WO2016038903A1 - 制御装置及びシステム並びにその制御方法 - Google Patents

制御装置及びシステム並びにその制御方法 Download PDF

Info

Publication number
WO2016038903A1
WO2016038903A1 PCT/JP2015/052150 JP2015052150W WO2016038903A1 WO 2016038903 A1 WO2016038903 A1 WO 2016038903A1 JP 2015052150 W JP2015052150 W JP 2015052150W WO 2016038903 A1 WO2016038903 A1 WO 2016038903A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
unit
mode
local
control device
Prior art date
Application number
PCT/JP2015/052150
Other languages
English (en)
French (fr)
Inventor
隆英 伊藤
篤 塩谷
松尾 実
伊藤 岳彦
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP15839845.3A priority Critical patent/EP3193510B1/en
Publication of WO2016038903A1 publication Critical patent/WO2016038903A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to a control device and system, and a control method thereof.
  • a multi-type air conditioning system in which one outdoor unit and a plurality of indoor units are connected is known (see, for example, Patent Document 1).
  • the outdoor unit includes an outdoor unit control unit
  • the indoor unit includes an indoor unit control unit
  • the outdoor unit control unit and the indoor unit control unit communicate with each other. Realizes control of the entire multi-type air conditioning system.
  • an outdoor unit control unit included in the outdoor unit
  • an outdoor unit control target device actuator
  • an indoor unit control unit local control unit
  • development of a new air conditioning system in which the outdoor unit control unit and the indoor unit control unit are separated from the target device (actuator) and these control functions are integrated into one control device is being studied.
  • This new air conditioning system issues control commands to the outdoor unit and the control target equipment (actuators) of the indoor unit via a network from a control device that integrates the functions of the outdoor unit control unit and the indoor unit control unit.
  • the present invention is a system in which device control is performed via a communication line, such as the above-described new air conditioning system, and can perform stable control continuously even if the installation environment such as the communication environment changes.
  • An object is to provide an apparatus and a system, and a control method thereof.
  • the first aspect of the present invention is connected to a device equipped with a local control unit (for example, all or part of the functions of the local control unit) via a communication line, and can control the device via the communication line.
  • a control ratio changing means for changing a control ratio with the local control unit (for example, a ratio of control performed by the local control unit to the corresponding actuator and a control ratio performed by the control device on the actuator).
  • the control ratio changing means includes a storage means storing a plurality of control modes having different control ratios, and a mode selection means for selecting one control mode from the plurality of control modes according to a predetermined condition. And a mode notification means for notifying the device of the control mode selected by the mode selection means.
  • control ratio between the local control unit and the control device can be changed according to the installation environment or the like. As a result, stable control can be realized.
  • the control device further includes communication quality monitoring means for monitoring communication quality with the device, and the storage means stores the control mode and communication quality information in association with each other, and the mode selection means. May refer to the information stored in the storage means and select a control mode corresponding to the current communication quality information.
  • the communication quality with the device is monitored by the communication quality monitoring means, and the control mode corresponding to the communication quality is selected by the mode selection means.
  • the control ratio of the control device can be reduced. Therefore, for example, even if communication quality deteriorates or disruption occurs, device control is performed by the local control unit, so that device control can be continued.
  • the control mode selected by the mode selection unit when the control mode selected by the mode selection unit is different from the control mode selected immediately before, the control mode immediately preceding is continued for a predetermined period, and the amount of transmission data to the device The reduction request may be transmitted.
  • the request for reducing the amount of transmission data is made to the device before the control mode is switched, it is possible to acquire data necessary for control even if the communication quality is somewhat deteriorated. Thereby, for example, when the communication quality fluctuates in a short cycle, it is possible to prevent the control mode from being frequently switched. Furthermore, even when the communication quality is temporarily lowered, it is possible to acquire data necessary for control by reducing the transmission data amount.
  • the latest control program may be distributed to the device when the communication quality is equal to or higher than a predetermined threshold.
  • the mode selection unit may have scheduling information in which time and a control mode are associated, and may select a control mode based on the scheduling information.
  • the mode selection unit performs mode selection based on the schedule information in which the time and the control mode are associated with each other.
  • the mode selection means may select the received control mode when receiving the control mode information from the local control unit.
  • the control mode is selected based on information from the local control unit.
  • the control mode bears only protection control on the local control unit, in addition to the full remote control mode controlled by the control device and the full local control mode controlled only by the local control unit. At least one of a protection control mode to be performed, a target value instruction control mode in which a control target value is given to the device, and control based on the control target value is performed by the local control unit, and a state value of the device is monitored One may be included.
  • the previous transmission cycle and data are Information indicating the same may be stored in the packet.
  • a device that can be connected to the control device via a communication line, and when storage means storing a plurality of control modes and control mode information are received from the control device. And a local control unit that executes control in the received control mode.
  • a third aspect of the present invention is a system including the control device and the device.
  • control information for one device may be transmitted to one device by relaying the other device.
  • the plurality of devices are, for example, a plurality of indoor units, a plurality of outdoor units, an outdoor unit, and an indoor unit.
  • a system control method comprising a device on which a local control unit is mounted and a control device capable of controlling the device via a communication line, the local control unit and the control device. Can control the device in cooperation with each other and control the system to dynamically change the control ratio between the control unit and the control device according to the communication quality with the device. Is the method.
  • control device and system and the control method of the present invention are applied to an air conditioning system will be described with reference to the drawings.
  • the application of the control device or the like of the present invention is not limited to the air conditioning system described later, and can be widely applied to systems that remotely control devices via a communication line.
  • a machine tool etc. are mentioned as an example of an apparatus.
  • the air conditioning system 1 includes, for example, an outdoor unit 10, an indoor unit 20, and a control device 3.
  • the outdoor unit 10 has an outdoor unit control unit (local control unit) 13 for controlling the outdoor unit 10 locally
  • the indoor unit 20 has an indoor unit control unit (local control unit) for controlling the indoor unit 20 locally. ) 23 are mounted.
  • the outdoor unit 10 and the indoor unit 20 are connected to the control device 3 via the communication line 6 and can be remotely controlled from the control device 3. That is, the control device 3 has the same functions as the outdoor unit control unit 13 and the indoor unit control unit 23, and can give control commands to the outdoor unit 10 and the indoor unit 20 via the communication line 6. It is said that.
  • the air-conditioning system 1 which concerns on this embodiment is a point which changes the control ratio which the control apparatus 3, the outdoor unit control part 13, and the indoor unit control part 23 bear according to the communication quality of the communication line 6 dynamically.
  • the air conditioning system 1 according to the present embodiment will be specifically described.
  • FIG. 1 is a diagram showing a refrigerant circuit of an air conditioning system 1 according to an embodiment of the present invention.
  • the air conditioning system 1 includes an outdoor unit 10 and an indoor unit 20 connected by a refrigerant pipe 28 common to the outdoor unit 10.
  • FIG. 1 illustrates the case where the air conditioning system 1 is configured by one outdoor unit 10 and one indoor unit 20 for convenience, the outdoor unit 10 and the indoor unit that configure the air conditioning system 1 are illustrated.
  • the number of 20 is not limited to this example.
  • an outdoor unit 10 includes, for example, a compressor 15 that compresses and delivers a refrigerant, a four-way valve 16 that switches a circulation direction of the refrigerant, and an outdoor heat exchange that exchanges heat between the refrigerant and outside air. And an accumulator 19 provided on the suction side piping of the compressor 15 for the purpose of separating the machine fluid from the refrigerant.
  • the outdoor unit 10 includes various sensors 11 (see FIG. 2) such as a pressure sensor 11a that measures the low-pressure side pressure, a pressure sensor 11b that measures the high-pressure side pressure, and a temperature sensor 11c that measures the temperature of the outdoor heat exchanger 17. ing.
  • the indoor unit 20 includes an electronic expansion valve 25, an indoor heat exchanger 26, an indoor fan 27, and the like.
  • the indoor unit 20 includes various sensors 21 (see FIG. 2) such as a pressure sensor 21a that measures the pressure before (after) the expansion valve and a temperature sensor 21b that measures the temperature of the indoor heat exchanger 26.
  • FIG. 2 is a diagram illustrating an electrical configuration of the air conditioning system 1 according to the present embodiment.
  • the outdoor unit 10 and the indoor unit 20 are configured to be able to communicate with each other via the communication line 6.
  • the control device 3 is configured to be connectable to the communication line 6 and configured to be capable of mutual communication with the outdoor unit 10 and the indoor unit 20 via the communication line 6.
  • the communication line 6 may be wired or wireless.
  • the outdoor unit 10 and the indoor unit 20 may be configured to be capable of mutual communication through a communication line different from the communication line 6.
  • the outdoor unit 10 controls various sensors 11 including the pressure sensors 11a and 11b, the temperature sensor 11c, and the like, and various device elements (for example, the compressor 15 and the outdoor fan 18) that configure the outdoor unit 10.
  • a driver 12 an outdoor unit control unit 13 for controlling various device elements (for example, the compressor 15) provided in the outdoor unit 10, and a communication unit 14 for performing communication via the communication line 6 are provided.
  • the indoor unit 20 includes various sensors 21 including the pressure sensor 21a, the temperature sensor 21b, and the like, and various drivers for controlling various device elements (for example, the electronic expansion valve 25, the indoor fan 27, and the like) constituting the indoor unit 20. 22, an indoor unit control unit 23 for controlling various device elements (for example, an electronic expansion valve 25, an indoor fan 27, etc.) included in the indoor unit 20, and a communication unit 24 for performing communication via the communication line 6. I have.
  • the outdoor unit control unit 13 and the indoor unit control unit 23 are computers, and include a processor such as a CPU, a main memory such as a RAM, and a rewritable storage device such as a hard disk. And the function of each part mentioned later is realized when a processor develops various programs (for example, a program of each control mode mentioned below etc.) written in a hard disk etc. in a main memory, and performs processing.
  • a processor such as a CPU
  • main memory such as a RAM
  • a rewritable storage device such as a hard disk.
  • FIG. 3 is a functional block diagram of the outdoor unit control unit 13.
  • the outdoor unit control unit 13 includes an input / output unit 41, a storage unit 42, a mode selection unit 43, and a control execution unit 44.
  • the storage unit 42 stores information necessary for executing control of the outdoor unit 10 in each control mode for each control mode.
  • information on a full remote control mode, a protection control mode, a target value instruction control mode, a remote monitoring mode, and a full local control mode are stored.
  • the full remote control mode is a mode in which a control command from the control device 3 described later is received, and various devices in the outdoor unit (for example, the compressor 15, the four-way valve 16, the outdoor fan 18, etc.) are controlled by the received control command. It is. That is, in the full remote control mode, control calculation by the control unit 13 is not performed.
  • the protection control mode is a mode performed by the outdoor unit control unit 13 for emergency stop control and protection control while control of various devices in the outdoor unit is performed by a control command from the control device 3.
  • the emergency stop control is, for example, control for detecting an abnormality and stopping the compressor 15 when the low pressure side pressure is equal to or lower than a predetermined lower limit threshold value or when the high pressure side pressure is equal to or higher than a predetermined upper limit threshold value. is there.
  • protection control is control that reduces the rotational speed of the compressor when an abnormal tendency is detected.
  • the low-pressure side pressure is a value that is larger than the lower threshold value.
  • a control target value is given from the control device 3, and the outdoor unit control unit 13 calculates a control command for each device based on the given control target value. This mode performs the control.
  • the remote monitoring mode is a mode in which information on abnormality detection and failure detection is notified to the control device 3 when the outdoor unit control unit 13 controls each device and abnormality or failure is detected. Therefore, in the remote monitoring mode, information for notifying the controller 3 of the abnormality is transmitted from the outdoor unit 10 only when an abnormality is detected.
  • the full local control mode is a mode in which all control is performed in the outdoor unit control unit 13. That is, the full local control mode is executed when mutual communication with the control device 3 via the communication line 6 is impossible.
  • the control load by the outdoor unit control unit 13 increases in the order of the full remote control mode, the protection control mode, the target value instruction control mode, the remote monitoring mode, and the full local control mode. That is, the full remote control mode has the least processing load on the outdoor unit control unit 13, and the full local control mode has the largest processing load on the outdoor unit control unit 13.
  • the mode selection unit 43 selects the designated control mode when the control mode information is received from the control device 3.
  • the mode selection unit 43 does not receive data from the control device 3 continuously for a predetermined period. Switch to local control mode. As a result, for example, in the case where information transmission / reception via the communication line 6 is suddenly interrupted, it is possible to quickly switch to control by the outdoor unit control unit 13 and to continue to control the device. It becomes.
  • the control execution unit 44 reads out information on the control mode selected by the mode selection unit 43 from the storage unit 42 and executes it.
  • FIG. 4 is a functional block diagram of the indoor unit control unit 23.
  • the indoor unit control unit 23 includes an input / output unit 51, a storage unit 52, a mode selection unit 53, and a control execution unit 54.
  • the storage unit 52 stores information necessary for executing control of the indoor unit for each control mode in various control modes. That is, the processing content executed by the indoor unit control unit 23 is stored in the storage unit 52 in each of the above-described full remote control mode, protection control mode, target value instruction control mode, remote monitoring mode, and full local control mode. .
  • the mode selection unit 53 selects the designated control mode when the control mode information is received from the control device 3.
  • the mode selection unit 53 does not receive data from the control device 3 continuously for a predetermined period. Switch to local control mode. As a result, for example, in the case where information transmission / reception via the communication line 6 is suddenly interrupted, it is possible to quickly switch to the control by the indoor unit control unit 23 and to continue to control the device. It becomes.
  • the control execution unit 54 reads out information on the control mode selected by the mode selection unit 53 from the storage unit 52 and executes it.
  • the indoor unit control unit 23 may always execute the louver and flap angle control (wind direction control) and the indoor fan rotation speed control (air flow control). These controls can be realized by mutual communication between the remote controller and the indoor unit controller 23, and even if these control values change, there is almost no influence on the refrigerant pipe 28. is there.
  • the control device 3 includes a computer, like the outdoor unit control unit 13 and the indoor unit control unit 23, and includes a processor such as a CPU, a main memory such as a RAM, a rewritable storage device such as a hard disk, and the like. . And the function of each part mentioned later is realized when a processor develops various programs (for example, a program of each control mode mentioned below etc.) written in a hard disk etc. in a main memory, and performs processing.
  • a processor such as a CPU
  • main memory such as a RAM
  • a rewritable storage device such as a hard disk, and the like.
  • FIG. 5 is a functional block diagram of the control device 3. As shown in FIG. 5, the control device 3 includes a communication unit 31, a communication quality monitoring unit 32, a control ratio changing unit 33, an outdoor unit control unit 35, and an indoor unit control unit 36.
  • the communication unit 31 performs mutual communication with the outdoor unit 10 and the indoor unit 20 via the communication line 6.
  • the communication quality monitoring unit 32 monitors the communication quality of the communication line 6. For example, when the amount of data that must be normally received within a predetermined time (hereinafter referred to as “total data amount”) is determined, the quality evaluation is performed by dividing the amount of data received within the predetermined time by the total data amount. The value is calculated, and this quality evaluation value is output to the control ratio changing unit 33.
  • the control ratio changing unit 33 dynamically changes the control ratio between the control device 3 and the outdoor unit control unit 13 and the indoor unit control unit 23, which are local control units, according to the communication quality of the communication line 6.
  • the control ratio changing unit 33 includes a storage unit 61, a mode selection unit 62, and a mode notification unit 63.
  • a quality evaluation value (communication quality information) and each control mode are stored in association with each other.
  • the mode selection unit 62 selects a control mode corresponding to the current quality evaluation value from the quality evaluation value input from the communication quality monitoring unit 32 and the information stored in the storage unit 61.
  • the mode notification unit 63 notifies the outdoor unit 10 and the indoor unit 20 of the selected control mode via the communication unit 31 and also notifies the outdoor unit control unit 35 and the indoor unit control unit 36 in the control device 3.
  • the outdoor unit control unit 35 and the indoor unit control unit 36 are configured to be able to exchange information between each other.
  • the outdoor unit control unit 35 includes an input / output unit 71, a storage unit 72, and a control execution unit 73.
  • the input / output unit 71 receives various sensor measurement values received from the outdoor unit 10 and device status information.
  • the storage unit 72 stores information necessary for executing control of the outdoor unit 10 in each control mode for each control mode. That is, in each of the above-described full remote control mode, protection control mode, target value instruction control mode, remote monitoring mode, and full local control mode, the processing contents (program and data) executed by the outdoor unit control unit 35 in the control device 3 are described. Etc.) are stored.
  • the processing content corresponding to the full remote control mode is the processing content for the outdoor unit control unit 35 in the control device 3 to remotely control the outdoor unit 10.
  • the processing content in the full remote control mode is not necessarily the same as the processing content in the full local control mode provided in the outdoor unit control unit 13 in the outdoor unit 10.
  • the autonomous distributed control is performed.
  • the control contents for storing are stored.
  • the autonomous decentralized control receives information from the various sensors 11 and the indoor unit control unit 36 which is another control unit, and the predetermined application controls the outdoor unit 10 according to the control rule with the information as input. To give a directive.
  • the protection control mode is the processing content in which the protection control is omitted in the full remote control mode.
  • the target value instruction control mode processing related to calculation of the target value is executed, but protection control and calculation of the control command of each device based on the target value are omitted.
  • a target value that saves energy is calculated and transmitted to the outdoor unit 10.
  • the device control is not performed, and the processing content for receiving the abnormality information notified from the outdoor unit 10 is set. No processing is performed for the full local control mode.
  • the control execution unit 73 reads the control mode information notified from the mode notification unit 63 from the storage unit 72 and executes it.
  • the indoor unit control unit 36 includes an input / output unit 81, a storage unit 82, and a control execution unit 83.
  • Various sensor measurement values received from the indoor unit 20, device state information, and the like are input to the input / output unit 71.
  • the storage unit 82 stores information necessary for executing control of the indoor unit 20 for each control mode in various control modes.
  • the processing content executed by the indoor unit control unit 36 in the control device 3 is the storage unit 82.
  • the processing content corresponding to the full remote control mode is the same as the processing content corresponding to the full local control mode provided in the indoor unit control unit 23 in the indoor unit 20.
  • the protection control mode has a processing content in which the protection control is omitted in the full remote control mode.
  • the target value instruction control mode processing related to calculation of the target value is executed, but protection control and calculation of the control command of each device based on the target value are omitted.
  • the remote monitoring mode does not perform device control, and is processing content for receiving abnormality information notified from the indoor unit 20. No processing is performed for the full local control mode.
  • the control execution unit 83 reads the control mode information notified from the mode notification unit 63 from the storage unit 82 and executes it.
  • control ratio changing unit 33, the outdoor unit control unit 35, the indoor unit control unit 36, and the like described above may be virtually implemented on one piece of hardware.
  • the program described in the master boot record is activated at the time of activation, the virtual CPU and virtual memory corresponding to each unit are allocated, and each unit is virtually generated on one hardware. Also good.
  • measurement data and control information of various sensors 11 and 21 are transmitted from the outdoor unit 10 and the indoor unit 20 to the control device 3 via the communication line 6.
  • the mode selection unit 62 selects a control mode corresponding to the current quality evaluation value based on the information stored in the storage unit 61, and outputs the control mode to the mode notification unit 63.
  • the mode notification unit 63 notifies the outdoor unit control unit 35 and the indoor unit control unit 36 of the control mode selected by the mode selection unit 62.
  • the control execution unit 73 executes arithmetic processing according to the control mode notified from the mode notification unit 63. Thereby, for example, when the full remote control mode is selected, arithmetic processing using the sensor measurement value or the like input to the input / output unit 71 is performed, and various devices (for example, , Compressor 15, four-way valve 16, outdoor heat exchanger 17, outdoor fan 18, etc.).
  • control execution unit 83 executes arithmetic processing according to the control mode notified from the mode notification unit 63.
  • arithmetic processing using the sensor measurement value or the like input to the input / output unit 81 is performed, and various devices (for example, , Control commands for the electronic expansion valve 25, the indoor fan 27, and the like).
  • the various control commands calculated in this way are transmitted to the outdoor unit 10 and the indoor unit 20 via the communication line 6. And in the outdoor unit 10 and the indoor unit 20, these control commands are given to the various drivers 12 and 22, and control according to a control command is implement
  • control device 3 the outdoor unit control unit 13, and the indoor unit control unit 23 Control of the air conditioning system 1 is implement
  • the outdoor unit control unit 35 in the control device 3 and the outdoor unit 10 Control of the outdoor unit 10 is realized in cooperation with the outdoor unit control unit 13.
  • the indoor unit control unit 36 in the control device 3 and the indoor unit control unit 23 in the indoor unit 20 are also controlled. Control of indoor unit 20 will be realized by cooperation.
  • the control ratio with 3 is dynamically changed. Thereby, for example, when control from the control device 3 is performed via the communication line 6, even when communication quality deteriorates and information from the control device 3 cannot be received, local By switching to the control by the control unit, the outdoor unit 10 and the indoor unit 20 can be continuously controlled. Since a plurality of control modes are set according to the control ratio, the control ratio of the control device can be finely changed according to the communication quality.
  • the communication quality monitoring unit 32 evaluates the communication quality based on the data reception amount within a predetermined time
  • the present invention is not limited to this example, and for example, the evaluation based on the communication speed is also possible. It is.
  • the control mode switching may be determined based on whether or not the data necessary for the control is received.
  • the mode selection unit 62 selecting the control mode according to the communication evaluation value, when the control mode selected this time is different from the control mode selected so far, a predetermined period
  • the communication mode up to now is maintained, that is, communication is performed by reducing the amount of data transmitted from the outdoor unit 10 and the indoor unit 20 to the control device 3 without immediately switching the control mode. It is good also as dealing with a decline in quality.
  • a method for reducing the amount of data for example, there is a method of thinning out data with slow response, that is, a parameter that requires an appropriate time for the value to change, for example, temperature data (outside temperature, room temperature (indoor suction temperature)). That is, for the temperature data, the entire data amount is reduced by reducing the transmission frequency (for example, transmitting once out of 10 data transmissions).
  • the same data as the data transmitted in the previous transmission cycle may have a packet structure in which information indicating that the data is the same is set, and the entire packet data amount may be reduced.
  • FIG. 7A shows a packet structure according to the present embodiment.
  • DST is a transmission destination address
  • SRC is a transmission source address
  • Num is the number of data.
  • FLAG is an equivalence data flag, and the corresponding bit is set to 1 when the data is the same as the previous transmission cycle, and the corresponding bit is set to 0 when the data is different.
  • Data i is the i-th data
  • SUM is a checksum.
  • FIG. 7B is a diagram showing a specific packet structure in the case where the number of data is 4 and the FLAG is “00000000 B (00 H)” in the packet structure shown in FIG.
  • FIG. 7C shows a specific packet structure when the number of data is 8 and the flag is “00001111 B (0F H)” in the packet structure shown in FIG.
  • the 1 bit in the FLAG indicates the same value, and data transmission is omitted.
  • the data having the same value as the previous period is represented by 1 bit, thereby effectively reducing the entire data amount.
  • Cmd is a command code indicating the type of data (for example, 01H is high pressure, 02H is low pressure, etc.)
  • Ope is an operation code indicating the data operation content (for example, 00H is display, 01H is setting, etc.)
  • Data Is the contents of the data.
  • Data may be of variable length, for example, 4 bytes for analog data and 1 byte for digital data.
  • the outdoor unit 10 and the indoor unit 20 can be remotely controlled from the control device 3.
  • the outdoor unit 10 can be remotely controlled. It is good also as a structure controlled by the machine control part 23.
  • FIG. 1 is a diagrammatic representation of the outdoor unit 10 and the indoor unit 20.
  • the control of the plurality of outdoor units can be remotely controlled from the control device 3, and the control of all the indoor units is performed by a local control unit. It may be implemented.
  • the local outdoor unit control unit 13 and the indoor unit control unit 23 are switched to the full local control mode in which control is performed.
  • the outdoor unit 10 cannot communicate with the control device 3, but the indoor unit 20 can communicate with the control device 3, or the outdoor unit 10 and the indoor unit.
  • the configuration communicable with the control device 3 is interposed as a relay device, Mutual communication with the outdoor unit 10 and the indoor unit 20 may be indirectly established. Thereby, the remote control by the control apparatus 3 can be performed as much as possible.
  • the latest control program is distributed from the control device 3 to the outdoor unit 10 and the indoor unit 20. It is good. As described above, when the communication quality is good, the latest control program is transmitted to the outdoor unit 10 and the indoor unit 20 to easily update the control program of the outdoor unit control unit 13 and the indoor unit control unit 23. It becomes possible.
  • the control ratio changing unit 33 controls the control device 3 and the outdoor unit control unit 13 that is a local control unit and the indoor unit according to the communication quality of the communication line 6 calculated by the communication quality monitoring unit 32.
  • the control ratio with the machine control unit 23 is dynamically changed, for example, when there is a periodicity in the change in the communication quality of the communication line 6, the communication quality is based on the past data. It is also possible to create a control mode switching schedule according to the control ratio, and the control ratio changing unit 33 switches the control mode according to this schedule.
  • the mode selection unit 62 has scheduling information in which a time and a control mode are associated, and the control mode may be switched based on the scheduling information.
  • the control ratio changing unit 33 may dynamically change the control ratio based on information other than communication quality. For example, the control ratio changing unit 33 may switch the control mode in accordance with a command from the indoor unit control unit 13 that is a local control unit. By doing in this way, it becomes possible to drive

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 空調システム(1)は、ローカル制御部である室外機制御部(13)が搭載された室外機(10)と、室外機(10)を通信回線(6)を介して制御可能な制御装置(3)とを備える。室外機制御部(13)と制御装置(3)とは、協働して室外機(10)の制御を実行することが可能とされ、通信回線6の通信品質に応じて、室外機制御部(13)と制御装置(3)との制御比率が動的に変更される。これにより、通信回線を介した機器制御が行われるシステムにおいて、通信品質の悪化や通信途絶に対する制御への影響を低減することが可能となる。

Description

制御装置及びシステム並びにその制御方法
 本発明は、制御装置及びシステム並びにその制御方法に関するものである。
 従来、例えば、1台の室外機と複数の室内機とが接続されたマルチ型空調システムが知られている(例えば、特許文献1参照)。このようなマルチ型空調システムでは、室外機には室外機制御部が搭載され、室内機には室内機制御部が搭載され、室外機制御部と室内機制御部とが相互通信を行うことで、マルチ型空調システム全体の制御を実現している。
特開2009-186144号公報
 上述したような、室内機制御部と室外機制御部とが相互通信を行いながら空調運転を実現するような従来の空調システムでは、システム制御で用いられる全ての制御プログラムが同一の制御バージョン、すなわち互換性を確保した通信プロトコルや制御コマンド体系で作動することが必要となる。したがって、空調システムを構成する一部の室内機や室外機を新しい制御仕様の機器に変更した場合、旧来の仕様部分は作動可能な場合もあるが、新機能部分を活用することは難しい。
 そこで、本願出願人においては、室外機に含まれる室外機制御部(ローカル制御部)と室外機制御対象機器(アクチュエータ)および室内機に含まれる室内機制御部(ローカル制御部)と室内機制御対象機器(アクチュエータ)から室外機制御部と室内機制御部をそれぞれ切り離し、これらの制御機能を1つの制御装置に集約させた新たな空調システムの開発が検討されている。
 この新しい空調システムは、室外機制御部及び室内機制御部の機能を集約した制御装置からネットワークを介して室外機及び室内機の制御対象機器(アクチュエータ)に制御指令を行うものである。ところで、このようにネットワーク上から室外機及び室内機を制御しようとした場合、通信品質が安定した場所であれば制御に問題が生じるリスクも低いが、通信環境が不安定な場所に室外機及び室内機が設置された場合には、通信品質の悪化や途絶により制御不可能な状態に陥る可能性がある。
 本発明は、上述の新たな空調システムのように、通信回線を介した機器制御が行われるシステムにおいて、通信環境等の設置環境が変化しても安定した制御を継続して行うことのできる制御装置及びシステム並びにその制御方法を提供することを目的とする。
 本発明の第1態様は、ローカル制御部(例えば、ローカル制御部の機能のすべてまたは一部)が搭載された機器と通信回線を介して接続され、前記通信回線を介して前記機器を制御可能な制御装置であって、ローカル制御部との制御比率(例えば、前記ローカル制御部が対応するアクチュエータへ行う制御と、当該制御装置が前記アクチュエータへ行う制御の比率)を変更する制御比率変更手段を備え、前記制御比率変更手段は、制御比率が異なる複数の制御モードが格納されている記憶手段と、所定の条件に従って、複数の前記制御モードの中から一の前記制御モードを選択するモード選択手段と、前記モード選択手段によって選択された制御モードを、前記機器に通知するモード通知手段とを具備する制御装置である。
 上記制御装置によれば、設置環境等に応じて、ローカル制御部と制御装置との制御比率を変更することができる。これにより、安定した制御を実現することが可能となる。
 上記制御装置において、前記機器との通信品質を監視する通信品質監視手段を更に備え、前記記憶手段には、各前記制御モードと通信品質情報とが関連付けられて格納されており、前記モード選択手段は、前記記憶手段に格納されている情報を参照して、現在の通信品質情報に対応する制御モードを選択することとしてもよい。
 上記制御装置によれば、通信品質監視手段により機器との通信品質が監視され、この通信品質に応じた制御モードがモード選択手段によって選択される。これにより、例えば、通信回線を介した機器制御が実施されている場合に、通信品質が悪化した場合には、制御装置の制御比率を低減させることが可能となる。したがって、例えば、通信品質の悪化や途絶が発生したとしてもローカル制御部による機器制御が行われるので、機器制御を継続することが可能となる。
 上記制御装置において、前記モード選択手段によって選択された制御モードが、直前に選択された制御モードと異なっていた場合に、直前の制御モードを所定期間継続させるとともに、前記機器に対して送信データ量の低減要求を送信することとしてもよい。
 制御モードが切り替えられる前に、機器に対して送信データ量の低減要求を行うので、通信品質が多少悪化しても制御に必要なデータを取得することが可能となる。これにより、例えば、通信品質が短周期で変動した場合に、制御モードが頻繁に切り替わることを防止することができる。更に、通信品質が一時的に低下した場合であっても、送信データ量を低減させることで、制御に必要なデータを取得することが可能となる。
 上記制御装置において、前記通信品質が所定の閾値以上のときに、最新の制御プログラムを前記機器に配信することとしてもよい。
 通信品質が良好な場合に、最新の制御プログラムを機器に送信することにより、機器のローカル制御部が有する制御プログラムを容易にアップデートさせることが可能となる。
 上記制御装置において、前記モード選択手段は、時間と制御モードとが関連付けられたスケジューリング情報を保有しており、前記スケジューリング情報に基づいて制御モードを選択することとしてもよい。
 上記制御装置によれば、モード選択手段により、時間と制御モードとが関連付けられたスケジュール情報に基づくモード選択が行われる。
 上記制御装置において、前記モード選択手段は、前記ローカル制御部から制御モードの情報を受信した場合に、受信した前記制御モードを選択することとしてもよい。
 上記制御装置によれば、ローカル制御部からの情報に基づいて制御モードの選択が行われることとなる。
 上記制御装置において、前記制御モードには、当該制御装置が制御を行うフル遠隔制御モード及び前記ローカル制御部のみが制御を行うフルローカル制御モードの他に、保護制御のみを前記ローカル制御部に負担させる保護制御モード、制御目標値を前記機器に与え、その制御目標値に基づく制御を前記ローカル制御部に行わせる目標値指示制御モード、前記機器の状態値を監視する遠隔監視モードの少なくともいずれか一つが含まれていてもよい。
 制御比率が複数段階に設定された複数の制御モードを設けることで、可能な限り制御装置からの制御を優先して行わせることができるとともに、通信品質に応じた適切な制御モードを選択することが可能となる。
 上記制御装置において、前記機器と前記制御装置との間で送受信されるパケットにおいて、前回の送信周期において送信したデータと同じデータについては、そのデータを格納する代わりに、前回の送信周期とデータが同じことを示す情報をパケットに格納することとしてもよい。
 これにより、データ量を効果的に低減させることが可能となる。
 本発明の第2態様は、上記制御装置と通信回線を介して接続可能な機器であって、複数の制御モードが格納された記憶手段と、前記制御装置から制御モードの情報を受信した場合に、受信した制御モードでの制御を実行するローカル制御部とを具備する機器である。
 本発明の第3態様は、上記制御装置と、上記機器とを具備するシステムである。
 上記システムにおいて、複数の前記機器を備え、いずれか一の前記機器と前記制御装置との間の通信が遮断され、かつ、他の前記機器と前記制御装置との通信が可能な状態である場合、一の前記機器に対する制御情報を他の前記機器を中継して一の前記機器に送信することとしてもよい。
 上記システムによれば、制御装置との通信が途絶された機器が発生した場合でも、制御装置との通信が維持されている他の機器を介して制御装置からの制御情報を送信することが可能となる。これにより、通信品質が低下した場合でも制御装置からの制御を実現することが可能となる。
 上記システムにおいて、複数の前記機器は、例えば、複数の室内機または複数の室外機または室外機及び室内機である。
 本発明の第4態様は、ローカル制御部が搭載された機器と、前記機器を通信回線を介して制御可能な制御装置とを備えるシステムの制御方法であって、前記ローカル制御部と前記制御装置とは、協働して前記機器の制御を実行することが可能であり、前記機器との通信品質に応じて、前記制御部と前記制御装置との制御比率を動的に変更するシステムの制御方法である。
 本発明によれば、通信品質の悪化や途絶に対する制御への影響を低減することができるという効果を奏する。
本発明の一実施形態に係る空調システムの冷媒系統を示した図である。 本発明の一実施形態に係る空調システムの電気的構成を示した図である。 図2に示した室外機制御部の機能ブロック図である。 図2に示した室内機制御部の機能ブロック図である。 本発明の一実施形態に係る制御装置の機能ブロック図である。 図5に示した記憶部に格納される情報の一例を示した図である。 本発明の一実施形態に係る空調システムで用いられるパケット構造の一例を示した図である。 本発明の一実施形態に係る空調システムで用いられるパケット構造の一例を示した図である。
 以下に、本発明の制御装置及びシステム並びにその制御方法を空調システムに適用する場合の一実施形態について、図面を参照して説明する。ここで、本発明の制御装置等の適用は、後述する空調システムに限られるものではなく、通信回線を介して遠隔から機器を制御するようなシステムに広く適用することが可能である。例えば、機器の一例としては、工作機械などが挙げられる。
 図2に示すように、本発明の一実施形態に係る空調システム1は、例えば、室外機10と室内機20と制御装置3とを備えている。室外機10には室外機10をローカルで制御するための室外機制御部(ローカル制御部)13が、室内機20には室内機20をローカルで制御するための室内機制御部(ローカル制御部)23がそれぞれ搭載されている。
 室外機10、室内機20は、通信回線6を介して制御装置3と接続され、制御装置3からの遠隔制御が可能な構成とされている。すなわち、制御装置3には、室外機制御部13、室内機制御部23と同様の機能が実装されており、通信回線6を介して室外機10及び室内機20に制御指令を与えることが可能とされている。そして、本実施形態に係る空調システム1は、通信回線6の通信品質に応じて制御装置3と室外機制御部13及び室内機制御部23とが負担する制御比率を動的に変更する点を主な特徴の一つとしている。
 以下、本実施形態に係る空調システム1について具体的に説明する。
 図1は、本発明の一実施形態に係る空調システム1の冷媒回路を示した図である。図1に示すように、空調システム1は、室外機10と、室外機10と共通の冷媒配管28により接続される室内機20とを備える。図1では、便宜上、1台の室外機10と、1台の室内機20とにより空調システム1が構成されている場合を例示しているが、空調システム1を構成する室外機10及び室内機20の台数はこの例に限定されない。
 図1に示されるように、室外機10は、例えば、冷媒を圧縮して送出する圧縮機15、冷媒の循環方向を切り換える四方弁16、冷媒と外気との間で熱交換を行う室外熱交換器17、室外ファン18、冷媒の機液分離等を目的として圧縮機15の吸入側配管に設けられたアキュムレータ19等を備えている。室外機10は、低圧側圧力を計測する圧力センサ11a、高圧側圧力を計測する圧力センサ11b、室外熱交換器17の温度を計測する温度センサ11c等の各種センサ11(図2参照)を備えている。
 室内機20は、電子膨張弁25、室内熱交換器26、室内ファン27等を備えている。室内機20は、膨張弁前(後)圧力を計測する圧力センサ21a、室内熱交換器26の温度を計測する温度センサ21b等の各種センサ21(図2参照)を備えている。
 図2は、本実施形態に係る空調システム1の電気的構成を示した図である。図2に示すように、室外機10及び室内機20は、通信回線6を介して相互通信が可能な構成とされている。制御装置3は、通信回線6に接続可能なとされ、通信回線6を介した室外機10及び室内機20との相互通信が可能な構成とされている。通信回線6は、有線、無線を問わない。
 ここで、室外機10及び室内機20は、通信回線6とは異なる通信回線によっても相互通信が可能な構成とされていてもよい。
 室外機10は、上記圧力センサ11a、11b及び温度センサ11c等からなる各種センサ11と、室外機10を構成する各種機器要素(例えば、圧縮機15、室外ファン18等)を制御するための各種ドライバ12、室外機10が備える各種機器要素(例えば、圧縮機15等)を制御するための室外機制御部13、及び通信回線6を介して通信を行うための通信部14を備えている。
 室内機20は、上記圧力センサ21a及び温度センサ21b等からなる各種センサ21と、室内機20を構成する各種機器要素(例えば、電子膨張弁25、室内ファン27等)を制御するための各種ドライバ22、室内機20が備える各種機器要素(例えば、電子膨張弁25、室内ファン27等)を制御するための室内機制御部23、及び通信回線6を介して通信を行うための通信部24を備えている。
 上記室外機制御部13及び室内機制御部23は、コンピュータであり、CPU等のプロセッサ、RAMなどのメインメモリ、ハードディスク等の書き換え可能な記憶装置等を備えている。そして、プロセッサが、ハードディスク等に記載されている各種プログラム(例えば、後述する各制御モードのプログラム等)をメインメモリに展開して処理を実行することにより、後述する各部の機能が実現される。
 図3は、室外機制御部13の機能ブロック図である。図3に示すように、室外機制御部13は、入出力部41、記憶部42、モード選択部43、制御実行部44を備えている。記憶部42には、各種制御モードにおいて、室外機10の制御を実行するために必要となる情報が制御モード毎に格納されている。記憶部42には、例えば、フル遠隔制御モード、保護制御モード、目標値指示制御モード、遠隔監視モード、フルローカル制御モードの情報がそれぞれ格納されている。
 フル遠隔制御モードは、後述する制御装置3からの制御指令を受信し、受信した制御指令によって室外機内の各種機器(例えば、圧縮機15、四方弁16、室外ファン18等)が制御されるモードである。すなわち、フル遠隔制御モードでは、制御部13による制御演算等は行われない。
 保護制御モードは、室外機内の各種機器の制御は制御装置3からの制御指令によって行われるが、緊急停止制御及び保護制御については室外機制御部13によって行われるモードである。緊急停止制御とは、例えば、低圧側圧力が所定の下限閾値以下である場合、または、高圧側圧力が所定の上限閾値以上である場合に、異常を検知して圧縮機15を停止させる制御である。保護制御とは、緊急停止制御を可能な限り未然に防ぐために、異常の傾向を検知した場合に圧縮機の回転数を低下させる制御であり、例えば、低圧側圧力が上記下限閾値よりも大きな値に設定された保護閾値以下である場合、または、高圧側圧力が上記上限閾値よりも小さな値に設定された保護閾値以上である場合に、圧縮機15の回転数を低下させる。
 目標値指示制御モードは、制御装置3から制御目標値が与えられ、与えられた制御目標値に基づいて各機器の制御指令を室外機制御部13が演算し、室外機制御部13が各種機器の制御を行うモードである。
 遠隔監視モードは、室外機制御部13が各機器を制御し、異常や故障が検知された場合に、異常検知、故障検知の情報が制御装置3に通知されるモードである。したがって、遠隔監視モードにおいては、異常が検知された場合に限って、室外機10から制御装置3に対して異常を通知する情報が送信される。
 フルローカル制御モードは、全ての制御が室外機制御部13において行われるモードである。すなわち、フルローカル制御モードは、通信回線6を介した制御装置3との相互通信が不可能な場合に実行される。
 上述した制御モードは、フル遠隔制御モード、保護制御モード、目標値指示制御モード、遠隔監視モード、フルローカル制御モードの順で、室外機制御部13による制御負担が増加する。すなわち、フル遠隔制御モードが最も室外機制御部13の処理負担が少なく、フルローカル制御モードが最も室外機制御部13の処理負担が大きい。
 モード選択部43は、制御装置3から制御モードの情報を受信した場合に、指定された制御モードを選択する。モード選択部43は、フル遠隔制御モード、保護制御モード、目標値指示制御モードが選択されているときに、所定の期間において継続的に制御装置3からデータを受信しなかった場合には、フルローカル制御モードに切り替える。これにより、例えば、通信回線6を介しての情報の授受が突然途絶された場合には、速やかに室外機制御部13による制御に切り替えることができ、機器の制御を継続して行うことが可能となる。
 制御実行部44は、モード選択部43によって選択されている制御モードの情報を記憶部42から読み出して、実行する。
 図4は、室内機制御部23の機能ブロック図である。図4に示すように、室内機制御部23は、入出力部51、記憶部52、モード選択部53、制御実行部54を備えている。記憶部52には、各種制御モードにおいて、室内機の制御を実行するために必要となる情報が制御モード毎に格納されている。すなわち、上述したフル遠隔制御モード、保護制御モード、目標値指示制御モード、遠隔監視モード、フルローカル制御モードのそれぞれにおいて、室内機制御部23が実行する処理内容が記憶部52に格納されている。
 モード選択部53は、制御装置3から制御モードの情報を受信した場合に、指定された制御モードを選択する。モード選択部53は、フル遠隔制御モード、保護制御モード、目標値指示制御モードが選択されているときに、所定の期間において継続的に制御装置3からデータを受信しなかった場合には、フルローカル制御モードに切り替える。これにより、例えば、通信回線6を介しての情報の授受が突然途絶された場合には、速やかに室内機制御部23による制御に切り替えることができ、機器の制御を継続して行うことが可能となる。
 制御実行部54は、モード選択部53によって選択されている制御モードの情報を記憶部52から読み出して、実行する。
 上述した全ての制御モードにおいて、ルーバー及びフラップの角度制御(風向制御)及び室内ファンの回転数制御(風量制御)については、室内機制御部23が常に実行することとしてもよい。これらの制御については、リモートコントローラと室内機制御部23との間の相互通信により実現することが可能であり、これらの制御値が変わったとしても、冷媒配管28に与える影響がほとんどないからである。
 制御装置3は、上記室外機制御部13、室内機制御部23と同様、コンピュータを備えており、CPU等のプロセッサ、RAMなどのメインメモリ、ハードディスク等の書き換え可能な記憶装置等を備えている。そして、プロセッサが、ハードディスク等に記載されている各種プログラム(例えば、後述する各制御モードのプログラム等)をメインメモリに展開して処理を実行することにより、後述する各部の機能が実現される。
 図5は、制御装置3の機能ブロック図である。図5に示すように、制御装置3は、通信部31、通信品質監視部32、制御比率変更部33、室外機制御部35、及び室内機制御部36を備えている。
 通信部31は、通信回線6を介した室外機10及び室内機20との相互通信を行う。通信品質監視部32は、通信回線6の通信品質を監視する。例えば、所定時間内に通常受信しなければならないデータ量(以下「総データ量」という)が決められている場合、所定時間内に受信されたデータ量を総データ量で除算することにより品質評価値を演算し、この品質評価値を制御比率変更部33に出力する。
 制御比率変更部33は、通信回線6の通信品質に応じて、制御装置3とローカル制御部である室外機制御部13及び室内機制御部23との制御比率を動的に変更する。例えば、制御比率変更部33は、記憶部61、モード選択部62、モード通知部63を備えている。
 記憶部61には、例えば、図6に示すように、品質評価値(通信品質情報)と各制御モードとが関連付けられて格納されている。
 モード選択部62は、通信品質監視部32から入力された品質評価値と記憶部61に格納されている情報とから、現在の品質評価値に対応する制御モードを選択する。
 モード通知部63は、選択された制御モードを通信部31を介して室外機10及び室内機20に通知するとともに、制御装置3内の室外機制御部35及び室内機制御部36に通知する。
 室外機制御部35と室内機制御部36とは、相互間の情報の授受が可能な構成とされている。
 室外機制御部35は、入出力部71、記憶部72、制御実行部73を備えている。
 入出力部71には、室外機10から受信した各種センサ計測値や機器の状態情報等が入力される。記憶部72には、各種制御モードにおいて、室外機10の制御を実行するために必要となる情報が制御モード毎に格納されている。すなわち、上述したフル遠隔制御モード、保護制御モード、目標値指示制御モード、遠隔監視モード、フルローカル制御モードのそれぞれにおいて、制御装置3内の室外機制御部35が実行する処理内容(プログラム及びデータ等)が格納されている。
 例えば、フル遠隔制御モードに対応する処理内容は、制御装置3内の室外機制御部35が室外機10を遠隔制御するための処理内容とされている。ここで、フル遠隔制御モードの処理内容は、室外機10内の室外機制御部13が備えるフルローカル制御モードの処理内容と必ずしも同じである必要はない。
 例えば、制御装置3内の室外機制御部35と室内機制御部36とが、情報を共有しながら各自が独立した自律分散制御を実現させる自律分散制御を行う場合には、自律分散制御を行うための制御内容が格納される。ここで、自律分散制御とは、各種センサ11や他の制御部である室内機制御部36から情報を受信し、該情報を入力として所定のアプリケーションが制御ルールに従い、室外機10に対して制御指令を与えることをいう。
 保護制御モードは、フル遠隔制御モードにおいて保護制御が省略された処理内容とされる。目標値指示制御モードは、目標値の演算に関する処理は実行するが、保護制御や、目標値に基づく各機器の制御指令の演算は省略された処理内容とされている。例えば、目標値指示制御モードでは、省エネルギー化を図るような目標値が演算されて、室外機10に送信される。
 遠隔監視モードは、機器制御については行わず、室外機10から通知される異常情報を受信する処理内容とされている。フルローカル制御モードについては、処理が行われない。
 制御実行部73は、モード通知部63から通知された制御モードの情報を記憶部72から読み出して、実行する。
 同様に、室内機制御部36は、入出力部81、記憶部82、制御実行部83を備えている。入出力部71には、室内機20から受信した各種センサ計測値や機器の状態情報等が入力される。記憶部82には、各種制御モードにおいて、室内機20の制御を実行するために必要となる情報が制御モード毎に格納されている。
 すなわち、上述したフル遠隔制御モード、保護制御モード、目標値指示制御モード、遠隔監視モード、フルローカル制御モードのそれぞれにおいて、制御装置3内の室内機制御部36が実行する処理内容が記憶部82に格納されている。
 例えば、フル遠隔制御モードに対応する処理内容は、室内機20内の室内機制御部23が備えるフルローカル制御モードに対応する処理内容と同様とされている。保護制御モードは、フル遠隔制御モードにおいて保護制御が省略された処理内容にされている。目標値指示制御モードは、目標値の演算に関する処理は実行するが、保護制御や、目標値に基づく各機器の制御指令の演算は省略された処理内容とされている。遠隔監視モードは、機器制御については行わず、室内機20から通知される異常情報を受信する処理内容とされている。フルローカル制御モードについては、処理が行われない。
 制御実行部83は、モード通知部63から通知された制御モードの情報を記憶部82から読み出して、実行する。
 フラップ、ルーバーの角度制御及び室内ファンの回転数制御を室内機20の室内機制御部23が全て行う場合、すなわち、室内機20において処理が完結する場合には、制御装置3におけるこれらの制御については省略される。
 ここで、上述した、制御比率変更部33、室外機制御部35、室内機制御部36等については、1つのハードウェア上に仮想的に実装されていてもよい。例えば、起動時において、マスターブートレコードに記載されたプログラムが起動することにより、各部に対応する仮想CPU及び仮想メモリの割り当てを行い、1つのハードウェア上に上記各部を仮想的に生成することとしてもよい。
 次に、上記構成を備える空調システム1の動作について説明する。
 まず、室外機10及び室内機20から通信回線6を介して各種センサ11、21の計測データや制御情報が制御装置3に送信される。
 これらデータは、制御装置3の通信部31によって受信され、この受信データ量に基づいて通信品質監視部32による品質評価値の演算が行われ、その結果が制御比率変更部33のモード選択部62に出力される。
 モード選択部62は、記憶部61に格納されている情報に基づいて現在の品質評価値に対応する制御モードを選択し、モード通知部63に出力する。モード通知部63は、モード選択部62によって選択された制御モードを室外機制御部35及び室内機制御部36に通知する。
 室外機制御部35では、モード通知部63から通知された制御モードに応じた演算処理が制御実行部73によって実行される。これにより、例えば、フル遠隔制御モードが選択されていた場合には、入出力部71に入力されたセンサ計測値等を用いた演算処理が行われ、室外機10に設けられた各種機器(例えば、圧縮機15、四方弁16、室外熱交換器17、室外ファン18等)の制御指令が得られる。
 同様に、室内機制御部36では、モード通知部63から通知された制御モードに応じた演算処理が制御実行部83によって実行される。これにより、例えば、フル遠隔制御モードが選択されていた場合には、入出力部81に入力されたセンサ計測値等を用いた演算処理が行われ、室内機20に設けられた各種機器(例えば、電子膨張弁25、室内ファン27等)の制御指令が得られる。
 このようにして演算された各種制御指令は、通信回線6を介して室外機10、室内機20に送信される。そして、室外機10、室内機20においては、これら制御指令が各種ドライバ12、22に与えられることにより、制御指令に従った制御が実現される。
 そして、上記の処理が所定の周期で繰り返し行われることにより、その時々の通信品質に応じた適切な制御モードが選択され、例えば、制御装置3と室外機制御部13及び室内機制御部23の協働により、空調システム1の制御が実現される。
 この結果、例えば、遠隔フル制御モードが選択されている場合に、通信品質が少し落ちて、保護制御モードに切り替えられた場合には、制御装置3における室外機制御部35と、室外機10における室外機制御部13との協働により、室外機10の制御が実現され、室内機20においても同様に、制御装置3における室内機制御部36と、室内機20における室内機制御部23との協働により、室内機20の制御が実現されることとなる。
 以上説明してきたように、本実施形態に係る空調システム及びその方法並びに制御装置によれば、通信品質に応じて、ローカル制御部である室外機制御部13、室内機制御部23と、制御装置3との制御比率が動的に変更される。これにより、例えば、通信回線6を介した制御装置3からの制御が行われている場合に、通信品質が悪化して、制御装置3からの情報を受信することができなくなった場合でも、ローカル制御部による制御に切り替えることにより、室外機10及び室内機20の制御を継続して行うことが可能となる。制御比率に応じて複数の制御モードが設定されているので、通信品質に応じて制御装置の制御比率を細やかに変更することができる。
 本実施形態では、通信品質監視部32が所定時間内におけるデータ受信量に基づいて通信品質の評価を行う場合について例示したが、この例に限られず、例えば、通信速度に基づいての評価も可能である。フル遠隔制御モードに関しては、制御に最低限必要となるデータが受信できているか否かに基づいて制御モードの切り替えを判断することとしてもよい。
 本実施形態に係る空調システムにおいては、モード選択部62が、通信評価値に応じて制御モードを選択した結果、今回選択した制御モードが今まで選択していた制御モードと異なる場合、所定の期間においては今までの通信モードを維持することとし、すなわち、即座に制御モードの切り替えを行わずに、室外機10及び室内機20から制御装置3に送信されるデータ量を少なくさせることで、通信品質の低下に対応することとしてもよい。
 データ量を低減させる方法としては、例えば、応答の遅いデータ、すなわち、値が変化するのに相応の時間を要するパラメータ、例えば、温度データ(外気温、室温(室内吸い込み温度)を間引く方法が挙げられる。すなわち、温度データについては、送信頻度を低くする(例えば、データ送信が10回されるうち、1回送信するなど)ことにより、全体のデータ量を低減させる。
 データ量を低減させる他の方法として、前回の送信周期において送信したデータと同じデータについては、データが同じことを示す情報を設定したパケット構造とし、全体のパケットデータ量を小さくすることとしてもよい。
 図7にパケット構造の一例を示す。図7(a)は、本実施形態に係るパケット構造を示した図である。図7(a)において、DSTは送信先アドレス、SRCは送信元アドレス、Numはデータ数である。FLAGは同値データフラグであり、前回の送信周期と同じデータの場合には対応するビットを1とし、異なるデータの場合には対応するビットを0とする。データiは、i番目のデータ、SUMはチェックサムである。
 図7(b)は、図7(a)に示したパケット構造において、データ数が4、FLAGが「00000000 B(00 H)」の場合の具体的なパケット構造を示した図であり、図7(c)は、図7(a)に示したパケット構造において、データ数が8、FLAGが「00001111 B(0F H)」の場合の具体的なパケット構造を示した図である。図7(c)に示すように、データ1から4については、前周期のときと同じ値であるので、FLAGにおける1ビットで同値であることを示し、データの送信を省略している。このように、前周期と同じ値をとるデータについては、ビット数1で表すことにより、全体のデータ量を効果的に減らすことができる。
 図7におけるデータiを図8に示すような構造としてもよい。図8において、Cmdはデータの種類を表すコマンドコード(例えば、01Hは高圧、02Hは低圧など)、Opeはデータの操作内容を表すオペレーションコード(例えば、00Hは表示、01Hは設定など)、Dataはデータの内容である。Dataについては、例えば、アナログデータの場合は4バイト、デジタルデータの場合は1バイトなど、可変長としてもよい。
 本実施形態では、制御装置3から室外機10及び室内機20の遠隔制御を可能な構成としたが、例えば、室外機10だけを遠隔制御が可能な構成とし、室内機20についてはローカルの室内機制御部23によって制御されるような構成としてもよい。
 空調システム1が複数の室外機と複数の室内機で構成されている場合、複数の室外機の制御を制御装置3から遠隔制御可能な構成とし、全ての室内機の制御はローカルの制御部によって実施されることとしてもよい。
 本実施形態では、通信回線6が途絶した場合に、ローカルの室外機制御部13及び室内機制御部23によって制御が行われるフルローカル制御モードに切り替えていたが、例えば、このような場合に、制御装置3と通信可能な回線が他に存在していた場合、例えば、室外機10は制御装置3と通信ができないが室内機20は制御装置3と通信できる場合や、室外機10及び室内機20の近傍に他の空調システムが存在し、他の空調システムを構成するいずれかの構成が制御装置3と通信可能な場合には、制御装置3と通信可能な構成を中継装置として介在させ、室外機10及び室内機20へとの相互通信を間接的に確立させることとしてもよい。これにより、制御装置3による遠隔制御を可能な限り行うことができる。
 本実施形態に係る空調システムでは、通信品質が良好なとき、例えば、品質評価値が所定の閾値以上のときに、制御装置3から最新の制御プログラムを室外機10及び室内機20に配信することとしてもよい。このように、通信品質が良好な場合に、最新の制御プログラムを室外機10及び室内機20に送信することにより、室外機制御部13及び室内機制御部23が有する制御プログラムを容易にアップデートさせることが可能となる。
 本発明は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。
 例えば、上記実施形態においては、制御比率変更部33が、通信品質監視部32によって演算される通信回線6の通信品質に応じて、制御装置3とローカル制御部である室外機制御部13及び室内機制御部23との制御比率を動的に変更していたが、例えば、通信回線6の通信品質の変化に周期性があるような場合などには、過去のデータなどに基づいて、通信品質に応じた制御モード切替のスケジュールを組んでおき、このスケジュールにしたがって制御比率変更部33が制御モードの切り替えを行うこととしてもよい。この場合、例えば、モード選択部62が、時間と制御モードとが関連付けられたスケジューリング情報を保有しており、このスケジューリング情報に基づいて制御モードの切り替えを行えばよい。
 制御比率変更部33が通信品質以外の情報に基づいて制御比率を動的に変更することとしてもよい。例えば、ローカル制御部である室内機制御部13からの指令に応じて制御比率変更部33が制御モードを切り替えることとしてもよい。このようにすることで、ローカル制御部の運転状態等に応じた適切な制御モードにより運転することが可能となる。
1 空調システム
3 制御装置
6 通信回線
10 室外機
13、35 室外機制御部
20 室内機
23、36 室内機制御部
31 通信部
32 通信品質監視部
33 制御比率変更部
61 記憶部
62 モード選択部
63 モード通知部

Claims (13)

  1.  ローカル制御部が搭載された機器と通信回線を介して接続され、前記通信回線を介して前記機器を制御可能な制御装置であって、
     前記ローカル制御部との制御比率を変更する制御比率変更手段を備え、
     前記制御比率変更手段は、
     制御比率が異なる複数の制御モードが格納されている記憶手段と、
     所定の条件に従って、複数の前記制御モードの中から一の前記制御モードを選択するモード選択手段と、
     前記モード選択手段によって選択された制御モードを、前記機器に通知するモード通知手段と
    を具備する制御装置。
  2.  前記機器との通信品質を監視する通信品質監視手段を更に備え、
     前記記憶手段には、各前記制御モードと通信品質情報とが関連付けられて格納されており、
     前記モード選択手段は、前記記憶手段に格納されている情報を参照して、現在の通信品質情報に対応する制御モードを選択する請求項1に記載の制御装置。
  3.  前記モード選択手段によって選択された制御モードが、直前に選択された制御モードと異なっていた場合に、直前の制御モードを所定期間継続させるとともに、前記機器に対して送信データ量の低減要求を送信する請求項1または請求項2に記載の制御装置。
  4.  前記通信品質が所定の閾値以上のときに、最新の制御プログラムを前記機器に配信する請求項2または請求項2を引用する請求項3に記載の制御装置。
  5.  前記モード選択手段は、時間と制御モードとが関連付けられたスケジューリング情報を保有しており、前記スケジューリング情報に基づいて制御モードを選択する請求項1に記載の制御装置。
  6.  前記モード選択手段は、前記ローカル制御部から制御モードの情報を受信した場合に、受信した前記制御モードを選択する請求項1に記載の制御装置。
  7.  前記制御モードには、当該制御装置が制御を行うフル遠隔制御モード及び前記ローカル制御部のみが制御を行うフルローカル制御モードの他に、保護制御のみを前記ローカル制御部に負担させる保護制御モード、制御目標値を前記機器に与え、その制御目標値に基づく制御を前記ローカル制御部に行わせる目標値指示制御モード、前記機器の状態値を監視する遠隔監視モードの少なくともいずれか一つが含まれる請求項1から請求項6のいずれかに記載の制御装置。
  8.  前記機器と前記制御装置との間で送受信されるパケットにおいて、前回の送信周期において送信したデータと同じ今回のデータについては、前記今回のデータを格納する代わりに、前回の送信周期と同じデータであることを示す情報をパケットに格納する請求項1から請求項7のいずれかに記載の制御装置。
  9.  請求項1から請求項8のいずれかに記載の制御装置と通信回線を介して接続可能な機器であって、
     複数の制御モードが格納された記憶手段と、
     前記制御装置から制御モードの情報を受信した場合に、受信した制御モードでの制御を実行するローカル制御部と
    を具備する機器。
  10.  請求項1から請求項8のいずれかに記載の制御装置と、
     請求項9に記載の機器と
    を具備するシステム。
  11.  複数の前記機器を備え、
     いずれか一の前記機器と前記制御装置との間の通信が遮断され、かつ、他の前記機器と前記制御装置との通信が可能な状態である場合、一の前記機器に対する制御情報を他の前記機器を中継して一の前記機器に送信する請求項10に記載のシステム。
  12.  複数の前記機器は、複数の室内機または複数の室外機または室外機及び室内機である請求項11に記載のシステム。
  13.  ローカル制御部が搭載された機器と、前記機器を通信回線を介して制御可能な制御装置とを備えるシステムの制御方法であって、
     前記ローカル制御部と前記制御装置とは、協働して前記機器の制御を実行することが可能であり、
     前記機器との通信品質に応じて、前記ローカル制御部と前記制御装置との制御比率を動的に変更するシステムの制御方法。
PCT/JP2015/052150 2014-09-09 2015-01-27 制御装置及びシステム並びにその制御方法 WO2016038903A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15839845.3A EP3193510B1 (en) 2014-09-09 2015-01-27 Control device, system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-183516 2014-09-09
JP2014183516A JP6509512B2 (ja) 2014-09-09 2014-09-09 制御装置及びシステム並びにその制御方法

Publications (1)

Publication Number Publication Date
WO2016038903A1 true WO2016038903A1 (ja) 2016-03-17

Family

ID=55458671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052150 WO2016038903A1 (ja) 2014-09-09 2015-01-27 制御装置及びシステム並びにその制御方法

Country Status (3)

Country Link
EP (1) EP3193510B1 (ja)
JP (1) JP6509512B2 (ja)
WO (1) WO2016038903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162444A1 (ja) * 2019-02-07 2020-08-13 ダイキン工業株式会社 管理装置又は機器情報送信装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648087B2 (ja) * 2016-09-30 2020-02-14 ダイキン工業株式会社 設備機器管理システム、空調機管理システム、通信条件調整方法
JP6802727B2 (ja) * 2017-02-15 2020-12-16 京セラ株式会社 電源制御方法及び分散電源
KR102180616B1 (ko) * 2018-12-11 2020-11-19 엘지전자 주식회사 내부 통신 상태에 따라 동작 모드를 달리하는 공기 조화 장치
JPWO2020183651A1 (ja) * 2019-03-13 2021-10-14 三菱電機株式会社 空気調和システム
JP7403324B2 (ja) 2020-01-20 2023-12-22 三菱電機株式会社 サーバ、管理装置、機器管理システム、機器管理方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315522A (ja) * 2004-04-28 2005-11-10 Sharp Corp 空調システム及び空調装置
JP2009118172A (ja) * 2007-11-06 2009-05-28 Kansai Electric Power Co Inc:The 無線通信システムならびにそれを用いる情報通信システムおよび給電監視制御システム
JP2013092298A (ja) * 2011-10-25 2013-05-16 Hitachi Ltd 外気冷房システムおよびデータセンタ
WO2014061799A1 (ja) * 2012-10-18 2014-04-24 三菱電機株式会社 管理装置、管理システム、管理方法及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155803B2 (ja) * 2002-11-25 2008-09-24 シャープ株式会社 空気調和機および空気調和機の運転制御方法
JP2007010198A (ja) * 2005-06-29 2007-01-18 Daikin Ind Ltd 空調システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315522A (ja) * 2004-04-28 2005-11-10 Sharp Corp 空調システム及び空調装置
JP2009118172A (ja) * 2007-11-06 2009-05-28 Kansai Electric Power Co Inc:The 無線通信システムならびにそれを用いる情報通信システムおよび給電監視制御システム
JP2013092298A (ja) * 2011-10-25 2013-05-16 Hitachi Ltd 外気冷房システムおよびデータセンタ
WO2014061799A1 (ja) * 2012-10-18 2014-04-24 三菱電機株式会社 管理装置、管理システム、管理方法及びプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162444A1 (ja) * 2019-02-07 2020-08-13 ダイキン工業株式会社 管理装置又は機器情報送信装置
JP2020129731A (ja) * 2019-02-07 2020-08-27 ダイキン工業株式会社 管理装置又は機器情報送信装置
CN113383323A (zh) * 2019-02-07 2021-09-10 大金工业株式会社 管理装置或设备信息发送装置
JP7244743B2 (ja) 2019-02-07 2023-03-23 ダイキン工業株式会社 管理装置又は機器情報送信装置

Also Published As

Publication number Publication date
EP3193510B1 (en) 2020-11-04
JP6509512B2 (ja) 2019-05-08
JP2016056996A (ja) 2016-04-21
EP3193510A1 (en) 2017-07-19
EP3193510A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
WO2016038903A1 (ja) 制御装置及びシステム並びにその制御方法
JP5030640B2 (ja) 空気調和システム
WO2016104258A1 (ja) 空気調和装置
EP2639665A2 (en) Air-conditioning system
JP5675250B2 (ja) マルチ型空気調和システムおよびその集中制御方法
EP3171092B1 (en) Device that supports saving energy, air-conditioning system, and air-conditioning network system
KR20070083056A (ko) 중앙제어시스템 및 그 동작방법
KR101315219B1 (ko) 설비 제어 장치, 이를 구비한 설비 관제 시스템 및 설비 관제 방법
AU2018441289B2 (en) Air-conditioning system
KR20100030110A (ko) 공기조화기의 데이터 디버깅 방법
JP2011163614A (ja) 空調管理システム
JP7134352B2 (ja) リモートコントローラおよび空気調和システム
US11293656B2 (en) Air conditioner
JP6279242B2 (ja) 空調システム及び空調システムの制御方法
JP6301121B2 (ja) 空調システム及び空調システムの制御方法
WO2014041678A1 (ja) 空気調和システム
KR101646142B1 (ko) 설비 관제 시스템 및 이의 운전 방법
WO2015162770A1 (ja) 空気調和システム
US20230332792A1 (en) Automated bypass controller for heating, ventilation, and cooling systems
EP2518319A1 (en) Outdoor unit with at least three compressors for use with air conditioners
US7257954B2 (en) Function switching method, function switching apparatus, data storage method, data storage apparatus, device, and air conditioner
JP2016099020A (ja) 空気調和機
JP2000130822A (ja) 空気調和システム
WO2016035352A1 (ja) 空調システム
KR20090066809A (ko) 에어컨 및 공조기 통합 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839845

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015839845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015839845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE