WO2016035757A1 - 合成樹脂ステント - Google Patents

合成樹脂ステント Download PDF

Info

Publication number
WO2016035757A1
WO2016035757A1 PCT/JP2015/074734 JP2015074734W WO2016035757A1 WO 2016035757 A1 WO2016035757 A1 WO 2016035757A1 JP 2015074734 W JP2015074734 W JP 2015074734W WO 2016035757 A1 WO2016035757 A1 WO 2016035757A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
string
diameter
synthetic resin
main body
Prior art date
Application number
PCT/JP2015/074734
Other languages
English (en)
French (fr)
Inventor
井手 純一
敬史 山本
修司 福瀧
憂佳 山科
Original Assignee
株式会社ジェイ・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス filed Critical 株式会社ジェイ・エム・エス
Priority to EP15838355.4A priority Critical patent/EP3189816B1/en
Priority to JP2016546639A priority patent/JP6705377B2/ja
Priority to US15/507,945 priority patent/US10265204B2/en
Priority to CN201580046208.XA priority patent/CN106794070B/zh
Publication of WO2016035757A1 publication Critical patent/WO2016035757A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable

Definitions

  • the present invention relates to a synthetic resin stent such as a biodegradable stent.
  • a treatment for expanding the stenosis part by placing a stent in the stenosis part is performed.
  • a stent for example, a metal or synthetic resin stent is known.
  • a metal stent since a metal stent requires a surgical operation when being extracted from the body, a great burden is placed on the patient. Therefore, the use of a metal stent is limited when it is used for a case such as a malignant tumor in which semi-permanent placement or surgery is planned. From such a background, a biodegradable stent as a synthetic resin stent has been proposed as a stent to be used for cases where a metal stent cannot be used.
  • a biodegradable stent is formed into a cylindrical shape by weaving biodegradable fibers made of synthetic resin, and it degrades over time in blood vessels and gastrointestinal tracts, so there is no need to remove the stent from the body. is there.
  • Biodegradable stents are expected to reduce the burden on patients by using them particularly for benign stenotic diseases.
  • a stent generally pushes and expands a stenosis part by expanding the diameter after approaching the stenosis part in a reduced diameter state.
  • a method for bringing a biodegradable stent closer to a stenosis a method using an endoscope is known.
  • a stent having a reduced diameter is accommodated in a thin tubular member called a delivery system, and the delivery system is inserted into the endoscope through a forceps opening to approach the stenosis.
  • the diameter of the stent is expanded after approaching the stenosis in a contracted state.
  • the stent may be reduced in diameter by pressure from the outside in the radial direction.
  • biodegradable stents made of synthetic resin fibers are weaker than metal stents, and are sufficiently resistant to the pressure applied from the outside in the radial direction in the expanded state, enough to withstand clinical use. It is difficult.
  • the resistance with respect to the pressure from the radial direction outer side can also be provided to a biodegradable stent by thickening the fiber which comprises a biodegradable stent.
  • the biodegradable stent is thickened, it is difficult to store the biodegradable stent in a thin tubular member such as a delivery system used when the stent is placed in the stenosis.
  • a biodegradable stent having a sufficient strength in a state of being placed in the stenosis is not found at present.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a synthetic resin stent having resistance to pressure applied from the outside in the radial direction in the expanded state even when the fiber is thinned. There is to do.
  • the present invention is formed in a cylindrical shape by fibers made of synthetic resin and is capable of deforming from a reduced diameter state to an expanded diameter state, and restricting the diameter reduction from the expanded diameter state of the stent main body portion.
  • a synthetic resin stent is provided that includes a regulation mechanism that maintains the stent body in an expanded state.
  • the synthetic resin stent preferably further includes a diameter expansion mechanism that is connected to the stent body and deforms the stent body from a reduced diameter state to an expanded diameter state.
  • the diameter-expansion mechanism has a string-like member having one end connected to one end side in the axial direction of the stent main body portion and extending to the other end side in the axial direction of the stent main body portion, It is preferable that the diameter of the string-shaped member is increased by contracting in the axial direction by pulling the string-shaped member toward the other end.
  • the diameter expansion mechanism includes an end diameter expansion mechanism that expands the diameter of the end of the stent body and a center diameter expansion mechanism that expands the center of the stent body.
  • the regulation mechanism includes a locking portion formed on the string-like member, and an annular portion that is annularly formed on the other end side of the stent main body and through which the string-like member is inserted. It is preferable that the stent main body portion is maintained in an expanded state by pulling the string-like member toward the other end side to lock the locking portion with the annular portion.
  • the locking part includes a knot part and a ring part formed by tying the string-like member, and the ring part is formed so as to swell from the knot part toward the stent body side. Is preferred.
  • the size of the ring portion is larger than the size of the annular portion.
  • the string-like member is detachably connected to a first string-like member having one end connected to the stent body and the locking portion formed on the other end side of the first string-like member. It is preferable to have a second string-like member.
  • the string-like member is disposed inside the stent main body.
  • the string-like member is regulated so that a part thereof is along the stent main body between the one end connected to the stent main body and the annular portion.
  • a plurality of the string-like members are arranged at equal intervals in the circumferential direction of the stent main body.
  • the diameter expansion mechanism and the regulation mechanism are string-like elastic members having both ends connected to both ends of the stent body, respectively, and the elastic member is in a state where the diameter of the stent body is expanded in a contracted state.
  • the stent main body may be maintained in an expanded state by restricting the diameter from being reduced.
  • the diameter of the fiber is preferably 0.05 to 0.7 mm.
  • a tubular member such as a delivery system used when the stent is indwelled in a stenosis portion in a diameter-reduced state and resistance to pressure applied from outside in the radial direction. It is possible to provide a synthetic resin stent that is compatible with the storage property.
  • FIG. 1 is a perspective view of a synthetic resin stent according to a first embodiment of the present invention. It is a side view of the synthetic resin stent which concerns on 1st Embodiment. It is a figure which shows the formation procedure in the case of forming a latching
  • FIG. 1A is a perspective view of a biodegradable stent 1 as a synthetic resin stent according to the first embodiment of the present invention
  • FIG. 1B is a side view of the biodegradable stent 1.
  • the biodegradable stent 1 includes a stent main body 2, a diameter expansion mechanism 3, and a restriction mechanism 4.
  • the stent body 2 is formed in a cylindrical shape by biodegradable fibers 20 which are synthetic resin fibers. More specifically, the stent body 2 is knitted in a mesh shape with a plurality of fibers 20, and has a large number of diamond-shaped holes formed on the outer periphery and regularly arranged.
  • the fiber 20 in the present embodiment is not particularly limited as long as it is a synthetic resin, but examples of materials include L-lactic acid, D-lactic acid, DL-lactic acid, ⁇ -caprolactone, ⁇ -butyrolactone, ⁇ -valerolactone, glycolic acid, Examples thereof include biodegradable resins such as homopolymers, copolymers, and blended polymers synthesized from monomers such as trimethylene carbonate and paradioxanone.
  • biodegradability comprising poly-L-lactic acid (hereinafter sometimes referred to as PLLA) or lactic acid-caprolactone copolymer (hereinafter sometimes referred to as P (LA / CL)) or a blend polymer thereof. It is preferable to use these fibers.
  • the fiber 20 may be a monofilament yarn or a multifilament yarn. Further, the fiber 20 may be twisted or not. From the viewpoint of increasing the repulsive force against the pressure applied from the radially outer side of the stent body 2, the fiber 20 is preferably a monofilament yarn.
  • the diameter of the fiber 20 is preferably 0.05 to 0.7 mm. If the diameter of the fiber 20 is less than 0.05 mm, the strength of the biodegradable stent 1 tends to decrease. When the diameter of the fiber 20 exceeds 0.7 mm, the biodegradable stent 1 tends to be difficult to be accommodated in a thin tubular member such as a delivery system inserted into the endoscope described in detail later.
  • the upper limit of the diameter of the fiber 20 is more preferably 0.4 mm, and still more preferably 0.3 mm, from the viewpoint of storage in a delivery system with a smaller inner diameter.
  • the lower limit of the diameter of the fiber 20 is more preferably 0.2 mm from the viewpoint of maintaining high strength.
  • the diameter expanding mechanism 3 has one end connected to one end side (X direction side) of the stent body 2 in the axial direction and extends to the other end side (Y direction) of the stent body 2 in the axial direction.
  • the string-like member 30 is connected to the end of the stent body 2 on the X direction side and is disposed inside the stent body 2.
  • the string-like member 30 is composed of biodegradable fibers similar to the fibers 20.
  • the restriction mechanism 4 includes a locking part 41 and an annular part 42.
  • the locking portion 41 is formed on the string member 30.
  • the locking portion 41 is disposed inside the stent main body 2 as shown in FIGS. 1A and B.
  • the locking part 41 is formed in a shape protruding outward in the radial direction of the string-like member 30.
  • the locking portion 41 may be a knot of the string-like member 30 or a triangular return member formed on the string-like member 30.
  • locking part 41 may form some string-like members 30 in the ring shape.
  • the string-like member 30 and the locking part 41 may be made of a biodegradable material or may be made of a material that is not biodegradable.
  • the locking portion 41 when the locking portion 41 is formed by a knot of the string-like member 30, the locking portion 41 includes a knot portion 43 and a ring portion 44.
  • the knot portion 43 and the ring portion 44 are formed by, for example, forming a double ring with a part of the string-like member 30 and then tying a large ring around the small ring and the string-like member 30 multiple times. Can be formed.
  • the ring portion 44 is formed so as to swell from the knot portion 43 toward one end side (X direction side) of the stent main body portion 2 (see FIG. 4).
  • the size (diameter) of the annular portion 44 is formed larger than the diameter of the annular portion 42.
  • the annular portion 42 is connected to the Y direction side of the stent body 2 and is formed in an annular shape, and the string-like member 30 is inserted therethrough. More specifically, the annular portion 42 is connected to the end portion on the Y direction side of the stent main body portion 2 so as to extend inward.
  • FIG. 3A is a diagram (perspective view) showing a state in which the biodegradable stent 1 is expanded in diameter
  • FIG. 3B is a diagram (side view) showing a state in which the biodegradable stent 1 is expanded in diameter.
  • the locking portion 41 of the regulating mechanism 4 passes the annular portion 42 from the X direction side to the Y direction side by pulling the string-like member 30 toward the Y direction side.
  • the locking portion 41 that has passed through the annular portion 42 is locked by the annular portion 42 and cannot pass through the annular portion 42 from the Y direction side to the X direction side.
  • the regulation mechanism 4 (the locking portion 41 and the annular portion 42) regulates the diameter of the stent body 2 from being expanded to the state where the diameter of the stent body 2 is expanded ( 3A and B).
  • the locking part 41 is formed by a knot of the string-like member 30, the ring part 44 larger than the annular part 42 is deformed while the ring-like part 44 is deformed by pulling the string-like member 30 toward the Y direction. 42 is passed from the X direction side to the Y direction side. The ring portion 44 that has passed through the annular portion 42 is restored to its original shape by the elasticity of the string-like member 30. Thereby, as shown in FIG. 4, the locking portion 41 (ring portion 44) is locked to the annular portion 42. Further, as shown in FIG. 4, the annular portion 44 is formed more stably by the annular portion 42 by forming the annular portion 44 so as to swell from the knot portion 43 toward one end side (X direction side) of the stent main body portion 2. To be locked.
  • 5A to 5D are schematic views for explaining a method of placing the biodegradable stent 1 in the stenosis.
  • 4A to 4D two string-like members 30, locking portions 41, and annular portions 42 are arranged at equal intervals in the circumferential direction of the stent body portion 2, respectively.
  • the biodegradable stent 1 is housed in a thin tubular member 110 such as a delivery system.
  • a thin tubular member 110 such as a delivery system.
  • the distal end portion of the endoscope 100 is brought close to the narrowed portion N.
  • the thin tubular member 110 containing the biodegradable stent 1 is inserted into a forceps opening (not shown) of the endoscope 100 and carries the biodegradable stent 1 to the distal end portion of the endoscope 100.
  • the biodegradable stent 1 is discharged from the thin tubular member 110 and disposed at a position surrounded by the stenosis N.
  • the stent body 2 of the biodegradable stent 1 discharged from the tubular member 110 slightly expands in diameter.
  • the thin tubular member 110 and the endoscope 100 are removed from the patient's body, and the biodegradable stent 1 is placed in the stenosis N.
  • the length of the string-like member 30 can be adjusted by cutting the string-like member 30 with scissors as necessary. In this way, the locking portion 41 is locked to the annular portion 42, and the stent body 2 is maintained in an expanded state.
  • the biodegradable stent 1 has the following effects. (1) In 1st Embodiment, the biodegradable stent 1 controls the diameter reduction of the stent main body part 2 from the expanded state, thereby regulating the stent main body part 2 in the expanded state. 4 was provided. Thereby, even if the pressure from the radial direction outer side is added to the stent main-body part 2 in the state expanded, it is hard to reduce a diameter by providing the control mechanism 4. FIG. Therefore, the biodegradable stent 1 is resistant to the pressure applied from the outside in the radial direction in the expanded state even if the diameter of the fiber 20 is reduced.
  • the biodegradable stent 1 shall further be equipped with the diameter expansion mechanism 3 which deform
  • the diameter of the biodegradable stent 1 (stent body part 2) brought close to the stenosis part can be expanded.
  • the diameter expansion mechanism 3 includes the string-like member 30 that is connected to the X direction side of the stent body 2 and extends to the Y direction of the stent body 2. Further, by pulling the string-like member 30 toward the Y direction, the stent body 2 is contracted in the axial direction to be expanded in diameter. Thereby, the stent main-body part 2 can be expanded in diameter only by pulling the string-like member 30. Therefore, the diameter of the biodegradable stent 1 (stent body 2) that is brought close to the stenosis can be easily increased.
  • the restricting mechanism 4 is connected to the locking portion 41 formed on the string-like member 30 and the Y-direction side of the stent body 2 and is formed in an annular shape so that the string-like member 30 is And an annular portion 42 to be inserted. Furthermore, the stent main body 2 is maintained in an expanded state by pulling the string-like member 30 toward the Y direction side to lock the locking portion 41 with the annular portion 42.
  • the restriction mechanism 4 by simply pulling the string-like member 30, the diameter of the stent body 2 can be increased, and the diameter of the stent body 2 can be maintained by the restriction mechanism 4. Therefore, the biodegradable stent 1 (stent main body 2) brought closer to the stenosis can be expanded more easily, and the biodegradable stent 1 can be maintained in the expanded state.
  • the string-like member 30 is disposed inside the stent body 2. Thereby, when expanding the diameter of the stent body 2, the string-like member 30 is not sandwiched between the stenosis of the patient and the stent body 2. Therefore, the diameter of the stent body 2 can be smoothly increased by pulling the string-like member 30.
  • a plurality of string-like members 30 are arranged at equal intervals in the circumferential direction of the stent body 2.
  • the stent main body 2 can be smoothly expanded in diameter by pulling the plurality of string-like members 30 simultaneously.
  • the fiber 20 has a diameter of 0.05 to 0.7 mm.
  • the biodegradable stent 1 becomes easy to be accommodated in a thin tubular member 110 such as a delivery system in a reduced diameter state.
  • the locking portion 41 when the locking portion 41 is formed by the knot of the string-like member 30, the locking portion 41 can be configured using the string-like member 30. The number of parts constituting the degradable stent 1 can be reduced.
  • the locking portion 41 is constituted by the knot portion 43 and the ring portion 44, and the ring portion 44 is deformed by forming the ring portion 44 larger than the ring portion 42, thereby deforming the ring portion 42. Then, the ring portion 44 is restored to its original shape by the elasticity of the string-like member 30.
  • the locking portion 41 (ring portion 44) can be stably locked to the annular portion 42.
  • the annular portion 44 can be stably locked by the annular portion 42 by forming the annular portion 44 so as to swell from the knot portion 43 toward one end side (X direction side) of the stent body 2.
  • FIG. 6A is a perspective view of a biodegradable stent 1A according to a modification of the first embodiment
  • FIG. 6B is a side view of the biodegradable stent 1A.
  • the same configuration as the biodegradable stent 1 in the biodegradable stent 1A is denoted by the same reference numerals as those of the biodegradable stent 1 in FIGS.
  • the biodegradable stent 1A includes a diameter expansion mechanism 3A and a regulation mechanism 4A, as with the biodegradable stent 1.
  • the string-like member 30A included in the diameter expansion mechanism 3A is not disposed inside the stent body 2A as in the above embodiment, but is disposed outside the stent body 2A (FIGS. 6A and 6B).
  • the annular portion 42A of the restricting mechanism 4A is formed at the outer end, not the inner side, at the end of the stent body 2A on the Y direction side.
  • the restriction mechanism 4A is disposed outside the stent body 2A. Therefore, the distribution of food or the like inside the biodegradable stent 1A (stent body 2A) is not hindered by the regulation mechanism 4A.
  • FIG. 7 is a perspective view of a biodegradable stent 1B according to the second embodiment of the present invention.
  • the same components as those of the biodegradable stent 1 in the biodegradable stent 1B are denoted by the same reference numerals as those of the biodegradable stent 1 in FIG.
  • the biodegradable stent 1B includes a diameter expansion mechanism 3B and a regulation mechanism 4B.
  • the string-like member 30B included in the diameter expansion mechanism 3B includes a first string-like member 31B and a second string-like member 32B.
  • One end of the first string-like member 31B is connected to the stent main body 2B and a locking portion 41B is formed.
  • the first string-like member 31B includes a connecting portion 311B that is disposed on the other end side of the locking portion 41B and is formed in an annular shape.
  • the second string-like member 32B is detachably connected to the other end side of the first string-like member 31B. More specifically, the second string-like member 32B is removably connected to the first string-like member 31B by being inserted through the connecting portion 311B and folded back.
  • FIGS. 8A to 8D are schematic diagrams for explaining a method of placing the biodegradable stent 1B in the stenosis.
  • 8A to 8D two string-like members 30B, locking portions 41B, and annular portions 42B are arranged at equal intervals in the circumferential direction of the stent main body portion 2B.
  • the biodegradable stent 1B is housed in a thin tubular member 110B such as a delivery system.
  • a thin tubular member 110B such as a delivery system.
  • the distal end portion of the endoscope 100B is brought close to the narrowed portion N.
  • the thin tubular member 110B housing the biodegradable stent 1B is inserted into a forceps opening (not shown) of the endoscope 100B, and carries the biodegradable stent 1B to the distal end portion of the endoscope 100B.
  • the biodegradable stent 1B is discharged from the thin tubular member 110B and disposed at a position surrounded by the stenosis N.
  • the stent body 2B of the biodegradable stent 1B discharged from the thin tubular member 110B slightly expands in diameter.
  • the second string-like member 32B is removed from the first string-like member 31B, and the thin tubular member 110B such as the delivery system and the endoscope 100B are taken out of the patient's body. It is.
  • the biodegradable stent 1B is placed in the stenosis N. In this way, the locking portion 41B is locked to the annular portion 42B, and the stent body 2B is maintained in an expanded state.
  • the biodegradable stent 1B according to the second embodiment has the following effects in addition to the effects (1) to (8).
  • the string-like member 30B includes a first string-like member 31B having one end connected to the stent body 2B and a locking portion 41B formed, and the first string-like member 31B. And a second string-like member 32B that is detachably connected to the other end side.
  • FIG. 9 is a side view of a biodegradable stent 1C according to the third embodiment of the present invention.
  • the same configuration as the biodegradable stent 1 in the biodegradable stent 1C is denoted by the same reference numerals as those of the biodegradable stent 1 in FIG.
  • the biodegradable stent 1 ⁇ / b> C includes a diameter expansion mechanism 3 ⁇ / b> C and a regulation mechanism 4 ⁇ / b> C as with the biodegradable stent 1.
  • the string-like member 30C of the diameter expansion mechanism 3C is regulated so that a part thereof is along the stent main body 2C between the one end connected to the stent main body 2C and the annular portion 42C. Specifically, as shown in FIG. 9, the string-like member 30C passes the mesh formed by the fibers 20C from the inside to the outside of the stent body 2C while extending in the Y direction from the X direction, and further in the Y direction. The mesh formed by the fibers 20C on the side passes from the outside to the inside of the stent body 2C. In this way, the string-like member 30C is arranged so that a part thereof passes outside the stent body 2C.
  • the biodegradable stent 1C according to the third embodiment has the following effects in addition to the effects (1) to (5) and (7).
  • the string-like member 30C is regulated so that a part thereof is along the stent main body 2C between the one end connected to the stent main body 2C and the annular portion 42C. Thereby, when expanding the diameter of the stent body 2C, the string-like member 30C can be pulled along the stent body 2C. Therefore, according to the biodegradable stent 1C, the diameter of the stent body 2C can be expanded smoothly and in a balanced manner while maintaining the cylindrical shape.
  • FIG. 10A is a side view of the biodegradable stent 1D according to the fourth embodiment of the present invention in a reduced diameter state
  • FIG. 10B is a side view of the biodegradable stent 1D in an expanded diameter state.
  • the same components as those of the biodegradable stent 1 are denoted by the same reference numerals as those of the biodegradable stent 1 and description thereof is omitted.
  • the biodegradable stent 1D includes a diameter expansion mechanism 3D and a regulation mechanism 4D, similar to the biodegradable stent 1.
  • the diameter expansion mechanism 3D and the regulation mechanism 4D are string-like elastic members 50D having both ends connected to both ends of the stent body 2D. That is, the elastic member 50D is not only the diameter expansion mechanism 3D but also the restriction mechanism 4D.
  • the elastic member 50D extends in a state where the stent body 2D extends in the axial direction and has a reduced diameter.
  • the diameter of the stent body 2D is increased by contraction of the elastic member 50D.
  • the elastic member 50D maintains the stent body 2D in the expanded state by restricting the diameter of the stent body 2D from being expanded in the contracted state.
  • the diameter expanding mechanism 3D is a string-like elastic member 50D having both ends connected to both ends of the stent body 2D, and the stent body 2D is in a contracted state with the elastic member 50D contracted. Was maintained in an expanded state.
  • the stent main body 2D can be expanded in diameter with a simpler structure, and the stent main body 2D can be maintained in an expanded state.
  • FIG. 11A and 11B are side views showing a biodegradable stent 1E according to a fifth embodiment of the present invention.
  • FIG. 11A shows a state in which the biodegradable stent 1E has a reduced diameter
  • FIG. The state which the expandable stent 1E expanded is shown.
  • the biodegradable stent 1E of the fifth embodiment is different from the first embodiment mainly in the shape of the stent body 2E and the configuration of the diameter expansion mechanism 3E.
  • the biodegradable stent 1E of the fifth embodiment is formed such that the diameters of both ends of the stent body 2E are larger than the diameter of the center, and both ends of the stent body 2E have a so-called flare shape. ing.
  • the diameter expansion mechanism 3E includes two end part diameter expansion mechanisms 31E and two center part diameter expansion mechanisms 32E.
  • the two end part diameter increasing mechanisms 31E and the two center part diameter increasing mechanisms 32E are arranged to face each other. Further, the end part diameter increasing mechanism 31 and the center part diameter increasing mechanism 32E are arranged 90 degrees apart from each other in the circumferential direction of the stent body 2E.
  • the end diameter increasing mechanism 31E increases the diameter of the end side (flared portion) of the stent body 2E.
  • one end side of the string-like member 311E constituting the end portion diameter increasing mechanism 31E is connected to one end portion (end portion on the X direction side) of the stent main body portion 2E, and the other end of the stent main body portion 2E. It extends to the side (Y direction side).
  • the central part diameter increasing mechanism 32E increases the diameter of the central part (a part other than the flare-shaped part) of the stent body part 2E.
  • one end side of the string-like member 321E constituting the central diameter expanding mechanism 32E is connected to the proximal end portion of the flare-shaped portion on one end side (X direction side) of the stent main body portion 2E. It extends to the other end side (Y direction side) of the portion 2E.
  • the regulation mechanism 4E includes an end part regulation mechanism 41E and a center part regulation mechanism 42E.
  • the end regulating mechanism 41E maintains a state where the end of the stent main body 2E is expanded in diameter.
  • the annular portion 412E constituting the end regulating mechanism 41E is arranged on one end side (X direction side) in the central portion of the stent body 2E, and the locking portion 411E is one end side (X direction side) from the annular portion 412E. Placed in.
  • the center part regulation mechanism 42E maintains the state where the center part of the stent main body part 2E is expanded in diameter.
  • the annular portion 422E constituting the central portion regulating mechanism 42E is disposed on the other end side (Y direction side) in the central portion of the stent main body portion 2E, and the locking portion 421E is one end side (X direction side) from the annular portion 422E. ).
  • the annular portion 412E constituting the end portion regulating mechanism 41E and the annular portion 422E constituting the center portion regulating mechanism 42E are arranged at positions shifted in the axial direction of the stent body portion 2E. .
  • the end portion (flare-shaped portion) of the stent body 2E is expanded by the end diameter increasing mechanism 31E and the end regulating mechanism 41E.
  • the expanded state is maintained, and the central portion of the stent main body 2E is expanded by the central portion expanding mechanism 32E and the central portion regulating mechanism 42E and the expanded state is maintained.
  • the biodegradable stent 1E according to the fifth embodiment has the following effects in addition to the effects (1) to (8).
  • the end portion (flare-shaped portion) of the stent body 2E is expanded by the end portion expanding mechanism 31E and the end regulating mechanism 41E, and the expanded state is maintained.
  • the central part diameter-enlarging mechanism 32E and the central part regulating mechanism 42E expand the diameter of the central part of the stent body 2E and maintain the expanded state.
  • the diameter of the edge part of the stent main-body part 2E is formed larger than the diameter of a center part, the diameter of the end part and center part of the stent main-body part 2E can be expanded suitably, and diameter expansion is carried out.
  • the maintained state can be suitably maintained.
  • the annular part 412E constituting the end part regulating mechanism 41E and the annular part 422E constituting the center part regulating mechanism 42E were arranged at positions shifted in the axial direction of the stent body part 2E.
  • biodegradable stent 1E is comprised including a some cyclic
  • the stent main body portions 2, 2B, and 2C are expanded by pulling the string-like members 30, 30B, and 30C, but the present invention is not limited to this.
  • it is good also as a structure which expands a stent main-body part with a balloon.
  • the biodegradable stent 1 was detained in the stenosis part N using the endoscope, the method of detaining the biodegradable stent of this invention in a stenosis part is not limited to this.
  • a biodegradable stent may be approached and placed in the stenosis using a catheter.
  • the positions of the locking portion 41 and the annular portion 42 of the restriction mechanism 4 can be changed as appropriate according to the desired diameter of the stent body portion 2 in the expanded state.
  • the annular portions 42, 42B, and 42C are configured to extend inside the stent body portions 2, 2B, and 2C.
  • the annular portions 42, 42B, and 42C are annular.
  • the portion 42A is configured to extend to the outside of the stent body 2A, the present invention is not limited to this.
  • the annular portion may be formed so as to extend from the end portion of the stent body portion in the axial direction of the stent body portion.
  • a part of string-like member 30C may pass the outer side of the stent main-body part 2C so that a part of string-like member 30C may follow the stent main-body part 2C.
  • the present invention is not limited to this.
  • a plurality of annular members are arranged with a predetermined interval between one end side and the other end side on the inner side of the stent main body, and a portion of the string member is passed by passing the string member through the annular member. You may regulate along a stent main-body part.
  • the position of the biodegradable stent in the body may be confirmed by adding a radiopaque marker to the stent body.
  • the first string-like member 31B and the second string-like member 32B are connected by the connecting portion 311B provided in the vicinity of the locking portion 41B.
  • the connecting portion 311B is provided at a position away from the locking portion 41B (that is, the locking portion 41B is formed at a position away from the end of the first string-like member 31B).
  • the first string-like member 31B and the second string-like member 32B may be coupled. Thereby, the operativity of the diameter expansion mechanism 3B can be improved more.
  • the plurality of diameter expansion mechanisms 3E are all disposed so as to pass through the inside of the stent body 2E.
  • the present invention is not limited to this. That is, in the case of a configuration including a plurality of string-like members, some string-like members are arranged so as to pass outside the stent body part, and other string-like members are arranged so as to pass inside the stent body part. May be.
  • a biodegradable stent composed of biodegradable fibers is used as the synthetic resin stent, but the present invention is not limited to this. That is, you may comprise a stent using the synthetic resin fiber which does not have biodegradability.
  • the method of tying the locking portion 41 by the knot of the string-like member 30 is not limited to the tying shown in FIG. That is, you may form a latching
  • Example 1 A cylindrical stent body (diameter: 17 mm, length: 76 mm) was produced by knitting 24 fibers (diameter: 0.25 mm) made of PLLA into a mesh shape.
  • two string-like members in which a knot (locking portion) is formed on a fiber made of PLLA (diameter 0.2 mm) are produced, and one end of each of them is formed on one end of the stent body, and the stent body Adhesion was made at equal intervals in the circumferential direction.
  • a biodegradable stent was produced by adhering and fixing an annular member to the other end of the stent body (see FIGS. 1A and 1B).
  • Example 1 A biodegradable stent was formed in the same manner as in Example 1 except that the locking member was not formed on the string-like member and the annular member was not bonded to the stent body. That is, the biodegradable stent of Comparative Example 1 does not have a regulation mechanism.
  • Comparative Example 2 16 fibers (diameter 0.6 mm) made of a blend polymer in which PLLA and P (LA / CL) are mixed so that the mass ratio (mass of PLLA / mass of P (LA / CL)) is 90/10.
  • a biodegradable stent stent body, 17 mm in diameter was produced by weaving into a mesh.
  • the biodegradable stent of Comparative Example 2 does not have a string-like member and a regulation mechanism.
  • a biodegradable stent was prepared in the same manner as in Example 1 except that the diameter of the fiber made of the blend polymer was 0.7 mm and 16 fibers were used.
  • a biodegradable stent was produced in the same manner as in Example 1 except that the diameter of the fiber made of the blend polymer was 0.8 mm and the number of fibers was 16.
  • the biodegradable stents of Example 1 and Comparative Examples 1 and 2 were subjected to compression strength measurement.
  • the biodegradable stent of Example 1 was expanded in diameter by contracting the stent body in the axial direction by pulling the string-like member.
  • the locking portion was locked to the annular member (annular portion).
  • the stent main body is maintained in an expanded state (diameter 19 mm, length 40 mm).
  • the compressive strength in the radial direction (the load necessary to reduce the diameter of the stent main body part by half) was measured by a method based on JIS T 0401. No biodegradable stent failure was observed after the measurement.
  • the compressive strength in the radial direction in the expanded state of the stent body was measured by the same method as in Example 1.
  • the results of measuring the compressive strength of the biodegradable stents of Example 1 and Comparative Examples 1 and 2 are shown in the graph of FIG.
  • the compressive strength showed a relative value.
  • the biodegradable stents of Reference Examples 1 and 2 were confirmed to be stored in a tube having an inner diameter of 3.5 mm.
  • the biodegradable stent of Reference Example 1 was able to be reduced in diameter to less than 3.5 mm and housed in a tube having an inner diameter of 3.5 mm.
  • the biodegradable stent of Reference Example 2 could not be reduced in diameter to less than 3.5 mm, and could not be stored in a tube having an inner diameter of 3.5 mm.
  • the compressive strength of the biodegradable stent of Example 1 was higher than the compressive strength of the biodegradable stent of Comparative Example 1 that does not have a restriction mechanism.
  • the biodegradable stent of Example 1 has a higher compressive strength than the biodegradable stent of Comparative Example 1 having a fiber diameter of 0.6 mm, even though the fiber diameter is 0.25 mm. It was. Furthermore, it was also found that the compressive strength of the biodegradable stent of Example 1 is comparable to the compressive strength of the metal stent.
  • the biodegradable stent having a regulation mechanism that maintains the stent body in an expanded state is radial even when the biodegradable fiber is thinned for storage in a thin tubular member. It was confirmed to have sufficient resistance against the pressure applied from the outside.
  • the biodegradable stent of Reference Example 1 can be stored in a tube having an inner diameter of 3.5 mm, but the biodegradable stent of Reference Example 2 cannot be stored. From this result, it was confirmed that a biodegradable stent having a fiber diameter of 0.7 mm or less can be accommodated in a thin tubular member such as a delivery system having an inner diameter of 3.5 mm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

 合成樹脂繊維を細くした場合であっても、拡径した状態において径方向外側から加わる圧力に対しての耐性を有する合成樹脂ステントを提供すること。 合成樹脂繊維20によって円筒状に形成され、縮径した状態から拡径した状態に変形可能なステント本体部2と、ステント本体部2が拡径した状態から縮径することを規制することで、ステント本体部2を拡径した状態に維持する規制機構4と、を備える合成樹脂ステント1。合成樹脂ステント1は、ステント本体部2に接続され且つステント本体部2を縮径した状態から拡径した状態に変形させる拡径機構3を更に備えるのが好ましい。

Description

合成樹脂ステント
 本発明は、生分解性ステント等の合成樹脂ステントに関する。
 従来、血管や消化管等の生体管路の狭窄性疾患(腫瘍や炎症等)において、狭窄部にステントを留置して、狭窄部を拡張する治療が行われている。ステントとしては、例えば金属製や合成樹脂製のステントが知られている。これらの中でも、金属製のステントは体内から抜去する際に外科手術を必要とするので、患者に多大な負担がかかる。そのため、金属製のステントは、半永久的な留置や外科手術が計画されている悪性腫瘍等の症例に対して使用する場合に用途が限定される。こうした背景から、金属製ステントが使用できない症例に対して使用するステントとして、合成樹脂ステントとしての生分解性ステントが提案されている。
 生分解性ステントは、合成樹脂により構成される生分解性の繊維を編むことで円筒状に形成され、血管や消化管内で時間の経過と共に分解されるので、ステントの体内からの抜去が不要である。生分解性ステントは、特に良性の狭窄性疾患に対して用いることで、患者への負担を軽減することが期待されている。
 ところで、ステントは、一般的に、縮径された状態で狭窄部に接近させてから拡径されることで狭窄部を押し広げる。例えば、生分解性ステントを狭窄部に接近させる方法としては、内視鏡を用いる方法が知られている。この方法では、デリバリーシステムと呼ばれる細管状の部材に縮径させたステントを収納し、このデリバリーシステムを鉗子口から内視鏡の内部に挿入して狭窄部に接近させる。
 このように、ステントは、縮径させた状態で狭窄部に接近させてから拡径される。一方で、ステントは、狭窄部に留置された際に、腸管等が再狭窄すると、径方向外側からの圧力によって縮径してしまう場合がある。特に合成樹脂繊維からなる生分解性ステントは、金属ステントに比べて強度が弱く、拡径した状態で径方向外側から加わる圧力に対して、臨床での使用に耐えられるだけの十分な耐性を得るのが難しい。
 このような問題に対して、生分解性ステントの円筒状部分に、軸方向に延びる補強桟を配置することで、生分解性ステントに径方向外側からの圧力に対する耐性を付与する技術が開示されている(例えば、特許文献1参照)。
特開2009-160079号公報
 しかしながら、このような生分解性ステントであっても、やはり、患部の再狭窄によって径方向外側から加わる圧力に対して十分な耐性を得るのは難しいのが現状である。なお、生分解性ステントを構成する繊維を太くすることで、生分解性ステントに径方向外側からの圧力に対する耐性を付与することもできる。しかし、生分解性ステントは、繊維を太くすると、ステントを狭窄部に留置する際に用いられるデリバリーシステム等の細管状の部材への収納するのが難しくなる。
 このように、生分解性の繊維を細くした場合であっても、狭窄部に留置された状態において十分な強度を有する生分解性ステントは見出されていないのが現状である。
 本発明は上記に鑑みてなされたものであり、その目的は、繊維を細くした場合であっても、拡径した状態において径方向外側から加わる圧力に対しての耐性を有する合成樹脂ステントを提供することにある。
 本発明は、合成樹脂製の繊維によって円筒状に形成され、縮径した状態から拡径した状態に変形可能なステント本体部と、前記ステント本体部が拡径した状態から縮径することを規制することで、前記ステント本体部を拡径した状態に維持する規制機構と、を備える合成樹脂ステントを提供する。
 また、合成樹脂ステントは、前記ステント本体部に接続され且つ前記ステント本体部を縮径した状態から拡径した状態に変形させる拡径機構を更に備えることが好ましい。
 また、前記拡径機構は、前記ステント本体部の軸方向の一端側に一端が接続されて、前記ステント本体部の軸方向の他端側に延びる紐状部材を有し、前記ステント本体部は、前記紐状部材を前記他端側に向かって引くことによって軸方向に収縮して拡径されることが好ましい。
 また、前記拡径機構は、前記ステント本体部の端部側を拡径させる端部拡径機構と、前記ステント本体部の中央部を拡径させる中央拡径機構と、を備えることが好ましい。
 また、前記規制機構は、前記紐状部材に形成される係止部と、前記ステント本体部の前記他端側に環状に形成され且つ前記紐状部材が挿通される環状部と、を有し、前記紐状部材を前記他端側に向かって引いて前記係止部を前記環状部に係止させることで、前記ステント本体部を拡径した状態に維持することが好ましい。
 また、前記係止部は、前記紐状部材を結ぶことで形成される結び目部及び輪部を備え、前記輪部は、前記結び目部から前記ステント本体側に向かって膨らむように形成されることが好ましい。
 また、前記輪部の大きさは、前記環状部の大きさよりも大きく構成されることが好ましい。
 また、前記紐状部材は、一端が前記ステント本体部に接続され且つ前記係止部が形成される第1の紐状部材と、前記第1の紐状部材の他端側に取り外し可能に連結される第2の紐状部材と、を有することが好ましい。
 また、前記紐状部材は、前記ステント本体部の内側に配置されることが好ましい。
 また、前記紐状部材は、前記ステント本体部に接続された一端と前記環状部との間において、一部が前記ステント本体部に沿うように規制されることが好ましい。
 また、前記紐状部材は、前記ステント本体部の周方向に等間隔で複数配置されることが好ましい。
 また、前記拡径機構及び前記規制機構は、ステント本体部の両端部に両端がそれぞれ接続された紐状の弾性部材であり、前記弾性部材は、収縮した状態でステント本体部が拡径した状態から縮径することを規制することで、前記ステント本体部を拡径した状態に維持してもよい。
 また、前記繊維の直径は、0.05~0.7mmであることが好ましい。
 本発明によれば、拡径した状態における、径方向外側から加わる圧力に対しての耐性と、縮径した状態における、ステントを狭窄部へ留置する際に用いられるデリバリーシステム等の細管状の部材への収納性とを両立させた合成樹脂ステントを提供できる。
本発明の第1実施形態に係る合成樹脂ステントの斜視図である。 第1実施形態に係る合成樹脂ステントの側面図である。 係止部を結び目により形成する場合の形成手順を示す図である。 第1実施形態に係る合成樹脂ステントの斜視図であり、合成樹脂ステントが拡径した状態を示す図である。 第1実施形態に係る合成樹脂ステントの側面図であり、合成樹脂ステントが拡径した状態を示す図である。 係止部を結び目により形成した場合の合成樹脂ステントの側面図であり、合成樹脂ステントが拡径した状態を示す図である。 第1実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第1実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第1実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第1実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第1実施形態の変形例に係る合成樹脂ステントの斜視図である。 第1実施形態の変形例に係る合成樹脂ステントの側面図である。 本発明の第2実施形態に係る合成樹脂ステントの斜視図である。 第2実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第2実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第2実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第2実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 第2実施形態に係る合成樹脂ステントを狭窄部に留置する方法について説明するための模式図である。 本発明の第3実施形態に係る合成樹脂ステントの側面図である。 本発明の第4実施形態に係る合成樹脂ステントの側面図である。 第4実施形態に係る合成樹脂ステントの側面図であり、合成樹脂ステントが拡径した状態を示す図である。 本発明の第5実施形態に係る合成樹脂ステントの側面図である。 第5実施形態に係る合成樹脂ステントの側面図であり、合成樹脂ステントが拡径した状態を示す図である。 第2実施形態の合成樹脂ステントの変形例を示す斜視図である。 実施例における、各ステントの径方向外側から加わる圧力に対する耐性について示したグラフである。
 以下、本発明の実施形態について図面を参照しながら説明する。
<第1実施形態>
 図1Aは、本発明の第1実施形態に係る合成樹脂ステントとしての生分解性ステント1の斜視図であり、図1Bは、生分解性ステント1の側面図である。
 図1A及びBに示すように、生分解性ステント1は、ステント本体部2と、拡径機構3と、規制機構4と、を備える。
 ステント本体部2は、合成樹脂製の繊維である生分解性の繊維20によって円筒状に形成される。より詳しくは、ステント本体部2は、複数本の繊維20で網目状に編み込まれ、外周に繊維20によって形成され且つ規則正しく配列される菱形の空孔を多数有する。
 本実施形態における繊維20としては、合成樹脂であれば特に限定されないが、材料として例えばL-乳酸、D-乳酸、DL-乳酸、ε-カプロラクトン、γ-ブチロラクトン、δ―バレロラクトン、グリコール酸、トリメチレンカーボネート、パラジオキサノン等のモノマーから合成されるホモポリマー、コポリマー、及びそれらのブレンドポリマー等の生分解性樹脂が挙げられる。特に、ポリ-L-乳酸(以下、PLLAと言う場合がある)又は乳酸-カプロラクトン共重合体(以下、P(LA/CL)と言う場合がある)、もしくはそれらのブレンドポリマーからなる生分解性の繊維を用いることが好ましい。
 繊維20は、モノフィラメント糸であってもよいし、マルチフィラメント糸であってもよい。また、繊維20は、撚りをかけていてもよいし、かけていなくてもよい。ステント本体部2の径方向外側から加わる圧力に対する反発力を強くする観点から、繊維20はモノフィラメント糸であることが好ましい。
 繊維20の直径は、0.05~0.7mmであることが好ましい。繊維20の直径が0.05mm未満であると、生分解性ステント1の強度が低下する傾向にある。繊維20の直径が0.7mmを超えると、後段で詳述する内視鏡の内部に挿入するデリバリーシステム等の細管状の部材に生分解性ステント1を収納し難くなる傾向にある。繊維20の直径の上限は、内径がより細いデリバリーシステムに収納する観点から、0.4mmであることがより好ましく、0.3mmであることが更に好ましい。繊維20の直径の下限は、高い強度を維持する観点から、0.2mmであることがより好ましい。
 拡径機構3は、ステント本体部2の軸方向の一端側(X方向側)に一端が接続されて、ステント本体部2の軸方向の他端側(Y方向側)に延びる紐状部材30を有する。より詳しくは、紐状部材30は、ステント本体部2のX方向側の端部に接続され、ステント本体部2の内部に配置される。紐状部材30は、繊維20と同様の生分解性の繊維によって構成される。
 規制機構4は、係止部41と、環状部42と、を有する。
 係止部41は、紐状部材30に形成される。係止部41は、図1A及びBに示すようにステント本体部2の内部に配置される。
 係止部41は、紐状部材30の径方向外側に突出した形状に形成される。係止部41は、紐状部材30の結び目であってもよいし、紐状部材30に形成される三角形状の返し部材であってもよい。また、係止部41は、紐状部材30の一部をリング状に形成したものであってもよい。紐状部材30及び係止部41は、生分解性の素材で構成されていてもよいし、生分解性ではない素材によって構成されていてもよい。
 図2に示すように、係止部41を紐状部材30の結び目により形成する場合、係止部41は、結び目部43と、輪部44と、を備える。結び目部43及び輪部44は、例えば、紐状部材30の一部により、輪を二重に作った後、大きな輪を小さな輪及び紐状部材30に複数回巻きつけるようにして結ぶことにより形成できる。
 輪部44は、結び目部43からステント本体部2の一端側(X方向側)に向かって膨らむように形成される(図4参照)。輪部44の大きさ(直径)は、環状部42の直径よりも大きく形成される。
 環状部42は、ステント本体部2のY方向側に接続され且つ環状に形成されて紐状部材30が挿通される。より詳しくは、環状部42は、ステント本体部2のY方向側の端部に、内側に延びるように接続される。
 図3A及びBも参照しつつ、生分解性ステント1の動作について説明する。図3Aは、生分解性ステント1が拡径した状態を示す図(斜視図)であり、図3Bは、生分解性ステント1が拡径した状態を示す図(側面図)である。
 ステント本体部2は、紐状部材30をY方向側に向かって引くことによって、図3A及びBに示すように軸方向に収縮して拡径される。
 規制機構4の係止部41は、紐状部材30をY方向側に向かって引くことで環状部42をX方向側からY方向側に通過する。環状部42を通過した係止部41は、環状部42に係止されて、環状部42をY方向側からX方向側に通過することはできない。このようにして、規制機構4(係止部41及び環状部42)は、ステント本体部2が拡径した状態から縮径することを規制することで、ステント本体部2を拡径した状態(図3A及びB)に維持する。
 係止部41を、紐状部材30の結び目により形成した場合には、紐状部材30をY方向側に向かって引くことで、環状部42よりも大きな輪部44は、変形しながら環状部42をX方向側からY方向側に通過する。環状部42を通過した輪部44は、紐状部材30の弾性により元の形状に復元する。これにより、図4に示すように、係止部41(輪部44)は、環状部42に係止される。また、図4に示すように、輪部44を結び目部43からステント本体部2の一端側(X方向側)に向かって膨らむように形成することで、輪部44を環状部42により安定的に係止させられる。
 続いて、生分解性ステント1を患者の腸管内の狭窄部に留置する方法について説明する。図5A~Dは、生分解性ステント1を狭窄部に留置する方法について説明するための模式図である。図4A~Dでは、紐状部材30、係止部41及び環状部42は、それぞれステント本体部2の周方向に等間隔をあけて2つ配置される。
 図5Aに示すように、生分解性ステント1は、デリバリーシステム等の細管状の部材110に収納される。一方、内視鏡100の先端部は狭窄部Nに接近させる。生分解性ステント1を収納した細管状の部材110は、内視鏡100の図示しない鉗子口に挿入され、生分解性ステント1を内視鏡100の先端部まで運ぶ。
 続いて、図5Bに示すように、生分解性ステント1は細管状の部材110から排出されて、狭窄部Nに囲まれた位置に配置される。細管状の部材110から排出された生分解性ステント1のステント本体部2は、わずかに拡径する。
 続いて、図5Cに示すように、紐状部材30がY方向側に向かって引かれることで更にステント本体部2が拡径し、狭窄部Nが押し広げられる。そしてこの際に、係止部41が環状部42を通過する。
 最後に、図5Dに示すように、細管状の部材110及び内視鏡100が患者の体外に取り出され、生分解性ステント1が狭窄部Nに留置される。この際、必要に応じて紐状部材30をはさみにより切断することで、紐状部材30の長さを調整することができる。
 このようにして、係止部41は環状部42に係止されて、ステント本体部2は拡径した状態に維持される。
 第1実施形態に係る生分解性ステント1によれば、以下の効果が奏される。
 (1)第1実施形態では、生分解性ステント1が、ステント本体部2が拡径した状態から縮径することを規制することで、ステント本体部2を拡径した状態に維持する規制機構4を備えるものとした。
 これにより、ステント本体部2は、拡径した状態において径方向外側からの圧力が加わったとしても、規制機構4を備えることによって縮径し難い。従って、生分解性ステント1は、仮に繊維20の径を細くした場合であっても、拡径した状態において径方向外側から加わる圧力に対しての耐性を有する。
 (2)第1実施形態では、ステント本体部2を縮径した状態から拡径した状態に変形させる拡径機構3を生分解性ステント1が更に備えるものとした。
 これにより、狭窄部に接近させた生分解性ステント1(ステント本体部2)を拡径させることができる。
 (3)第1実施形態では、拡径機構3が、ステント本体部2のX方向側に一端が接続されて、ステント本体部2のY方向側に延びる紐状部材30を有するものとした。更に、紐状部材30をY方向側に向かって引くことによってステント本体部2が軸方向に収縮して拡径されるものとした。
 これにより、紐状部材30を引くだけで、ステント本体部2を拡径させることができる。従って、容易に、狭窄部に接近させた生分解性ステント1(ステント本体部2)を拡径させることができる。
 (4)第1実施形態では、規制機構4が、紐状部材30に形成される係止部41と、ステント本体部2のY方向側に接続され且つ環状に形成されて紐状部材30が挿通される環状部42と、を有するものとした。更に、紐状部材30をY方向側に向かって引いて係止部41を環状部42に係止させることで、ステント本体部2を拡径した状態に維持するものとした。
 これにより、紐状部材30を引くだけで、ステント本体部2を拡径させた上に、規制機構4によって、ステント本体部2を拡径した状態に維持することができる。従って、より容易に、狭窄部に接近させた生分解性ステント1(ステント本体部2)を拡径させることができる上に、生分解性ステント1を拡径した状態に維持することができる。
 (5)第1実施形態では、紐状部材30を、ステント本体部2の内側に配置した。
 これにより、ステント本体部2を拡径させる際に、紐状部材30が患者の狭窄部とステント本体部2との間に挟まれない。従って、紐状部材30を引いて、円滑にステント本体部2を拡径させることができる。
 (6)第1実施形態では、図5A~Dに示すように、紐状部材30が、ステント本体部2の周方向に等間隔で複数配置されるものとした。
 これにより、紐状部材30を引いてステント本体部2を拡径させる際に、ステント本体部2にかかる力の重心が偏ってしまうのを防ぐことができる。従って、複数の紐状部材30を同時に引いて、円滑にステント本体部2を拡径させることができる。
 (7)第1実施形態では、繊維20の直径を、0.05~0.7mmとした。
 これにより、生分解性ステント1は、縮径した状態においてデリバリーシステム等の細管状の部材110に収納しやすくなる。
 (8)図2及び図4に示すように、係止部41を、紐状部材30の結び目により形成した場合には、紐状部材30を利用して係止部41を構成できるので、生分解性ステント1を構成する部品点数を削減できる。
 また、係止部41を、結び目部43と輪部44とにより構成し、輪部44の大きさを環状部42の大きさよりも大きく形成することで、輪部44を変形させて環状部42を通過させられ、その後、紐状部材30の弾性により輪部44を元の形状に復元させられる。これにより、図4に示すように、係止部41(輪部44)を、環状部42に安定的に係止させられる。
 更に、輪部44を結び目部43からステント本体部2の一端側(X方向側)に向かって膨らむように形成することで、輪部44を環状部42により安定的に係止させられる。
 ところで、図6Aは、第1実施形態の変形例に係る生分解性ステント1Aの斜視図であり、図6Bは、生分解性ステント1Aの側面図である。生分解性ステント1Aのうち生分解性ステント1と同一の構成については、図6A及びBにおいて生分解性ステント1と同様の符号を付して説明を省略する。
 生分解性ステント1Aは、生分解性ステント1と同様に拡径機構3Aと、規制機構4Aと、を備える。拡径機構3Aの有する紐状部材30Aは、上記実施形態のようにステント本体部2Aの内側には配置されず、ステント本体部2Aの外側に配置される(図6A及びB)。更に、規制機構4Aの有する環状部42Aは、ステント本体部2AのY方向側の端部に、内側ではなく外側に形成される。このように生分解性ステント1Aにおいては、規制機構4Aがステント本体部2Aの外側に配置される。従って、生分解性ステント1A(ステント本体部2A)の内部における食物等の流通が、規制機構4Aによって妨げられない。
<第2実施形態>
 図7は、本発明の第2実施形態に係る生分解性ステント1Bの斜視図である。生分解性ステント1Bのうち生分解性ステント1と同一の構成については、図7において生分解性ステント1と同様の符号を付して説明を省略する。
 生分解性ステント1Bは、生分解性ステント1と同様に拡径機構3Bと、規制機構4Bと、を備える。拡径機構3Bの有する紐状部材30Bは、第1の紐状部材31Bと、第2の紐状部材32Bとを有する。
 第1の紐状部材31Bは、一端がステント本体部2Bに接続され且つ係止部41Bが形成される。第1の紐状部材31Bは、係止部41Bよりも他端側に配置され且つ環状に形成される連結部311Bを有する。
 第2の紐状部材32Bは、第1の紐状部材31Bの他端側に取り外し可能に連結される。より詳しくは、第2の紐状部材32Bは、連結部311Bに挿通されて折り返されることで、第1の紐状部材31Bに取り外し可能に連結される。
 続いて、生分解性ステント1Bを患者の腸管内の狭窄部に留置する方法について説明する。図8A~Dは、生分解性ステント1Bを狭窄部に留置する方法について説明するための模式図である。図8A~Dでは、紐状部材30B、係止部41B及び環状部42Bは、それぞれステント本体部2Bの周方向に等間隔をあけて2つ配置される。
 図8Aに示すように、生分解性ステント1Bは、デリバリーシステム等の細管状の部材110Bに収納される。一方、内視鏡100Bの先端部は狭窄部Nに接近させる。生分解性ステント1Bを収納した細管状の部材110Bは、内視鏡100Bの図示しない鉗子口に挿入され、生分解性ステント1Bを内視鏡100Bの先端部まで運ぶ。
 続いて、図8Bに示すように、生分解性ステント1Bは細管状の部材110Bから排出されて、狭窄部Nに囲まれた位置に配置される。細管状の部材110Bから排出された生分解性ステント1Bのステント本体部2Bは、わずかに拡径する。
 続いて、図8Cに示すように、紐状部材30B(第2の紐状部材32B)がY方向側に向かって引かれることで更にステント本体部2Bが拡径し、狭窄部Nが押し広げられる。そしてこの際に、係止部41Bが環状部42Bを通過する。
 続いて、図8Dに示すように、第2の紐状部材32Bが第1の紐状部材31Bから取り外されて、デリバリーシステム等の細管状の部材110B及び内視鏡100Bが患者の体外に取り出される。最後に、図8Eに示すように、生分解性ステント1Bは狭窄部Nに留置される。
 このようにして、係止部41Bは環状部42Bに係止されて、ステント本体部2Bは拡径した状態に維持される。
 第2実施形態に係る生分解性ステント1Bによれば、上記効果(1)~(8)に加えて、以下の効果が奏される。
 (9)第2実施形態では、紐状部材30Bが、一端がステント本体部2Bに接続され且つ係止部41Bが形成される第1の紐状部材31Bと、第1の紐状部材31Bの他端側に取り外し可能に連結される第2の紐状部材32Bと、を有するものとした。
 これにより、生分解性ステント1Bを狭窄部Nに留置した後に、第1の紐状部材31Bから第2の紐状部材32Bを取り外すことができる。従って、生分解性ステント1Bによれば、紐状部材30Bのうち、ステント本体部2Bを拡径した状態に維持するために必要のない部分を、はさみ等を用いることなく取り除くことができるので、患者及び操作者の負担を軽減できる。
<第3実施形態>
 図9は、本発明の第3実施形態に係る生分解性ステント1Cの側面図である。生分解性ステント1Cのうち生分解性ステント1と同一の構成については、図9において生分解性ステント1と同様の符号を付して説明を省略する。
 生分解性ステント1Cは、生分解性ステント1と同様に拡径機構3Cと、規制機構4Cと、を備える。拡径機構3Cの有する紐状部材30Cは、ステント本体部2Cに接続された一端と環状部42Cとの間において、一部がステント本体部2Cに沿うように規制される。具体的には、図9に示すように、紐状部材30Cは、X方向からY方向に延びる途中で繊維20Cによって形成される網目をステント本体部2Cの内側から外側に通過し、更にY方向側で繊維20Cによって形成される網目をステント本体部2Cの外側から内側に通過する。このようにして、紐状部材30Cは、一部がステント本体部2Cの外側を通るように配置される。
 第3実施形態に係る生分解性ステント1Cによれば、上記効果(1)~(5)及び(7)に加えて、以下の効果が奏される。
 (10)第3実施形態では、紐状部材30Cを、ステント本体部2Cに接続された一端と環状部42Cとの間において、一部がステント本体部2Cに沿うように規制した。
 これにより、ステント本体部2Cを拡径する際に、紐状部材30Cをステント本体部2Cに沿うようにして引くことができる。従って、生分解性ステント1Cによれば、ステント本体部2Cを、円筒形状を維持しながらバランスよく且つ円滑に拡径することができる。
<第4実施形態>
 図10Aは、本発明の第4実施形態に係る生分解性ステント1Dの縮径した状態の側面図であり、図10Bは、生分解性ステント1Dの拡径した状態の側面図である。生分解性ステント1Dのうち生分解性ステント1と同一の構成については、生分解性ステント1と同様の符号を付して説明を省略する。
 生分解性ステント1Dは、生分解性ステント1と同様に拡径機構3Dと、規制機構4Dと、を備える。拡径機構3D及び規制機構4Dは、ステント本体部2Dの両端部に両端がそれぞれ接続された紐状の弾性部材50Dである。つまり、弾性部材50Dは、拡径機構3Dであると共に規制機構4Dでもある。図10Aに示すように、ステント本体部2Dが軸方向に伸長して縮径した状態において、弾性部材50Dは伸長する。そして、図10Bに示すように、弾性部材50Dが収縮することにより、ステント本体部2Dは拡径する。弾性部材50Dは、収縮した状態でステント本体部2Dが拡径した状態から縮径することを規制することで、ステント本体部2Dを拡径した状態に維持する。
 第4実施形態に係る生分解性ステント1Dによれば、上記効果(1)、(2)及び(7)に加えて、以下の効果が奏される。
 (11)第4実施形態では、拡径機構3Dを、ステント本体部2Dの両端部に両端がそれぞれ接続された紐状の弾性部材50Dとし、弾性部材50Dが、収縮した状態でステント本体部2Dを拡径した状態に維持するものとした。
 これにより、より単純な構造によって、ステント本体部2Dを拡径し、更にステント本体部2Dを拡径した状態に維持することができる。
<第5実施形態>
 図11A及びBは、本発明の第5実施形態に係る生分解性ステント1Eを示す側面図であり、図11Aは、生分解性ステント1Eが縮径した状態を示し、図11Bは、生分解性ステント1Eが拡径した状態を示す。
 第5実施形態の生分解性ステント1Eは、主として、ステント本体部2Eの形状及び拡径機構3Eの構成において第1実施形態と異なる。
 第5実施形態の生分解性ステント1Eは、ステント本体部2Eの両端部の径が中央部の径よりも大きくなるように形成されており、ステント本体部2Eの両端部がいわゆるフレア形状となっている。
 第5実施形態では、拡径機構3Eは、2つの端部拡径機構31Eと、2つの中央部拡径機構32Eと、を備える。
 2つの端部拡径機構31E及び2つの中央部拡径機構32Eは、それぞれ、対向して配置される。また、端部拡径機構31と中央部拡径機構32Eとは、ステント本体部2Eの周方向に90度ずれて配置される。
 端部拡径機構31Eは、ステント本体部2Eの端部側(フレア形状部分)を拡径させる。第5実施形態では、端部拡径機構31Eを構成する紐状部材311Eの一端側は、ステント本体部2Eの一端部(X方向側の端部)に接続され、ステント本体部2Eの他端側(Y方向側)に延びる。
 中央部拡径機構32Eは、ステント本体部2Eの中央部(フレア形状部分以外の部分)を拡径させる。第5実施形態では、中央部拡径機構32Eを構成する紐状部材321Eの一端側は、ステント本体部2Eの一端側(X方向側)におけるフレア形状部分の基端部に接続され、ステント本体部2Eの他端側(Y方向側)に延びる。
 第5実施形態では、規制機構4Eは、端部規制機構41Eと、中央部規制機構42Eと、を備える。
 端部規制機構41Eは、ステント本体部2Eの端部が拡径した状態を維持させる。端部規制機構41Eを構成する環状部412Eは、ステント本体部2Eの中央部における一端側(X方向側)に配置され、係止部411Eは、環状部412Eよりも一端側(X方向側)に配置される。
 中央部規制機構42Eは、ステント本体部2Eの中央部が拡径した状態を維持させる。中央部規制機構42Eを構成する環状部422Eは、ステント本体部2Eの中央部における他端側(Y方向側)に配置され、係止部421Eは、環状部422Eよりも一端側(X方向側)に配置される。
 即ち、第5実施形態では、端部規制機構41Eを構成する環状部412Eと、中央部規制機構42Eを構成する環状部422Eとは、ステント本体部2Eの軸方向においてずれた位置に配置される。
 第5実施形態の生分解性ステント1Eによれば、図11Bに示すように、端部拡径機構31E及び端部規制機構41Eによりステント本体部2Eの端部(フレア形状部分)を拡径させると共にこの拡径させた状態を維持させられ、中央部拡径機構32E及び中央部規制機構42Eによりステント本体部2Eの中央部を拡径させると共にこの拡径させた状態を維持させられる。これにより、ステント本体部2Eの端部の径が中央部の径よりも大きく形成された場合であっても、ステント本体部2Eの端部及び中央部を好適に拡径させられ、また拡径させた状態を好適に維持させられる。
 第5実施形態に係る生分解性ステント1Eによれば、上記効果(1)~(8)に加えて、以下の効果が奏される。
 (12)第5実施形態では、端部拡径機構31E及び端部規制機構41Eによりステント本体部2Eの端部(フレア形状部分)を拡径させると共にこの拡径させた状態を維持させられ、中央部拡径機構32E及び中央部規制機構42Eによりステント本体部2Eの中央部を拡径させると共にこの拡径させた状態を維持させられる。これにより、ステント本体部2Eの端部の径が中央部の径よりも大きく形成された場合であっても、ステント本体部2Eの端部及び中央部を好適に拡径させられ、また拡径させた状態を好適に維持させられる。
 また、端部規制機構41Eを構成する環状部412Eと、中央部規制機構42Eを構成する環状部422Eとを、ステント本体部2Eの軸方向においてずれた位置に配置した。これにより、複数の環状部を含んで生分解性ステント1Eを構成した場合であっても、複数の環状部によりステント本体部2Eの内部に部分的に狭くなった箇所が形成されることを防げる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、上記の第1から第3実施形態では、紐状部材30,30B,30Cを引くことでステント本体部2,2B,2Cを拡径させる構成としたが、本発明はこれに限定されない。例えば、バルーンでステント本体部を拡径させる構成としてもよい。
 また、上記実施形態では、内視鏡を用いて生分解性ステント1を狭窄部Nに留置させたが、本発明の生分解性ステントを狭窄部に留置する方法はこれに限定されない。例えば、カテーテルを用いて生分解性ステントを狭窄部に接近・留置させてもよい。
 また、規制機構4の有する係止部41及び環状部42の位置は、所望される、拡径した状態のステント本体部2の直径に応じて適宜変更することが可能である。
 また、上記の第1から第3実施形態では、環状部42,42B,42Cを、ステント本体部2,2B,2Cの内側に伸ばして構成し、上記の第1実施形態の変形例では、環状部42Aを、ステント本体部2Aの外側に伸ばして構成したが、本発明はこれに限定されない。例えば、環状部を、ステント本体部の端部からステント本体部の軸方向に延びるように形成してもよい。
 また、上記の第3実施形態では、紐状部材30Cを、一部がステント本体部2Cの外側を通るように配置することで、紐状部材30Cの一部がステント本体部2Cに沿うように規制したが、本発明はこれに限定されない。例えば、ステント本体部の内側の一端側から他端側の間に所定の間隔を開けて複数の環状部材を配置し、その環状部材に紐状部材を通すことで、紐状部材の一部がステント本体部に沿うように規制してもよい。
 また、ステント本体部にX線不透過性マーカーを付与することで、体内における生分解性ステントの位置を確認できるようにしてもよい。
 また、上記の第2実施形態では、第1の紐状部材31Bと、第2の紐状部材32Bとは、係止部41Bの近傍に設けられた連結部311Bにおいて連結されていたが、これに限らない。即ち、図12に示すように、連結部311Bを、係止部41Bから離れた位置に設け(つまり、係止部41Bを第1の紐状部材31Bの端部から離れた位置に形成し)、第1の紐状部材31Bと第2の紐状部材32Bとを連結してもよい。これにより、拡径機構3Bの操作性をより向上させられる。
 また、上記の第5実施形態では、複数の拡径機構3E(紐状部材311E,321E)を、全てステント本体部2Eの内部を通るように配置したが、これに限らない。即ち、複数の紐状部材を含んで構成する場合、一部の紐状部材をステント本体部の外部を通るように配置し、他の紐状部材をステント本体部の内部を通るように配置してもよい。
 また、上記の各実施形態では、合成樹脂ステントとして、生分解性の繊維により構成した生分解性ステントを用いたがこれに限らない。即ち、生分解性を有さない合成樹脂繊維を用いてステントを構成してもよい。
 また、係止部41を、紐状部材30の結び目により形成する場合の結び方は、図2に示す結び方に限らない。即ち、他の結び方により係止部を形成してもよい。
 次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれに限定されるものではない。
[実施例1]
 PLLAからなる繊維(直径0.25mm)24本を網目状に編み込むことで円筒形状のステント本体部(直径17mm、長さ76mm)を作製した。また、PLLAからなる繊維(直径0.2mm)に結び目(係止部)を形成した紐状部材を2本作製し、これらの一端をステント本体部の一方側の端部に、ステント本体部の周方向に等間隔を開けて接着させた。更に、ステント本体部の他方側の端部に環状部材を接着して固定することで生分解性ステントを作製した(図1A及びB参照)。
[比較例1]
 紐状部材に係止部を形成しない点及びステント本体部に環状部材を接着させない点以外は、実施例1と同様に生分解性ステントを形成した。つまり、比較例1の生分解性ステントは規制機構を有さない。
[比較例2]
 PLLAとP(LA/CL)とを質量比(PLLAの質量/P(LA/CL)の質量)が90/10となるように混合したブレンドポリマーからなる繊維(直径0.6mm)16本を網目状に編み込むことで生分解性ステント(ステント本体部、直径17mm)を作製した。比較例2の生分解性ステントは紐状部材及び規制機構を有さない。
[参考例1]
 ブレンドポリマーからなる繊維の直径を0.7mmとし且つ繊維を16本とした以外は、実施例1と同様に生分解性ステントを作製した。
[参考例2]
 ブレンドポリマーからなる繊維の直径を0.8mmとし且つ繊維を16本とした以外は、実施例1と同様に生分解性ステントを作製した。
<圧縮強度の測定>
 実施例1、比較例1及び2の生分解性ステントを圧縮強度の測定に供した。
 実施例1の生分解性ステントは、紐状部材を引くことで、ステント本体部を軸方向に収縮させて拡径した。この際、係止部を環状部材(環状部)に係止させた。係止部が環状部材に係止されることで、ステント本体部は拡径した状態(直径19mm、長さ40mm)に維持される。この拡径した状態における、径方向の圧縮強度(ステント本体部の直径が2分の1になるために必要な負荷)をJIS T 0401に準拠する方法で測定した。測定後において、生分解性ステントの破損は観察されなかった。
 比較例1及び2の生分解性ステントについても、ステント本体部を拡径させた状態(直径17mm、長さ40mm)における径方向の圧縮強度を実施例1と同様の方法により測定した。
 実施例1、比較例1及び2の生分解性ステントの圧縮強度を測定した結果を図5のグラフに示した。圧縮強度は相対的な値を示した。なお、参考例として、金属製の大腸ステント(WallFlex Colonic、ボストン・サイエンティフィックジャパン株式会社製)と金属製の食道ステント(フレックスエラ-J、株式会社バイオラックスメディカルデバイス製)の圧縮強度を、実施例1の生分解性ステントと同様の方法により測定した。これらの測定結果も図5に示した。
<収納性試験>
 実施例1及び比較例2の生分解性ステントについて、内径2.4mmのチューブへの収納性を確認した。実施例1の生分解性ステントは、円滑にチューブ内に収納することができた。一方、比較例2の生分解性ステントは、直径2.4mmまで縮径することができず、チューブに挿入できなかった。
 参考例1及び2の生分解性ステントについて、内径3.5mmのチューブへの収納性を確認した。参考例1の生分解性ステントは、直径3.5mm未満に縮径することができ、内径3.5mmのチューブへ収納することができた。一方、参考例2の生分解性ステントは、直径3.5mm未満に縮径することができず、内径3.5mmのチューブへ収納することができなかった。
 圧縮強度の測定結果(図9)から、実施例1の生分解性ステントの圧縮強度は、規制機構を備えない比較例1の生分解性ステントの圧縮強度よりも高いことが分かった。また、実施例1の生分解性ステントは繊維の直径が0.25mmであるにも関わらず、繊維の直径が0.6mmである比較例1の生分解性ステントより圧縮強度が高いことが分かった。更に、実施例1の生分解性ステントの圧縮強度は、金属製のステントの圧縮強度と比較しても遜色ないことも分かった。
 これらの結果から、ステント本体部を拡径した状態に維持する規制機構を備える生分解性ステントは、細管状の部材に収納するために生分解性の繊維を細くした場合であっても径方向外側から加わる圧力に対して十分な耐性を有することが確認された。
 なお、収納性試験の結果から、内径3.5mmのチューブに参考例1の生分解性ステントは収納可能であるが、参考例2の生分解性ステントは収納できないことが分かった。この結果から、繊維の直径を0.7mm以下の生分解性ステントであれば、内径3.5mmのデリバリーシステム等の細管状の部材への収納が可能であることが確認された。
 1,1A,1B,1C,1D,1E…生分解性ステント
 2,2A,2B,2C,2D,2E…ステント本体部
 20,20A,20B,20C,20D,20E…繊維
 3,3A,3B,3C,3D,3E…拡径機構
 30,30A,30B,30C,30E…紐状部材
 31B…第1の紐状部材
 32B…第2の紐状部材
 31E…端部拡径機構
 32E…中央部拡径機構
 4,4A,4B,4C,4D,4E…規制機構
 41,41A,41B,41C,41E…係止部
 42,42A,42B,42C,42E…環状部
 43…結び目部
 44…輪部
 50D…弾性部材

Claims (13)

  1.  合成樹脂製の繊維によって円筒状に形成され、縮径した状態から拡径した状態に変形可能なステント本体部と、
     前記ステント本体部が拡径した状態から縮径することを規制することで、前記ステント本体部を拡径した状態に維持する規制機構と、を備える合成樹脂ステント。
  2.  前記ステント本体部に接続され且つ前記ステント本体部を縮径した状態から拡径した状態に変形させる拡径機構を更に備える請求項1記載の合成樹脂ステント。
  3.  前記拡径機構は、前記ステント本体部の軸方向の一端側に一端が接続されて、前記ステント本体部の軸方向の他端側に延びる紐状部材を有し、
     前記ステント本体部は、前記紐状部材を前記他端側に向かって引くことによって軸方向に収縮して拡径される請求項2記載の合成樹脂ステント。
  4.  前記拡径機構は、
      前記ステント本体部の端部側を拡径させる端部拡径機構と、
      前記ステント本体部の中央部を拡径させる中央拡径機構と、を備える請求項3に記載の合成樹脂ステント。
  5.  前記規制機構は、前記紐状部材に形成される係止部と、前記ステント本体部の前記他端側に環状に形成され且つ前記紐状部材が挿通される環状部と、を有し、
     前記紐状部材を前記他端側に向かって引いて前記係止部を前記環状部に係止させることで、前記ステント本体部を拡径した状態に維持する請求項3又は4に記載の合成樹脂ステント。
  6.  前記係止部は、前記紐状部材を結ぶことで形成される結び目部及び輪部を備え、
     前記輪部は、前記結び目部から前記ステント本体部の一端側に向かって膨らむように形成される請求項5に記載の合成樹脂ステント。
  7.  前記輪部の大きさは、前記環状部の大きさよりも大きく構成される請求項6に記載の合成樹脂ステント。
  8.  前記紐状部材は、一端が前記ステント本体部に接続され且つ前記係止部が形成される第1の紐状部材と、前記第1の紐状部材の他端側に取り外し可能に連結される第2の紐状部材と、を有する請求項5~7のいずれかに記載の合成樹脂ステント。
  9.  前記紐状部材は、前記ステント本体部の内側に配置される請求項3~8のいずれかに記載の合成樹脂ステント。
  10.  前記紐状部材は、前記ステント本体部に接続された一端と前記環状部との間において、一部が前記ステント本体部に沿うように規制される請求項5~8のいずれかに従属する請求項9に記載の合成樹脂ステント。
  11.  前記紐状部材は、前記ステント本体部の周方向に等間隔で複数配置される請求項3~9のいずれかに記載の合成樹脂ステント。
  12.  前記拡径機構及び前記規制機構は、ステント本体部の両端部に両端がそれぞれ接続された紐状の弾性部材であり、
     前記弾性部材は、収縮した状態でステント本体部が拡径した状態から縮径することを規制することで、前記ステント本体部を拡径した状態に維持する請求項2に記載の合成樹脂ステント。
  13.  前記繊維の直径は、0.05~0.7mmである請求項1~12のいずれかに記載の合成樹脂ステント。
PCT/JP2015/074734 2014-09-01 2015-08-31 合成樹脂ステント WO2016035757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15838355.4A EP3189816B1 (en) 2014-09-01 2015-08-31 Synthetic resin stent
JP2016546639A JP6705377B2 (ja) 2014-09-01 2015-08-31 合成樹脂ステント
US15/507,945 US10265204B2 (en) 2014-09-01 2015-08-31 Synthetic resin stent
CN201580046208.XA CN106794070B (zh) 2014-09-01 2015-08-31 合成树脂支架

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177487 2014-09-01
JP2014-177487 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035757A1 true WO2016035757A1 (ja) 2016-03-10

Family

ID=55439818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074734 WO2016035757A1 (ja) 2014-09-01 2015-08-31 合成樹脂ステント

Country Status (5)

Country Link
US (1) US10265204B2 (ja)
EP (1) EP3189816B1 (ja)
JP (1) JP6705377B2 (ja)
CN (1) CN106794070B (ja)
WO (1) WO2016035757A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126620A1 (ja) * 2016-01-19 2017-07-27 株式会社ジェイ・エム・エス 合成樹脂ステント
JP2018061822A (ja) * 2016-06-20 2018-04-19 株式会社ジェイ・エム・エス ステントデリバリーシステム
JP2018068421A (ja) * 2016-10-25 2018-05-10 株式会社ジェイ・エム・エス ステントデリバリーシステム
WO2018101400A1 (ja) * 2016-11-30 2018-06-07 株式会社ジェイ・エム・エス ステント
JP2018175654A (ja) * 2017-04-19 2018-11-15 株式会社ジェイ・エム・エス ステント
WO2019088251A1 (ja) 2017-11-06 2019-05-09 日本毛織株式会社 ステント及びそれを含む医療機器
JP2021521965A (ja) * 2018-04-26 2021-08-30 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 電動テレスコープ医療装置送達システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200146852A1 (en) * 2018-11-13 2020-05-14 Icad Endovascular Llc Systems and methods for delivery retrievable stents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176420A (ja) * 1997-08-12 1999-03-23 Schneider Usa Inc 直径を軸方向から制御し得る拡径プロテーゼ
JP2001029478A (ja) * 1999-07-23 2001-02-06 Terumo Corp 体腔内病変部治療用器具
JP2004517648A (ja) * 2000-07-27 2004-06-17 バイオンクス インプランツ インコーポレイテッド 向上した放射方向の拡張性並びに形状記憶性を有する自己拡張型ステント
US20110264186A1 (en) * 2010-04-23 2011-10-27 Medtronic Vascular, Inc. Biodegradable Stent Having Non-Biodegradable End Portions and Mechanisms for Increased Stent Hoop Strength

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091434A1 (en) * 2001-01-05 2002-07-11 Chambers Jeffrey W. Apparatus and method to position a stent
US7704276B2 (en) * 2002-11-15 2010-04-27 Synecor, Llc Endoprostheses and methods of manufacture
US7771463B2 (en) * 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
CN101045022B (zh) * 2006-03-30 2010-08-25 温宁 自扩型支架轴向拉线张紧机构
CZ303081B6 (cs) * 2007-12-13 2012-03-21 Ella-Cs, S. R. O. Zpusob výroby samoexpanzního biodegradabilního stentu
JP2009160079A (ja) 2007-12-28 2009-07-23 Gunze Ltd 生体管路ステント
GB0823716D0 (en) * 2008-12-31 2009-02-04 Angiomed Ag Stent delivery device with rolling stent retaining sheath
CN102198024A (zh) * 2011-01-30 2011-09-28 王嘉贤 血管支架
US9364359B2 (en) * 2011-12-08 2016-06-14 W. L. Gore & Associates, Inc. Systems and methods for delivery of a medical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176420A (ja) * 1997-08-12 1999-03-23 Schneider Usa Inc 直径を軸方向から制御し得る拡径プロテーゼ
JP2001029478A (ja) * 1999-07-23 2001-02-06 Terumo Corp 体腔内病変部治療用器具
JP2004517648A (ja) * 2000-07-27 2004-06-17 バイオンクス インプランツ インコーポレイテッド 向上した放射方向の拡張性並びに形状記憶性を有する自己拡張型ステント
US20110264186A1 (en) * 2010-04-23 2011-10-27 Medtronic Vascular, Inc. Biodegradable Stent Having Non-Biodegradable End Portions and Mechanisms for Increased Stent Hoop Strength

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3189816A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126620A1 (ja) * 2016-01-19 2017-07-27 株式会社ジェイ・エム・エス 合成樹脂ステント
JPWO2017126620A1 (ja) * 2016-01-19 2018-11-08 株式会社ジェイ・エム・エス 合成樹脂ステント
US10744010B2 (en) 2016-01-19 2020-08-18 Jms Co., Ltd. Synthetic resin stent
JP2018061822A (ja) * 2016-06-20 2018-04-19 株式会社ジェイ・エム・エス ステントデリバリーシステム
JP2018068421A (ja) * 2016-10-25 2018-05-10 株式会社ジェイ・エム・エス ステントデリバリーシステム
WO2018101400A1 (ja) * 2016-11-30 2018-06-07 株式会社ジェイ・エム・エス ステント
JP7114482B2 (ja) 2016-11-30 2022-08-08 株式会社ジェイ・エム・エス ステント
JP2018175654A (ja) * 2017-04-19 2018-11-15 株式会社ジェイ・エム・エス ステント
WO2019088251A1 (ja) 2017-11-06 2019-05-09 日本毛織株式会社 ステント及びそれを含む医療機器
KR20200085736A (ko) 2017-11-06 2020-07-15 이에이 파마 가부시키가이샤 스텐트 및 그것을 포함하는 의료기기
JP2021521965A (ja) * 2018-04-26 2021-08-30 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 電動テレスコープ医療装置送達システム
US11633569B2 (en) 2018-04-26 2023-04-25 Boston Scientific Scimed, Inc. Motorized telescoping medical device delivery system

Also Published As

Publication number Publication date
US10265204B2 (en) 2019-04-23
EP3189816B1 (en) 2022-12-07
CN106794070B (zh) 2019-03-12
JPWO2016035757A1 (ja) 2017-06-08
EP3189816A4 (en) 2018-04-11
JP6705377B2 (ja) 2020-06-03
EP3189816A1 (en) 2017-07-12
US20170281376A1 (en) 2017-10-05
CN106794070A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016035757A1 (ja) 合成樹脂ステント
JP6806090B2 (ja) 合成樹脂ステント
US9060894B2 (en) Catheter sheath for implant delivery
AU2011325983B2 (en) Deployment catheter for endoluminal devices
EP3106108B1 (en) Tissue anchor for securing tissue layers
EP3597256A1 (en) Integrated stent repositioning and retrieval loop
JP2004517648A (ja) 向上した放射方向の拡張性並びに形状記憶性を有する自己拡張型ステント
JP2014507200A (ja) 改善された外科用インプラント装置並びにそれらの製造及び使用のための方法
RU2314759C2 (ru) Имплантат для окклюзии кровотока
CN110037827B (zh) 迁移能力降低的可植入式医疗装置
JP2017513580A (ja) 医療機器およびこれらを用いる関連した手法
JP6750255B2 (ja) ステント
JP6543948B2 (ja) 生分解性ステント
EP3949915B1 (en) Synthetic resin stent
JP7039957B2 (ja) ステント
JP2017029387A (ja) 生分解性ステント
JP6880976B2 (ja) ステント
JP7331342B2 (ja) ステント
JP6790717B2 (ja) ステントデリバリーシステム
WO2011132634A1 (ja) ステント
JP6729552B2 (ja) 合成樹脂ステント
JP7114482B2 (ja) ステント
US9144507B2 (en) Method for surgical treatment of occlusive disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15507945

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015838355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838355

Country of ref document: EP