WO2016035743A1 - 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法 - Google Patents

湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法 Download PDF

Info

Publication number
WO2016035743A1
WO2016035743A1 PCT/JP2015/074632 JP2015074632W WO2016035743A1 WO 2016035743 A1 WO2016035743 A1 WO 2016035743A1 JP 2015074632 W JP2015074632 W JP 2015074632W WO 2016035743 A1 WO2016035743 A1 WO 2016035743A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
phenol resin
wet
booth circulating
water treatment
Prior art date
Application number
PCT/JP2015/074632
Other languages
English (en)
French (fr)
Inventor
雄太 有元
克美 松本
山崎 倫康
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580033940.3A priority Critical patent/CN106660840B/zh
Priority to MYPI2017700330A priority patent/MY182148A/en
Priority to EP15837989.1A priority patent/EP3190092A4/en
Priority to BR112017003145A priority patent/BR112017003145A2/pt
Priority to US15/329,743 priority patent/US20170210645A1/en
Publication of WO2016035743A1 publication Critical patent/WO2016035743A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D3/00Differential sedimentation
    • B03D3/02Coagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/14Paint wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/12Prevention of foaming

Definitions

  • the present invention relates to a wet paint booth circulating water treatment agent and a wet paint booth circulating water treatment method capable of efficiently agglomerating paint in wet paint booth circulating water containing water-based paint and / or solvent-based paint.
  • Spray painting is performed in the painting process of automobiles, electrical equipment, metal products, etc.
  • overspray paint excess paint
  • the amount of generation reaches about 50% to 60% of the paint used except for electrostatic coating with high coating efficiency. Therefore, it is necessary to remove and recover excess paint from the environment of the painting process.
  • Washing-type wet painting booths that collect excess paint with water are widely used in painting facilities.
  • FIG. 1 A part of the mist-like surplus paint generated in the spray chamber 21 adheres to the slats on the wall surface and work floor, but most of the mist is in contact with the circulating water flowing on the water curtain plate 22 along with the air flow and collected in the water. Is done. Water drops remaining in the air and some paint particles are also removed by the eliminator 23. Air is discharged from the exhaust duct 24 by the fan 25 to the outside of the system. The circulating water that has collected the paint particles passes through the water tank 26 and enters the pit (separation tank) 27, and is further solid-liquid separated by a floating device (not shown).
  • the solid matter that has been subjected to solid-liquid separation is recovered as paint sludge.
  • the water from which the solid matter has been separated and removed passes through the strainer 28 and is circulated and used as flush water through the circulating water line by the circulating water pump 29.
  • solvent-based paints using only organic solvents such as thinner
  • water-based paints using water Solvent-based paints are superior to water-based paints in terms of weather resistance, chipping resistance, and the like, and are often used particularly in clear clear coatings for automobiles. Because water-based paints use water as a solvent (some solvents may be used in combination), they are not flammable, safe and sanitary, and have the advantage of no pollution caused by organic solvents. In recent years, the range of application has been expanded.
  • Treatment agents for circulating water in the wet painting booth are used as treatment agents for circulating water in the wet painting booth.
  • Treatment agent using melamine resin (Patent Document 1) 2.
  • Combined use of inorganic flocculant and polymer (Patent Document 2) 3.
  • Treatment agent using clay mineral (Patent Document 1) 2.
  • treatment agents do not have sufficient tack-free effect on solvent-based paints, and it is necessary to increase the amount of addition in order to obtain the desired effect. By increasing the amount of treatment agent added, the amount of waste increases.
  • Patent Document 3 As a treatment agent effective in suppressing foaming of a water-based paint, there is a treatment agent using a phenol resin.
  • Patent Document 3 and Patent Document 4 have been proposed.
  • Patent Document 3 a novolak type phenol resin having a molecular weight of 1,000 or less (repetition number n is 10 or less), a resol type phenol resin having a molecular weight of 100 to 300, or the like is preferred as a phenol resin to be used.
  • Patent Document 4 a novolak type phenol resin having a repetition number n of 4 to 8 and a molecular weight smaller than that of Patent Document 3 is used.
  • Patent Document 5 also describes the use of a phenol resin.
  • Patent Document 5 describes that the phenol resin has a weight average molecular weight of 3,000 or less, preferably 2,000 or less.
  • the present invention provides a sufficient non-adhesiveness and agglomeration effect for solvent-based paints without being affected by the types of paints and curing agents and equipment conditions.
  • An object of the present invention is to provide a wet paint booth circulating water treatment agent capable of obtaining a high foaming suppression effect and a wet paint booth circulating water treatment method using this wet paint booth circulating water treatment agent.
  • the present inventor is able to solve this problem by using a phenol resin having a polystyrene-reduced weight average molecular weight (hereinafter sometimes referred to as “weight average molecular weight”) higher than that of a conventionally used phenol resin. I found it.
  • the gist of the present invention is as follows.
  • a wet paint booth circulating water containing water-based paint and / or solvent-based paint characterized in that a phenol resin having a weight average molecular weight of more than 3,000 and not more than 100,000 is an active ingredient.
  • Wet paint booth circulating water treatment agent characterized in that a phenol resin having a weight average molecular weight of more than 3,000 and not more than 100,000 is an active ingredient.
  • the phenol resin is at least one selected from a novolac type phenol resin and a secondary reaction phenol resin obtained by a secondary reaction using a novolac type phenol resin as a raw material resin.
  • a wet paint booth circulating water treatment agent is at least one selected from a novolac type phenol resin and a secondary reaction phenol resin obtained by a secondary reaction using a novolac type phenol resin as a raw material resin.
  • the wet paint booth circulating water treatment agent according to any one of [1] to [5] is added to the wet paint booth circulating water containing a water-based paint and / or a solvent-based paint, and the paint in the circulating water is added.
  • a wet painting booth circulating water treatment method characterized by coagulating.
  • the wet coating booth circulating water treatment agent is added to the wet coating booth circulating water so that the amount of the effective component of the phenol resin is 1 to 200 mg / L.
  • Wet paint booth circulating water treatment method is used.
  • the amount of the active ingredient is 1 to 200 mg / L for the aluminum-based flocculant and / or the amount of the active ingredient is 5 to 50 mg / L for the cationic polymer.
  • a wet paint booth circulating water treatment method characterized by adding so as to become.
  • the present invention it is possible to obtain sufficient tack-free and agglomeration effects for solvent-based paints without being affected by the types of paints and curing agents and equipment conditions, with a small amount of chemical addition. It is possible to obtain a high foaming suppression effect for water-based paints. According to the present invention, it is possible to reduce drug cost by reducing the amount of drug added, reduce the amount of agglomeration and dewatered sludge to be discarded, and reduce waste disposal cost.
  • FIG. 6 is a graph showing evaluation results of foamability in Examples 1 to 6 and Comparative Examples 1 to 5.
  • 6 is a graph showing evaluation results of antifoaming properties in Examples 1 to 6 and Comparative Examples 1 to 5.
  • FIG. 6 is a schematic diagram showing experimental apparatuses used in Examples 10 to 12 and Comparative Examples 9 to 11. It is a conceptual diagram of the Venturi booth.
  • the wet paint booth circulating water treatment agent of the present invention comprises a phenol resin having a weight average molecular weight of more than 3,000 and not more than 100,000 as an active ingredient.
  • the weight average molecular weight of the phenol resin is a value measured by a GPC method (gel permeation chromatography method) and calculated using a standard polystyrene calibration curve. Specifically, the following method is used. Measured in
  • the alkaline aqueous solution of the sample was diluted to about 0.1% by mass, and hydrochloric acid was slowly added dropwise to prepare a suspension whose pH was lowered to 4.6. Next, this suspension was put in a dialysis tube and sealed, and the tube was placed in a vat that was allowed to continuously pass pure water, and dialyzed for 24 hours. Thereafter, the suspension taken out from the dialysis tube was filtered through a glass filter, and the recovered resin was washed with pure water and then dried at room temperature for 48 hours in a vacuum dryer to obtain a weight average molecular weight measurement sample.
  • the measurement was performed using a tetrahydrofuran solution as a weight average molecular weight measurement sample, HLC-8120GPC manufactured by Tosoh Corporation as an analyzer (GPC), and tetrahydrofuran as a solvent.
  • the weight average molecular weight was determined by standard polystyrene conversion.
  • the weight average molecular weight of the phenol resin is 3,000 or less, the effect of the present invention by using a phenol resin having a large weight average molecular weight cannot be obtained sufficiently.
  • phenolic resin When phenolic resin is added to the wet paint booth circulating water, the added phenolic resin is dissolved or colloidally dispersed in the circulating water and coagulated due to coexisting cationic polymer, aluminum-based flocculant, pH reduction, etc. Insolubilize. At the time of this condensation and insolubilization, the phenol resin contributes to the detackification of the solvent-based paint and the suppression of foaming of the aqueous paint. The effect is considered to be greater as the phenol resin has a higher weight average molecular weight. When the phenol resin having a large weight average molecular weight is insolubilized, it is considered that the paint is involved and aggregates.
  • the weight average molecular weight of the phenol resin varies depending on the type of the phenol resin used, but is more than 3,000 and not more than 100,000, preferably 3,300 to 50,000. In particular, it is preferable to use a phenol resin having a weight average molecular weight of 5,000 to 30,000.
  • the phenol resin is not particularly limited as long as it satisfies the above weight average molecular weight.
  • a novolac type phenol resin and / or a secondary reaction phenol resin obtained by subjecting the novolac type phenol resin to a secondary reaction treatment using a raw resin can be used. These can be used alone or in combination of two or more.
  • an aqueous solution of novolac phenol resin obtained by reacting phenol and aldehyde in the presence of an acid catalyst is added with an aldehyde to form a resol type in the presence of an alkali catalyst.
  • a resin in which the content of the low molecular weight component is decreased and the high molecular weight of the phenol resin is controlled (see, for example, Japanese Patent No. 5407994).
  • phenols used in the production of novolak type phenolic resins include various isomers of phenol and cresol, various isomers of ethylphenol, various isomers of xylenol, alkylphenols such as butylphenol, unsaturated alkylphenols such as cardanol, ⁇ -Polyaromatic phenols such as naphthol and ⁇ -naphthol, polyphenols such as bisphenol A, bisphenol F, bisphenol S, pyrogallol, resorcin, and catechol, and hydroquinone, but are not limited to these. Absent. These phenols may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • aldehydes used in the production of novolak-type phenol resins and secondary reaction phenol resins include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, benzaldehyde, salicylaldehyde, glyoxal, and the like, but are not limited thereto. is not.
  • These aldehydes may be used individually by 1 type, and may mix and use 2 or more types.
  • the phenol resin is hardly soluble in water, it is preferably used as a solution or emulsion by dissolving or dispersing it in a solvent that is soluble in water.
  • the solvent used include water-soluble organic solvents such as ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, alkaline aqueous solutions, and amine solutions.
  • aqueous alkali solutions such as aqueous sodium hydroxide (NaOH) and aqueous potassium hydroxide (KOH).
  • the alkaline aqueous solution has an alkali concentration of 1 to 25% by mass and a phenol resin concentration of 1 to 50% by mass.
  • the novolac type phenol resin may be dissolved by heating to about 70 to 80 ° C.
  • the amount of phenol resin added varies depending on the properties of the wet paint booth circulating water, that is, the type of paint in the wet paint booth circulating water and the paint content, but is preferably as follows.
  • the addition amount of the phenolic resin is preferably 1 mg / L or more, particularly 5 mg / L or more as an active ingredient amount (resin solid content) with respect to the wet coating booth circulating water.
  • the addition amount of the phenolic resin is preferably 0.1% by mass or more, particularly 0.5% by mass or more as an active ingredient amount with respect to the paint (solid content) in the circulating water.
  • the amount of phenolic resin added to the wet paint booth circulating water is 1,000 mg / L or less, especially 1 to 200 mg / L, especially 5 to 200 mg / L as the amount of active ingredient, and 100 as the amount of active ingredient for paint in circulating water. It is preferable that the amount be not more than mass%, particularly 0.5 to 10 mass%.
  • phenol resin can be used together with an aluminum-based flocculant and / or a cationic polymer.
  • a phenol resin in combination with an aluminum-based flocculant and / or a cationic polymer it is possible to obtain even better agglomeration, tack-free, and foaming suppression effects.
  • aluminum-based flocculant one type or two or more types such as sulfuric acid band, polyaluminum chloride, and aluminum nitrate can be used.
  • Cationic polymers include cationic amines such as alkylamine / epichlorohydrin condensate, polyethyleneimine, alkylene dichloride / polyalkylene polyamine condensate, dicyandiamide / formaldehyde condensate, DAM (dimethylaminoethyl methacrylate), and DADMAC (diallyldimethylammonium chloride).
  • cationic amines such as alkylamine / epichlorohydrin condensate, polyethyleneimine, alkylene dichloride / polyalkylene polyamine condensate, dicyandiamide / formaldehyde condensate, DAM (dimethylaminoethyl methacrylate), and DADMAC (diallyldimethylammonium chloride).
  • cationic polymers may be used alone or in combination of two or more.
  • the amount of aluminum flocculant added depends on the properties of the wet coating booth circulating water, the type and amount of phenolic resin used, and whether or not a cationic polymer is used in combination.
  • the addition amount of the aluminum-based flocculant is preferably about 1 to 1,000 mg / L, particularly 1 to 200 mg / L, particularly about 5 to 200 mg / L as the amount of the active ingredient with respect to the wet paint booth circulating water.
  • the addition amount of the aluminum-based flocculant is less than the above lower limit, the effect of improving the aggregation, non-tackiness, and foaming suppression effect by adding the aluminum-based flocculant cannot be obtained sufficiently. Even if the addition amount of the aluminum-based flocculant exceeds the above upper limit, an improvement in the effect commensurate with the addition amount cannot be obtained, which is not preferable in terms of the drug cost, the increase in the amount of the generated sludge.
  • the addition amount of the cationic polymer varies depending on the properties of the wet coating booth circulating water, the type and addition amount of the phenol resin used, and the presence or absence of the combined use of an aluminum flocculant.
  • the addition amount of the cationic polymer is preferably about 5 to 100 mg / L, particularly about 5 to 50 mg / L, especially about 10 to 30 mg / L as the amount of the active ingredient with respect to the wet paint booth circulating water.
  • the addition amount of the cationic polymer is less than the above lower limit, the effect of improving the aggregation, non-adhesion and foaming suppression effects by adding the cationic polymer cannot be obtained sufficiently. Even if the addition amount of the cationic polymer exceeds the above upper limit, an improvement in the effect corresponding to the addition amount is not obtained, and if the addition amount of the cationic polymer is excessively large, there is an electrical repulsion between particles due to excess cations. This is not preferable in terms of the occurrence of agglomeration failure and the increase in the chemical cost and the amount of agglomerated sludge generated.
  • ⁇ Wet coating booth circulating water treatment method> There is no particular limitation on the method of adding the phenol resin or the phenol resin and the aluminum flocculant and / or the cationic polymer, which is the wet coating booth circulating water treatment agent of the present invention, to the wet coating booth circulating water. It may be added to the circulating water system intermittently once or twice a day, or may be added continuously. Preferably, the metered injection is continuously performed by a pump.
  • the wet coating booth circulating water treatment agent of the present invention may be added to any location of circulating water.
  • the wet paint booth circulating water treatment agent of the present invention is preferably added to the separation tank inlet side where the circulating water is returned.
  • the aluminum-based flocculant and / or cationic polymer is added in combination, there is no particular limitation on the order of addition of the phenol resin and the aluminum-based flocculant and / or cationic polymer. You may add a phenol resin and an aluminum type flocculant and / or a cationic polymer simultaneously to the same place.
  • a cationic polymer may be added before the separator.
  • the pH of the agglomeration treatment system is preferably about 6.0 to 8.5 from the viewpoint of preventing corrosion of the equipment and the effect characteristics relating to the pH of the phenolic resin or cationic polymer. Accordingly, when the pH falls outside this range and becomes low, it is preferable to adjust the pH by adding an alkaline aqueous solution. Normally, the actual machine does not deviate to the high pH side, but if it deviates extremely, pH adjustment may be necessary.
  • the agglomerated sludge separated and recovered by such a method is subjected to incineration or landfill treatment after gravity dehydration or after dehydration by a normal method.
  • the amount of generated sludge can be reduced and the sludge disposal cost can be reduced by reducing the required amount of chemicals added by using a phenol resin having a large weight average molecular weight.
  • a polymer coagulant composed of a water-soluble polymer having a weight average molecular weight of usually more than 1 million, preferably 5 million or more is added.
  • the flocs can be coarsened.
  • polymer flocculant one or more of known anionic polymer flocculants, cationic polymer flocculants, amphoteric polymer flocculants and the like can be used.
  • the amount added is suitably determined in a range of 0.1 to 10% by mass, preferably 0.5 to 2% by mass with respect to the surplus paint so that a good coagulation effect can be obtained. do it.
  • the wet paint booth circulating water treatment agent and the wet paint booth circulating water treatment method of the present invention include wet paint booth circulating water containing water-based paint, wet paint booth circulating water containing solvent-based paint, aqueous paint and solvent-based paint. It can be effectively applied to the treatment of circulating water in the wet paint booth.
  • phenolic resin “Resitop PSM-4261” manufactured by Gunei Chemical Industry Co., Ltd. was used.
  • This product is a novolak type phenol resin obtained by polycondensation of phenol and formaldehyde in the presence of an acid catalyst, and has a weight average molecular weight of 1,000.
  • Example 2 “Resitop PSM-4324” manufactured by Gunei Chemical Industry Co., Ltd. was used.
  • This product is a novolak-type phenol resin obtained by polycondensation of phenol and formaldehyde in the presence of an acid catalyst, and has a weight average molecular weight of 2,000.
  • Example 4 In a separable flask equipped with a stirrer, a thermometer, and a reflux condenser, 370.4 g of phenol was added, and then 190.0 g of a 50% by mass aqueous formaldehyde solution was added. Thereafter, 2.0 g of oxalic acid was added as a catalyst, heated with a heater while stirring the system, the temperature was raised to 95 ° C., and the reaction was performed for 4 hours while maintaining the temperature. Next, dehydration concentration was performed while raising the temperature to 200 ° C. under normal pressure, and when the temperature reached 200 ° C., unreacted phenol was distilled off under a reduced pressure of 5.3 kPa. Thus, 360 g of a yellow novolac type phenol resin (weight average molecular weight: 3,300) was obtained.
  • Example 5 “Resitop PSM-4326” manufactured by Gunei Chemical Industry Co., Ltd. was used. This product is a novolak type phenol resin obtained by polycondensation of phenol and formaldehyde in the presence of an acid catalyst, and has a weight average molecular weight of 5,000.
  • Example 6 In a separable flask equipped with a stirrer, a thermometer, and a reflux condenser, 450.0 g of phenol was added, and then 285.0 g of a 42% by mass aqueous formaldehyde solution was added. Thereafter, 2.5 g of oxalic acid was added as a catalyst, heated with a heater while stirring the system, heated to 95 ° C., and reacted for 4 hours while maintaining the temperature. Next, dehydration concentration was performed while raising the temperature to 200 ° C. under normal pressure, and when the temperature reached 200 ° C., unreacted phenol was distilled off under a reduced pressure of 5.3 kPa. Thus, 380 g of a yellow novolac type phenol resin (weight average molecular weight: 7,900) was obtained.
  • Example 8 “Resitop PSM-6358” manufactured by Gunei Chemical Industry Co., Ltd. was used as a raw material resin.
  • This product is a novolak type phenol resin obtained by polycondensation of phenol and formaldehyde in the presence of an acid catalyst, and has a weight average molecular weight of 5,400.
  • PSM-6358 In a beaker, 41.0 g of “PSM-6358”, 146.2 g of ion-exchanged water, and 12.8 g of a 48 mass% sodium hydroxide aqueous solution were stirred and dissolved with a magnetic stirrer. “PSM-6358” was 20.5 mass. 200 g of a novolak-type phenol resin alkaline aqueous solution containing 1% was obtained.
  • Example 9 In a separable flask equipped with a stirrer, a thermometer, and a reflux condenser, 550.0 g of phenol was added, and then 298.0 g of a 50% by mass aqueous formaldehyde solution was added. Thereafter, 6.0 g of oxalic acid was added as a catalyst, heated with a heater while stirring the system, heated to 95 ° C., and reacted for 3 hours while maintaining the temperature. Next, dehydration concentration was performed while raising the temperature to 200 ° C. under normal pressure, and when the temperature reached 200 ° C., unreacted phenol was distilled off under a reduced pressure of 5.3 kPa. Thus, 580 g of a yellow novolac type phenol resin (weight average molecular weight: 15,000) was obtained.
  • Example 10 In a separable flask equipped with a stirrer, a thermometer, and a reflux condenser, 470.6 g of phenol was added, and then 81.6 g of 92 mass% paraformaldehyde was added. Thereafter, 4.7 g of zinc acetate was added as a catalyst, and the system was heated with a heater while stirring the system, heated to 120 ° C., and then refluxed for 4 hours. Next, dehydration concentration was performed while raising the temperature to 200 ° C. under normal pressure, and when the temperature reached 200 ° C., unreacted phenol was distilled off under a reduced pressure of 5.3 kPa. Thus, 350 g of a yellow high-ortho-type phenol resin (weight average molecular weight: 1,100) was obtained.
  • a yellow high-ortho-type phenol resin weight average molecular weight: 1,100
  • Example 11 In a separable flask equipped with a stirrer, a thermometer, and a reflux condenser, 470.6 g of phenol was added, and then 97.9 g of 92% by mass paraformaldehyde was added. Thereafter, 4.7 g of zinc acetate was added as a catalyst, and the system was heated with a heater while stirring the system, heated to 120 ° C., and then refluxed for 4 hours. Next, dehydration concentration was performed while raising the temperature to 200 ° C. under normal pressure, and when the temperature reached 200 ° C., unreacted phenol was distilled off under a reduced pressure of 5.3 kPa. Thus, 370 g of a yellow high-ortho-type phenol resin (weight average molecular weight: 1,800) was obtained.
  • test water 300 ml was placed in a 1 L graduated cylinder and a bubbling test was performed.
  • test water in the graduated cylinder was bubbled with an air balloon at an air amount of 1.5 L / min, and the following foaming properties and defoaming properties were confirmed.
  • the test of foamability and antifoaming property was continuously performed using the same test water.
  • Example 10 to 12 Comparative Examples 9 to 11
  • the test was carried out using the novolak type phenol resin having the weight average molecular weight shown in Table 4 (however, no phenol resin was used in Comparative Example 9) and using the experimental apparatus shown in FIG.
  • This experimental apparatus is configured to circulate the circulating water in the circulating water tank 1 having a retained water amount of 50 L by the pump P and to flow down on the water curtain plate 2 on which the paint on the upper part of the circulating water tank is sprayed.
  • . 3 is a paint spraying device
  • 11 is a circulation pipe
  • 12 is a discharge pipe for discharging the circulating water to the outside of the system
  • 13 is an exhaust pipe
  • V 1 and V 2 are valves
  • F is an exhaust fan.
  • the tack-free effect was observed when the weight average molecular weight was 1,000 or more, and the tack-free effect of a phenol resin of 3,000 or more, especially 5,000 or more was particularly good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Abstract

 少ない添加量で、溶剤系塗料に対しては塗料や硬化剤の種類、設備条件に影響を受けることなく、十分な不粘着化、凝集効果を得ることができ、また、水性塗料に対しては高い発泡抑制効果を得ることができる湿式塗装ブース循環水処理剤を提供する。重量平均分子量が3,000を超え、100,000以下のフェノール樹脂を有効成分とする湿式塗装ブース循環水処理剤。この湿式塗装ブース循環水処理剤を、水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水に添加して凝集処理する湿式塗装ブース循環水処理方法。

Description

湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法
 本発明は、水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水中の塗料を効率的に凝集処理することができる湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法に関する。
 自動車、電気機器、金属製品などの塗装工程ではスプレー塗装が行なわれている。スプレー塗装では、被塗物に塗着しないオーバースプレーペイント(余剰塗料)が多量に発生する。その発生量は、塗着効率の高い静電塗装を除けば使用塗料の50%から60%程度にも達する。したがって、塗装工程の環境から余剰塗料を除去、回収する必要がある。塗装設備には余剰塗料を水で捕集する水洗式の湿式塗装ブースが広く採用されている。塗装ブースの方式には、シャワー式、ノーポンプ式、ウォーターカーテン式、ベンチュリー式、ハイドロスピン式などの種類があり、基本的には、吹き付け室、吸気装置、および排気系(ダクト)と循環水系で構成されている。
 以下に、図4に示すベンチュリーブースの観念図を用いて、湿式塗装ブース循環水処理の概要について説明する。吹き付け室21で発生したミスト状の余剰塗料の一部は壁面や作業床のスノコに付着するが、大部分は空気の流れと共に水幕板22上を流れる循環水と接触し、水中に捕集される。空気中に残った水滴や一部の塗料粒子もエリミネーター23で除去される。空気は排気ダクト24からファン25によって系外に排出される。塗料粒子を捕集した循環水は水槽26を通ってピット(分離槽)27に入り、更に、浮上装置(図示せず)などによって固液分離される。固液分離された固形物は塗料スラッジとして回収される。固形物を分離除去した水はストレーナ28を経て、循環水ポンプ29により循環水ラインを通って水洗水として循環使用される。
 塗料には、溶剤としてシンナーなどの有機溶剤のみを用いた溶剤系塗料と、水を用いた水性塗料とがある。溶剤系塗料は、水性塗料に比べ、耐候性や耐チッピング性などに優れており、特に自動車用の上塗りクリアー塗装においては多く使われている。水性塗料は、水を溶媒とするため(一部溶剤を併用する場合もある)、引火性がなく、安全かつ衛生的であり、有機溶剤による公害発生の恐れがないなどの利点を有することから、近年はその応用範囲が拡大されつつある。
 溶剤系塗料を用いた場合には、循環水中に取り込まれた余剰塗料の粒子は粘着性が高いため、諸設備に付着して激しい汚れを生じたり、凝集して大きな固まりになって目詰まりを生じやすい。
 水性塗料を用いる場合には、発泡による問題が生じる。水性塗料は本来、水に溶解あるいは均一に分散する性質のものであるため、塗料成分が使用量に比例してブース循環水に蓄積濃縮する。塗料成分が濃縮する結果、塗料中の界面活性剤などの発泡性物質が濃縮されて泡が発生する。さらに循環水中の懸濁物濃度や粘性の上昇によって、発生した泡が安定化し、激しい発泡に至り、安定な塗装ブースの運転ができなくなることがある。
 湿式塗装ブース循環水の処理剤としては、以下の1~3などが使用されている。
1. メラミン樹脂を用いた処理剤(特許文献1)
2. 無機凝集剤と高分子ポリマーの併用(特許文献2)
3. 粘土鉱物を用いた処理剤
 これらの処理剤は、溶剤系塗料の不粘着化にはある程度の効果があるものの、以下の問題がある。
 水性塗料の泡立ちを抑えることはできない。このため、水性塗料の泡立ち抑制のためには、通常、消泡剤が併用される。消泡剤の使用により、湿式塗装ブース循環水のCODが上昇し、水質を悪化させる傾向にある。
 泡立ちの原因となる界面活性剤を除去できないため、循環、濃縮される塗装ブースの系内では徐々に泡立ちが増大し、消泡剤の使用量も増大していく傾向にある。この結果、水質が更に悪化するという悪循環をきたす。
 これらの処理剤は、溶剤系塗料に対する不粘着化効果も十分ではなく、目的の効果を得るためには添加量を多くする必要がある。処理剤の添加量を多くすることで、廃棄物量が増大する。
 水性塗料の発泡の抑制に効果のある処理剤としては、フェノール樹脂を用いた処理剤があり、例えば特許文献3や特許文献4に提案がなされている。
 特許文献3では、用いるフェノール樹脂は分子量1,000以下(繰り返し数nが10以下)のノボラック型フェノール樹脂や分子量100~300のレゾール型フェノール樹脂等が好ましいとされている。特許文献4では、繰り返し数nが4~8で、分子量は特許文献3のものよりも更に小さいノボラック型フェノール樹脂を用いる。
 特許文献5にもフェノール樹脂を用いることが記載されている。特許文献5では、フェノール樹脂の重量平均分子量は3,000以下、好ましくは2,000以下と記載されている。
特公平6-2259号公報 特開昭52-71538号公報 特許第4069799号公報 特許第4717837号公報 特開2011-72866号公報
 従来のフェノール樹脂を用いた湿式塗装ブース循環水処理剤では、以下の問題がある。
 水性塗料に対する発泡抑制効果は得られるものの、その効果は十分ではなく、目的の効果を得るためにはその添加量を多くする必要がある。
 溶剤系塗料に対する不粘着化効果は優れるものの、塗料や硬化剤の種類、設備条件によっては不粘着化のための添加量を多くする必要がある場合がある。
 本発明は、少ない添加量で、溶剤系塗料に対しては塗料や硬化剤の種類、設備条件に影響を受けることなく、十分な不粘着化、凝集効果が得られ、また、水性塗料に対しては高い発泡抑制効果が得られる湿式塗装ブース循環水処理剤及びこの湿式塗装ブース循環水処理剤を用いた湿式塗装ブース循環水処理方法を提供することを目的とする。
 本発明者は、従来用いられているフェノール樹脂よりもポリスチレン換算重量平均分子量(以下「重量平均分子量」と称する場合がある)の大きいフェノール樹脂を用いることにより、この課題を解決することができることを見出した。
 即ち、本発明は以下を要旨とする。
[1] 水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水の処理剤であって、重量平均分子量が3,000を超え、100,000以下のフェノール樹脂を有効成分とすることを特徴とする湿式塗装ブース循環水処理剤。
[2] [1]において、前記フェノール樹脂が、ノボラック型フェノール樹脂及びノボラック型フェノール樹脂を原料樹脂として二次反応させて得られる二次反応フェノール樹脂の中から選ばれる少なくとも1種であることを特徴とする湿式塗装ブース循環水処理剤。
[3] [2]において、前記二次反応フェノール樹脂が、ノボラック型フェノール樹脂のアルカリ水溶液にアルデヒド類を加え、ノボラック型フェノール樹脂と反応させて得られるものであることを特徴とする湿式塗装ブース循環水処理剤。
[4] [1]ないし[3]のいずれかにおいて、前記フェノール樹脂がフェノール樹脂のアルカリ水溶液とされていることを特徴とする湿式塗装ブース循環水処理剤。
[5] [1]ないし[4]のいずれかにおいて、前記フェノール樹脂が重量平均分子量5,000~30,000のフェノール樹脂であることを特徴とする湿式塗装ブース循環水処理剤。
[6] 水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水に、[1]ないし[5]のいずれかに記載の湿式塗装ブース循環水処理剤を添加して、該循環水中の塗料を凝集処理することを特徴とする湿式塗装ブース循環水処理方法。
[7] [6]において、前記湿式塗装ブース循環水に、前記湿式塗装ブース循環水処理剤を、前記フェノール樹脂の有効成分量が1~200mg/Lとなるように添加することを特徴とする湿式塗装ブース循環水処理方法。
[8] [6]又は[7]において、前記湿式塗装ブース循環水に、更にアルミニウム系凝集剤及び/又はカチオン系ポリマーを添加することを特徴とする湿式塗装ブース循環水処理方法。
[9] [8]において、前記湿式塗装ブース循環水に、該アルミニウム系凝集剤を有効成分量が1~200mg/L、及び/又は、該カチオン系ポリマーを有効成分量が5~50mg/Lとなるように添加することを特徴とする湿式塗装ブース循環水処理方法。
[10] [6]ないし[9]のいずれかにおいて、前記湿式塗装ブース循環水に前記湿式塗装ブース循環水処理剤を添加した後、更に高分子凝集処理剤を添加して凝集処理することを特徴とする湿式塗装ブース循環水処理方法。
 本発明によれば、少ない薬剤添加量で、溶剤系塗料に対しては塗料や硬化剤の種類、設備条件に影響を受けることなく、十分な不粘着化、凝集効果を得ることができ、また、水性塗料に対しては高い発泡抑制効果を得ることが可能となる。本発明によれば、薬剤添加量の低減で薬剤コストの低減を図ると共に、廃棄される凝集、脱水汚泥量を低減することができ、廃棄物処理コストの低減を図ることも可能となる。
実施例1~6及び比較例1~5における発泡性の評価結果を示すグラフである。 実施例1~6及び比較例1~5における消泡性の評価結果を示すグラフである。 実施例10~12及び比較例9~11で用いた実験装置を示す模式図である。 ベンチュリーブースの観念図である。
 以下に本発明の実施の形態を詳細に説明する。
[フェノール樹脂]
 本発明の湿式塗装ブース循環水処理剤は、重量平均分子量が3,000を超え、100,000以下のフェノール樹脂を有効成分とするものである。
 なお、本発明において、フェノール樹脂の重量平均分子量とは、GPC法(ゲルパーミエーションクロマトグラフィー法)で測定し、標準ポリスチレンによる検量線を用いて算出した値であり、具体的には以下の方法で測定される。
<重量平均分子量の測定方法>
≪重量平均分子量測定試料の調製≫
 試料がテトラヒドロフランに可溶の場合には、そのまま重量平均分子量測定試料とした。試料がテトラヒドロフランに不溶の場合には、次の操作によって重量平均分子量測定試料を調製した。
 試料がアルカリ水溶液の場合はテトラヒドロフランに不溶のため、アルカリ金属イオンの除去と水分除去を樹脂中の低分子量成分を流出させずに行う必要がある。
 そのため試料のアルカリ水溶液を0.1質量%程度に希釈し、塩酸をゆっくり滴下してpHを4.6に下げた懸濁液を調製した。次にこの懸濁液を透析チューブに入れて密閉し、連続で純水を通水できるようにしたバットにそのチューブを入れ、24時間透析を行った。その後、透析チューブから取り出した懸濁液をガラスフィルターでろ過し、回収した樹脂を純水にて洗浄後、真空乾燥機にて48時間室温で乾燥させることにより重量平均分子量測定試料とした。
≪重量平均分子量の測定≫
 重量平均分子量測定試料をテトラヒドロフラン溶液とし、分析装置(GPC)として東ソー株式会社製HLC-8120GPC、溶媒としてテトラヒドロフランを用い、測定を行った。重量平均分子量は標準ポリスチレン換算により求めた。
 フェノール樹脂の重量平均分子量が3,000以下であると、重量平均分子量が大きなフェノール樹脂を用いることによる本発明の効果を十分に得ることができない。
 フェノール樹脂を湿式塗装ブース循環水に添加すると、添加されたフェノール樹脂は、循環水中に溶解又はコロイド状に分散し、共存するカチオン系ポリマーやアルミニウム系凝集剤、pHの低下等の要因により、凝結、不溶化する。この凝結、不溶化の際に、フェノール樹脂は溶剤系塗料の不粘着化、水性塗料の発泡抑制に寄与する。その効果は重量平均分子量の大きいフェノール樹脂ほど大きいと考えられる。重量平均分子量の大きいフェノール樹脂が不溶化する際に塗料を巻き込んで凝集すると考えられる。
 フェノール樹脂の重量平均分子量が過度に大きいと、後述のフェノール樹脂のアルカリ水溶液の粘度が増大し、ゲル化、または固化がし易くなり、その結果、樹脂濃度を低くせざるを得ない。また、樹脂濃度が低い場合、フェノール樹脂のアルカリ水溶液としての添加量は多くなり、好ましくない。
 このようなことから、フェノール樹脂の重量平均分子量は、用いるフェノール樹脂の種類によっても異なるが、3,000超え、100,000以下であり、好ましくは3,300~50,000である。とりわけ重量平均分子量5,000~30,000のフェノール樹脂を用いることが好ましい。
 フェノール樹脂は上記の重量平均分子量を満たすものであればよく、特に制限はない。フェノール樹脂としては、ノボラック型フェノール樹脂及び/又はノボラック型フェノール樹脂を原料樹脂として二次反応処理を施して得られる二次反応フェノール樹脂を用いることができる。これらは単独で又は2種以上を組み合わせて用いることができる。
 二次反応処理したものとしては、例えば、フェノールとアルデヒドとを酸触媒の存在下に反応させて得られたノボラック型フェノール樹脂のアルカリ水溶液に、アルデヒドを添加してアルカリ触媒の存在下にレゾール型の二次反応を行うことにより、低分子量成分の含有率を減少させると共に、フェノール樹脂の高分子量化を制御した樹脂などが挙げられる(例えば特許第5407994号公報参照)。
 ノボラック型フェノール樹脂の製造に用いるフェノール類としては、例えばフェノール、クレゾールの各種異性体、エチルフェノールの各種異性体、キシレノールの各種異性体、ブチルフェノールなどのアルキルフェノール類、カルダノールなどの不飽和アルキルフェノール類、α-ナフトール、β-ナフトールなどの多芳香環フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ピロガロール、レゾルシン、カテコールなどの多価フェノール類、ハイドロキノンなどが挙げられるが、何らこれらに限定されるものではない。これらのフェノール類は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ノボラック型フェノール樹脂および二次反応フェノール樹脂の製造に用いられるアルデヒド類としては、例えばホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ベンズアルデヒド、サリチルアルデヒド、グリキオキザールなどが挙げられるが、何らこれらに限定されるものではない。これらのアルデヒド類は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 フェノール樹脂は水に難溶であるので、水に溶解可能な溶媒に溶解ないし分散させるなどして溶液状又はエマルジョンとして用いるのが好ましい。使用される溶媒としてはアセトン等のケトン、酢酸メチル等のエステル、メタノール等のアルコールといった水溶性有機溶媒、アルカリ水溶液、アミン溶液等が挙げられる。好ましくは、水酸化ナトリウム(NaOH)水溶液、水酸化カリウム(KOH)水溶液等のアルカリ水溶液である。
 フェノール樹脂をアルカリ水溶液として用いる場合、このアルカリ水溶液はアルカリ濃度1~25質量%、フェノール樹脂濃度1~50質量%の範囲とすることが好ましい。ノボラック型フェノール樹脂のアルカリ水溶液を調製する際、フェノール樹脂濃度が高い場合には、70~80℃程度に加温してノボラック型フェノール樹脂を溶解させるようにしても良い。
 フェノール樹脂の添加量は、湿式塗装ブース循環水の性状、即ち、湿式塗装ブース循環水中の塗料の種類や塗料含有量などによっても異なるが、好ましくは以下の通りである。フェノール樹脂の添加量は、湿式塗装ブース循環水に対して、有効成分量(樹脂固形分量)として1mg/L以上、特に5mg/L以上とすることが好ましい。フェノール樹脂の添加量は、循環水中の塗料(固形分)に対して有効成分量として0.1質量%以上、特に0.5質量%以上とすることが好ましい。
 フェノール樹脂添加量がこの割合よりも少ないと十分な凝集効果、不粘着化効果、発泡抑制効果を得ることができない。フェノール樹脂添加量が過度に多くても、添加量に見合う効果の向上は得られないことがあり、また、重量平均分子量の大きいフェノール樹脂を用いることで、薬剤添加量の低減を図る本発明の目的を達成し得ない。湿式塗装ブース循環水に対するフェノール樹脂の添加量は有効成分量として1,000mg/L以下、特に1~200mg/L、とりわけ5~200mg/Lとし、循環水中の塗料に対して有効成分量として100質量%以下、特に0.5~10質量%とすることが好ましい。
<アルミニウム系凝集剤・カチオン系ポリマー>
 上記のフェノール樹脂は、アルミニウム系凝集剤及び/又はカチオン系ポリマーと共に用いることができる。フェノール樹脂とアルミニウム系凝集剤及び/又はカチオン系ポリマーを併用することにより、より一層良好な凝集、不粘着化、発泡抑制効果を得ることができる。
 アルミニウム系凝集剤としては、硫酸バンド、ポリ塩化アルミニウム、硝酸アルミニウム等の1種又は2種以上を用いることができる。
 カチオン系ポリマーとしては、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジアミド・ホルムアルデヒド縮合物、DAM(ジメチルアミノエチルメタクリレート)、DADMAC(ジアリルジメチルアンモニウムクロライド)等のカチオン性単量体の単独重合物、DAMやDADMAC等のカチオン性単量体とアクリルアミド等の非イオン性単量体との共重合物等であって、重量平均分子量が1,000~100万、好ましくは5,000~30万の、一般に有機凝結剤と言われるものが挙げられる。カチオン系ポリマーは何らこれらに限定されるものではない。
 これらのカチオン系ポリマーは、1種を単独で用いても良く、2種以上を混合して用いても良い。
 フェノール樹脂と共にアルミニウム系凝集剤を併用添加する場合、アルミニウム系凝集剤の添加量は、湿式塗装ブース循環水の性状、用いるフェノール樹脂の種類や添加量、カチオン系ポリマーの併用の有無等によっても異なる。アルミニウム系凝集剤の添加量は、湿式塗装ブース循環水に対して有効成分量として1~1,000mg/L、特に1~200mg/L、とりわけ5~200mg/L程度とすることが好ましい。
 アルミニウム系凝集剤添加量が上記下限未満では、アルミニウム系凝集剤を添加することによる凝集、不粘着化、発泡抑制効果の向上効果を十分に得ることができない。アルミニウム系凝集剤の添加量が上記上限を超えても、添加量に見合う効果の向上は得られず、薬剤コスト、凝集汚泥発生量の増加等の面で好ましくない。
 フェノール樹脂と共にカチオン系ポリマーを併用添加する場合、カチオン系ポリマーの添加量は、湿式塗装ブース循環水の性状、用いるフェノール樹脂の種類や添加量、アルミニウム系凝集剤の併用の有無等によっても異なる。カチオン系ポリマーの添加量は、湿式塗装ブース循環水に対して有効成分量として5~100mg/L、特に5~50mg/L、とりわけ10~30mg/L程度とすることが好ましい。
 カチオン系ポリマー添加量が上記下限未満では、カチオン系ポリマーを添加することによる凝集、不粘着化、発泡抑制効果の向上効果を十分に得ることができない。カチオン系ポリマーの添加量が上記上限を超えても、添加量に見合う効果の向上は得られない上に、カチオン系ポリマー添加量が過度に多いと、過剰カチオンによる、粒子同士の電気的反発が起き、凝集不良を引き起こし、また、薬剤コスト、凝集汚泥発生量の増加等の面でも好ましくない。
<湿式塗装ブース循環水処理方法>
 湿式塗装ブース循環水に本発明の湿式塗装ブース循環水処理剤であるフェノール樹脂、或いはフェノール樹脂とアルミニウム系凝集剤及び/又はカチオン系ポリマーを添加する方法は特に制限はない。循環水系に1日に1~2回程度の頻度で間欠的に添加しても良く、連続添加であっても良い。好ましくは、ポンプにより連続的に定量注入する。
 本発明の湿式塗装ブース循環水処理剤の添加箇所としても特に制限はなく、循環水のどのような箇所に添加しても良い。通常の場合、本発明の湿式塗装ブース循環水処理剤は、循環水の戻りの分離槽入口側に添加することが好ましい。アルミニウム系凝集剤及び/又はカチオン系ポリマーを併用添加する場合、フェノール樹脂とアルミニウム系凝集剤及び/又はカチオン系ポリマーとの添加順序にも特に制限はない。フェノール樹脂とアルミニウム系凝集剤及び/又はカチオン系ポリマーとは同時に同じ場所に添加しても良い。浮上分離装置や遠心分離機で凝集スラッジの分離を行う場合には、カチオン系ポリマーを分離装置の前に添加することがある。
 凝集処理系のpHは、設備の腐食防止の点と、フェノール樹脂やカチオン系ポリマーのpHに関する効果特性の点から、6.0~8.5程度であることが好ましい。従って、pHがこの範囲を外れ低くなる場合には、アルカリ水溶液を添加してpH調整を行うことが好ましい。通常、実機では高pH側に外れることはないが、極端に外れる場合はpH調整が必要になることがある。
 フェノール樹脂、或いはフェノール樹脂とアルミニウム系凝集剤及び/又はカチオン系ポリマーの添加により、循環水中の塗料は速やかに不溶化、凝集してフロックを生成する。凝集により生成したフロックの分離回収には、浮上分離、ウェッジワイヤ、ロータリースクリーン、バースクリーン、サイクロン、遠心分離機、濾過装置などによる方法を採用することができる。
 このような方法で分離回収された凝集汚泥は、重力脱水後、或いは通常の方法で脱水後、焼却、埋立処理される。本発明によれば、重量平均分子量の大きいフェノール樹脂を用いることによる薬剤の必要添加量の低減で、発生汚泥量を低減して、汚泥処分費を低減することができる。
 本発明の湿式塗装ブース循環水処理剤を用いて凝集処理した後、更に、重量平均分子量が、通常、100万超、好ましくは500万以上の水溶性高分子よりなる高分子凝集剤を添加してフロックの粗大化を図ることもできる。
 この場合、高分子凝集剤としては、公知のアニオン系高分子凝集剤、カチオン系高分子凝集剤、両性高分子凝集剤などの1種又は2種以上を用いることができる。
 高分子凝集剤を用いる場合、その添加量は、余剰塗料に対して0.1~10質量%、好ましくは0.5~2質量%の範囲で、良好な凝集効果が得られるように適宜決定すればよい。
 本発明の湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水の処理方法は、水性塗料を含む湿式塗装ブース循環水、溶剤系塗料を含む湿式塗装ブース循環水、水性塗料及び溶剤系塗料を含む湿式塗装ブース循環水の処理に効果的に適用することができる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
1.フェノール樹脂の製造
[サンプル1]
 群栄化学工業株式会社製の「レヂトップPSM-4261」を使用した。本品は、フェノールとホルムアルデヒドを酸触媒の存在下にて重縮合を行って得られたノボラック型フェノール樹脂であり、重量平均分子量は1,000である。
[サンプル2]
 群栄化学工業株式会社製の「レヂトップPSM-4324」を使用した。本品は、フェノールとホルムアルデヒドを酸触媒の存在下にて重縮合を行って得られたノボラック型フェノール樹脂であり、重量平均分子量は2,000である。
[サンプル3]
 攪拌機、温度計、還流冷却管を備えたセパラブルフラスコに、クレゾール450.0gを入れ、次いで37質量%ホルムアルデヒド水溶液200.0gを添加した。その後、触媒としてシュウ酸3.0gを添加し、系を攪拌しながらヒーターにより加熱を行い95℃まで昇温し、温度を維持したまま4時間反応を行った。次に、常圧下で200℃まで昇温しながら脱水濃縮を行い、200℃に達したところで5.3kPaの減圧下において未反応クレゾールの留去を行なった。こうして黄色透明なノボラック型クレゾール樹脂(重量平均分子量:2,300)350gを得た。
[サンプル4]
 攪拌機、温度計、還流冷却管を備えたセパラブルフラスコに、フェノール370.4gを入れ、次いで50質量%ホルムアルデヒド水溶液190.0gを添加した。その後、触媒としてシュウ酸2.0gを添加し、系を攪拌しながらヒーターにより加熱を行い95℃まで昇温し、温度を維持したまま4時間反応を行った。次に、常圧下で200℃まで昇温しながら脱水濃縮を行い、200℃に達したところで5.3kPaの減圧下において未反応フェノールの留去を行なった。こうして黄色状のノボラック型フェノール樹脂(重量平均分子量:3,300)360gを得た。
[サンプル5]
 群栄化学工業株式会社製の「レヂトップPSM-4326」を使用した。本品は、フェノールとホルムアルデヒドを酸触媒の存在下にて重縮合を行って得られたノボラック型フェノール樹脂であり、重量平均分子量は5,000である。
[サンプル6]
 攪拌機、温度計、還流冷却管を備えたセパラブルフラスコに、フェノール450.0gを入れ、次いで42質量%ホルムアルデヒド水溶液285.0gを添加した。その後、触媒としてシュウ酸2.5gを添加し、系を攪拌しながらヒーターにより加熱を行い95℃まで昇温し、温度を維持したまま4時間反応を行った。次に、常圧下で200℃まで昇温しながら脱水濃縮を行い、200℃に達したところで5.3kPaの減圧下において未反応フェノールの留去を行なった。こうして黄色状のノボラック型フェノール樹脂(重量平均分子量:7,900)380gを得た。
[サンプル7]
 群栄化学工業株式会社製の「レヂトップPSF-2803」を使用した。本品は、クレゾールとホルムアルデヒドを酸触媒の存在下にて重縮合を行って得られたノボラック型クレゾール樹脂であり、重量平均分子量は12,000である。
[サンプル8]
 原料樹脂として群栄化学工業株式会社製の「レヂトップPSM-6358」を使用した。本品はフェノールとホルムアルデヒドを酸触媒の存在下にて重縮合を行って得られたノボラック型フェノール樹脂であり、重量平均分子量は5,400である。
 ビーカーに「PSM-6358」41.0g、イオン交換水146.2g、48質量%水酸化ナトリウム水溶液12.8gを入れ、マグネチックスターラにて撹拌溶解し、「PSM-6358」を20.5質量%含有するノボラック型フェノール樹脂アルカリ水溶液200gを得た。
 共栓付三角フラスコに前記溶液100.0gを入れ、約60℃に加温してから37質量%のホルムアルデヒド水溶液4.43gを加えた。共栓にコンデンサー、撹拌用窒素ガス吹き込み管、及び温度計を取り付け、オイルバスで、液温度85℃で8時間、レゾール型のホルムアルデヒド付加・重縮合反応を進行させた(レゾール型二次反応)。その後、これを冷却し、イオン交換水(濃度調整用)4.46gを加えて、二次反応フェノール樹脂アルカリ水溶液を得た。この溶液の樹脂成分(有効成分)濃度は19.4質量%、当該樹脂の重量平均分子量は30,000であった。
[サンプル9]
 攪拌機、温度計、還流冷却管を備えたセパラブルフラスコに、フェノール550.0gを入れ、次いで50質量%ホルムアルデヒド水溶液298.0gを添加した。その後、触媒としてシュウ酸6.0gを添加し、系を攪拌しながらヒーターにより加熱を行い95℃まで昇温し、温度を維持したまま3時間反応を行った。次に、常圧下で200℃まで昇温しながら脱水濃縮を行い、200℃に達したところで5.3kPaの減圧下において未反応フェノールの留去を行なった。こうして黄色状のノボラック型フェノール樹脂(重量平均分子量:15,000)580gを得た。
 ビーカーに得られた上記ノボラック型フェノール樹脂41.0g、イオン交換水146.2g、48質量%水酸化ナトリウム水溶液12.8gを入れ、マグネチックスターラにて撹拌溶解し、上記ノボラック型フェノール樹脂を20.5質量%含有するノボラック型フェノール樹脂アルカリ水溶液200gを得た。
 共栓付三角フラスコに前記溶液100.0gを入れ、約60℃に加温してから50質量%のホルムアルデヒド水溶液3.50gを加えた。共栓にコンデンサー、撹拌用窒素ガス吹き込み管、及び温度計を取り付け、オイルバスで、液温度85℃で8時間、レゾール型のホルムアルデヒド付加・重縮合反応を進行させた(レゾール型二次反応)。その後、これを冷却し、イオン交換水(濃度調整用)4.46gを加えて、二次反応フェノール樹脂アルカリ水溶液を得た。この溶液の樹脂成分(有効成分)濃度は19.7質量%、当該樹脂の重量平均分子量は82,704であった。
[サンプル10]
 攪拌機、温度計、還流冷却管を備えたセパラブルフラスコに、フェノール470.6gを入れ、次いで92質量%パラホルムアルデヒド81.6gを添加した。その後、触媒として酢酸亜鉛4.7gを添加し、系を攪拌しながらヒーターにより加熱を行い120℃まで昇温した後、4時間還流反応を行った。次に、常圧下で200℃まで昇温しながら脱水濃縮を行い、200℃に達したところで5.3kPaの減圧下において未反応フェノールの留去を行なった。こうして黄色状のハイオルソ型フェノール樹脂(重量平均分子量:1,100)350gを得た。
[サンプル11]
 攪拌機、温度計、還流冷却管を備えたセパラブルフラスコに、フェノール470.6gを入れ、次いで92質量%パラホルムアルデヒド97.9gを添加した。その後、触媒として酢酸亜鉛4.7gを添加し、系を攪拌しながらヒーターにより加熱を行い120℃まで昇温した後、4時間還流反応を行った。次に、常圧下で200℃まで昇温しながら脱水濃縮を行い、200℃に達したところで5.3kPaの減圧下において未反応フェノールの留去を行なった。こうして黄色状のハイオルソ型フェノール樹脂(重量平均分子量:1,800)370gを得た。
2.発泡性と消泡性の評価
[実施例1~6、比較例1~5]
 表1に示すフェノール樹脂を用い、以下の手順で発泡性と消泡性の評価を行った。
Figure JPOXMLDOC01-appb-T000001
(1) 野木町水400mlに塗料(自動車ボデー用水性ベース塗料:シルバー)2mlを添加し、スターラーで撹拌して塗料液を調製した。
(2) 水酸化ナトリウムと純水を用いて、フェノール樹脂濃度が10質量%で水酸化ナトリウム濃度が4.8質量%のフェノール樹脂アルカリ水溶液よりなる処理剤を調製した。
(3) (2)の処理剤を、(1)の塗料液に、フェノール樹脂純分の添加量が125、250又は500mg/Lとなるように添加し、その後硫酸バンドを1,000mg/L添加し、水酸化ナトリウムでpH約7.0に調整して試験水とした。
(4) 試験水300mlを1Lのメスシリンダーに入れ、バブリング試験を実施した。
 バブリング試験では、散気球を用いて、1.5L/分の空気量でメスシリンダー内の試験水をバブリングし、以下の発泡性と消泡性を確認した。発泡性と消泡性の試験は同一の試験水を用いて連続して行った。
<発泡性>
 バブリングを開始し2分経過した時点でバブリングを停止すると共に、バブリング2分経過後の泡量(ml)を測定した。
 2分以内に泡量700mlを超える場合は、泡量が700mlを超えた時点でバブリングを停止すると共に700mlを超えるまでの秒数を記録した(この秒数は大きい程発泡抑制効果に優れる)。
<消泡性>
 発泡性試験に引き続き、バブリング停止後2分間静置し、残った泡量(ml)を測定した。
 2分以内に泡が消える場合は、泡が消えるまでの秒数を記録した(この秒数は小さい程消泡性に優れる。)。
 結果を表2と図1,2に示す。
 図1の泡量は低いものほど効果が良く、図2の泡量も同様に低いものほど効果がよい。
 図1,2より明らかなように、重量平均分子量が高いものほど発泡抑制、消泡性の効果が良く、特に少ない添加量(125ppm)において顕著に差が表れている。
Figure JPOXMLDOC01-appb-T000002
[実施例7~9、比較例6~8]
 表3A,3Bに示す重量平均分子量のノボラック型フェノール樹脂を用い(ただし、比較例6ではフェノール樹脂用いず)、以下の手順で発泡性、消泡性、濾液濁度及び凝集効果の評価を行った。
(1) ビーカーに水道水を300ml、塗料(自動車ボデー用水性ベース塗料:ホワイト)を1.5ml、フェノール樹脂のアルカリ水溶液(フェノール樹脂濃度10質量%、水酸化ナトリウム濃度4.8質量%)をフェノール樹脂濃度として125mg/L入れ(ただし、比較例6では、フェノール樹脂を含まないアルカリ水溶液を用いた。)更に硫酸バンド1,000mg/L又はカチオン系ポリマー(アルキルアミン・エピクロルヒドリン縮合物(重量平均分子量50万))100mg/Lを入れて、2分間撹拌して試験水とした。
 硫酸バンドを添加した場合は更に水酸化ナトリウムを添加してpHを約7.0にそろえた。
(2) (1)の試験水について、実施例1と同様にしてバブリング試験を行い、発泡性と消泡性を評価した。
(3) (1)の試験水について、ワットマンNo.41濾紙で濾過した濾液の濁度を濁度計により測定した。
(4) (1)の試験水に対して、1質量%のカチオン性高分子凝集剤(アクリルアミドと2(アクリロイルオキシ)エチルトリメチルアンモニウムクロライドとの共重合物(重量平均分子量800万))を有効成分濃度として6.6mg/L添加し、フロックの状態を確認し、下記基準で評価した。
<凝集効果>
  ○:良好なフロックが形成され凝集性に優れる。
  ×:フロックが形成されず凝集効果が得られない。
 上記の結果を表3A,3Bに示す。
Figure JPOXMLDOC01-appb-T000003
 表3A,3Bより明らかなように、硫酸バンド併用、カチオン系ポリマー併用のいずれのケースにおいても、フェノール樹脂の重量平均分子量が大きいものは、発泡抑制効果、消泡性共に良好な効果が得られる。
[実施例10~12、比較例9~11]
 表4に示す重量平均分子量のノボラック型フェノール樹脂を用い(ただし、比較例9ではフェノール樹脂を用いず)、図3に示す実験装置を用いて試験を実施した。
 この実験装置は、保有水量50Lの循環水槽1内の循環水をポンプPで循環して、循環水槽上部の塗料が噴霧される水幕板2上に流下させるように構成されているものである。3は塗料噴霧装置であり、11は循環配管、12は、循環水を系外へ排出するための排出配管、13は排気配管、V,Vはバルブ、Fは排気ファンである。
 循環水に表4に示すフェノール樹脂を表4に示す濃度で添加すると共にカチオン系ポリマー(アルキルアミン・エピクロルヒドリン縮合物(重量平均分子量50万))を表4に示す濃度で添加後、塗料(自動車ボデー溶剤クリア)を4分間で20g噴霧した。その後装置を止めた後、水面に浮上した処理スラッジの粘着性を指触にて調べ、下記基準で評価した。乾燥後のスラッジの粘着性についても同様に評価した。
<評価基準>
  A :指触非常に良好、指で擦っても付着しない
  B :指触非常に良好、指で擦ると硬くなる
  C :指で擦るとわずかに粘着性がある
  D :粘着性残留
  E :粘着性大
Figure JPOXMLDOC01-appb-T000004
 表4より明らかなように、フェノール樹脂の重量平均分子量の大きいものほど少ない添加量(25mg/L)での粘着性が低い結果となった。
 重量平均分子量1,000以上で不粘着化効果が見られ、特に3,000以上、とりわけ5,000以上のフェノール樹脂の不粘着化効果は良好であった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年9月4日付で出願された日本特許出願2014-180279に基づいており、その全体が引用により援用される。
 1 循環水槽
 2 水幕板
 3 塗料噴霧装置
 21 吹き付け室
 22 水幕板
 23 エリミネーター
 24 排気ダクト
 25 水槽
 27 ピット

Claims (10)

  1.  水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水の処理剤であって、重量平均分子量が3,000を超え、100,000以下のフェノール樹脂を有効成分とすることを特徴とする湿式塗装ブース循環水処理剤。
  2.  請求項1において、前記フェノール樹脂が、ノボラック型フェノール樹脂及びノボラック型フェノール樹脂を原料樹脂として二次反応させて得られる二次反応フェノール樹脂の中から選ばれる少なくとも1種であることを特徴とする湿式塗装ブース循環水処理剤。
  3.  請求項2において、前記二次反応フェノール樹脂が、ノボラック型フェノール樹脂のアルカリ水溶液にアルデヒド類を加え、ノボラック型フェノール樹脂と反応させて得られるものであることを特徴とする湿式塗装ブース循環水処理剤。
  4.  請求項1ないし3のいずれか1項において、前記フェノール樹脂がフェノール樹脂のアルカリ水溶液とされていることを特徴とする湿式塗装ブース循環水処理剤。
  5.  請求項1ないし4のいずれか1項において、前記フェノール樹脂が重量平均分子量5,000~30,000のフェノール樹脂であることを特徴とする湿式塗装ブース循環水処理剤。
  6.  水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水に、請求項1ないし5のいずれか1項に記載の湿式塗装ブース循環水処理剤を添加して、該循環水中の塗料を凝集処理することを特徴とする湿式塗装ブース循環水処理方法。
  7.  請求項6において、前記湿式塗装ブース循環水に、前記湿式塗装ブース循環水処理剤を、前記フェノール樹脂の有効成分量が1~200mg/Lとなるように添加することを特徴とする湿式塗装ブース循環水処理方法。
  8.  請求項6又は7において、前記湿式塗装ブース循環水に、更にアルミニウム系凝集剤及び/又はカチオン系ポリマーを添加することを特徴とする湿式塗装ブース循環水処理方法。
  9.  請求項8において、前記湿式塗装ブース循環水に、該アルミニウム系凝集剤を有効成分量が1~200mg/L、及び/又は、該カチオン系ポリマーを有効成分量が5~50mg/Lとなるように添加することを特徴とする湿式塗装ブース循環水処理方法。
  10.  請求項6ないし9のいずれか1項において、前記湿式塗装ブース循環水に前記湿式塗装ブース循環水処理剤を添加した後、更に高分子凝集処理剤を添加して凝集処理することを特徴とする湿式塗装ブース循環水処理方法。
PCT/JP2015/074632 2014-09-04 2015-08-31 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法 WO2016035743A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580033940.3A CN106660840B (zh) 2014-09-04 2015-08-31 湿式涂装室循环水处理剂及湿式涂装室循环水处理方法
MYPI2017700330A MY182148A (en) 2014-09-04 2015-08-31 Agent for treating water circulating through wet paint booth and method for treating water circulating through wet paint booth
EP15837989.1A EP3190092A4 (en) 2014-09-04 2015-08-31 Agent for treating circulation water in wet painting booth and method for treating circulation water in wet painting booth
BR112017003145A BR112017003145A2 (pt) 2014-09-04 2015-08-31 agente para tratamento de água que circula através da cabine de tinta líquida e método para o tratamento da água que circula através da cabine de tinta líquida
US15/329,743 US20170210645A1 (en) 2014-09-04 2015-08-31 Agent for treating water circulating through wet paint booth and method for treating water circulating through wet paint booth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014180279A JP6507531B2 (ja) 2014-09-04 2014-09-04 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法
JP2014-180279 2014-09-04

Publications (1)

Publication Number Publication Date
WO2016035743A1 true WO2016035743A1 (ja) 2016-03-10

Family

ID=55439804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074632 WO2016035743A1 (ja) 2014-09-04 2015-08-31 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法

Country Status (8)

Country Link
US (1) US20170210645A1 (ja)
EP (1) EP3190092A4 (ja)
JP (1) JP6507531B2 (ja)
CN (1) CN106660840B (ja)
BR (1) BR112017003145A2 (ja)
MY (1) MY182148A (ja)
TW (1) TWI679054B (ja)
WO (1) WO2016035743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170234A1 (ja) * 2016-03-31 2017-10-05 栗田工業株式会社 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水の処理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274334B1 (ja) * 2017-02-24 2018-02-07 栗田工業株式会社 湿式塗装ブース循環水用処理剤
JP6642616B2 (ja) * 2018-04-23 2020-02-05 栗田工業株式会社 湿式塗装ブース循環水の処理方法
JP6645536B2 (ja) * 2018-05-24 2020-02-14 栗田工業株式会社 湿式塗装ブース循環水処理薬剤の薬注制御方法および制御装置
JP7206650B2 (ja) * 2018-07-02 2023-01-18 栗田工業株式会社 湿式塗装ブース循環水の処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370780A (ja) * 1989-08-09 1991-03-26 Kurita Water Ind Ltd 湿式スプレーブース処理剤
JP2012210613A (ja) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd 排水の処理方法
JP2014124612A (ja) * 2012-12-27 2014-07-07 Kurita Water Ind Ltd フォトリソグラフィー排水の処理方法
JP2014155916A (ja) * 2013-02-18 2014-08-28 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558080A (en) * 1984-01-24 1985-12-10 Dearborn Chemical Company Stable tannin based polymer compound
US4913825A (en) * 1988-05-27 1990-04-03 W. R. Grace & Co.-Conn. Method for controlling overspray in paint spray booths
US4863615A (en) * 1988-08-01 1989-09-05 Nalco Chemical Company Cationic coagulants plus collidal silica for use in paint detackification
US5830315A (en) * 1995-07-06 1998-11-03 Betzdearborn Inc. Treatment of Aqueous systems using a chemically modified tannin
US7338758B2 (en) * 2001-02-08 2008-03-04 Mayo Foundation For Medical Education And Research. Compositions and methods for the identification, assessment, prevention and therapy of human cancers
JP4697130B2 (ja) * 2006-12-15 2011-06-08 栗田工業株式会社 湿式ブース循環水の処理方法
JP2009022852A (ja) * 2007-07-18 2009-02-05 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP5407994B2 (ja) * 2009-08-11 2014-02-05 栗田工業株式会社 水処理方法及び水処理凝集剤
JP5407706B2 (ja) * 2009-09-29 2014-02-05 栗田工業株式会社 湿式塗装ブース循環水の処理方法
JP5573262B2 (ja) * 2010-03-18 2014-08-20 栗田工業株式会社 湿式塗装ブース循環水の処理方法
CN102718297B (zh) * 2012-06-13 2017-06-23 丰信精细化工(上海)有限公司 一种高浓度高分子聚硅型絮凝剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370780A (ja) * 1989-08-09 1991-03-26 Kurita Water Ind Ltd 湿式スプレーブース処理剤
JP2012210613A (ja) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd 排水の処理方法
JP2014124612A (ja) * 2012-12-27 2014-07-07 Kurita Water Ind Ltd フォトリソグラフィー排水の処理方法
JP2014155916A (ja) * 2013-02-18 2014-08-28 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170234A1 (ja) * 2016-03-31 2017-10-05 栗田工業株式会社 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水の処理方法
JP6233549B1 (ja) * 2016-03-31 2017-11-22 栗田工業株式会社 湿式塗装ブース循環水の不粘着化処理剤及び湿式塗装ブース循環水の不粘着化処理方法
US10745302B2 (en) 2016-03-31 2020-08-18 Kurita Water Industries Ltd. Method for treating water that circulates through wet paint booth

Also Published As

Publication number Publication date
TWI679054B (zh) 2019-12-11
US20170210645A1 (en) 2017-07-27
CN106660840A (zh) 2017-05-10
MY182148A (en) 2021-01-18
EP3190092A4 (en) 2018-04-11
EP3190092A1 (en) 2017-07-12
CN106660840B (zh) 2021-07-13
BR112017003145A2 (pt) 2017-11-28
JP2016052639A (ja) 2016-04-14
TW201628693A (zh) 2016-08-16
JP6507531B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2016035743A1 (ja) 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水処理方法
JP4697130B2 (ja) 湿式ブース循環水の処理方法
JP2009022852A (ja) 湿式塗装ブース循環水の処理方法
WO2016013586A1 (ja) 湿式塗装ブース循環水の処理方法及び処理装置
JP7154991B2 (ja) 湿式塗装ブース循環水の処理方法
JP5880602B2 (ja) 湿式塗装ブース循環水処理剤
JP4069799B2 (ja) 湿式塗装ブース循環水の処理方法
TWI639460B (zh) Oil/water separation method for o/w type emulsion and oil water separating agent for o/w type emulsion
WO2020179842A1 (ja) 湿式塗装ブース循環水の処理装置および処理方法
JP6642616B2 (ja) 湿式塗装ブース循環水の処理方法
JP5681828B1 (ja) 湿式塗装ブース循環水の処理方法
JP6102318B2 (ja) 湿式塗装ブース循環水の処理方法
WO2022018905A1 (ja) 湿式塗装ブース循環水の処理装置および処理方法
WO2019225353A1 (ja) 湿式塗装ブース循環水処理薬剤の薬注制御方法および制御装置
WO2019225352A1 (ja) 湿式塗装ブース循環水処理薬剤の薬注制御方法および制御装置
JP2016140805A (ja) 湿式塗装ブース循環水の処理方法及び処理装置
JP6288361B2 (ja) 湿式塗装ブース循環水の処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15329743

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015837989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837989

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017003145

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017003145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170216