WO2016036121A1 - 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법 - Google Patents

리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법 Download PDF

Info

Publication number
WO2016036121A1
WO2016036121A1 PCT/KR2015/009219 KR2015009219W WO2016036121A1 WO 2016036121 A1 WO2016036121 A1 WO 2016036121A1 KR 2015009219 W KR2015009219 W KR 2015009219W WO 2016036121 A1 WO2016036121 A1 WO 2016036121A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
group
silicon
layer
buffer layer
Prior art date
Application number
PCT/KR2015/009219
Other languages
English (en)
French (fr)
Inventor
김택경
장민철
양두경
손병국
박창훈
최정훈
송명훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/328,657 priority Critical patent/US10388962B2/en
Priority to EP15838622.7A priority patent/EP3190648B1/en
Priority to JP2017502865A priority patent/JP6568199B2/ja
Priority to CN201580042809.3A priority patent/CN106663782B/zh
Publication of WO2016036121A1 publication Critical patent/WO2016036121A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present specification relates to a lithium electrode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method of manufacturing a lithium electrode.
  • Lithium secondary batteries have been put to practical use as small, light weight and high capacity rechargeable batteries, and are used in portable electronic devices and communication devices such as small video cameras, mobile phones, and notebook computers.
  • Lithium secondary batteries are energy storage devices having high energy and power, and have an advantage of higher capacity and operating voltage than other batteries.
  • a high energy is a problem of the safety of the battery has a risk of explosion or fire.
  • such a hybrid car has been in the spotlight, so high energy and output characteristics are required such safety can be seen more important.
  • a lithium secondary battery is composed of a cathode, an anode, and an electrolyte, and transfers energy while reciprocating both electrodes such that lithium ions from the cathode active material are inserted into the anode active material, ie, carbon particles, and desorbed upon discharge by the first charge. Since it plays a role, it becomes possible to charge and discharge.
  • the present specification provides a lithium electrode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method of manufacturing a lithium electrode.
  • a lithium metal layer having a hydroxyl group on the surface; And a silicon layer provided on the lithium metal layer and including a silicon compound, wherein the silicon compound of the silicon layer is covalently bonded to the hydroxyl group of the lower layer in contact with the silicon layer.
  • the present disclosure provides a lithium secondary battery including the lithium electrode.
  • the present disclosure provides a battery module including the lithium secondary battery as a unit cell.
  • the present specification includes the step of forming a silicon layer comprising a silicon-based compound on a lithium metal layer having a hydroxyl group on the surface, wherein the silicon-based compound of the silicon layer is covalently bonded to the hydroxyl group of the lower layer in contact with the silicon layer It provides a method for producing a lithium electrode.
  • Lithium electrode according to one embodiment of the present specification has an advantage of long life.
  • the lithium electrode according to the exemplary embodiment of the present specification may be efficiently blocked from moisture.
  • the lithium electrode according to the exemplary embodiment of the present specification may have low interface resistance, thereby improving charge and discharge efficiency.
  • Lithium electrode according to an exemplary embodiment of the present specification is blocked from the moisture, there is a desired advantage of the transfer of lithium ions.
  • FIG. 1 is a structural diagram of a lithium electrode according to an exemplary embodiment of the present specification.
  • FIG. 2 is a structural diagram of a lithium electrode according to another exemplary embodiment of the present specification.
  • FIG. 3 is a view showing a manufacturing step of the lithium electrode of FIG.
  • a lithium metal layer having a hydroxyl group on the surface; And a silicon layer provided on the lithium metal layer and including a silicon compound, wherein the silicon compound of the silicon layer is covalently bonded to the hydroxyl group of the lower layer in contact with the silicon layer.
  • the lithium electrode may have a thickness of 10 ⁇ m or more and 200 ⁇ m or less.
  • the lithium electrode may have a thickness of 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the lithium electrode means an entire thickness including a lithium metal layer and a silicon layer.
  • the thickness of the lithium electrode means the total thickness of the lithium electrode further including the thickness of the additional layer.
  • the thickness of the lithium electrode means an entire thickness including a lithium metal layer, silicon, and a buffer layer.
  • the lithium electrode may be used in a battery, and the lithium electrode may be an electrode which emits electrons when the battery is discharged.
  • the lithium electrode may be used in a secondary battery, the lithium electrode may emit electrons based on the discharge of the battery, and may serve as a cathode (reduction electrode) when the battery is charged.
  • the lithium metal layer means a metal layer containing a lithium metal element.
  • the material of the lithium metal layer may be lithium alloy, lithium metal, oxide of lithium alloy or lithium oxide. In this case, a part of the lithium metal layer may be altered by oxygen or moisture or include impurities.
  • the lithium metal layer may have a thickness of 10 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the lithium metal layer may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the percentage of the thickness of the lithium metal layer may be 90% to 99.99%. In this case, there is an advantage that the lithium ions can move smoothly due to the very thin organic protective layer.
  • the lithium metal layer may have a hydroxyl group on the surface.
  • the hydroxyl group on the surface of the lithium metal layer may be a hydroxy group formed by reaction of a lithium metal with a small amount of water in a lithium metal layer without a separate artificial process, or may be a hydroxyl group formed by surface modification through an additional artificial process.
  • the artificial process of forming a hydroxyl group on the surface of the lithium metal layer is not particularly limited, but for example, a method of polishing with a film or sandpaper, or a method of thinly oxidizing the surface of the lithium metal layer by adding a small amount of water in a solvent. And a method of polishing the surface of the lithium metal layer with n-alkanes such as methanol or pentane, but are not limited thereto.
  • the silicon layer may include a silicon-based compound provided on the lithium metal layer and covalently bonded to the hydroxyl group of the lower layer of the silicon layer.
  • the silicon layer is formed of a silicon-based compound having a reactor capable of covalently bonding with a hydroxyl group.
  • the hydroxy group and the silicon-based compound of the lithium metal layer are in contact with the lithium metal layer.
  • a substituent that can react with a hydroxyl group of the reaction may react to form a covalent bond.
  • the silicon-based compound may self-assemble on the surface of the lithium metal to form a covalent bond by reacting a hydroxyl group on the surface of the lithium metal layer with a reactive substituent of the silicon-based compound. Substituents which do not react with hydroxyl groups on the surface of the lithium metal layer among the substituents of the silicon compound may form crosslinks with neighboring silicon compounds.
  • the silicon layer may be provided on at least part of the surface of the lithium metal layer, and specifically, the silicon layer The at least one side of the surface of the lithium metal layer or the silicon layer may be provided on the entire surface of the lithium metal layer.
  • the formation of a solid electrolyte interphase (SEI) layer formed while the lithium metal layer and the electrolyte react with each other may be suppressed. That is, formation of a solid electrolyte interface layer that causes resistance can be suppressed, thereby reducing interface resistance.
  • SEI solid electrolyte interphase
  • the contact between the lithium metal layer and water may be blocked while suppressing the formation of the solid electrolyte interface layer on the surface of the lithium metal layer.
  • the silicon layer may include a silicon compound covalently bonded to the hydroxyl group of the buffer layer.
  • the silicon compound may be prepared as a compound represented by the following Chemical Formula 1.
  • R1 to R4 is each independently a halogen group, an amino group or an alkoxy group, and the rest are each independently a C 1 to C 10 alkyl group, hydroxy group, 2 ring or less aliphatic ring group, 2 ring or less Is an aromatic ring group or -L- (CF 2 ) n CF 3 , L is a direct bond or an alkylene group of C 1 to C 10 , n is an integer of 0 to 10.
  • the moisture contact angle of the silicon layer may be 100 ° or more and 160 ° or less.
  • the surface is extremely hydrophobic, there is an advantage of preventing moisture from penetrating the silicon layer, which is a protective layer.
  • the silicon layer may have a thickness of greater than or equal to 1 nm and less than or equal to 1 ⁇ m.
  • the silicon layer may be formed in the self-assembly behavior of the silane compound to form a uniform and even hydrophobic surface on the lithium metal layer.
  • the thickness of the silicon layer may be 1 nm or more and 10 nm or less.
  • the silicon layer is formed in the self-assembly behavior of the silane-based compound to form a uniform and even hydrophobic surface on the lithium metal layer, there is an advantage that it is easy to move lithium ions because it is very thin.
  • the molecules forming the silicon layer on the lithium metal layer are self-assembled and disposed as shown in FIG. 1 to form a covalent bond with a hydroxyl group on the surface of the lithium metal layer, thereby forming a silicon layer on the lithium metal layer.
  • the thickness of the silicon layer thus formed may correspond to the length of one molecule forming the silicon layer.
  • the silicon layer is thin but covalently bonded on the lithium metal layer, the silicon layer may serve as a relatively stable fixed protective layer.
  • the percentage of the thickness of the silicon layer may be 0.0001% to 10%.
  • the silicon layer which is a thin organic protective layer, lithium ions may be smoothly moved and the lithium metal layer may be blocked from moisture.
  • the percentage of the thickness of the silicon layer may be 0.0005% to 1%, more specifically, may be 0.0005% to 0.1%.
  • the buffer layer may be provided between the lithium metal layer and the silicon layer, and is a layer having a hydroxyl group on a surface thereof.
  • the buffer layer may be made of a material having a hydroxyl group to have a hydroxyl group on the surface.
  • the buffer layer may be made of a material that is easily surface modified to have a hydroxyl group through an additional process.
  • the material of the buffer layer is not particularly limited as long as it has a hydroxyl group on the surface thereof and may be coated on the lithium metal layer.
  • the buffer layer may include a siloxane compound.
  • the siloxane-based compound is expanded in the electrolyte has the advantage that the movement of lithium ions.
  • the buffer layer may include polydimethylsiloxane.
  • the buffer layer may include polydimethylsiloxane.
  • the hydroxyl group on the surface of the buffer layer may be covalently bonded to the silicon layer by reacting with a reactor of a silicon-based compound.
  • the buffer layer may be provided on at least a portion of the surface of the lithium metal layer, specifically, the buffer layer
  • the at least one side of the surface of the lithium metal layer or the silicon layer may be provided on the entire surface of the lithium metal layer.
  • the buffer layer may be provided at 90% or more of the total surface area of the lithium metal layer. Specifically, the buffer layer is preferably provided on the entire surface of the lithium metal layer. In this case, there is an advantage in that the lithium metal layer is protected from moisture and easy to form a silicon layer covalently bonded with a hydroxyl group on the surface of the protective layer.
  • the buffer layer may have a thickness of 10 nm or more and 10 ⁇ m or less.
  • the protective layer may block the water and swell to move the lithium ions without disturbing the movement of the lithium ions.
  • the thickness of the buffer layer may be 10 nm or more and 1 ⁇ m or less, and more preferably, the thickness of the buffer layer may be 10 nm or more and 100 nm or less.
  • the percentage of the thickness of the buffer layer may be 0.001% to 10%. In this case, in addition to the swelling phenomenon, it may provide an environment for smooth movement of lithium ions.
  • the percentage of the thickness of the buffer layer may be 0.005% to 5%, more specifically, may be 0.005% to 1%.
  • the present specification provides a lithium secondary battery including the lithium electrode.
  • the lithium electrode includes a cathode, and provides a lithium secondary battery comprising an electrolyte provided between the lithium electrode and the cathode.
  • the shape of the lithium secondary battery is not limited, and may be, for example, coin type, flat plate type, cylindrical type, horn type, button type, sheet type, or stacked type.
  • the lithium secondary battery may be a lithium air battery.
  • the cathode of the lithium secondary battery may be an air electrode.
  • the lithium secondary battery may further include a tank for storing the cathode electrolyte and the lithium electrode electrolyte, and a pump for moving the respective electrolyte to the electrode cell, thereby being manufactured as a flow battery.
  • the electrolyte may be an electrolyte solution in which the lithium electrode and the cathode are impregnated.
  • the lithium secondary battery may further include a separator provided between the lithium electrode and the cathode.
  • the separator located between the lithium electrode and the cathode may be used as long as it separates or insulates the lithium electrode and the cathode from each other and enables ion transport between the lithium electrode and the cathode.
  • it may be a non-conductive porous membrane or an insulating porous membrane. More specifically, nonwoven fabrics such as polypropylene nonwoven fabric or polyphenylene sulfide nonwoven fabric; Or the porous film of olefin resin, such as polyethylene and a polypropylene, can be illustrated, It is also possible to use these 2 or more types together.
  • the lithium secondary battery may further include a cathode electrolyte on the cathode side and a lithium electrode electrolyte on the lithium electrode side separated by a separator.
  • the cathode electrolyte and the lithium electrode electrolyte may each include a solvent and an electrolyte salt.
  • the cathode electrolyte and the lithium electrode electrolyte may be the same as or different from each other.
  • the electrolyte solution may be an aqueous electrolyte solution or a non-aqueous electrolyte solution.
  • the aqueous electrolyte may include water as a solvent
  • the non-aqueous electrolyte may include a non-aqueous solvent as a solvent.
  • the non-aqueous solvent may be selected generally used in the art, and is not particularly limited, for example, carbonate-based, ester-based, ether-based, ketone-based, organosulfur-based, organophosphorous ), Aprotic solvents, and combinations thereof.
  • the electrolytic salt refers to dissociation into cations and anions in water or a non-aqueous organic solvent, and is not particularly limited as long as it can transfer lithium ions in a lithium secondary battery, and may be generally used in the art.
  • the concentration of the electrolyte salt in the electrolyte solution may be 0.1 M or more and 3 M or less. In this case, the charge and discharge characteristics of the lithium secondary battery may be effectively expressed.
  • the electrolyte may be a solid electrolyte membrane or a polymer electrolyte membrane.
  • the material of the solid electrolyte membrane and the polymer electrolyte membrane is not particularly limited, and those generally used in the art may be employed.
  • the solid electrolyte membrane may include a composite metal oxide
  • the polymer electrolyte membrane may be a membrane having a conductive polymer inside the porous substrate.
  • the cathode refers to an electrode that accepts electrons and reduces lithium-containing ions when the battery is discharged in a lithium secondary battery. On the contrary, when the battery is charged, the cathode active material is oxidized to discharge electrons and lose lithium-containing ions.
  • the cathode may include a cathode current collector and a cathode active material layer formed on the cathode current collector.
  • the material of the cathode active material of the cathode active material layer is not particularly limited as long as it is applied to a lithium secondary battery together with the lithium electrode to reduce lithium-containing ions during discharge and to be oxidized during charging.
  • the lithium secondary battery may be a lithium sulfur battery, and the composite material based on the sulfur (S) is not particularly limited, and generally used in the art.
  • the cathode material used can be selected and applied.
  • the present specification provides a battery module including the lithium secondary battery as a unit cell.
  • the battery module may be formed by stacking a bipolar plate provided between two or more lithium secondary batteries according to one embodiment of the present specification.
  • the bipolar plate may be porous to supply air supplied from the outside to the cathode included in each of the lithium air batteries.
  • it may comprise porous stainless steel or porous ceramics.
  • the battery module may be used as a power source for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device.
  • the present specification includes forming a silicon layer including a silicon-based compound on a lithium metal layer having a hydroxyl group on a surface thereof, wherein the silicon-based compound of the silicon layer is covalently bonded to the hydroxyl group of the lower layer in contact with the silicon layer. It provides a method of manufacturing.
  • the forming of the silicon layer may include preparing a solution including a silicon-based compound having a substituent capable of reacting with a hydroxyl group; And coating the solution on at least part of the surface of the lithium metal layer.
  • the forming of the silicon layer may include preparing a solution including a silicon-based compound having a substituent capable of reacting with a hydroxyl group; And immersing the lithium metal layer in the solution.
  • a silicon layer 200 may be formed by applying a silicon compound (R 3 SiCl) having a chlorine group, which is a substituent capable of reacting with a hydroxyl group, on a lithium metal layer 100 having a hydroxyl group.
  • the silicon-based compound is arranged while self-assembling on the surface of the lithium metal, and the lithium metal layer and the silicon layer may be covalently bonded while hydroxy groups on the surface of the lithium metal layer react with chlorine groups to generate hydrochloric acid (HCl).
  • each R is independently a halogen group, an amino group, an alkoxy group, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an aliphatic ring group of 2 rings or less, an aromatic ring group of 2 rings or less, or -L- (CF 2 ) n CF 3 , L is a direct bond or an alkylene group of C 1 to C 10 , and n is an integer of 0 to 10.
  • the silicone compound having a substituent capable of reacting with the hydroxy group may be represented by the following Chemical Formula 1.
  • R1 to R4 is each independently a halogen group, an amino group or an alkoxy group, and the rest are each independently a C 1 to C 10 alkyl group, hydroxy group, 2 ring or less aliphatic ring group, 2 ring or less Is an aromatic ring group or -L- (CF 2 ) n CF 3 , L is a direct bond or an alkylene group of C 1 to C 10 , n is an integer of 0 to 10.
  • R1 to R3 is each independently a halogen group, an amino group or an alkoxy group, and the rest are each independently a C 1 to C 10 alkyl group, hydroxy group, 2 ring or less aliphatic ring group, 2 ring or less Is an aromatic ring group or -L- (CF 2 ) n CF 3 ,
  • R 4 is C 1 to C 10 alkyl group, hydroxy group, bicyclic aliphatic ring group, bicyclic aromatic ring group or -L- (CF 2 ) n CF 3 , L is a direct bond or C 1 to C 10 Phosphorus alkylene group, n being an integer of 0 to 10.
  • R1 may be a halogen group, an amino group or an alkoxy group.
  • R2 and R3 may be each independently a halogen group, a hydroxy group or an alkoxy group.
  • R 4 is an alkyl group having 1 to 10 carbon atoms, an aliphatic ring group having 2 rings or less, an aromatic ring group having 2 rings or less, or -L- (CF 2 ) n CF 3 , and L is a direct bond or C 1 To C 10
  • An alkylene group, n is an integer of 0 to 10.
  • R1 is a halogen group, an amino group or an alkoxy group
  • R2 and R3 are each independently a halogen group, a hydroxy group or an alkoxy group
  • R4 is an alkyl group of C 1 to C 10 , an aliphatic ring group of 2 rings or less
  • 2 is an aromatic ring of the ring below or -L- (CF 2) n CF 3
  • L is a direct bond or an alkylene group of C 1 to C 10
  • n is an integer of from 0 to 10.
  • At least one of R1 to R3 may be a halogen group. Specifically, at least one of R1 to R3 may be a chlorine group.
  • At least one of the remaining substituents and R4 of R1 to R3 may be an alkyl group or -L- (CF 2 ) n CF 3 It is a C 1 To C 10 , wherein L is a direct bond or C 1 to C 10 Phosphorus alkylene group, n being an integer of 0 to 10.
  • L is a direct bond or C 1 to C 10 Phosphorus alkylene group
  • n being an integer of 0 to 10.
  • the hydrophobicity of the surface of the silicon layer may be higher to facilitate the blocking of the lithium metal layer from moisture.
  • R1 to R3 is a halogen group and, the other of R1 to R3 and R4 substituents may be each independently a C 1 to C 10 alkyl group, or -L- (CF 2) n CF 3 ,
  • L is a direct bond or a C 1 to C 10 alkylene group
  • n is an integer of 0 to 10.
  • the silicon compound having a substituent capable of reacting with the hydroxy group may be represented by at least one of the following Chemical Formulas 2 to 4.
  • L is a direct bond or a C 1 to C 10 alkylene group
  • n is an integer of 0 to 10.
  • L may be an ethylene group.
  • L may be an ethylene group.
  • n is 5
  • L may be an ethylene group.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 10. Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-oc
  • the aliphatic ring group is not particularly limited, but preferably has 3 to 60 carbon atoms, specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl , 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl or adamantyl
  • the present invention is not limited thereto.
  • the aromatic ring group may include a heterocyclic group and a nonheterocyclic group.
  • the heterocyclic group may be a heterocyclic group having 2 to 60 carbon atoms including one or more of O, N, and S as heterologous elements, and may include a monocyclic heterocyclic group or a polycyclic heterocyclic group.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group
  • the non-heterocyclic group refers to an aromatic ring group composed of carbon and hydrogen, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the non-heterocyclic group is a monocyclic aryl group
  • carbon number is not particularly limited, but preferably 6 to 25 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group or a terphenyl group, but is not limited thereto.
  • Carbon number is not particularly limited when the non-heterocyclic group is a polycyclic aryl group. It is preferable that it is C10-24.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryllenyl group, chrysenyl group or fluorenyl group, but is not limited thereto.
  • the amine group may include an alkylamine group, an arylamine group, a diarylamine group, a dialkylamine group, and an alkylarylamine group.
  • carbon number is not specifically limited, It is preferable that it is 1-30.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group.
  • the alkoxy group is -OR and R is an alkyl group.
  • R is an alkyl group.
  • the alkyl group may refer to the above description.
  • the silicon compound having a substituent capable of reacting with the hydroxy group may be any one of the following compounds.
  • the method of manufacturing a lithium electrode may include forming a buffer layer having a hydroxyl group on a surface of the lithium metal layer; And forming a silicon layer on the buffer layer including a silicon compound covalently bonded to the hydroxyl group.
  • a silicon-based compound having a chlorine group which is a substituent capable of reacting with a hydroxyl group, is formed on the lithium metal layer 100 by forming a buffer layer 300 having a hydroxyl group on a surface thereof.
  • 3 SiCl may be applied to form the silicon layer 200.
  • the silicon compound may be arranged while self-assembling on the surface of the buffer layer, and the buffer layer and the silicon layer may be covalently bonded while hydroxy groups on the surface of the buffer layer react with chlorine groups to generate hydrochloric acid (HCl).
  • each R is independently a halogen group, an amino group, an alkoxy group, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an aliphatic ring group of 2 rings or less, an aromatic ring group of 2 rings or less, or -L- (CF 2 ) n CF 3 , L is a direct bond or an alkylene group of C 1 to C 10 , and n is an integer of 0 to 10.
  • the forming of the buffer layer may include forming a buffer layer on the lithium metal layer; And introducing a hydroxyl group to the surface of the buffer layer by subjecting the buffer layer to oxygen plasma treatment or ultraviolet / ozone treatment.
  • the hydroxyl layer may be introduced to the surface of the buffer layer by forming the buffer layer 300 on the lithium metal layer 100 and subjecting the surface of the buffer layer to oxygen plasma treatment or ultraviolet / ozone treatment.
  • the upper portion 330 of the oxygen plasma-treated or ultraviolet / ozone treated buffer layer is modified to form a layer made of silicon oxide (SiOx, where x is oxidation water), and the upper portion 330 of the buffer layer has a hydroxyl group on the surface thereof.
  • the lower portion 310 of the buffer layer 300 that is not oxygen plasma treated or UV / ozone treated is not modified in the buffer layer 300, so that the original material may be maintained.
  • the forming of the buffer layer may include forming a buffer layer on a release substrate; And laminating a buffer layer on the lithium metal layer.
  • the method of manufacturing a lithium electrode may include forming a buffer layer having a hydroxyl group on a surface of a releasable substrate; Forming a silicon layer on the buffer layer including a silicon compound covalently bonded to the hydroxyl group; And laminating on the lithium metal layer by removing the release substrate.
  • the forming of the buffer layer may include forming a buffer layer on a surface of a release substrate; And introducing a hydroxyl group to the surface of the buffer layer by subjecting the buffer layer to oxygen plasma treatment or ultraviolet / ozone treatment.
  • the lithium metal layer In the method of manufacturing the lithium electrode, a description regarding the lithium metal layer, the silicon layer, the buffer layer, and the like may be cited above.
  • the buffer layer composition for forming the buffer layer may include a precursor and a curing agent of PDMS, wherein the curing agent to the PDMS precursor may be added in a ratio of 10: 1 to 10: 5. As the amount of the curing agent increases, the curing time is shortened, and the temperature for curing after applying the composition for the buffer layer is 50 ° C to 100 ° C, and the higher the curing temperature, the shorter the curing time.
  • Lithium foils having a thickness of 20 ⁇ m, 40 ⁇ m, and 150 ⁇ m, respectively, or thicknesses of 20 ⁇ m, 40 ⁇ m, and 150 ⁇ m, respectively.
  • a copper foil was further attached to the lithium foil to prepare a lithium electrode layer.
  • the lithium electrode layer was immersed in anhydrous alkane solvent for 1 hour, then taken out and dried in vacuo for 30 minutes.
  • the dried lithium electrode layer was immersed in Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane / toluene solution (1 wt.%) For 1 hour, then taken out and washed with anhydrous alkane solvent. At this time, it is generally immersed in a solution of about 2 mL per cm 2 of the area of the lithium electrode layer.
  • the resulting product can be used as a lithium electrode coated with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane.
  • the structure of the battery may be variously applied, such as a coin cell, a pouch cell.
  • a copper foil was further attached to a lithium foil having a thickness of 20 ⁇ m, 40 ⁇ m, and 150 ⁇ m, or a lithium foil having a thickness of 20 ⁇ m, 40 ⁇ m, and 150 ⁇ m, respectively, to prepare a lithium electrode layer.
  • Polydimethylsiloxane was used as the buffer layer on the lithium electrode layer.
  • PDMS Polydimethylsiloxane
  • the composition was coated on the electrode foil by drop-casting or spin-coating to form a PDMS layer to prepare an electrode.
  • the electrode was heat treated at 80 ° C. for 2 hours to cure the PDMS layer.
  • the cured PDMS was treated with UV ozone or oxygen plasma to form polar hydroxyl groups on the surface of the PDMS (produced SiOx phase).
  • the treated electrode foil was then immersed in trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane / toluene solution (1 wt.%) For 1 hour, then taken out and washed with anhydrous alkane solvent. At this time, it is usually immersed in a solution of about 2 mL per cm 2 of foil area.
  • the resulting product can be used as a lithium electrode coated with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane.
  • the structure of the battery may be variously applied, such as a coin cell, a pouch cell.
  • Lithium foil or lithium / copper foil which did not form a silicon layer in Example 1 was used as the comparative example 1.
  • Electrolyte Composition 1M LiPF 6 in EC: EMC (1: 1 v / v)
  • Examples 1 and 2 and Comparative Example 1 were exposed to air for 10 minutes (RH 50%), and water droplets were dropped on Examples 1 and 2 and Comparative Example 1, and the conditions were observed. 5 is shown.
  • Example 2 LiCl having a very hygroscopicity was generated as a by-product, and thus the moisture barrier property was lowered than that of Comparative Example 1. On the other hand, in Example 2, the moisture barrier property was improved compared to Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

본 출원은 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법에 관한 것이다. 구체적으로 상기 리튬 전극은 표면에 히드록시기를 갖는 리튬금속층; 및 상기 리튬금속층 상에 구비되고 실리콘계 화합물을 포함하는 실리콘층을 포함하며, 상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합된다.

Description

리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법
본 발명은 2014년 09월 05일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0118493 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법에 관한 것이다.
최근 전자기기의 소형화 및 경량화 추세에 따라 전원으로 작용하는 전지도 소형화 및 경량화가 요구되고 있다. 소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬 이차 전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트북 등의 휴대용 전자기기 및 통신기기 등에 이용되고 있다.
리튬 이차 전지는 높은 에너지와 파워를 갖는 에너지 저장 장치로서 다른 전지에 비해 용량이나 작동 전압이 높다는 우수한 장점을 가지고 있다. 그러나, 이러한 높은 에너지로 인해 전지의 안전성이 문제가 되어 폭발이나 화재 등의 위험성을 가지고 있다. 특히, 근래에 각광받고 있는 하이브리드 자동차 등에서는 높은 에너지와 출력특성이 요구되므로 이러한 안전성이 더욱 중요하다 볼 수 있다.
일반적으로 리튬 이차 전지는 캐소드, 애노드 및 전해질로 구성되며, 첫번째 충전에 의해 캐소드 활물질로부터 나온 리튬 이온이 애노드 활물질, 즉 카본 입자 내에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.
한편, 휴대용 전자기기의 발달로 인하여 고용량의 전지가 계속 요구됨에 따라 기존 애노드재로 사용되는 탄소보다 단위 무게당 용량이 월등히 높은 고용량 리튬 애노드재가 활발하게 연구되고 있다.
본 명세서는 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법을 제공하고자 한다.
본 명세서는 표면에 히드록시기를 갖는 리튬금속층; 및 상기 리튬금속층 상에 구비되고 실리콘계 화합물을 포함하는 실리콘층을 포함하며, 상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합되는 것인 리튬 전극을 제공한다.
또한, 본 명세서는 상기 리튬 전극을 포함하는 리튬 이차 전지를 제공한다.
또한, 본 명세서는 상기 리튬 이차 전지를 단위 전지로 포함하는 전지 모듈을 제공한다.
또한, 본 명세서는 표면에 히드록시기를 갖는 리튬금속층 상에 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계를 포함하며, 상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합되는 것인 리튬 전극의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따른 리튬 전극은 수명이 긴 장점이 있다.
본 명세서의 일 실시상태에 따른 리튬 전극은 수분으로부터 효율적으로 차단될 수 있다.
본 명세서의 일 실시상태에 따른 리튬 전극은 계면저항이 낮아 충방전 효율이 향상될 수 있다.
본 명세서의 일 실시상태에 따른 리튬 전극은 수분으로부터 차단되면서, 리튬 이온의 전달이 원할한 장점이 있다.
도 1은 본 명세서의 일 실시상태에 따른 리튬 전극의 구조도이다.
도 2는 본 명세서의 다른 실시상태에 따른 리튬 전극의 구조도이다.
도 3은 도 2의 리튬 전극의 제조단계를 나타낸 도면이다.
도 4는 실험예 1의 리튬전극의 사이클 수명에 대한 평가 그래프이다.
도 5는 실험예 2의 수분침투율을 나타낸 결과이다.
<부호의 설명>
100: 리튬금속층
200: 실리콘층
300: 버퍼층
310: 버퍼층의 하부
330: 버퍼층의 상부
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서는 표면에 히드록시기를 갖는 리튬금속층; 및 상기 리튬금속층 상에 구비되고 실리콘계 화합물을 포함하는 실리콘층을 포함하며, 상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합되는 것인 리튬 전극을 제공한다.
상기 리튬전극의 두께는 10 ㎛ 이상 200 ㎛ 이하일 수 있다. 바람직하게, 상기 리튬전극의 두께는 10 ㎛ 이상 100 ㎛ 이하일 수 있다.
본 명세서에서, 상기 리튬 전극의 두께는 리튬금속층 및 실리콘층을 포함하는 전체 두께를 의미한다. 상기 리튬 전극이 리튬금속층 및 실리콘층 이외에 추가의 층을 더 포함하는 경우 상기 리튬 전극의 두께는 상기 추가의 층의 두께를 더 포함하는 리튬 전극 전체 두께를 의미한다. 예를 들면, 상기 리튬 전극이 후술할 버퍼층을 더 포함할 경우 상기 리튬 전극의 두께는 리튬금속층, 실리콘 및 버퍼층을 포함하는 전체 두께를 의미한다.
본 명세서에서, 상기 리튬 전극은 전지에 사용될 수 있고, 상기 리튬 전극은 전지가 방전될 때 전자를 내보내는 전극일 수 있다. 구체적으로, 상기 리튬 전극은 이차 전지에 사용될 수 있고, 상기 리튬 전극은 전지의 방전 시를 기준으로 전자를 내보내고, 전지의 충전 시에 캐소드(환원전극)의 역할을 수행할 수 있다.
상기 리튬금속층은 리튬금속 원소를 포함하는 금속층을 의미한다. 상기 리튬금속층의 재질은 리튬합금, 리튬금속, 리튬합금의 산화물 또는 리튬산화물일 수 있다. 이때, 상기 리튬금속층은 일부가 산소나 수분에 의해 변질되거나 불순물을 포함할 수 있다.
상기 리튬금속층의 두께는 10 ㎛ 이상 200 ㎛ 이하일 수 있다. 바람직하게, 상기 리튬금속층의 두께는 10 ㎛ 이상 100 ㎛ 이하일 수 있다.
상기 리튬 전극의 전체 두께를 기준으로, 상기 리튬금속층의 두께의 백분율은 90% 내지 99.99%일 수 있다. 이 경우 매우 얇은 유기 보호층으로 인해 리튬 이온이 원활한 이동을 할 수 있다는 장점이 있다.
상기 리튬금속층은 표면에 히드록시기를 가질 수 있다. 상기 리튬금속층의 표면의 히드록시기는 별도의 인위적인 공정없이 리튬금속층 중 리튬금속이 소량의 수분과 반응하여 생성된 히드록시기이거나, 추가의 인위적인 공정을 통해 표면개질되어 형성된 히드록시기일 수 있다.
상기 리튬금속층의 표면에 히드록시기를 형성하는 인위적인 공정은 특별히 한정하지 않으나, 예를 들면, 필름이나 사포로 연마(polishing)하는 방법, 용매 내 소량의 수분을 첨가하여 리튬금속층의 표면을 얇게 산화시키는 방법 및 메탄올이나 펜탄 등과 같은 n-알칸으로 리튬금속층의 표면을 연마(polishing)하는 방법 등이 있으나 이에 한정되지 않는다.
상기 실리콘층은 상기 리튬금속층 상에 구비되고 실리콘층의 하부막의 히드록시기와 공유결합된 실리콘계 화합물을 포함할 수 있다.
상기 실리콘층은 히드록시기와 공유결합할 수 있는 반응기를 갖는 실리콘계 화합물로 형성된 것이며, 상기 실리콘층과 직접적으로 접촉하는 하부막이 리튬금속층인 경우, 상기 리튬금속층과 접촉하는 표면에서 리튬금속층의 히드록시기와 실리콘계 화합물 중 히드록시기와 반응할 수 있는 치환기가 반응하여 공유결합을 형성할 수 있다.
상기 실리콘계 화합물은 상기 리튬금속 표면에서 자기조립(self assembly)되면서 리튬금속층의 표면의 히드록시기와 실리콘계 화합물의 반응성 치환기가 반응하여 공유결합을 형성할 수 있다. 상기 실리콘계 화합물의 치환기 중 리튬금속층의 표면의 히드록시기와 반응하지 않는 치환기는 이웃한 실리콘계 화합물과 가교결합을 형성할 수 있다.
상기 실리콘층은 리튬금속층의 표면 중 적어도 일부에 구비될 수 있으며, 구체적으로 상기 실리콘층은 리튬금속층의 표면 중 적어도 일측면에 구비되거나 상기 실리콘층은 리튬금속층의 전체 표면에 구비될 수 있다.
상기 실리콘층이 리튬금속층의 표면 중 적어도 일부에 구비되는 경우에는 리튬금속층과 전해액이 반응하면서 형성되는 고체 전해질 계면(solid electrolyte interphase, SEI)층의 형성이 억제될 수 있다. 즉, 저항을 유발하는 고체 전해질 계면층의 형성이 억제되어 계면저항을 줄일 수 있다.
상기 실리콘층이 리튬금속층의 전체 표면에 구비되는 경우에는 리튬금속층의 표면 상에 고체 전해질 계면층이 형성되는 것을 억제하면서 리튬금속층과 수분의 접촉을 차단할 수 있다.
상기 리튬금속층과 실리콘층 사이에 버퍼층이 구비되는 경우에는, 상기 실리콘층은 상기 버퍼층의 히드록시기와 공유결합된 실리콘계 화합물을 포함할 수 있다.
상기 실리콘계 화합물은 하기 화학식 1로 표시되는 화합물로 제조될 수 있다.
[화학식 1]
Figure PCTKR2015009219-appb-I000001
상기 화학식 1에서, R1 내지 R4 중 적어도 하나는 각각 독립적으로 할로겐기, 아미노기 또는 알콕시기이고, 나머지는 각각 독립적으로 C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 실리콘층의 수분접촉각은 100°이상 160°이하일 수 있다. 이 경우 극소수성 표면을 나타내기 때문에 수분이 보호층인 실리콘층을 침투하는 것을 막을 수 있는 장점이 있다.
상기 실리콘층의 두께는 1 nm 이상 1 ㎛ 이하일 수 있다. 상기 실리콘층은 실란계 화합물의 자기조립 거동에서 형성되어 리튬금속층 위에 균일하고 고른 소수성 표면을 형성할 수 있다.
구체적으로, 상기 실리콘층의 두께는 1 nm 이상 10 nm 이하일 수 있다. 상기 실리콘층은 실란계 화합물의 자기조립 거동에서 형성되어 리튬금속층 위에 균일하고 고른 소수성 표면을 형성할 수 있고, 매우 얇기 때문에 리튬 이온이 이동하는데 용이한 장점이 있다.
본 명세서에서, 리튬금속층 상에 실리콘층을 형성하는 분자들이 도 1에 도시된 바와 같이 자기조립되어 배치되면서 리튬금속층의 표면의 히드록시기와 공유결합을 형성하여 리튬금속층 상의 실리콘층이 형성될 수 있다. 이에 따라 형성된 실리콘층의 두께는 실리콘층을 형성하는 분자 하나의 길이에 대응될 수 있다.
상기 실리콘층은 두께는 얇지만 리튬금속층 상에 공유결합되었기 때문에 비교적 안정적으로 고정된 보호층으로서 역할을 수행할 수 있다.
상기 리튬 전극의 전체 두께를 기준으로, 상기 실리콘층의 두께의 백분율은 0.0001% 내지 10%일 수 있다. 이 경우 얇은 유기 보호층인 실리콘층으로 인해 리튬 이온이 원활히 이동하면서 리튬금속층이 수분으로부터 차단될 수 있다.
구체적으로, 상기 리튬 전극의 전체 두께를 기준으로, 상기 실리콘층의 두께의 백분율은 0.0005% 내지 1%일 수 있으며, 더 구체적으로, 0.0005% 내지 0.1%일 수 있다.
상기 버퍼층은 상기 리튬금속층과 실리콘층 사이에 구비될 수 있으며, 표면에 히드록시기를 갖는 층이다.
상기 버퍼층은 히드록시기를 갖는 물질로 제조되어 표면에 히드록시기를 가질 수 있다.
상기 버퍼층은 추가의 공정을 통해 히드록시기를 갖도록 표면개질하기 용이한 물질로 제조될 수 있다.
상기 버퍼층의 재질은 표면에 히드록시기를 갖고 리튬금속층에 코팅될 수 있는 물질이라면, 특별히 한정하지 않으나, 예를 들면 상기 버퍼층은 실록산계 화합물을 포함할 수 있다. 이 경우 표면에 히드록시기를 갖도록 표면을 개질하기에 용이하며 리튬금속층의 표면에 코팅이 잘 되는 장점이 있다. 또한, 상기 실록산계 화합물은 전해질 속에서 팽창되어 리튬이온의 이동이 가능한 장점이 있다.
구체적으로, 상기 버퍼층은 폴리디메틸실록산을 포함할 수 있다. 이 경우 전해질 속에서 팽창되어 리튬이온의 이동이 원할한 장점이 있다.
상기 버퍼층 표면의 히드록시기는 실리콘계 화합물의 반응기와 반응하여 실리콘층과 공유결합될 수 있다.
상기 버퍼층은 리튬금속층의 표면 중 적어도 일부에 구비될 수 있으며, 구체적으로 상기 버퍼층은 리튬금속층의 표면 중 적어도 일측면에 구비되거나 상기 실리콘층은 리튬금속층의 전체 표면에 구비될 수 있다.
상기 버퍼층은 리튬금속층의 전체 표면적 중 90% 이상에 구비될 수 있으며, 구체적으로, 상기 버퍼층은 리튬금속층의 전체표면에 구비되는 것이 바람직하다. 이 경우 리튬금속층을 수분으로부터 보호하고 보호층의 표면의 히드록시기와 공유결합된 실리콘층을 형성하기에 용이한 장점이 있다.
상기 버퍼층의 두께는 10nm 이상 10㎛ 이하일 수 있다. 이 경우 수분을 차단하는 보호층의 역할을 보조하고 팽윤되어 리튬 이온의 이동을 방해하지 않고 리튬이온을 이동시킬 수 있다.
바람직하게, 상기 버퍼층의 두께는 10nm 이상 1㎛ 이하일 수 있으며, 더 바람직하게, 상기 버퍼층의 두께는 10nm 이상 100nm 이하일 수 있다.
상기 리튬 전극의 전체 두께를 기준으로, 상기 버퍼층의 두께의 백분율은 0.001% 내지 10 %일 수 있다. 이 경우 팽윤 현상과 더불어 리튬 이온의 원활한 이동을 위한 환경을 제공할 수 있다.
구체적으로, 상기 리튬 전극의 전체 두께를 기준으로, 상기 버퍼층의 두께의 백분율은 0.005% 내지 5 %일 수 있으며, 더 구체적으로, 0.005% 내지 1%일 수 있다.
본 명세서는 상기 리튬 전극을 포함하는 리튬 이차 전지를 제공한다. 구체적으로, 상기 리튬 전극; 및 캐소드를 포함하고, 상기 리튬 전극과 캐소드 사이에 구비된 전해질을 포함하는 것인 리튬 이차 전지를 제공한다.
상기 리튬 이차 전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다.
상기 리튬 이차 전지는 리튬 공기 전지일 수 있다. 구체적으로, 상기 리튬 이차 전지의 캐소드는 공기극일 수 있다.
상기 리튬 이차 전지는 캐소드 전해액 및 리튬 전극 전해액을 보관하는 각각의 탱크 및 각각의 전해액을 전극셀로 이동시키는 펌프를 더 포함하여, 플로우 배터리로 제조될 수 있다.
상기 전해질은 상기 리튬 전극 및 캐소드가 함침된 전해질액일 수 있다.
상기 리튬 이차 전지는 상기 리튬 전극과 캐소드 사이에 구비된 분리막을 더 포함할 수 있다. 상기 리튬 전극과 캐소드 사이에 위치하는 분리막은 리튬 전극과 캐소드를 서로 분리 또는 절연시키고, 리튬 전극과 캐소드 사이에 이온 수송을 가능하게 하는 것이면, 어느 것이나 사용 가능하다. 예를 들어, 비전도성 다공성막 또는 절연성 다공성막일 수 있다. 더욱 구체적으로 폴리프로필렌 소재의 부직포나 폴리페닐렌 설파이드 소재의 부직포와 같은 고분자 부직포; 또는 폴리에틸렌이나 폴리프로필렌과 같은 올레핀계 수지의 다공성 필름을 예시할 수 있으며, 이들을 2종 이상 병용하는 것도 가능하다.
상기 리튬 이차 전지는 분리막에 의해 구분된 캐소드 측의 캐소드 전해액 및 리튬 전극 측의 리튬 전극 전해액을 더 포함할 수 있다. 상기 캐소드 전해액 및 리튬 전극 전해액은 각각 용매 및 전해염을 포함할 수 있다. 상기 캐소드 전해액 및 리튬 전극 전해액은 서로 동일하거나 서로 상이할 수 있다.
상기 전해액은 수계 전해액 또는 비수계 전해액일 수 있다. 상기 수계 전해액은 용매로서 물을 포함할 수 있으며, 상기 비수계 전해액은 용매로서 비수계 용매를 포함할 수 있다.
상기 비수계 용매는 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있으며, 특별히 한정하지 않으나, 예를 들면, 카보네이트계, 에스테르계, 에테르계, 케톤계, 유기황(organosulfur)계, 유기인(organophosphorous)계, 비양성자성 용매 및 이들의 조합으로 이루어지는 군으로부터 선택될 수 있다.
상기 전해염은 물 또는 비수계 유기용매에서 양이온 및 음이온으로 해리되는 것을 말하며, 리튬 이차 전지에서 리튬 이온을 전달할 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있다.
상기 전해액에서 전해염의 농도는 0.1 M 이상 3 M 이하일 수 있다. 이 경우 리튬 이차 전지의 충방전 특성이 효과적으로 발현될 수 있다.
상기 전해질은 고체 전해질막 또는 고분자 전해질막일 수 있다.
상기 고체 전해질막 및 고분자 전해질막의 재질은 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 채용할 수 있다. 예를 들면, 상기 고체 전해질막은 복합금속산화물을 포함할 수 있으며, 상기 고분자 전해질막은 다공성 기재의 내부에 전도성 고분자가 구비된 막일 수 있다.
상기 캐소드는 리튬 이차 전지에서 전지가 방전될 때 전자를 받아들이며 리튬 함유 이온이 환원되는 전극을 의미한다. 반대로, 전지의 충전 시에는 리튬 전극(산화전극)의 역할을 수행하여 캐소드 활물질이 산화되어 전자를 내보내고 리튬 함유 이온을 잃게 된다.
상기 캐소드는 캐소드 집전체 및 상기 캐소드 집전체 상에 형성된 캐소드 활물질층을 포함할 수 있다.
본 명세서에서, 상기 리튬 전극과 함께 리튬 이차 전지에 적용되어 방전시 리튬 함유 이온이 환원하고 충전시에 산화될 수 있다면 상기 캐소드 활물질층의 캐소드 활물질의 재질은 특별히 한정되지 않는다. 예를 들면, 전이금속 산화물 또는 설퍼(S)를 기반으로 하는 복합재일 수 있으며, 구체적으로 LiCoO2, LiNiO2, LiFePO4, LiMn2O4, LiNixCoyMnzO2(여기서, x+y+z=1), Li2FeSiO4, Li2FePO4F 및 Li2MnO3 중 적어도 하나를 포함할 수 있다.
또한, 상기 캐소드가 설퍼(S)를 기반으로 하는 복합재인 경우에는 상기 리튬 이차 전지는 리튬 설퍼 전지일 수 있으며, 상기 설퍼(S)를 기반으로 하는 복합재는 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 캐소드 재료를 선택하여 적용할 수 있다.
본 명세서는 상기 리튬 이차 전지를 단위 전지로 포함하는 전지 모듈을 제공한다.
상기 전지 모듈은 본 명세서의 하나의 실시 상태에 따른 2 이상의 리튬 이차 전지 사이에 구비된 바이폴라(bipolar) 플레이트로 스택킹(stacking)하여 형성될 수 있다.
상기 리튬 이차 전지가 리튬 공기 전지인 경우, 상기 바이폴라 플레이트는 외부에서 공급되는 공기를 리튬 공기 전지 각각에 포함된 캐소드에 공급할 수 있도록 다공성일 수 있다. 예를 들어, 다공성 스테인레스 스틸 또는 다공성 세라믹을 포함할 수 있다.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장장치의 전원으로 사용될 수 있다.
본 명세서는 표면에 히드록시기를 갖는 리튬금속층 상에 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계를 포함하며, 상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합되는 것인 리튬 전극의 제조방법을 제공한다.
상기 실리콘층을 형성하는 단계는 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물을 포함하는 용액을 준비하는 단계; 및 상기 용액을 리튬금속층의 표면 중 적어도 일부에 코팅하는 단계를 포함할 수 있다.
상기 실리콘층을 형성하는 단계는 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물을 포함하는 용액을 준비하는 단계; 및 상기 용액에 상기 리튬금속층을 침지하는 단계를 포함할 수 있다.
도 1을 바탕으로 설명하면, 히드록시기를 갖는 리튬금속층(100) 상에 히드록시기와 반응할 수 있는 치환기인 염소기를 갖는 실리콘계 화합물(R3SiCl)을 도포하여 실리콘층(200)을 형성할 수 있다. 상기 실리콘계 화합물은 상기 리튬금속 표면에서 자기조립되면서 배열되고 리튬금속층의 표면의 히드록시기와 실리콘계 화합물의 염소기가 반응하여 염산(HCl)을 생성하면서 리튬금속층과 실리콘층이 공유결합될 수 있다. 상기 R3SiCl에서, R은 각각 독립적으로 할로겐기, 아미노기, 알콕시기, C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2015009219-appb-I000002
상기 화학식 1에서, R1 내지 R4 중 적어도 하나는 각각 독립적으로 할로겐기, 아미노기 또는 알콕시기이고, 나머지는 각각 독립적으로 C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 화학식 1에서, R1 내지 R3 중 적어도 하나는 각각 독립적으로 할로겐기, 아미노기 또는 알콕시기이고, 나머지는 각각 독립적으로 C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며,
R4는 C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이고, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 화학식 1에서, R1은 할로겐기, 아미노기 또는 알콕시기일 수 있다.
상기 화학식 1에서, R2 및 R3는 각각 독립적으로 할로겐기, 히드록시기 또는 알콕시기일 수 있다.
상기 화학식 1에서, R4는 C1 내지 C10인 알킬기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이고, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 화학식 1에서, R1은 할로겐기, 아미노기 또는 알콕시기이고, R2 및 R3는 각각 독립적으로 할로겐기, 히드록시기 또는 알콕시기이며, R4는 C1 내지 C10인 알킬기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이고, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 화학식 1에서, R1 내지 R3 중 적어도 하나는 할로겐기일 수 있다. 구체적으로 R1 내지 R3 중 적어도 하나는 염소기일 수 있다.
상기 화학식 1에서, R1 내지 R3 중 나머지 치환기 및 R4 중 적어도 하나는 C1 내지 C10인 알킬기 또는 -L-(CF2)nCF3일 수 있으며, 이때 L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다. 이 경우 실리콘층의 표면의 소수성이 더 높아져 리튬금속층을 수분으로부터 차단하기에 용이할 수 있다.
상기 화학식 1에서, R1 내지 R3 중 적어도 하나는 할로겐기이며, R1 내지 R3 중 나머지 치환기 및 R4는 각각 독립적으로 C1 내지 C10인 알킬기 또는 -L-(CF2)nCF3일 수 있으며, 이때 L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물은 하기 화학식 2 내지 4 중 적어도 하나로 표시될 수 있다.
[화학식 2]
Figure PCTKR2015009219-appb-I000003
[화학식 3]
Figure PCTKR2015009219-appb-I000004
[화학식 4]
Figure PCTKR2015009219-appb-I000005
상기 화학식 2 내지 4에서,
L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 화학식 2에서, L은 에틸렌기일 수 있다.
상기 화학식 3에서, L은 에틸렌기일 수 있다.
상기 화학식 4에서, n은 5이고, L은 에틸렌기일 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 10인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실 또는 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 지방족고리기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 또는 아다만틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 방향족 고리기는 헤테로고리기 및 비헤테로고리기를 포함할 수 있다.
상기 헤테로고리기는 이종 원소로 O, N 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60인 헤테로고리기일 수 있으며, 단환식 헤테로고리기 또는 다환식 헤테로고리기를 포함할 수 있다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 또는 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 비헤테로고리기는 탄소 및 수소로 구성된 방향족 고리기를 의미하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다.
상기 비헤테로고리기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 25인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기 또는 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 비헤테로고리기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기 또는 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 아킬아민기, 아릴아민기, 디아릴아민기, 디알킬아민기 및 알킬아릴아민기를 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기 또는 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알콕시기는 -OR이고, R은 알킬기이다. 이때, 알킬기는 상술한 설명을 인용할 수 있다.
상기 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물은 하기 화합물 중 어느 하나일 수 있다.
Figure PCTKR2015009219-appb-I000006
상기 리튬 전극의 제조방법은 상기 리튬금속층의 표면에 히드록시기를 갖는 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 상기 히드록시기와 공유결합된 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계를 포함할 수 있다.
도 2를 바탕으로 설명하면, 리튬금속층(100) 상에 표면에 히드록시기를 갖는 버퍼층(300)을 형성하고, 상기 버퍼층(300) 상에 히드록시기와 반응할 수 있는 치환기인 염소기를 갖는 실리콘계 화합물(R3SiCl)을 도포하여 실리콘층(200)을 형성할 수 있다. 상기 실리콘계 화합물은 상기 버퍼층 표면에서 자기조립되면서 배열되고 버퍼층의 표면의 히드록시기와 실리콘계 화합물의 염소기가 반응하여 염산(HCl)을 생성하면서 버퍼층과 실리콘층이 공유결합될 수 있다. 상기 R3SiCl에서, R은 각각 독립적으로 할로겐기, 아미노기, 알콕시기, C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
상기 버퍼층을 형성하는 단계는 상기 리튬금속층 상에 버퍼층을 형성하는 단계; 및 상기 버퍼층을 산소 플라스마 처리 또는 자외선/오존 처리하여 버퍼층의 표면에 히드록시기를 도입하는 단계를 포함할 수 있다.
도 3을 바탕으로 설명하면, 리튬금속층(100) 상에 버퍼층(300)을 형성하고 상기 버퍼층의 표면을 산소 플라스마 처리 또는 자외선/오존 처리하여 버퍼층의 표면에 히드록시기를 도입할 수 있다. 이때, 산소 플라스마 처리 또는 자외선/오존 처리된 버퍼층의 상부(330)는 개질되어 실리콘옥사이드(SiOx, 여기서 x는 산화수이다.)로 이루어진 층이 되고 상기 버퍼층의 상부(330)는 표면에 히드록시기를 가질 수 있다. 또한, 버퍼층(300) 중 산소 플라스마 처리 또는 자외선/오존 처리되지 않은 버퍼층의 하부(310)는 개질되지 않아 원래의 재질이 유지될 수 있다.
상기 버퍼층을 형성하는 단계는 이형성 기재에 버퍼층을 형성하는 단계; 및 상기 리튬금속층 상에 버퍼층을 라미네이트하는 단계를 포함할 수 있다.
상기 리튬 전극의 제조방법은 이형성 기재의 표면에 히드록시기를 갖는 버퍼층을 형성하는 단계; 상기 버퍼층 상에 상기 히드록시기와 공유결합된 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계; 및 상기 이형성 기재를 제거하여 리튬금속층 상에 라미네이트하는 단계를 포함할 수 있다.
상기 버퍼층을 형성하는 단계는 이형성 기재의 표면에 버퍼층을 형성하는 단계; 및 상기 버퍼층을 산소 플라스마 처리 또는 자외선/오존 처리하여 버퍼층의 표면에 히드록시기를 도입하는 단계를 포함할 수 있다.
상기 리튬 전극의 제조방법에서, 리튬금속층, 실리콘층, 버퍼층 등에 관한 설명은 상술한 바를 인용할 수 있다.
상기 버퍼층을 형성하기 위한 버퍼층용 조성물은 PDMS의 전구체 및 경화제를 포함할 수 있으며, 이때, PDMS전구체 대비 경화제는 10:1 내지 10:5의 비율로 첨가될 수 있다. 경화제의 양이 증가할수록 경화시간이 단축되며, 버퍼층용 조성물을 도포한 후 경화하는 온도는 50℃내지 100℃이며, 경화온도가 높을수록 경화시간이 단축된다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
두께가 각각 20㎛, 40㎛, 150 ㎛인 리튬호일 또는 두께가 각각 20㎛, 40㎛, 150 ㎛인 리튬 호일에 구리 호일을 더 부착하여 리튬전극층을 준비했다. 리튬전극층을 무수 알칸계 용매에 1 시간 동안 담근 후, 꺼내어 30분 동안 진공 건조시킨다.
건조된 리튬전극층을 Trichloro(1H,1H,2H,2H-perfluorooctyl)silane/toluene 용액 (1 wt.%)에 1 시간 동안 담근 후, 꺼내어 무수 알칸 용매로 세척한다. 이때, 리튬전극층의 면적 단위 cm2 당 2 mL 정도의 용액에 담그는 것이 일반적이다.
이렇게 얻어진 결과물은 Trichloro(1H,1H,2H,2H-perfluorooctyl)silane이 코팅된 리튬 전극으로 활용될 수 있다. 전지의 구조로는 코인 셀, 파우치 셀 등 다양하게 적용될 수 있다.
[실시예 2]
두께가 각각 20㎛, 40㎛, 150 ㎛인 리튬호일 또는 두께가 각각 20㎛, 40㎛, 150 ㎛인 리튬 호일에 구리 호일을 더 부착하여 리튬전극층을 준비했다.
상기 리튬전극층 위에 버퍼층으로서 polydimethylsiloxane(PDMS)를 사용했다. PDMS 전구체와 경화제를 10:1의 중량비로 용매에 첨가하여 조성물을 제조한 후, 전극호일 위에 상기 조성물을 drop-casting 또는 spin-coating으로 코팅하여 PDMS층을 형성하여 전극을 제조했다. 상기 전극을 80℃에서 2시간 동안 열처리하여 상기 PDMS층을 경화했다. 상기 경화된 PDMS를 UV 오존 처리나 산소 플라즈마 처리하여 PDMS 표면에 polar한 hydroxyl기를 형성했다(SiOx phase 생성).
이후 처리된 전극호일을 trichloro(1H,1H,2H,2H-perfluorooctyl)silane/toluene 용액 (1 wt.%)에 1 시간 동안 담근 후, 꺼내어 무수 알칸 용매로 세척했다. 이때, 보통은 호일 면적 단위 cm2 당 2 mL 정도의 용액에 담그는 것이 일반적이다.
이렇게 얻어진 결과물은 Trichloro(1H,1H,2H,2H-perfluorooctyl)silane이 코팅된 리튬 전극으로 활용될 수 있다. 전지의 구조로는 코인 셀, 파우치 셀 등 다양하게 적용될 수 있다.
[비교예 1]
실시예 1에서 실리콘층을 형성하지 않은 리튬 호일 또는 리튬/구리 호일을 비교예 1로 사용했다.
[실험예 1]
리튬전극의 수명
실시예 1과 2 및 비교예 1의 리튬전극의 사이클 수명을 평가했다. 구체적으로, Li/Li symmetric cell을 제작하여 Aurbach법을 참고하여 측정했으며, 그 결과를 도 4에 도시했다.
전해액 조성: 1M LiPF6 in EC:EMC(1:1 v/v)
[실험예 2]
수분침투율
실시예 1과 2 및 비교예 1을 공기 중에 10분 동안 노출(RH 50%)한 후 상태와 실시예 1과 2 및 비교예 1 위에 물방울을 떨어뜨린 후 상태를 관찰했으며, 각각의 이미지를 도 5에 나타냈다.
도 5에 나타난 바와 같이, 실시예 1의 경우 흡습성이 매우 강한 LiCl이 부산물로 생성되어 비교예 1보다 수분차단성이 저하되는 결과를 보였다. 반면, 실시예 2의 경우에는 비교예 1보다 수분차단성이 향상된 결과를 보였다.
[실험예 3]
수분접촉각
실시예 1과 2 및 비교예 1의 수분접촉각을 측정한 결과를 하기 표 1에 나타냈다.
[표 1]
Figure PCTKR2015009219-appb-I000007

Claims (26)

  1. 표면에 히드록시기를 갖는 리튬금속층; 및
    상기 리튬금속층 상에 구비되고 실리콘계 화합물을 포함하는 실리콘층을 포함하며,
    상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합되는 것인 리튬 전극.
  2. 청구항 1에 있어서, 상기 리튬금속층과 실리콘층 사이에 구비되고 표면에 히드록시기를 갖는 버퍼층을 더 포함하고,
    상기 실리콘층은 상기 버퍼층의 히드록시기와 공유결합된 실리콘계 화합물을 포함하는 것인 리튬 전극.
  3. 청구항 1에 있어서, 상기 실리콘계 화합물은 하기 화학식 1로 표시되는 화합물로 제조된 것인 리튬 전극:
    [화학식 1]
    Figure PCTKR2015009219-appb-I000008
    상기 화학식 1에서,
    R1 내지 R4 중 적어도 하나는 각각 독립적으로 할로겐기, 아미노기 또는 알콕시기이고, 나머지는 각각 독립적으로 C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
  4. 청구항 3에 있어서, 상기 실리콘계 화합물은 하기 화학식 2 내지 4 중 적어도 하나로 표시되는 화합물로 제조된 것인 리튬 전극:
    [화학식 2]
    Figure PCTKR2015009219-appb-I000009
    [화학식 3]
    Figure PCTKR2015009219-appb-I000010
    [화학식 4]
    Figure PCTKR2015009219-appb-I000011
    상기 화학식 2 내지 4에서,
    L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
  5. 청구항 1에 있어서, 상기 실리콘층의 수분접촉각은 100°이상 160°이하인 것인 리튬 전극.
  6. 청구항 1에 있어서, 상기 실리콘층의 두께는 1nm 이상 1㎛이하인 것인 리튬 전극.
  7. 청구항 2에 있어서, 상기 버퍼층은 실록산계 화합물을 포함하는 것인 리튬 전극.
  8. 청구항 2에 있어서, 상기 버퍼층은 폴리디메틸실록산을 포함하는 것인 리튬 전극.
  9. 청구항 2에 있어서, 상기 버퍼층의 두께는 10nm 이상 10㎛ 이하인 것인 리튬 전극.
  10. 청구항 1 내지 9 중 어느 한 항에 따른 리튬 전극을 포함하는 리튬 이차 전지.
  11. 청구항 10에 있어서, 상기 리튬 전극은 리튬 이차 전지의 리튬 전극인 것인 리튬 이차 전지.
  12. 청구항 10에 있어서, 상기 리튬 전극은 리튬 이차 전지의 리튬 전극이며,
    상기 리튬 이차 전지는 캐소드, 및 상기 리튬 전극과 캐소드 사이에 구비된 전해질을 포함하는 것인 리튬 이차 전지.
  13. 청구항 12에 있어서, 상기 전해질은 상기 리튬 전극 및 캐소드가 함침된 전해질액인 것인 리튬 이차 전지.
  14. 청구항 12에 있어서, 상기 리튬 이차 전지는 상기 리튬 전극과 캐소드 사이에 구비된 분리막을 더 포함하는 것인 리튬 이차 전지.
  15. 청구항 12에 있어서, 상기 전해질은 고체 전해질막 또는 고분자 전해질막인 것인 리튬 이차 전지.
  16. 청구항 10의 리튬 이차 전지를 단위 전지로 포함하는 전지 모듈.
  17. 표면에 히드록시기를 갖는 리튬금속층 상에 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계를 포함하며,
    상기 실리콘층의 실리콘계 화합물은 실리콘층과 접촉하는 하부막의 히드록시기와 공유결합되는 것인 리튬 전극의 제조방법.
  18. 청구항 17에 있어서, 상기 실리콘층을 형성하는 단계는 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물을 포함하는 용액을 준비하는 단계; 및 상기 용액을 리튬금속층의 표면 중 적어도 일부에 코팅하는 단계를 포함하는 것인 리튬 전극의 제조방법.
  19. 청구항 17에 있어서, 상기 실리콘층을 형성하는 단계는 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물을 포함하는 용액을 준비하는 단계; 및 상기 용액에 상기 리튬금속층을 침지하는 단계를 포함하는 것인 리튬 전극의 제조방법.
  20. 청구항 18 또는 19에 있어서, 상기 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물은 하기 화학식 1로 표시되는 것인 리튬 전극의 제조방법:
    [화학식 1]
    Figure PCTKR2015009219-appb-I000012
    상기 화학식 1에서,
    R1 내지 R4 중 적어도 하나는 각각 독립적으로 할로겐기, 아미노기 또는 알콕시기이고, 나머지는 각각 독립적으로 C1 내지 C10인 알킬기, 히드록시기, 2환 이하의 지방족 고리기, 2환 이하의 방향족 고리기 또는 -L-(CF2)nCF3이며, L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
  21. 청구항 18 또는 19에 있어서, 상기 히드록시기와 반응할 수 있는 치환기를 갖는 실리콘계 화합물은 하기 화학식 2 내지 4 중 적어도 하나로 표시되는 것인 리튬 전극의 제조방법:
    [화학식 2]
    Figure PCTKR2015009219-appb-I000013
    [화학식 3]
    Figure PCTKR2015009219-appb-I000014
    [화학식 4]
    Figure PCTKR2015009219-appb-I000015
    상기 화학식 2 내지 4에서,
    L은 직접결합 또는 C1 내지 C10인 알킬렌기이며, n은 0 내지 10인 정수이다.
  22. 청구항 17에 있어서, 상기 리튬 전극의 제조방법은 상기 리튬금속층의 표면에 히드록시기를 갖는 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 상기 버퍼층의 히드록시기와 공유결합된 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계를 포함하는 것인 리튬 전극의 제조방법.
  23. 청구항 22에 있어서, 상기 버퍼층을 형성하는 단계는 상기 리튬금속층 상에 버퍼층을 형성하는 단계; 및 상기 버퍼층을 산소 플라스마 처리 또는 자외선/오존 처리하여 버퍼층의 표면에 히드록시기를 도입하는 단계를 포함하는 것인 리튬 전극의 제조방법.
  24. 청구항 22에 있어서, 상기 버퍼층을 형성하는 단계는 이형성 기재에 버퍼층을 형성하는 단계; 및 상기 리튬금속층 상에 버퍼층을 라미네이트하는 단계를 포함하는 것인 리튬 전극의 제조방법.
  25. 청구항 17에 있어서, 상기 리튬 전극의 제조방법은 이형성 기재의 표면에 히드록시기를 갖는 버퍼층을 형성하는 단계; 상기 버퍼층 상에 상기 히드록시기와 공유결합된 실리콘계 화합물을 포함하는 실리콘층을 형성하는 단계; 및 상기 이형성 기재를 제거하여 리튬금속층 상에 라미네이트하는 단계를 포함하는 것인 리튬 전극의 제조방법.
  26. 청구항 25에 있어서, 상기 버퍼층을 형성하는 단계는 상기 이형성 기재의 표면에 버퍼층을 형성하는 단계; 및 상기 버퍼층을 산소 플라스마 처리 또는 자외선/오존 처리하여 버퍼층의 표면에 히드록시기를 도입하는 단계를 포함하는 것인 리튬 전극의 제조방법.
PCT/KR2015/009219 2014-09-05 2015-09-02 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법 WO2016036121A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/328,657 US10388962B2 (en) 2014-09-05 2015-09-02 Lithium electrode, lithium secondary battery comprising same, battery module comprising lithium secondary battery, and preparation method of lithium electrode
EP15838622.7A EP3190648B1 (en) 2014-09-05 2015-09-02 Lithium electrode, lithium secondary battery comprising same, battery module comprising lithium secondary battery, and preparation method of lithium electrode
JP2017502865A JP6568199B2 (ja) 2014-09-05 2015-09-02 リチウム電極、これを含むリチウム二次電池、前記リチウム二次電池を含む電池モジュールおよびリチウム電極の製造方法
CN201580042809.3A CN106663782B (zh) 2014-09-05 2015-09-02 锂电极、包含其的锂二次电池、包含锂二次电池的电池模块和锂电极的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0118493 2014-09-05
KR20140118493 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016036121A1 true WO2016036121A1 (ko) 2016-03-10

Family

ID=55440095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009219 WO2016036121A1 (ko) 2014-09-05 2015-09-02 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법

Country Status (6)

Country Link
US (1) US10388962B2 (ko)
EP (1) EP3190648B1 (ko)
JP (1) JP6568199B2 (ko)
KR (1) KR101778849B1 (ko)
CN (1) CN106663782B (ko)
WO (1) WO2016036121A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125370A (ko) * 2017-05-15 2018-11-23 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 이차전지
CN109309203A (zh) 2017-07-26 2019-02-05 中能中科(天津)新能源科技有限公司 纳米碳颗粒-多孔骨架复合材料、其金属锂复合物、它们的制备方法及应用
CN109309200B (zh) * 2017-07-26 2021-02-26 中能中科(天津)新能源科技有限公司 具有疏水包覆层的金属锂-骨架碳复合材料、其制备方法与应用
KR102328258B1 (ko) * 2017-10-17 2021-11-18 주식회사 엘지에너지솔루션 리튬 금속 전지용 전해질 및 이를 포함하는 리튬 금속 전지
CN111200161B (zh) * 2018-11-16 2021-05-25 中国科学院上海硅酸盐研究所 一种锂空气电池用或锂锂对称电池用电解液
US11075371B2 (en) * 2018-12-21 2021-07-27 GM Global Technology Operations LLC Negative electrode for secondary lithium metal battery and method of making
DE112021002205T5 (de) * 2020-04-08 2023-01-19 Gs Yuasa International Ltd. Nichtwässriger-Elektrolyt-Energiespeichervorrichtung und Energiespeichergerät
JP2022140029A (ja) * 2021-03-12 2022-09-26 ソフトバンク株式会社 負極用材料、負極、リチウム二次電池、及び、負極用材料の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354631A (en) * 1993-06-08 1994-10-11 Valence Technology, Inc. Enhanced lithium surface
KR20070095932A (ko) * 2005-01-07 2007-10-01 다이소 가부시키가이샤 불용성 양극
KR20090040442A (ko) * 2006-07-18 2009-04-24 하이드로-퀘벡 활성 리튬에 기초한 다층 물질, 그 제조 방법 및 전기화학 제너레이터에서의 상기 다층 물질의 용도
KR20120109661A (ko) * 2006-09-19 2012-10-08 도요타 모터 엔지니어링 앤드 매뉴팩쳐링 노스 아메리카, 인코포레이티드 금속 표면의 화학적 보호 방법
KR101227664B1 (ko) * 2002-01-31 2013-01-29 도소 가부시키가이샤 유기실란화합물을 포함하여 구성되는 절연막용 재료, 그 제조방법 및 반도체장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
KR100563081B1 (ko) * 2003-04-28 2006-03-27 강원대학교산학협력단 리튬 이차 전지용 음극 박막 및 그의 제조 방법
KR100496306B1 (ko) * 2003-08-19 2005-06-17 삼성에스디아이 주식회사 리튬 금속 애노드의 제조방법
US20070224509A1 (en) 2006-03-27 2007-09-27 Shin-Etsu Chemical Co., Ltd. SiCO-Li COMPOSITE, MAKING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL NEGATIVE ELECTRODE MATERIAL
JP5793332B2 (ja) * 2010-04-09 2015-10-14 川研ファインケミカル株式会社 非水電解液電池用セパレータおよびリチウムイオン二次電池
CN103563140B (zh) 2011-05-23 2015-11-25 株式会社Lg化学 具有增强的功率密度特性的高输出锂二次电池
WO2014084683A1 (ko) * 2012-11-30 2014-06-05 주식회사 엘지화학 유기 바인더 고분자 화합물로 피복되어 있는 섬유로 형성된 부직포, 이러한 부직포를 포함하고 있는 전기화학소자 및 상기 부직포의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354631A (en) * 1993-06-08 1994-10-11 Valence Technology, Inc. Enhanced lithium surface
KR101227664B1 (ko) * 2002-01-31 2013-01-29 도소 가부시키가이샤 유기실란화합물을 포함하여 구성되는 절연막용 재료, 그 제조방법 및 반도체장치
KR20070095932A (ko) * 2005-01-07 2007-10-01 다이소 가부시키가이샤 불용성 양극
KR20090040442A (ko) * 2006-07-18 2009-04-24 하이드로-퀘벡 활성 리튬에 기초한 다층 물질, 그 제조 방법 및 전기화학 제너레이터에서의 상기 다층 물질의 용도
KR20120109661A (ko) * 2006-09-19 2012-10-08 도요타 모터 엔지니어링 앤드 매뉴팩쳐링 노스 아메리카, 인코포레이티드 금속 표면의 화학적 보호 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190648A4 *

Also Published As

Publication number Publication date
US10388962B2 (en) 2019-08-20
CN106663782A (zh) 2017-05-10
US20170214053A1 (en) 2017-07-27
EP3190648B1 (en) 2018-11-28
CN106663782B (zh) 2019-08-27
JP6568199B2 (ja) 2019-08-28
EP3190648A1 (en) 2017-07-12
KR101778849B1 (ko) 2017-09-14
JP2017531279A (ja) 2017-10-19
EP3190648A4 (en) 2018-03-28
KR20160029687A (ko) 2016-03-15

Similar Documents

Publication Publication Date Title
WO2016036121A1 (ko) 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법
WO2015190898A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2018034526A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2015190897A1 (ko) 리튬 전극 및 이를 포함하는 리튬 전지
WO2016175515A1 (ko) 고내열성 및 난연성 분리막 및 전기 화학 전지
JP5371314B2 (ja) グリシジルエーテル系化合物を採用した有機電解液及びリチウム電池
WO2022220360A1 (ko) 안전성이 향상된 전극 및 이의 제조방법
WO2021010753A1 (ko) 리튬 금속 음극 및 이를 포함하는 리튬 금속 전지
WO2016032166A1 (ko) 고내열성 및 난연성 분리막 및 전기 화학 전지
WO2019245343A1 (ko) 전기화학소자용 세퍼레이터, 이를 포함하는 전기화학소자 및 세퍼레이터의 제조방법
WO2019098550A2 (ko) 리튬 이차 전지용 양극 및 이의 제조방법
WO2020138627A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2014129749A1 (ko) Si/C 복합체, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2016173387A1 (zh) 电极粘结剂、正极材料以及锂离子电池
WO2020080897A1 (ko) 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2018062844A2 (ko) 전도성 직물로 형성된 보호층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2018236064A1 (ko) 다층 구조 고분자 고체 전해질 및 이를 포함하는 전고체 전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018169217A1 (ko) 안전성이 향상된 이차 전지용 외장재 및 이를 포함하는 이차 전지
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2019199013A1 (ko) 리튬 비스(플루오로술포닐)이미드염의 제조방법
WO2021125825A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020197093A1 (ko) 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지
WO2023128592A1 (ko) 리튬-황 전지용 양극 및 그의 제조방법 및 그를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502865

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015838622

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838622

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15328657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE