1) KR20170048402A (ja)
CN (1) CN106575055A (ja)
TW (1) TW201621417A (ja)
WO (1) WO2016039164A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276216A (ja) * 2004-04-22 2008-11-13 Seiko Epson Corp 電気光学装置及び電子機器
JP2009280455A (ja) * 2008-05-23 2009-12-03 Sumitomo Electric Ind Ltd 透明多結晶スピネル基板とその製造方法、および電気光学装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729253B2 (ja) * 2001-07-26 2011-07-20 株式会社大阪チタニウムテクノロジーズ 一酸化けい素焼結体および一酸化けい素焼結ターゲット
CN1295168C (zh) * 2003-07-09 2007-01-17 山东天虹弧板有限公司 微晶玻璃—陶瓷复合曲面板的制造方法
JP2006273679A (ja) * 2005-03-30 2006-10-12 Sumitomo Electric Ind Ltd スピネル焼結体、光透過窓および光透過レンズ
JPWO2007069644A1 (ja) * 2005-12-15 2009-05-21 Seiハイブリッド株式会社 スピネル製透明基板、光学エンジン用透明基板およびそれらを使用したリアプロジェクションテレビ受像機と液晶を利用した画像プロジェクター
WO2008090909A1 (ja) * 2007-01-23 2008-07-31 World Lab. Co., Ltd. 透明スピネルセラミックス及びその製造方法ならびにその透明スピネルセラミックスを用いた光学材料
JP4830911B2 (ja) * 2007-03-02 2011-12-07 住友電気工業株式会社 スピネル焼結体、その製造方法、透明基板と液晶プロジェクター
JP2009126750A (ja) * 2007-11-26 2009-06-11 Sumitomo Electric Ind Ltd 多結晶透明セラミックス基板の製造方法およびスピネル基板の製造方法
JP5435397B2 (ja) * 2009-04-02 2014-03-05 住友電気工業株式会社 スピネル製光透過用窓材及びその製造方法
TW201345339A (zh) * 2012-04-17 2013-11-01 Tera Xtal Technology Corp 觸控面板
CN103506622B (zh) * 2013-09-29 2016-02-10 成都易态科技有限公司 粉末烧结材料的等静压成型模具、成型方法及其附件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276216A (ja) * 2004-04-22 2008-11-13 Seiko Epson Corp 電気光学装置及び電子機器
JP2009280455A (ja) * 2008-05-23 2009-12-03 Sumitomo Electric Ind Ltd 透明多結晶スピネル基板とその製造方法、および電気光学装置

Also Published As

Publication number Publication date
KR20170048402A (ko) 2017-05-08
CN106575055A (zh) 2017-04-19
US20180222763A1 (en) 2018-08-09
TW201621417A (zh) 2016-06-16
JPWO2016039164A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6195838B2 (ja) 透明セラミック
US8329605B2 (en) Sintered product with a cubic structure
KR101274097B1 (ko) 텅스텐합금 결정립, 이를 이용한 가공 방법 및 그의 제조방법
JP5435397B2 (ja) スピネル製光透過用窓材及びその製造方法
JP6264846B2 (ja) 酸化物焼結体、スパッタリングターゲットおよびその製造方法
KR100433482B1 (ko) 고밀도 산화인듐-산화주석 소결체를 이용한 스퍼터링타깃과 그 제조방법
WO2016052498A1 (ja) 軟磁性扁平粉末及びその製造方法
JP2001322871A (ja) 希土類元素を含有する酸化物焼結体およびその製造方法
WO2016039164A1 (ja) 液晶保護板および液晶保護板の製造方法
US10633290B2 (en) High strength transparent ceramic using corundum powder and methods of manufacture
WO2017179278A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP2014125422A (ja) 酸化物焼結体、酸化物焼結体スパッタリングターゲットおよびその製造方法
JP6269827B2 (ja) 液晶タッチパネル保護板
TWI621602B (zh) LCD touch panel protection board
JP2010243179A (ja) 時計用のカバーグラス及びその製造方法
JP6722736B2 (ja) 焼結体および、スパッタリングターゲット
WO2012073879A1 (ja) スパッタリングターゲット
TW201736318A (zh) 氧化物燒結體、其製造方法及濺鍍靶材
WO2019187269A1 (ja) 酸化物焼結体、スパッタリングターゲットおよび透明導電膜
JP7480439B2 (ja) 酸化物焼結体及びその製造方法並びにスパッタリングターゲット材
JP6149999B1 (ja) スパッタリングターゲット
JP5008142B2 (ja) 酸化インジウム粉末
CN106278248A (zh) 溅射靶
JPWO2018008207A1 (ja) 配向アルミナ焼結体及びその製法
WO2017104802A1 (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547359

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505938

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177006729

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840882

Country of ref document: EP

Kind code of ref document: A1